
Math 8300 Homework 4 due Saturday 12/18/2021

Upload to Gradescope

Questions with more parts count for more.

1. Let G = C2 ×C2 be the Klein four group with generators a and b, and k = F2 the field

of two elements. Let V be a 3-dimensional space on which a and b act via the matrices 1 0 0
1 1 0
0 0 1

 and

 1 0 0
0 1 0
1 0 1

 .

(a) Determine (with an argument) whether or not this representation is indecomposable.

(b) Draw a diagram to represent this module, where the nodes in the diagram biject with

the vectors in a basis for this module, and there are arrows between the nodes corresponding

to the action of a− 1 and b− 1.

Solution. (a) We claim that the radical of V has codimension 1. This is because RadV =

IG·V and IG is spanned by a−1, b−1, (a−1)(b−1), so RadV is generated as a kG-module

by the images of a − 1 and b − 1, so is the span of the standard basis vectors e2 and e3.

Thus V has a unique simple image. If V = U ⊕W then each of U and W would have a

simple image and V would have more than one simple image. Thus V is indecomposable.

(b) The diagram is ◦a−1←− ◦ b−1−→◦ because a − 1 sends basis vector 1 to basis vector 2 and

is zero on basis vector 3, while b − 1 sends basis vector 1 to basis vector 3 and is zero on

basis vector 2.

2. (a) Prove that if N is a normal subgroup of G and k is a field then Rad(kN) =

kN ∩Rad(kG). (Consider using Clifford’s theorem and the various things we know about

the radical.)

(b) Show by example that if H is a subgroup of G that is not normal then it need not be

true that Rad kH ⊆ Rad kG (in which case Rad(kH) 6= kH ∩ Rad(kG)).

Solution. (a) Because Rad(kG) is a 2-sided ideal of kG, and is nilpotent, so kN ∩Rad(kG)

is a 2-sided ideal of kN , and is nilpotent, so kN ∩ Rad(kG) ⊆ Rad(kN). On the other

hand kG/Rad(kG) is semisimple, so it is also semisimple as a kN -module by Clifford’s

theorem. This means Rad(kN) · kG ⊆ Rad(kG), so Rad(kN) ⊆ Rad(kG), from which we

see Rad(kN) ⊆ kN ∩ Rad(kG), and we have equality.

(b) Let G = S3, H = S2 and k = F2. Then Rad(kH) is the span of () + (1, 2), and we

know Rad(kS3) is the span of the sum of the elements of G. Thus Rad(kH) 6⊆ Rad(kG).

3. Show that the following conditions are equivalent for a module U that has a composition

series.

(a) U is uniserial (i.e. U has a unique composition series).

(b) The set of all submodules of U is totally ordered by inclusion.

(c) Radr U/Radr+1 U is simple for all r.
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(d) Socr+1 U/ Socr U is simple for all r.

Solution. (a) implies (b). Suppose U has a unique composition series. Any submodule not

in this series is also part of a composition series, which must be a second one, so no such

submodule exists. This means all submodules of U appear in the composition series and

they are totally ordered.

(b) implies (c). Suppose the set of submodules of U is totally ordered. If Radr U/Radr+1 U

is not simple then it decomposes as (L/Radr+1 U)⊕ (M/Radr+1 U) for some submodules

L,M of U , which are not comparable. This would mean the submodules are not totally

ordered, so cannot happen. Thus Radr U/Radr+1 U is simple.

(b) implies (d) is similar, and also (d) implies (a) is similar to (c) implies (a).

(c) implies (a). Suppose that Radr U/Radr+1 U is simple for all r and let 0 = Un ⊂ Un−1 ⊂
· · · ⊂ U0 = U be a composition series of U . This is a series with semisimple factors and

the radical series is the fastest descending such series, so Radr U ⊆ Ur for all r. Assuming

inductively that Radr U = Ur the fact that Radr+1 U ⊆ Ur+1 and both Radr U/Radr+1 U

and Ur/Ur+1 are simple forces Radr+1 U = Ur+1. Thus the composition series is the same

as the radical series and it is uniquely specified.

