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Abstract—Mobile devices, such as smart phones and tablets,
are becoming the universal interface to online services and
applications. However, such devices have limited computational
power and battery life, which limits their ability to execute
resource-intensive applications. Computation outsourcing to ex-
ternal resources has been proposed as a technique to alleviate this
problem. Most existing work on mobile outsourcing has focused
on either single application optimization or outsourcing to fixed,
local resources, with the assumption that wide-area latency is
prohibitively high. However, the opportunity of improving the
outsourcing performance by utilizing the relation among multiple
applications and optimizing the server provisioning is neglected.
In this paper, we present the design and implementation of
an Android/Amazon EC2-based mobile application outsourcing
framework, leveraging the cloud for scalability, elasticity, and
multi-user code/data sharing. Using this framework, we em-
pirically demonstrate that the cloud is not only feasible but
desirable as an offloading platform for latency-tolerant applica-
tions. We have proposed to use data mining techniques to detect
data sharing across multiple applications, and developed novel
scheduling algorithms that exploit such data sharing for better
outsourcing performance. Additionally, our platform is designed
to dynamically scale to support a large number of mobile users
concurrently. Experiments show that our proposed techniques
and algorithms substantially improve application performance,
while achieving high efficiency in terms of computation resource
and network usage.

I. INTRODUCTION

Today, mobile devices such as smart phones and tablets have
become indispensable in our daily lives. With their growing
popularity, users have come to rely on them as their go-to
devices, and as such expect the features and performance
befitting a primary computing device. However, meeting such
expectations is challenging for several reasons. First, current
battery technology can only support limited computational
power in such a portable and lightweight package. Second,
mobile devices have neither the processing power nor the
memory of traditional computers.

One technique that has been proposed to solve these prob-
lems is to introduce external computing resources [1], [2]:
resource-intensive portions of applications are split from the
main code and delegated for remote execution. There are
largely two options for the choice of external resources: (1)
local, fixed resources, such as a group of servers; or (2) third
party providers, such as the cloud. The conventional wisdom is
that wide-area latency is unacceptable for mobile applications,
therefore, local servers are the best choice. We believe that
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there is a large class of mobile applications that can tolerate
wide-area latency. In fact, even extremely latency-sensitive
applications, e.g., Web browsing, are now being hosted in the
cloud (Amazon Silk [3]).

The benefits of introducing external resources to individ-
ual application and mobile device have been well studied.
However, we are unaware of any work that exploits the
relation between different applications to further improve
the outsourcing performance. In many instances, the same
code components may be accessed by different users running
the same or different applications, and the data is shared
between multiple applications. In such situations, common
code components can be reused and shared data can be cached
on the remote platform, saving communication overhead and
network traffic associated with transferring the same data. For
mobile computation outsourcing, the time and energy spent in
communication is a large cost, thus this kind of optimization
can yield significant performance gains.

In this paper, we present the design and implementation of
an outsourcing framework using Amazon EC2 cloud platform
to examine the benefits of sharing-aware cloud-based mobile
computation outsourcing.

The main contributions of this paper are the following:

« Wide-area outsourcing: We empirically demonstrate that
the cloud is not only feasible but desirable as an offload-
ing platform for latency-tolerant applications.

o Multi-application data sharing: The key contribution
is that we propose to use data mining techniques for de-
tecting potential data sharing across multiple applications,
and develop novel scheduling algorithms that exploit such
data sharing to achieve better outsourcing performance.
Experiments show that our algorithms can provide up to a
50% reduction in network overhead and a 55% reduction
in runtime when compared with a scheduling algorithm
does not exploit sharing.

« Dynamic, scalable multi-user offloading platform: We
implement an Android/Amazon EC2-based mobile-to-
cloud offloading platform which can dynamically scale
to support a large number of mobile users concurrently
by utilizing the elastic capabilities of the cloud.

II. BACKGROUND AND RELATED WORK

Offloading mobile computation to local servers has been
proposed by different projects[4], [2], [5]. These external
resources were located close to the mobile device (e.g. one

IEEE
computer
® psouety



hop away), under the assumption that distant offloading ma-
chines would introduce unacceptable latency. Data staging
[6] proposed opportunistic use of untrusted and unmanaged
surrogate servers as staging servers for the applications’s
replicas. [4] outsourced the mobile computation to surro-
gate servers. MAUI[2] utilizes local resources due to energy
concerns. Our work, on the other hand, uses the cloud as
the outsourcing platform due to its resource-richness despite
the presence of wide-area latency. In addition, the current
research neglected the fact that by optimizing the usage of
servers and utilizing the relation of different applications can
reduce network communication overhead and therefore further
improve performance.

