General Equation of an Ellipse

University of Minnesota

Preliminaries and Objectives

Preliminaries

- Equation of a circle
- Transformation of graphs (shifting and stretching)

Objectives

- Find the equation of an ellipse, given the graph.

Circle centered at the origin

Circle centered at the origin

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=1
$$

Circle centered at the origin

$$
x^{2}+y^{2}=r^{2}
$$

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=1 \quad\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1
$$

Stretching, Period and Wavelength

$$
y=\sin (B x)
$$

The sine wave is B times thinner. Period (wavelength) is divided by B. Frequency is multiplied by B.

Stretching, Period and Wavelength

$$
y=\sin (B x)
$$

The sine wave is B times thinner. Period (wavelength) is divided by B. Frequency is multiplied by B.

$$
y=\sin \left(\frac{x}{b}\right)
$$

The sine wave is b times wider. Period (wavelength) is multiplied by b. Frequency is divided by b.

Stretching, Period and Wavelength

$$
y=\sin (B x)
$$

The sine wave is B times thinner. Period (wavelength) is divided by B. Frequency is multiplied by B.

$$
y=\sin \left(\frac{x}{b}\right)
$$

The sine wave is b times wider. Period (wavelength) is multiplied by b. Frequency is divided by b.

$$
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1
$$

The unit circle is stretched r times wider and r times taller.

Ellipse Centered at the Origin

$$
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1
$$

The unit circle is stretched r times wider and r times taller.

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

The unit circle is stretched a times wider and b times taller.

Ellipse Centered at the Origin

$$
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1
$$

The unit circle is stretched r times wider and r times taller.

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

The unit circle is stretched a times wider and b times taller.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Ellipse centered at the origin

Ellipse centered at the origin

Ellipse centered at the origin

Ellipse centered at the origin

$$
\frac{x^{2}}{16}+\frac{y^{2}}{36}=1
$$

Ellipse centered at the origin

General Form of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center at (h, k)
Vertices at $(h+a, k),(h-a, k),(h, k+b),(h, k-b)$

Example 1

Graph $9(x-3)^{2}+16(y+2)^{2}=144$

Example 1

Graph $9(x-3)^{2}+16(y+2)^{2}=144$

$$
\frac{(x-3)^{2}}{16}+\frac{(y+2)^{2}}{9}=1
$$

Example 2

Example 2

$$
\frac{(x+2)^{2}}{a^{2}}+\frac{(y+1)^{2}}{b^{2}}=1
$$

Example 2

$$
\frac{(x+2)^{2}}{16}+\frac{(y+1)^{2}}{b^{2}}=1
$$

Example 2

$$
\frac{(x+2)^{2}}{16}+\frac{(y+1)^{2}}{36}=1
$$

Recap

General Equation of an Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center at (h, k)

Vertices at $(h+a, k),(h-a, k),(h, k+b),(h, k-b)$

Credits

Written by:
Mike Weimerskirch
Narration:
Mike Weimerskirch
Graphic Design: Mike Weimerskirch

Copyright Info

(C) The Regents of the University of Minnesota \& Mike Weimerskirch
For a license please contact http://z.umn.edu/otc