4. Let A be a finite dimensional algebra over a field. Show that A is semisimple if and

only if all finite dimensional A-modules are projective.

Solution. If A is semisimple then the regular representation AA is a direct sum of simple

modules, which are thus projective, and every simple A-module appears in the direct sum.

Thus every finite dimensional module is projective because it is a direct sum of simple

modules.

Conversely, if all finite dimensional A-modules are projective then every finite dimensional

A-module is semisimple by induction on the composition length of such a module. Modules

of length 1 are simple, and if all modules of length r−1 are semisimple and U is a module of

length r, it has a simple homomorphic image U → S → 0, which must split by projectivity

of S, so U ∼= S ⊕ T where T has composition length r− 1 and is thus semisimple. Thus U

is semisimple. In particular A is semisimple as a module, so it is semisimple as a ring.

5. (a) Show that F3S3 has two isomorphism classes of simple modules.

(b) Let e1 ∈ F3S3 be the idempotent e1 = 1
2 (() + (1, 2)), let e−1 = 1

2 (() − (1, 2)), and

consider the direct sum decomposition of left F3S3-modules F3S3 = F3S3e1 ⊕ F3S3e−1.

Show that, on restriction to the cyclic subgroup 〈(1, 2, 3)〉, each of the two modules in

this direct sum is a copy of F3〈(1, 2, 3)〉. Deduce that each module is indecomposable and

uniserial as an F3S3-module.

(c) By considering a basis of each of these two indecomposable modules compatible with

the action of (1, 2, 3) − () (or otherwise) and the action of (12) on this basis, identify the

isomorphism types of the composition factors of these indecomposable modules, showing

that the Cartan matrix of F3S3 is

(
2 1
1 2

)
.
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Solution. (a) O3(S3) = 〈(1, 2, 3)〉 acts trivially on simple F3S3-modules, so they are repre-

sentations of S3/O3(S3) ∼= C2, which has two simple modules 1 and ε (the sign).

(b) F3S3e1 has basis

{e1, (1, 2, 3)e1, (1, 3, 2)e1}

and F3S3e−1 has basis

{e−1, (1, 2, 3)e−1, (1, 3, 2)e−1},

because these sets of vectors are closed under the action of S3, lie in the submodules gener-

ated by e1 and e−1, respectively, and are independent. Each set is permuted regularly by

〈(1, 2, 3)〉 so on restriction to 〈(1, 2, 3)〉 these modules are copies of the regular representa-

tion. As representations of 〈(1, 2, 3)〉 these modules are indecomposable and uniserial. It

follows that they are also indecomposable and uniserial as representations of S3 (because

a decomposition over S3 gives a decomposition over 〈(1, 2, 3)〉, and S3-submodules are also

〈(1, 2, 3)〉-submodules, so are totally ordered).

(c) Consider the vectors obtained by applying powers of (1, 2, 3) − () to e1, noting that

((1, 2, 3)− ())2 = () + (1, 2, 3) + (1, 3, 2):

{e1, (1, 2, 3)e1 − e1, e1 + (1, 2, 3)e1 + (1, 3, 2)e1}

This basis is compatible with the radical series of F3S3e1 as a F3〈(1, 2, 3)〉-module: the

last two span the radical and the third spans the square of the radical. The third is fixed

by (1, 2). The second, on multiplication by (1, 2) is

(1, 2)((1, 2, 3)e1 − e1) = (1, 3, 2)e1 − e1 = −[(1, 2, 3)e1 − e1] + [e1 + (1, 2, 3)e1 + (1, 3, 2)e1],

so (1, 2) acts as −1 modulo the radical square. Also (1, 2) fixes e1. This means the radical

series of F3S3e1 as a F3〈(1, 2, 3)〉-module are also submodules for F3S3, with simple factors

1, ε, 1, so this is also the radical series for F3S3, and the projective is uniserial. A similar

analysis of F3S3e−1 shows that it is uniserial with composition factors ε, 1, ε. We deduce

the Cartan matrix from this.