There are two major approaches for offloading computation
from mobile devices to external resources. First, the applica-
tion is partitioned and part of the code is outsourced based on
available resources, such as network availability, bandwidth,
and latency[5], [7], [8], [9], [2]. The second approach is
to migrate the entire application process[10] or VM[1], [11]
through live virtual machine migration. In contrast, our work
is primarily focused on the backend optimization, which is
independent of the outsourcing technique. We employed a
component-based application partitioning technique that can
dynamically offload the computation.

Dynamic resource provisioning is one of the main features
of the Cloud. Amazon AWS provides Auto Scaling service! to
allow users to specify a customized condition to automatically
scale Amazon EC2 capacity. However, there is a long delay
to detect the changed condition. Virtual Machine(VM) col-
location techniques have been proposed to reduce communica-
tion overhead between different VMs. Xenloop [12] improves
the communication performance between controlled Xen VMs
through an inter-VM shared memory channel. Starling [13]
tries to co-locate VMs that contribute to more communication
overhead. Several resource scheduling techniques [14], [15]
for high performance and Grid computing have focused on
scheduling of resources that match the capacity of com-
pute jobs. However, most of the work assumes that jobs
are independent while relations between them are neglected.
CloudViews[16] studied the opportunity to share data be-
tween different web services in the public Cloud. Our work
is focusing on co-locating fine-grained mobile computation
components based on data sharing in the Cloud, which is
different from the current work. Our dynamic provisioning
scheduler is more responsive to changes of resource utilization
in the Cloud and considers relations between different jobs.

III. FEASIBILITY AND CHALLENGE OF WIDE-AREA
OUTSOURCING

In this paper, we assume that the application has already
been partitioned into components eligible for outsourcing. As
mentioned in Related Work, such components can be identified
by user annotation, compiler, and runtime techniques. We
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focus on scheduling methods that can effectively assign such
mobile components to remote resources.

To assess the feasibility of wide-area outsourcing, we
have developed both cloud and mobile versions of a range
of application components in diverse areas such as image
processing, face detection, speech, and interactive drawing.
We modified each mobile application to use either local or
remote components for the computationally intensive part.
The details of application modifications and the outsourcing
decision process can be found in [17]. In this section, we assess
the benefits of outsourcing in a wide range of scenarios.

If an outsourcing decision is made, the mobile client sends
the input data to the remote server, and receives the processed
result (the computation components are pre-deployed at the
server). Two applications are used to demonstrate the feasi-
bility of wide-area outsourcing: image processing and face
detection.

The experimental setting is as follows. The mobile client is
an HTC Hero (528 MHz CPU, 200MB RAM, running Android
2.1), and the offloading server is a small instance on Amazon
EC2 2 (1 EC2 Compute Unit and 1.7GB memory). The average
network latency to access EC2 over WiFi and Sprint 3G were
measured to be 82ms and 151ms, respectively (compared to
44ms from a wired machine). In the following sections, Local
is used to denote that the computation is performed locally on
the mobile device, while Remote-WiFi and Remote-3G denote
the remote execution over WiFi and 3G respectively.

A. Feasibility of Wide-Area Outsourcing

We select the image processing routine blur filter (Sim-
pleBlur) as a computationally-intensive example. The perfor-
mance results are shown in Figure 1. Figure 1a shows the aver-
age execution time per run. The remote execution time shown
is end-to-end, including both the network communication and
computation time. For all image sizes, local processing is the
slowest, while offloading over WiFi is the fastest (achieving
about 67.8-96.4% speedup over local processing ). The per-
formance difference of about 60% between the WiFi and 3G
is accounted for by the added cost of 3G communication.
The compute vs. communication time break down for the
remote execution modes is shown in Figure 1b. Here it can
be seen that the remote execution time is dominated by the
communication time.

