Arithmetic Sequences and Series

University of Minnesota Arithmetic Sequences and Series

Preliminaries

- Sequences defined by explicit formulas
- Sequences defined by recursive formulas
- Sigma notation
- Slope-intercept form of a line

Objectives

- Define arithmetic sequences
- Find the sum of an arithmetic sequence

An **arithmetic** sequence is a sequence of numbers in which the recursion is to add a constant, called the *common difference*.

$$\{a_n\} = \{5, 8, 11, 14 \dots\}$$
$$a_1 = 5; d = 3$$
$$a_{n+1} = a_n + 3$$

п	1	2	3	4
an	5	8	11	14

п	0	1	2	3	4
an	2	5	8	11	14

As the input *n* changes by 1, the output a_n changes by 3

As the input *n* changes by 1, the output a_n changes by 3

 $a_n = 3n + 2$

$$\{a_n\} = \{-3, 1, 5, 9, 13, 17 \dots\}$$

$$\{a_n\} = -7 \{ -3, 1, 5, 9, 13, 17 \ldots \}$$

$$\{a_n\} = -7 \{ -3, 1, 5, 9, 13, 17 \dots \} \qquad d = 4$$

$$\{a_n\} = -7 \{ -3, 1, 5, 9, 13, 17 \dots \} \qquad d = 4$$

$$a_n = 4n - 7$$

$$\{a_n\} = -7 \{ -3, 1, 5, 9, 13, 17 \dots \} \qquad d = 4$$

$$a_n = 4n - 7$$

$$a_{23} = 4(23) - 7 = 85$$

$$d = \frac{31 - 22}{10 - 7} = \frac{9}{3} = 3$$

$$d = \frac{31 - 22}{10 - 7} = \frac{9}{3} = 3$$

$$a_0 = 22 - 7(3) = 1$$

$$d = \frac{31 - 22}{10 - 7} = \frac{9}{3} = 3$$

$$a_0 = 22 - 7(3) = 1$$

$$\{a_n\} = 1\{4, 7, 10, 13, 16, 19, 22, \ldots\}$$

If $a_7 = 22$ and $a_{10} = 31$, find the *n*th term.

$$d = \frac{31 - 22}{10 - 7} = \frac{9}{3} = 3$$

$$a_0 = 22 - 7(3) = 1$$

$$\{a_n\} = 1\{4, 7, 10, 13, 16, 19, 22, \ldots\}$$

 $a_n = 3n + 1$

Find the sum S = 1 + 2 + 3 + ... + 100

University of Minnesota Arithmetic Sequences and Series

Find the sum $S = 1 + 2 + 3 + \ldots + 100$

 $\sum_{n=1}^{100} n$

University of Minnesota Arithmetic Sequences and Series

Find the sum $S = 1 + 2 + 3 + \ldots + 100$

S = 1 + 2 + 3 + 100

Find the sum S = 1 + 2 + 3 + ... + 100

Find the sum S = 1 + 2 + 3 + ... + 100

$$\sum_{n=1}^{n} n$$

$$\frac{S = 1 + 2 + 3 \dots + 100}{S = 100 + 99 + 98 \dots + 1}$$

$$\frac{2S = 101 + 101 + 101 \dots + 101}{2S = 101 + 101 \dots + 101}$$

100

Find the sum S = 1 + 2 + 3 + ... + 100

$$\frac{S = 1 + 2 + 3 \dots + 100}{S = 100 + 99 + 98 \dots + 1}$$

$$\frac{S = 101 + 101 + 101 \dots + 101}{2S = 101 + 101 + 101 \dots + 101}$$

2S = (101)(100)

Find the sum S = 1 + 2 + 3 + ... + 100

2S = (101)(100)

$$S = \frac{(101)(100)}{2} = 5050$$

Find the sum S = 2 + 4 + 6 + ... + 100

University of Minnesota Arithmetic Sequences and Series

Find the sum $S = 2 + 4 + 6 + \ldots + 100$

University of Minnesota Arithmetic Sequences and Series

Find the sum S = 2 + 4 + 6 + ... + 100

$S = 2 + 4 + 6 \dots + 100$

Find the sum S = 2 + 4 + 6 + ... + 100

$$\sum_{n=1}^{n} 2n$$

$$S = 2 + 4 + 6 \dots + 100$$

$$S = 100 + 98 + 96 \dots + 2$$

$$2S = 102 + 102 + 102 \dots + 102$$

50

Find the sum S = 2 + 4 + 6 + ... + 100

 $\sum^{50} 2n$ n=1

$$\frac{S}{S} = 2 + 4 + 6 \dots + 100$$

$$\frac{S}{S} = 100 + 98 + 96 \dots + 2$$

$$\frac{2S}{2S} = 102 + 102 + 102 \dots + 102$$

2S = (102)(50)

Find the sum S = 2 + 4 + 6 + ... + 100

 $\sum^{50} 2n$ n=1

$$\frac{S = 2 + 4 + 6 \dots + 100}{S = 100 + 98 + 96 \dots + 2}$$

$$\frac{2S = 102 + 102 + 102 \dots + 102}{2S = 102 + 102 + 102 \dots + 102}$$

2S = (102)(50)

$$S = \frac{(102)(50)}{2} = 2550$$

Find the sum $S = 5 + 8 + 11 + \ldots + 74$

University of Minnesota Arithmetic Sequences and Series

Find the sum S = 5 + 8 + 11 + ... + 74d = 3

Find the sum S = 5 + 8 + 11 + ... + 74d = 3 $a_0 = 2$

Find the sum S = 5 + 8 + 11 + ... + 74d = 3 $a_0 = 2$ $a_n = 3n + 2$

$$\sum_{n=1}^{24} 3n+2$$

$$\sum_{n=1}^{24} 3n+2$$

$$\frac{S = 5 + 8 + 11 \dots + 74}{S = 74 + 71 + 68 \dots + 5}$$

$$\frac{S = 79 + 79 + 79 \dots + 79}{2S = 79 + 79 + 79 \dots + 79}$$

$$\sum_{n=1}^{24} 3n+2$$

$$S = 5 + 8 + 11 \dots + 74$$

$$S = 74 + 71 + 68 \dots + 5$$

$$2S = 79 + 79 + 79 \dots + 79$$

$$2S = (79)(24)$$

$$\sum_{n=1}^{24} 3n+2$$

$$S = 5 + 8 + 11 \dots + 74$$

$$S = 74 + 71 + 68 \dots + 5$$

$$2S = 79 + 79 + 79 \dots + 79$$

$$2S = (79)(24)$$

$$S = \frac{(79)(24)}{2} = 948$$

- Explicit definition of an arithmetic sequence $a_n = a_0 + nd$
- Find the sum of an arithmetic sequence by writing the sum forward and backward and adding vertically.

Written by: Mike Weimerskirch

Narration: Mike Weimerskirch

Graphic Design: Robbie Hank

© The Regents of the University of Minnesota & Mike Weimerskirch

For a license please contact http://z.umn.edu/otc