General Equation of a Parabola

Preliminaries and Objectives

Preliminaries

- Graph of $y = x^2$
- Transformation of Graphs
 - Shifting graphs
 - · Stretching graphs
 - Flipping graphs

Objectives

Find the equation of a parabola, given the graph.

Standard Parabola

Axis of symmetry = y-axis

Vertex at (0,0)

Standard Parabola

Standard Parabola and Reflection

$$y = -x^2$$

$$y = x^2$$

$$y = x^2$$

$$y=4(x^2)$$

$$y = x^2$$

$$y = x^2$$

$$y=(2x)^2$$

General Form of a Parabola

$$y-k=\pm A(x-h)^2$$

General Form of a Parabola

$$y - k = \pm A(x - h)^2$$

Vertex at (h, k), streched vertically by a factor of A, and reflected across the x-axis if negative.

$$y = -3(x+2)^2 + 8$$

$$y = -3(x+2)^2 + 8$$

$$y - 8 = -3(x + 2)^2$$

$$y = -3(x+2)^2 + 8$$

$$y - 8 = -3(x + 2)^2$$

$$y = -3(x+2)^2 + 8$$

$$y - 8 = -3(x + 2)^2$$

$$y = -3(x+2)^2 + 8$$

$$y - 8 = -3(x + 2)^2$$

$$y+4=A(x-1)^2$$

$$y+4=2(x-1)^2$$

Standard Parabola - Horizontal Orientation

Axis of symmetry = x-axis

Vertex at (0,0)

General Form of a Parabola - Horizonal Orientation

$$x - h = \pm A(y - k)^2$$

Vertex at (h, k), streched horizontally by a factor of A, and reflected across the y-axis if negative.

Recap

Standard Equation of a Parabola

$$y - k = \pm A(x - h)^2$$
 and $x - h = \pm A(y - k)^2$

Form of the parabola

$$y = x^2$$
 opens upward
 $y = -x^2$ opens downward
 $x = y^2$ opens to the right
 $x = -y^2$ opens to the left

- Vertex at (h, k)
- Stretched by a factor of A vertically for $y = x^2$ and horizontally for $x = y^2$

Credits

Written by: Mike Weimerskirch

Narration: Mike Weimerskirch

Graphic Design: Mike Weimerskirch

Copyright Info

© The Regents of the University of Minnesota & Mike Weimerskirch

For a license please contact http://z.umn.edu/otc