Figure lc shows the average power consumption, as a
percentage of the total battery capacity, used per run. The
results mirror those for the end-to-end computation time, with
local processing consuming the most power, while Remote-
WiFi being most energy-efficient. For instance, when the
image size is 219KB, local execution consumes 9.28 times the
power of Remote-WiFi, which can be attributed to the high
computation requirement, as shown in Figure 1d. It shows that
when SimpleBlur is executed locally, the mobile CPU usage
is over 50%, and increases further with image size. When
performed remotely, the CPU usage drops to below 10%.

Zhttp://aws.amazon.com/ec2
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Figure 1: SimpleBlur Results

We also selected face detection as an example of a
moderate-compute-intensive application. Due to space limita-
tion, we omit the details here, which can be found in [17].
The results show that there is a potential performance benefit
by offloading as well, though there are tradeoffs between per-
formance and power consumption that depend on the relative
computation-to-communication overheads.

Overall, the above analysis of offloading performance shows
that wide-area outsourcing is feasible for certain classes of
compute-intensive applications, with potential performance
gains and power savings.

B. Challenges for High Demand Outsourcing

In the experiments above, we demonstrated the benefits of
outsourcing a single application to a static wide-area resource,
where the number of outsourcing requests is low and the
offloading server is able to handle all requests efficiently. This
section explores the limitations of such a fixed-resource, wide-
area, offloading system under high demand. This can occur
when several offload requests are sent in rapid succession, e.g.,
a mobile user wishing to process a large set of photographs,
or multiple users concurrently outsourcing their computations.

Network overhead due to lack of data sharing: We use
the same experimental setting as before. In this experiment,
however, four different image operations were performed
sequentially on a single image: blur, sharpen, edge detect, and
sphere. All of these operations are computationally intensive.
To measure the performance of the server, this sequence was
repeated 100 times, for a total of 400 sequential requests.
The first issue is that of network communication overhead.
Since the four operations modify the same input image, the
source image needs only be sent once. However, without
knowledge of this data sharing, the image would be sent back-
and-forth between the server and the mobile device multiple
times. Figure 2 shows how this discrepancy grows as more
components/operations are included. As mentioned above, the
outsourcing performance is dominated by the communication
cost, so that a significant reduction in communication time
would result in a significant improvement in overall perfor-
mance.

Poor scalability due to static resource allocation: As there
is only one server available in this experiment, we observe
that there is significant delay when there are a large amount of
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Figure 2: Network overhead due to lack of data sharing

concurrent outsourcing requests. An additional problem is that
the usage profiles of many applications are highly variable, and
change with user interest, the time of day, and other factors,
all of which require a high elasticity on the backend system.
Static allocation of resources could result in poor availability
during times of high demand and resources sitting idle during
low demand periods.

As the outsourcing scales up to many users and applications,
a large amount of external resources are needed. For these
reasons, the cloud is a perfect target for outsourcing.® A
shared platform like the cloud will enable users to share
common application components and data. It can help exploit
data sharing relations across different outsourcing requests and
therefore reduce outsourcing cost.

IV. MOBILE-TO-CLOUD OFFLOADING PLATFORM

We now present the design and implementation of a cloud-
based offloading platform that enables dynamic resource pro-
visioning and achieves high performance by computation co-
location. Any mobile device can utilize this offloading system
if the mobile application is implemented with the predefined
communication interface to the backend system. Further, we
assume that separate cloud versions(i.e. non-Dalvik) of the
outsourcing components are provided.

Our current implementation is based on Amazon EC2 as
shown in Figure 3. There are two parts: the backend server

3The issue of monetization of cloud resources is outside the scope of this
paper. We presume that the cost is low enough relative to the benefit obtained
to make cloud usage attractive.



Figure 3: Offloading Backend Design

system and the offloading client on the mobile device. We
emphasize that our current implementation is designed to
evaluate the efficacy of a cloud-based outsourcing platform,
and to explore different optimization opportunities enabled by
the Cloud (discussed in detail in Section V). Implementation
issues such as identifying components or automatic code
generation for outsourcing are beyond the scope of this paper
as they are well addressed in Related Work.

