
Math 8300 Homework 3 due Saturday 11/27/2021

Upload to Gradescope

1. Let G be the non-abelian group of order 21:

G = 〈x, y
∣∣ x7 = y3 = 1, yxy−1 = x2〉.

Show that G has 5 conjugacy classes, and find its character table. [The answer and a brief

hint are given in the character tables section at the end of my text book. If you look there,

make sure to present the calculations that are suggested.]

2. Let H and K be subgroups of G with HK = G and H ∩ K = 1. Show that for any

kH-module U the module U ↑GH↓GK is a direct sum of copies of the regular representation

kK.

3. Let k be a field. Show by example that it is possible to find a subgroup H of a group G

and a simple kG-module U for which U ↓GH is not semisimple.

4. Let H be a subgroup of G and V an RH-module. Show that if V can be generated by d

elements as an RH-module then V ↑GH can be generated by d elements as an RG-module.

5. Let H be a subgroup of G.

(a) Write H =
∑
h∈H h for the sum of the elements of H, as an element of RG. Show that

RG ·H ∼= R ↑GH as left RG-modules. Show also that RG ·H equals the fixed points of H

in its action on RG from the right.

(b) More generally let ρ : H → R× be a 1-dimensional representation of H (that is, a

group homomorphism to the units of R). Write H̃ :=
∑
h∈H ρ(h)h ∈ RG. Show that

RG · H̃ ∼= ρ∗ ↑GH as RG-modules.

6. Let k be any field, and g any element of a finite group G.

(a) If K ≤ H ≤ G are subgroups of G, V a kH-module, and W a kK-module, show that

(gV ) ↓gHgK∼= g(V ↓HK) and (gW ) ↑gHgK∼= g(W ↑HK). [This allows us to put conjugation before,

between, or after restriction and induction in Mackey’s formula.]

(b) If U is any kG-module, show that U ∼= gU by showing that one of the two mappings

U → gU specified by u 7→ gu and u 7→ g−1u is always an RG-module isomorphism. [Find

which one of these it is.]

7. (Artin’s Induction Theorem) Let Ccc(G) denote the vector space of class functions on G

and let C be a set of subgroups of G that contains a representative of each conjugacy class

of cyclic subgroups of G. Consider the linear mappings

resC : Ccc(G) →
⊕
H∈C

Ccc(H)

and

indC :
⊕
H∈C

Ccc(H) → Ccc(G)
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whose component homomorphisms are the linear mappings given by restriction

↓GH : Ccc(G) → Ccc(H)

and induction

↑GH : Ccc(H) → Ccc(G)

(a) With respect to the usual inner product 〈 , 〉G on Ccc(G) and the inner product on⊕
H∈C Ccc(H) that is the orthogonal sum of the 〈 , 〉H , show that resC and indC are the

transpose of each other. [For this we have to realize that if α : V →W is a linear map then

the usual transpose of α is a linear map β : W → V satisfying 〈α(v), w〉W = 〈v, β(w)〉V
where 〈−,−〉V and 〈−,−〉W are the standard inner products on V and W defined with

respect to given bases of V and W . A transpose may be defined using any pair of inner

products like this.]

(b) Show that resC is injective.

[Use the fact that Ccc(G) has a basis consisting of characters, that take their information

from cyclic subgroups.]

(c) Prove Artin’s induction theorem: In Ccc(G) every character χ can be written as a

rational linear combination

χ =
∑

aH,ψψ ↑GH

where the sum is taken over cyclic subgroups H of G, ψ ranges over characters of H and

aH,ψ ∈ Q.

[Deduce this from surjectivity of indC and the fact that it is given by a matrix with integer

entries. A stronger version of Artin’s theorem is possible: there is a proof due to Brauer

which gives an explicit formula for the coefficients aH,ψ; from this we may deduce that

when χ is the character of a QG-module the ψ that arise may all be taken to be the trivial

character.]

(d) Show that if U is any CG-module then there are CG-modules P and Q, each a direct

sum of modules of the form V ↑GH where H is cyclic, for various V and H, so that Un⊕P ∼=
Q for some n, where Un is the direct sum of n copies of U .

Extra questions: do not upload to Gradescope

8. Find the character table of the following group of order 36:

G = 〈a, b, c
∣∣ a3 = b3 = c4 = 1, ab = ba, cac−1 = b, cbc−1 = a2〉.

[It follows from these relations that 〈a, b〉 is a normal subgroup of G of order 9.]

9. Compute the character table of the symmetric group S5 by the methods we have seen.

It can all be done by considering the decomposition of permutation representations, and

tensor product with the sign representation is useful.
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10. Compute the character tables of the alternating groups A4 and A5 using the following

procedure. You may assume that A5 is a simple group that is isomorphic to the group of

rotations of a regular icosahedron, and that A4 is isomorphic to the group of rotations of

a regular tetrahedron.