6. The setup in this question is that U, V are (finite dimensional) kG-modules where k is a

field. We write U∗ = Homk(U, k) for the dual kG-module to U . We suppose we are given

a non-degenerate bilinear pairing

〈 , 〉 : U × V → k

which has the property 〈u, v〉 = 〈gu, gv〉 for all u ∈ U , v ∈ V , g ∈ G. (A pairing is like a

bilinear form, except the spaces U and V may be different spaces. Non-degenerate means

that the matrix of the pairing is non-degenerate, just like with bilinear forms, and there

are other ways to express this, such as the left and right kernels are zero.) If U1 is a

subspace of U let U⊥1 = {v ∈ V
∣∣ 〈u, v〉 = 0 for all u ∈ U1} and if V1 is a subspace of V let

V ⊥1 = {u ∈ U
∣∣ 〈u, v〉 = 0 for all v ∈ V1}.
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(a) Show that if U1 and V1 are kG-submodules, then so are U⊥1 and V ⊥1 .

(b) Show that the mapping v 7→ (u 7→ 〈u, v〉) is an isomorphism V ∼= U∗ as kG-modules.

(c) Show that if U1 and U2 are kG-submodules of U then U1 ⊆ U2 if and only if U⊥1 ⊇ U⊥2 .

Show further in this case that

U⊥1 /U
⊥
2
∼= (U2/U1)∗

as kG-modules. Notice (but do not write anything about it) that the lattice of submodules

of U is the opposite of the lattice of submodules of U∗.

(d) Let G permute a set Ω and let U = V = kΩ be the permutation module. Define 〈 , 〉
on basis elements u, v ∈ Ω by 〈u, v〉 = δu,v (the Kronecker delta). Show that this pairing

satisfies the condition 〈u, v〉 = 〈gu, gv〉 always. Deduce that kΩ ∼= (kΩ)∗. Deduce that if

all indecomposable summands of kΩ have simple radical quotients, then they also all have

simple socles.

Solution. (a) Let U1 be a kG-submodule, v ∈ U⊥1 and g ∈ G. We verify that gv ∈ U⊥1 by

computing 〈u, gv〉 = 〈g−1u, v〉 = 0 for all u ∈ U!. Thus U⊥1 is invariant under G and is a

kG-submodule. The argument for V ⊥1 is similar.

(b) The linear mapping shown is one-to-one because the right kernel of the form is zero,

and it follows that it is invertible because U and V have finite dimension, so dimU =

dimV = dimU∗. The main thing now is to show that the linear map is a morphism

of kG-modules. If g ∈ G then gv is sent to the mapping (u 7→ 〈u, gv〉) but this equals

(u 7→ 〈g−1u, v〉) = g(u 7→ 〈u, v〉) showing that we have a morphism of kG-modules.

(c) If U1 ⊆ U2 and v ∈ U⊥2 then 〈u, v〉 = 0 for all u ∈ U2, so this also holds for all

u ∈ U1 and thus v ∈ U⊥1 . This shows that U⊥1 ⊇ U⊥2 and the converse implication follows

similarly, using the fact that U⊥⊥i = Ui.

Consider the commutative diagram

0 → U⊥2 → V → U∗2 → 0

α

y ‖
yβ

0 → U⊥1 → V → U∗1 → 0

in which the rows are exact. Here the isomorphism V → U∗ composed with the surjective

‘restriction of homomorphisms’ map U∗ → U∗i gives a surjection V → U∗i , whose kernel

is U⊥i . The map β is one of the maps obtained by applying (−)∗ to the short exact

sequence 0 → U1 → U2 → U2/U1 → 0, and because this duality is exact we get that

Kerβ ∼= (U2/U1)∗. The Snake Lemma now shows that U⊥1 /U
⊥
2
∼= (U2/U1)∗.
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