A. Offloading Client

On the mobile device, we developed an outsourcing applica-
tion called ServerTracker to assist in computation outsourcing.
This application has two major roles. First, it stores the
offloading server’s address for each offloaded computation.
The server address is assigned to the device by the cloud, and
is updated automatically if a new offloading server is assigned.
As a result, the offloading server can be reassigned by the
backend system transparently to the mobile user. Second, the
ServerTracker maintains a history of the remote processing
times for past remote executions and monitors the current
network state, which are used to make offloading decisions.
In this paper, we focus on the case when such offloading
decisions have been made, but not how to make the decision.

B. Offloading Backend System

There are three major components in the backend (cloud-
side): the code repository, the offloading server(s), and the
Component Manager. In the following sections, a computation
component refers to the (outsourced) portion of a mobile
application that is executed on the cloud.

Code Repository: The code repository stores a large collec-
tion of computation components to be distributed to various
offload servers as the need arises dynamically.

Offloading Server: An offloading server does the actual
computation work for a mobile device. In our implementation,
each offloading server is a virtual machine (VM) running in
the cloud that can be easily started, terminated, and merged
with other VMs. Upon receiving an offloading request from
a client, it retrieves code from the code repository as needed,
and carries out computations.

Component Manager (CM): The Component Manager is the
kernel of the backend system which performs the management
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for offloading servers, and scheduling tasks for all incoming
offloading requests. We have replicated the Component Man-
ager into multiple servers for scalability.

C. Computation Offloading Procedure

A typical computation outsourcing from the client to the
backend happens in the following sequence (See Figure 3):

Step I: ServerTracker decides to offload an operation.

Step 2:The offloading client sends an offloading request to
the Component Manager.

Step 3: The Component Manager selects an appropriate
server from the existing offloading servers using its scheduling
algorithm (discussed in Section V), and returns the IP address
of the selected server to the offloading client.

Step 4: The ServerTracker stores the received server address
locally. The application then sends the input data (if the data
is not already available in the cloud) to the offloading server.

Step 5: The offloading server receives the data package, per-
forms the required computation and sends back the results. If
the required computation components are not available locally
on the server, it downloads them from the code repository.

V. COMPUTATION OFFLOAD REQUEST SCHEDULING

We now describe how offloading requests are scheduled
to offloading servers. When a computation offload request
reaches the cloud, the Component Manager needs to identify
the “best” offloading server to execute that request based on
the location of the already placed computation components
and the server resource utilization states. An ideal scheduling
algorithm would ensure high performance for mobile users,
while achieving load balance and high resource utilization
across the offloading servers. Two main criteria must be
considered by the scheduling algorithm:

« Intelligently assign the offloading request
o Dynamically provision offloading servers

These criteria are intended to overcome the challenges dis-
cussed in Section III-B: network overhead due to lack of data
sharing among application components and poor scalability
due to static resource allocation, respectively.



A. Impact of Component Location on Performance

In Section III-A, we have implicitly assumed each outsourc-
ing request to be independent, however, in practice, multiple
applications may need the same computation components or
may share the same data for their computation, so there may
be dependencies between different requests. For example, the
accuracy of face detection is affected by the image quality,
which can be improved with image processing. In this case,
the user may first invoke the image processing application to
preprocess an image containing a face, and then invoke the
face detection application with the output of the preprocessing
operation. Thus, upon receiving an outsourcing request, the
scheduler must consider such sharing opportunities while
determining the location to place the computation component.

In the above example, there are different approaches for
sharing intermediate data (an image, in this case) between the
two applications. Figure 4 shows the five potential scenarios to
share the intermediate data. In each scenario, F and I stand for
face detection and image processing respectively. In addition,
S1 and S2 stand for two offloading servers that could host the
compute components.

e No offloading (Local): This corresponds to the local
execution of both face detection and image processing
on the mobile device, where the data is shared.

o No sharing in the cloud (No-sharing): The intermediate
data sharing has to be done via the mobile device, which
involves sending the intermediate data back and forth.

o Sharing via backend storage (Storage): All data is stored
and shared through a persistent backend storage, such as
the Amazon Simple Storage Service(S3).

o Direct communication (Communication): The interme-
diate data is stored locally on server S1. When face
detection is invoked, S2 fetches the intermediate data
from S1 through a direct network connection.

o Intra-server sharing (Intra-server):. Both face detection
and image processing applications are hosted on the
same offloading server, so that face detection can access
the intermediate data locally on the server from its file
system/memory cache.

