General Equation of an Ellipse

University of Minnesota General Equation of an Ellipse

Preliminaries

- Equation of a circle
- Transformation of graphs (shifting and stretching)

Objectives

• Find the equation of an ellipse, given the graph.

Circle centered at the origin

Circle centered at the origin

Circle centered at the origin

University of Minnesota General Equation of an Ellipse

 $y = \sin(Bx)$

The sine wave is B times thinner. Period (wavelength) is divided by B. Frequency is multiplied by B.

 $y = \sin(Bx)$

The sine wave is *B* times thinner. Period (wavelength) is divided by *B*. Frequency is multiplied by *B*.

$$y = \sin\left(\frac{x}{b}\right)$$

The sine wave is *b* times wider. Period (wavelength) is multiplied by *b*. Frequency is divided by *b*.

 $y = \sin(Bx)$

The sine wave is *B* times thinner. Period (wavelength) is divided by *B*. Frequency is multiplied by *B*.

$$y = \sin\left(\frac{x}{b}\right)$$

The sine wave is *b* times wider. Period (wavelength) is multiplied by *b*. Frequency is divided by *b*.

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

The unit circle is stretched *r* times wider and *r* times taller.

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

The unit circle is stretched *r* times wider and *r* times taller.

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

The unit circle is stretched *a* times wider and *b* times taller.

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

The unit circle is stretched *r* times wider and *r* times taller.

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

The unit circle is stretched *a* times wider and *b* times taller.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{16} + \frac{y^2}{36} = 1$$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Center at (h, k)

Vertices at (h + a, k), (h - a, k), (h, k + b), (h, k - b)

Graph
$$9(x-3)^2 + 16(y+2)^2 = 144$$

University of Minnesota General Equation of an Ellipse

Graph
$$9(x-3)^2 + 16(y+2)^2 = 144$$

 $\frac{(x-3)^2}{16} + \frac{(y+2)^2}{9} = 1$

University of Minnesota General Equation of an Ellipse

$$\frac{(x+2)^2}{a^2} + \frac{(y+1)^2}{b^2} = 1$$

$$\frac{(x+2)^2}{16} + \frac{(y+1)^2}{b^2} = 1$$

$$\frac{(x+2)^2}{16} + \frac{(y+1)^2}{36} = 1$$

General Equation of an Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Center at (h, k)

Vertices at (h + a, k), (h - a, k), (h, k + b), (h, k - b)

Written by: Mike Weimerskirch

Narration: Mike Weimerskirch

Graphic Design: Mike Weimerskirch

© The Regents of the University of Minnesota & Mike Weimerskirch

For a license please contact http://z.umn.edu/otc