
Math 8300 Homework 3 due Saturday 11/27/2021

Upload to Gradescope

1. Let G be the non-abelian group of order 21:

G = 〈x, y
∣∣ x7 = y3 = 1, yxy−1 = x2〉.

Show that G has 5 conjugacy classes, and find its character table. [The answer and a brief

hint are given in the character tables section at the end of my text book. If you look there,

make sure to present the calculations that are suggested.]

Solution. For the purposes of this question we can accept that G has order 21. The last

relation shows that the subgroup 〈x〉 is normal, with three conjugacy classes {1}, {x, x2, x4}
(because x8 = x) and {x3, x5, x7}. The other 14 elements lie in the two cosets 〈x〉y and

〈x〉y−1. From the relation yxy−1 = x2 we get yx = x2y and so x−1yx = x−1x2y = xy,

and inductively xryx−r = xry. These elements exhaust the coset 〈x〉y and similarly the

conjugates of y−1 form the coset 〈x〉y−1 (bearing in mind that 〈x〉 is normal. This gives

the 5 conjugacy classes in the following table (where ζn = e2πi/n):

C7 o C3

ordinary characters

g 1 x x−1 y y−1

|CG(g)| 21 7 7 3 3

χ1 1 1 1 1 1
χ1a 1 1 1 ζ3 ζ23
χ1b 1 1 1 ζ23 ζ3
χ3a 3 ζ7 + ζ27 + ζ47 ζ37 + ζ57 + ζ67 0 0

χ3b 3 ζ37 + ζ57 + ζ67 ζ7 + ζ27 + ζ47 0 0

The three 1-dimensional characters are representations of the abelianization C3 = G/〈x〉.
For the remaining two characters we take the characters χζ7 and χζ37 of 〈x〉 and induce

them to G, The formula for an induced character ψ ↑G〈x〉 is the sum of the values ψ(g) +

ψ(yg)+ψ(y
−1

g) when these group elements lie in 〈x〉, with 0 as the value when they don’t,

and this accounts for the two 3-dimensional characters. To see they are simple we may

compute

〈ψ ↑G〈x〉, ψ ↑
G
〈x〉〉G = 〈ψ,ψ ↑G〈x〉↓

G
〈x〉〉〈x〉 = 〈ψ,ψ + yψ + y2ψ〉〈x〉

using Frobenius reciprocity and Mackey’s formula, and the answer is 1 if ψ = χζ7 or χζ37
because then the characters ψ, yψ and y2ψ are distinct.

2. Let H and K be subgroups of G with HK = G and H ∩ K = 1. Show that for any

kH-module U the module U ↑GH↓GK is a direct sum of copies of the regular representation

kK.
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Solution. Observe that if HK = G with H ∩K = 1 then also H ∩Kg = 1 for every g ∈ G,

because such g can be written g = kh with h ∈ H and k ∈ K (write g−1 = h−1k−1 and

invert), so that H ∩Kg = H ∩Kkh = H ∩Kh. If there is some element h−1uh = v with

u ∈ K and v ∈ H, then u = hvh−1 ∈ H, so u ∈ H ∩K = 1. This shows that H ∩Kg = 1.

Now Mackey’s formula says

U ↑GH↓GK=
⊕

g∈[K\G/H]

g(U ↓HH∩Kg ) ↑KgH∩K

Every summand is induced from 1, so is a free kK-module.

Another, perhaps simpler, approach is to show that there is only one (K,H)-double coset

in this situation, which means that we don’t have to check that H ∩ Kg = 1 for every

g ∈ G.

3. Let k be a field. Show by example that it is possible to find a subgroup H of a group G

and a simple kG-module U for which U ↓GH is not semisimple.

Solution. The 2-dimensional reflection representation V of S3 is simple in characteristic

2, and restricts to 〈(1, 2)〉 as a representation in which the element of order 2 acts as a

matrix

(
0 1
1 0

)
. This is the regular representation of C2, which is not semisimple.

4. Let H be a subgroup of G and V an RH-module. Show that if V can be generated by d

elements as an RH-module then V ↑GH can be generated by d elements as an RG-module.

Solution. One approach is to say that for V to be generated by elements v1, . . . , vd is

equivalent to the existence of a surjection RHd → V in which the ith coordinate vector

maps to vi. Inducing to G we get a map RGd = (RHd) ↑GH→ V ↑GH which is surjective

because tensor product is right exact. This means V ↑GH can be generated by d elements.

5. Let H be a subgroup of G.

(a) Write H =
∑
h∈H h for the sum of the elements of H, as an element of RG. Show that

RG ·H ∼= R ↑GH as left RG-modules. Show also that RG ·H equals the fixed points of H

in its action on RG from the right.

(b) More generally let ρ : H → R× be a 1-dimensional representation of H (that is, a

group homomorphism to the units of R). Write H̃ :=
∑
h∈H ρ(h)h ∈ RG. Show that

RG · H̃ ∼= ρ∗ ↑GH as RG-modules.

Solution. For each element g ∈ G the support of gH is the coset gH so that distinct

elements gH have disjoint support on the basis of group elements of RG. This means that

RG ·H has as a basis the elements gH where g ranges through a set of representatives of

the cosets gH. This basis is permuted by G and the stabilizer of H is the subgroup H, so

that RG ·H ∼= R ↑GH .

An element
∑
g∈G agg of RG is fixed by H from the right if and only if, for all h ∈ H we

have
∑
g∈G agg =

∑
g∈G aggh, which means that the coefficients of g and gh are the same.