First, we examine which of these choices would be well-
suited to maximize outsourcing performance in the presence
of sharing. We conduct an experiment to compare performance
of these different approaches with a medium-size (405x405)
and a large-size (800x600) image, with offloading performed
over WiFi. In each scenario, image processing is performed
on S1 and S1 caches the intermediate image which is used
by face detection. As the image processing is the same for
each scenario, its performance results are omitted, and we
only show performance for face detection, including both
communication and computation time.

Figure 5 shows the processing time for the different sce-
narios. The first thing to note is that the communication time
dominates the remote processing time. Therefore, outsourcing
performance depends on the location of the computation
components and the communication link between them. For
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a large image size, the remote processing always has better
performance. In particular, we observe that intra-server sharing
has the best remote processing performance (54.9% better
than the local computation). Even for a medium image size,
where computation is less dominant, the intra-server sharing
outperforms local processing by 21.4% while all other remote
processing approaches lead to worse performance. The reason
is that computation components F and I are co-located on
the same server, which eliminates the communication cost
between offloading servers, backend storage, or the mobile
device. Note that this co-location can expand the range of
requests that can benefit from outsourcing.

Overall, these results show that co-locating components that
share data can result in improving application performance
substantially by reducing redundant communication overhead.

B. Component Placement Strategies

Based on the insights gained above, we now present three
different component placement strategies with the goal of
reducing communication overhead. We assume that the CM
does not explicitly know which code components will share
data, though as we will discuss, it may attempt to infer
this information in an application-transparent manner. For the
scope of this work, we only consider data sharing between
applications executed by the same user, and defer cross-
user data sharing and security issues as part of future work.
However, we do allow computation component reuse between
multiple users outsourcing the same application.

1) User-Centric: In this approach, the system assigns each
offloading server to only one mobile user, so that each mobile
user’s requests always go to the same server. If the server
is overloaded, a new server is created and assigned to the
same user, based on the dynamic scheduling criterion, which
is discussed in V-C. The intuition behind this approach is that
if one of the user’s components needs to access data from
another component, it can be obtained locally. The downside
of this approach is low utilization and high cost.

2) App-Centric: In this approach, each server hosts a subset
of application components and user requests can be mapped
to any offloading server that holds the required component(s).
When a new request arrives, CM tries to assign it to the least
loaded offloading server that contains the requested compo-
nent. If it fails, based on the dynamic scheduling criterion, the
request is assigned to the offloading server with the lowest



CPU usage, or if no offloading server is available, a new server
is spawned for the request.

This approach allows component reuse across multiple users
executing the same applications, and hence, can yield high
utilization and requires fewer number of servers, since a new
offloading server will be created for a component only when
the server load is high on all servers at the backend. However,
since different components belonging to the same user could
be hosted by different offloading servers, it increases the
likelihood that components that share data are hosted on
different offloading servers, resulting in higher communication
overhead, as discussed before.

3) Co-location: To achieve benefits of both the user- as
well as app-centric approaches, we propose a hybrid technique
called Co-location, which enables the reuse of common com-
ponents among multiple users like the App-centric approach,
while also identifying and co-locating shared components like
the User-centric approach.

Co-location attempts to predict which components will
share data based on their temporal locality of access by a
user. The intuition behind this approach is that if a mobile
user often tries to access two (or more) components within a
short period of time, then there is a high probability that the
user may be sharing data across these components.

To detect temporal relationships, we use a well-known data
mining technique, i.e., Sequence Mining [18]. It tries to find
statistically relevant patterns between data examples where
the values are delivered in a sequence. We use this technique
to determine which computation components are likely to be
accessed together as a group. The identified component group,
i.e., Association Group, is used to guide the computation
assignment.

In terms of implementation, the Component Manager logs
each time-stamped component access from the mobile device
to the offloading system. The Sequence Mining algorithm is
executed periodically and uses < wuser, component,time >
tuples in the log to identify those components with the
potential for co-location.

When a new computation request arrives, this algorithm first
checks whether the requested computation component is in
any Association Group. If it belongs to multiple groups, the
group with largest support is selected. It then locates all of
the servers that host the members of the selected Association
Group, and selects the server with the lowest CPU usage. If
the component is not in any Association Group, it then uses
the App-centric algorithm to select a server.