(a) Compute the conjugacy classes by observing that each conjugacy class of even permu-

tations in Sn is either a single class in An or the union of two classes of An, and that this

can be determined by computing centralizers of elements in An and comparing them with

the centralizers in Sn.

(b) Compute the abelianization of each group, and hence the 1-dimensional representations.

(c) Obtain further representations using the methods of this section. We have natural

3-dimensional representations in each case. It is also helpful to consider induced represen-

tations from the Sylow 2-subgroup in the case of A4, and from the subgroup A4 in the case

of A5.

11. Find the complete list of subgroups H of the dihedral group D8 such that the 2-dimensional

simple representation over C can be written U ↑GH for some 1-dimensional representation

U of H. Do the same thing for the quaternion group Q8.

12. We saw the character table of the semidihedral group of order 16 in class:

SD16 = 〈x, y
∣∣ x8 = y2 = 1, yxy−1 = x3〉.

Compute the character table of the generalized quaternion group of order 16

Q16 = 〈x, y
∣∣ x8 = 1, x4 = y2, yxy−1 = x−1〉

13. The following statements generalize Maschke’s theorem. Let H be a subgroup of G and

suppose that k is a field in which |G : H| is invertible. Let V be a kG-module.

(a) Show that
1

|G : H|
∑

g∈[G/H]

g : V H → V G

is a well-defined map that is a projection of the H-fixed points onto the G-fixed points. In

particular, this map is surjective.

(b) Show that if V ↓GH is semisimple as a kH-module then V is semisimple as a kG-module.

14. Let H be a normal subgroup of G and suppose that k is a field of characteristic p.

(a) Let p 6
∣∣ |G : H|. Show that if U is a semisimple kH-module then U ↑GH is a semisimple

kG-module.

(b) Let p
∣∣ |G : H|. Show by example that if U is a semisimple kH-module then it need not

be the case that U ↑GH is a semisimple kG-module.

15. Let H be a subgroup of G of index 2 (so that H is normal in G) and let k be a field

whose characteristic is not 2. The homomorphism G → {±1} ⊂ k with kernel H is a
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1-dimensional representation of G that we will call ε. Let S, T be simple kG-modules and

let U, V be simple kH-modules. You may assume that U ↑GH and V ↑GH are semisimple

(proved in a different exercise). Let g ∈ G−H.

(a) Show that S ↓GH is the direct sum of either 1 or 2 simple kH-modules.

(b) Show that U ↑GH is the direct sum of either 1 or 2 simple kG-modules.

In the following questions, notice that

S ↓GH↑GH∼= S ⊗ (k ↑GH) ∼= S ⊗ (k ⊕ ε) ∼= S ⊕ (S ⊗ ε).

For some parts of the questions it may help to consider

HomkH(S ↓GH , T ↓GH) and HomkG(U ↑GH , V ↑GH).

(c) Show that the following are equivalent:

(i) S is the induction to G of a kH-module,

(ii) S ↓GH is not simple,

(iii) S ∼= S ⊗ ε.
(d) Show that the following are equivalent:

(i) U is the restriction to H of a kG-module,

(ii) U ↑GH is not simple,

(iii) U ∼= gU .

(e) Show that S ↓GH and T ↓GH have a summand in common if and only if S ∼= T or

S ∼= T ⊗ ε.
(f) Show that U ↑GH and V ↑GH have a summand in common if and only if U ∼= V or

U ∼= gV .

(g) We place an equivalence relation ∼1 on the simple kG-modules and an equivalence

relation ∼2 on the simple kH-modules:

S ∼1 T ⇔ S ∼= T or S ∼= T ⊗ ε
U ∼2 V ⇔ U ∼= V or U ∼= gV.

Show that induction ↑GH and restriction ↓GH induce mutually inverse bijections between the

equivalence classes of simple kG-modules and of simple kH-modules in such a way that an

equivalence class of size 1 corresponds to an equivalence class of size 2, and vice-versa.

(h) Show that the simple kG-modules of odd degree restrict to simple kH-modules, and

the number of such modules is even.

(i) In the case where G = S4, H = A4 and k = C, show that there are three equivalence

classes of simple characters under ∼1 and ∼2. Verify that ↓S4

A4
and ↑S4

A4
give mutually

inverse bijections between the equivalence classes.

16. Show that every simple representation of C3 × C3 over R has dimension 1 or 2. Deduce

that if V is a simple 2-dimensional representation of C3 over R then V ⊗V is not a simple

R[C3 × C3]-module.
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