Math 8300 Homework 4 Upload to Gradescope

Questions with more parts count for more.

1. Let $G = C_2 \times C_2$ be the Klein four group with generators a and b, and $k = \mathbb{F}_2$ the field of two elements. Let V be a 3-dimensional space on which a and b act via the matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

(a) Determine (with an argument) whether or not this representation is indecomposable.

(b) Draw a diagram to represent this module, where the nodes in the diagram biject with the vectors in a basis for this module, and there are arrows between the nodes corresponding to the action of a - 1 and b - 1.

2. (a) Prove that if N is a normal subgroup of G and k is a field then $\operatorname{Rad}(kN) = kN \cap \operatorname{Rad}(kG)$. (Consider using Clifford's theorem and the various things we know about the radical.)

(b) Show by example that if H is a subgroup of G that is not normal then it need not be true that $\operatorname{Rad} kH \subseteq \operatorname{Rad} kG$ (in which case $\operatorname{Rad}(kH) \neq kH \cap \operatorname{Rad}(kG)$).

3. Show that the following conditions are equivalent for a module U that has a composition series.

(a) U is uniserial (i.e. U has a unique composition series).

(b) The set of all submodules of U is totally ordered by inclusion.

(c) $\operatorname{Rad}^{r} U / \operatorname{Rad}^{r+1} U$ is simple for all r.

(d) $\operatorname{Soc}^{r+1} U / \operatorname{Soc}^r U$ is simple for all r.

4. Let A be a finite dimensional algebra over a field. Show that A is semisimple if and only if all finite dimensional A-modules are projective.

5. (a) Show that \mathbb{F}_3S_3 has two isomorphism classes of simple modules.

(b) Let $e_1 \in \mathbb{F}_3S_3$ be the idempotent $e_1 = \frac{1}{2}(() + (1,2))$, let $e_{-1} = \frac{1}{2}(() - (1,2))$, and consider the direct sum decomposition of left \mathbb{F}_3S_3 -modules $\mathbb{F}_3S_3 = \mathbb{F}_3S_3e_1 \oplus \mathbb{F}_3S_3e_{-1}$. Show that, on restriction to the cyclic subgroup $\langle (1,2,3) \rangle$, each of the two modules in this direct sum is a copy of $\mathbb{F}_3\langle (1,2,3) \rangle$. Deduce that each module is indecomposable and uniserial as an \mathbb{F}_3S_3 -module.

(c) By considering a basis of each of these two indecomposable modules compatible with the action of (1, 2, 3) - () (or otherwise) and the action of (12) on this basis, identify the isomorphism types of the composition factors of these indecomposable modules, showing that the Cartan matrix of \mathbb{F}_3S_3 is $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

6. The setup in this question is that U, V are (finite dimensional) kG-modules where k is a field. We write $U^* = \text{Hom}_k(U, k)$ for the dual kG-module to U. We suppose we are given a non-degenerate bilinear pairing

$$\langle , \rangle : U \times V \to k$$

which has the property $\langle u, v \rangle = \langle gu, gv \rangle$ for all $u \in U, v \in V, g \in G$. (A pairing is like a bilinear form, except the spaces U and V may be different spaces. Non-degenerate means that the matrix of the pairing is non-degenerate, just like with bilinear forms, and there are other ways to express this, such as the left and right kernels are zero.) If U_1 is a subspace of U let $U_1^{\perp} = \{v \in V \mid \langle u, v \rangle = 0 \text{ for all } u \in U_1\}$ and if V_1 is a subspace of V let $V_1^{\perp} = \{u \in U \mid \langle u, v \rangle = 0 \text{ for all } v \in V_1\}$.

(a) Show that if U_1 and V_1 are kG-submodules, then so are U_1^{\perp} and V_1^{\perp} .

(b) Show that the mapping $v \mapsto (u \mapsto \langle u, v \rangle)$ is an isomorphism $V \cong U^*$ as kG-modules.

(c) Show that if U_1 and U_2 are kG-submodules of U then $U_1 \subseteq U_2$ if and only if $U_1^{\perp} \supseteq U_2^{\perp}$. Show further in this case that

$$U_1^{\perp}/U_2^{\perp} \cong (U_2/U_1)^*$$

as kG-modules. Notice (but do not write anything about it) that the lattice of submodules of U is the opposite of the lattice of submodules of U^* .

(d) Let G permute a set Ω and let $U = V = k\Omega$ be the permutation module. Define \langle , \rangle on basis elements $u, v \in \Omega$ by $\langle u, v \rangle = \delta_{u,v}$ (the Kronecker delta). Show that this pairing satisfies the condition $\langle u, v \rangle = \langle gu, gv \rangle$ always. Deduce that $k\Omega \cong (k\Omega)^*$. Deduce that if all indecomposable summands of $k\Omega$ have simple radical quotients, then they also all have simple socles.

Extra questions: do not upload to Gradescope

7. (a) Over any coefficient ring. R, show that if N is a normal subgroup of G then the left ideal

$$RG \cdot IN = \{x \cdot y \mid x \in RG, y \in IN\}$$

of RG generated by IN is the kernel of the ring homomorphism $RG \to R[G/N]$ and is in fact a 2-sided ideal in RG.

[One approach to this uses the formula $g(n-1) = ({}^{g}n - 1)g$.]

Show further that $(RG \cdot IN)^r = RG \cdot (IN)^r$ for all r.

(b) Now let k be a field of characteristic p and suppose that G has a normal Sylow psubgroup N. Show that $\operatorname{Rad} kG = kG \cdot \operatorname{Rad} kN$.

[Use what you know about the radical, showing that k[G/N] is the largest semisimple quotient of kG.]

8. Let D_{30} be the dihedral group of order 30.

(a) By using the fact that D_{30} has a normal Sylow 5-subgroup with quotient $S_3 \cong D_6$, show that $\mathbb{F}_5 D_{30}$ has three simple modules of dimensions 1, 1 and 2. We will label them k_1 , k_{ϵ} and U, respectively, with k_1 the trivial module.

(b) Show that the indecomposable projectives P_{k_1} and $P_{k_{\epsilon}}$ each have dimension 5, that P_2 has dimension 10, and $\mathbb{F}_5 D_{30} \cong P_{k_1} \oplus P_{k_{\epsilon}} \oplus P_2 \oplus P_2$. Show that each indecomposable projective is uniserial with composition series of length 5.