C. Dynamic Provisioning

To achieve scalability and efficiency, the Component Man-
ager decides when to create or merge servers (VMs). To do
this, it periodically collects each offloading server’s utilization
states and makes scheduling decisions accordingly. In our
current implementation, only the server’s CPU usage is used
to assess the utilization state, which can be extended to other
resources such as memory and I/O. We set a High and a Low
threshold on the server’s CPU usage to indicate overload and
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underload conditions respectively. The dynamic provisioning
algorithm consists of two main operations:

1) Server Creation: At each interval when Component
Manager collects the offloading servers’ CPU utilization val-
ues, it checks to see if they are overloaded, by comparing the
utilization value against the High threshold. If all servers are
seen to be overloaded for a sustained period (for last 3 intervals
in our implementation), a new server is spawned. In addition,
the system always maintains a spare offloading server in the
system to avoid server startup overhead, since it takes around
60 seconds to boot a new instance in EC2.

2) Server Merging: Component Manager identifies under-
loaded servers by comparing their utilization against the Low
threshold, and tries to merge them with other servers for
scalability. For each underloaded server, it identifies a target
server for merging as one below the High threshold with the
least load. To merge two offloading servers, the two servers’
computation states are preserved by copying the intermediate
data files from the source server to the target server. After the
two servers have been merged, the Component Manager sends
a message containing the new target server’s IP address to all
mobile clients using components on the source server. Then
the source server is killed.

VI. EVALUATION OF SCHEDULING ALGORITHMS
A. Experimental Setup

For the experiments in this section, we host the backend
components such as the Component Manager and offloading
servers on small and micro instance types in EC2 respectively.
The code repository is hosted on a small instance for effi-
ciency. 10 computation components are available in the code
repository, which are 10 different image processing filters.We
generate the request workload by emulating 100 mobile users
on one laptop (2.53GHz Duo CPU, 2GB RAM). The requests
arrive at fixed time intervals, determined by the request rate.
Each user uses a certain number n of components, where n is
picked from a normal distribution N (3,1). In each experiment,
some of the requests are designated as sharing requests—these
share data among their components. The percentage of sharing
requests in the workload and the total request rate to the system
are varied for different experiments.

B. Comparison of Component Placement Strategies

We now compare the three component placement strate-
gies described in Section V-B: User-centric, App-centric, and
Co-location. As a baseline, we also compare them to the
No-sharing case (Section V-A) where all intermediate data
between requests flows to and from the mobile client. We
examine their impact on two metrics: (i) server utilization as a
measure of backend resource efficiency, and (ii) network traffic
as a measure of both user performance and network overhead,
since communication is the dominant outsourcing cost.*

1) Impact on Server Utilization: Figure 6 shows the trend
of number of servers used for the three placement algorithms

“Energy consumption is not covered in this section since it is closely related
to network communication overhead.
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as the number of mobile users increases. The request rate
for each user is 2 reqs/second. When there is only one user,
all three algorithms use one offloading server. However, as
the number of users increases, the number of servers for
User-centric increases linearly. The reason is that User-centric
assigns at least one offloading server to each mobile user
irrespective of the required computing resources to service that
user. On the other hand, both App-centric and Co-location try
to “fill up” a server before launching a new one. Therefore,
both App-centric and Co-location use fewer servers than User-
centric (The curves for App-centric and Co-location overlap).
Moreover, the difference in the number of servers used by
User-centric vs. App-centric and Co-location increases as the
number of users increases.

This result shows that compared to User-centric, both App-
centric and Co-location placement strategies are more efficient
and scalable in the use of server resources as the number of
users increases.

2) Impact on Network Traffic. Figure 7 shows the total
network traffic for the three placement algorithms, as we vary
the sharing ratio: the number of sharing requests as a fraction
of the total number of offloading requests. A low/high sharing
ratio corresponds to few/many requests sharing data among
their components, respectively. In this experiment, each run
lasts for 15 minutes and the request rate is fixed at 15.5
regs/second. The network traffic in the figure is normalized
by that for the No-sharing case. The Optimal line is the
total amount of network traffic if all the sharing requests
were co-located successfully. First, the figure shows that the
normalized traffic diminishes with increasing percentage of
sharing requests for all algorithms. This is expected since each
of our placement algorithms can take advantage of higher
sharing opportunities via intra-VM or intra-cloud communi-
cation, while No-sharing has to send more redundant traffic
to the mobile as more sharing occurs. Secondly, of the three
algorithms, User-centric can save the most network traffic, and
is close to Optimal. Co-location is only slightly worse than
User-centric, and is much better than App-centric. Further, the
gap in their traffic increases with increasing sharing ratio.