This happens if and only if
∑
g∈G agg can be written xH for some x ∈ RG. This means

that RG ·H is as claimed.
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(b) As in part (a), the support of gH̃ is the coset gH and so RG · H̃ has as a basis the

elements gH̃ where g ranges through a set of representatives of the cosets gH, this is a

permutation module, the stabilizer of the space RH̃ is H and RG · H̃ ∼= RH̃ ↑GH as RG-

modules. We examine the representation of H on RH̃ and find that, for x ∈ H we have

x
∑
h∈H ρ(h)h =

∑
h′∈H ρ(x−1h′)h′ = ρ(x−1)

∑
h∈H ρ(h)h, writing h′ = xh for a moment

in the middle, and this is the representation ρ∗.

6. Let k be any field, and g any element of a finite group G.

(a) If K ≤ H ≤ G are subgroups of G, V a kH-module, and W a kK-module, show that

(gV ) ↓gHgK∼= g(V ↓HK) and (gW ) ↑gHgK∼= g(W ↑HK). [This allows us to put conjugation before,

between, or after restriction and induction in Mackey’s formula.]

(b) If U is any kG-module, show that U ∼= gU by showing that one of the two mappings

U → gU specified by u 7→ gu and u 7→ g−1u is always an RG-module isomorphism. [Find

which one of these it is.]

Solution. (a) For the restriction formula, gV is the set V with gh ∈ gH acting as gh·v = hv.

If we restrict this to gK the same formula applies to both sides of the equation, so the two

modules are the same (and not just isomorphic). For the induction formula we define a

map RgH⊗RgK gW → g(kH⊗kKW ) by gh⊗w 7→ h⊗w, and another map in the opposite

direction gh⊗w ← h⊗w. We have to check these are well defined on the tensor products,

and they commute with the action of gH.

(b) The map U → gU given by u 7→ g−1u is a vector space isomorphism, and it commutes

with the action of G because if x ∈ G then xu 7→ g−1xu and x · g−1u = (g−1xg)g−1u =

g−1xu is the same.

7. (Artin’s Induction Theorem) Let Ccc(G) denote the vector space of class functions on G

and let C be a set of subgroups of G that contains a representative of each conjugacy class

of cyclic subgroups of G. Consider the linear mappings

resC : Ccc(G) →
⊕
H∈C

Ccc(H)

and

indC :
⊕
H∈C

Ccc(H) → Ccc(G)

whose component homomorphisms are the linear mappings given by restriction

↓GH : Ccc(G) → Ccc(H)

and induction

↑GH : Ccc(H) → Ccc(G)

(a) With respect to the usual inner product 〈 , 〉G on Ccc(G) and the inner product on⊕
H∈C Ccc(H) that is the orthogonal sum of the 〈 , 〉H , show that resC and indC are the

transpose of each other. [For this we have to realize that if α : V →W is a linear map then
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the usual transpose of α is a linear map β : W → V satisfying 〈α(v), w〉W = 〈v, β(w)〉V
where 〈−,−〉V and 〈−,−〉W are the standard inner products on V and W defined with

respect to given bases of V and W . A transpose may be defined using any pair of inner

products like this.]

(b) Show that resC is injective.

[Use the fact that Ccc(G) has a basis consisting of characters, that take their information

from cyclic subgroups.]

(c) Prove Artin’s induction theorem: In Ccc(G) every character χ can be written as a

rational linear combination

χ =
∑

aH,ψψ ↑GH

where the sum is taken over cyclic subgroups H of G, ψ ranges over characters of H and

aH,ψ ∈ Q.

[Deduce this from surjectivity of indC and the fact that it is given by a matrix with integer

entries. A stronger version of Artin’s theorem is possible: there is a proof due to Brauer

which gives an explicit formula for the coefficients aH,ψ; from this we may deduce that

when χ is the character of a QG-module the ψ that arise may all be taken to be the trivial

character.]

(d) Show that if U is any CG-module then there are CG-modules P and Q, each a direct

sum of modules of the form V ↑GH where H is cyclic, for various V and H, so that Un⊕P ∼=
Q for some n, where Un is the direct sum of n copies of U .

Solution (a) For this we have to check that for all H ∈ C we have 〈χ ↓GH , ψ〉H = 〈χ, ψ ↑GH〉G.

This is true when χ and ψ are characters because it is one of the formulas included in

Frobenius reciprocity, and it is thus true for all class functions because characters span the

class functions.

(b) Two class functions in Ccc(G) are equal if and only if their values on all elements g ∈ G
are equal, which is implied by their restrictions to cyclic subgroups 〈g〉 being equal for all

g ∈ G.

(c) The transpose of an injective map is surjective, so indC is surjective. [The fact that the

tranpose is surjective is familiar for the usual transpose of matrices. In terms of bilinear

forms, if β : W → V is not surjective then we can find 0 6= v ∈ V so that 〈v, β(w)〉V = 0

for all w ∈ W . Thus 〈α(v), w〉W = 0 for all w ∈ W and, by non-degeneracy of the inner

product, α(v) = 0. If α is injective, we obtain v = 0, which is a contradiction.]

Each space Ccc(G) has a basis consisting of the characters of irreducible modules, and with

respect to these basis the matrices of resC and indC have integer entries. This implies that

indC is surjective as a map of the Q-vector spaces with these bases, and thus the character

of any module can be written as required.

(d) Writing each coefficient aH,ψ as bH,ψ/n if it is positive, and −bH,ψ/n if it is negative,

where n and the bH,ψ are integers, we get Un⊕P ∼= Q where P is the direct sum of V
bH,ψ
ψ

where the b are negative and Q is the direct sum of V
bH,ψ
ψ where the b are positive. Here

Vψ is a CG-module with character ψ. This is because both sides have the same character.
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