The reason for the lower network overhead of User-centric
and Co-location is apparent from Figure 8. This figure shows
the co-location rate of the three algorithms as the ratio of
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sharing request in the workload is varied. The co-location
rate is the percentage of sharing requests whose components
are successfully co-located on the same server. A higher co-
location rate corresponds to a greater reduction in network
traffic and better offloading performance for the application,
since most sharing communication takes place intra-server
(as discussed in Section V-A). The results show that User-
centric can achieve almost 100% co-location rate. The reason
is that the same user’s computation is always performed on
the same server, and the components are co-located naturally.
The co-location rate for Co-location is over 90% in all cases,
since Association Analysis is able to identify sharing patterns
successfully in most cases. However, the co-location rate for
the App-centric approach effectively decreases as the ratio
of sharing requests increases, because it makes its placement
decision without considering the sharing between components,
and hence its placement of components is effectively random.

These results show that compared to App-centric, User-
centric and Co-location placement strategies achieve much
higher co-location rates and thus much lower network traffic.

Overall, our results above show that while App-centric is the
most efficient in terms of server utilization and User-centric
has the lowest network overhead, Co-location achieves the
benefits of both these algorithms— it uses the same number
of servers as App-centric, and can reduce nearly the same
amount of network traffic as User-centric. The actual benefit to
the application depends on the amount of network traffic that
is reduced. For the face detection case, Co-location provides



Number of servers|

- = - Request rate

Request rate (regs/second)
Number of servers

20 v25
(min)

|5‘
Time

Figure 9: Scalability of the Offloading System

a 31% performance improvement(total execution time) com-
pared with No-sharing case (when the image size is 800 x 600).
And for the image processing, it provides a 55% performance
improvement when blur filter is used.

C. Benefit of Dynamic Provisioning

We now show the benefit of dynamic provisioning (Sec-
tion V-C). In our backend offloading system, the amount of
allocated resources scales up and down automatically based
on the arrival rate of the computation requests. In our ex-
periments, the High and Low CPU usage thresholds were set
as 70% and 30% respectively. Figure 9 plots the number of
offloading servers in the backend system with the changing
request rate over time. The request rate is 0 at the beginning,
and is successively increased to 7, 15.5, and 20.5 reqs/second
at time=6 min, 15 min, and 22 min respectively. The last
request is sent at at time=31 min, after which request rate goes
back to 0. As we can see, the number of offloading servers also
varies based on the request rate. Starting from one offloading
server (recall there is always a spare server in the system) in
the system at time 0, as the request rate increases, the number
of offloading servers also increases. It reaches a peak of 8
servers when the request rate is 20.5 reqs/second. There is
a delay for the number of servers to become stable after a
new one is added due to the 1 min instance creation latency
in EC2. At time=31 min, the provisioning algorithm starts to
merge offloading servers as their load drops below the Low
threshold, finally falling back to 1 server at the end.

The results show that our system can successfully self-scale
its offloading servers according to incoming request load, thus
achieving high server utilization.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implementation of
an Android/Amazon EC2-based mobile-to-cloud computation
outsourcing platform. Using this platform, we empirically
demonstrated that the cloud is not only feasible but desirable
as an offloading platform for latency-tolerant applications. We
showed how our platform can dynamically scale to support a
large number of mobile users concurrently by utilizing the
elastic provisioning capabilities of the cloud. We proposed
three component placement algorithms: User-centric, App-
centric, and Co-location, that allow component reuse and data
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sharing to varying degrees. The Co-location algorithm uses
techniques for detecting data sharing across multiple appli-
cations, and our experimental results showed that it achieves
resource usage efficiency comparable to the App-centric algo-
rithm, while approaching the User-centric algorithm in its low
network overhead. Overall, it was able to provide up to 50%
reduction in network overhead and 55% reduction in runtime
over a No-sharing algorithm.
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