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ABSTRACT

Efficiently executing large-scale, data-intensive workflows such

as Montage must take into account the volume and pattern
of communication. When orchestrating data-centric work-
flows, centralised servers common to standard workflow sys-
tems can become a bottleneck to performance. However,
standards-based workflow systems that rely on centralisa-
tion, e.g., Web service based frameworks, have many other
benefits such as a wide user base and sustained support.

This paper presents and evaluates a light-weight hybrid
architecture which maintains the robustness and simplicity
of centralised orchestration, but facilitates choreography by
allowing services to exchange data directly with one another.
Furthermore our architecture is standards compliment, flex-
ible and is a non-disruptive solution; service definitions do
not have to be altered prior to enactment. Our architecture
could be realised within any existing workflow framework,
in this paper, we focus on a Web service based framework.

Taking inspiration from Montage, a number of common
workflow patterns (sequence, fan-in and fan-out), input to
output data size relationships and network configurations
are identified and evaluated. The performance analysis con-
cludes that a substantial reduction in communication over-
head results in a 2—4 fold performance benefit across all pat-
terns. An end-to-end pattern through the Montage workflow
results in an 8 fold performance benefit and demonstrates
how the advantage of using our hybrid architecture increases
as the complexity of a workflow grows.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems; C.4 [Performance of Systems]; D.2.11 [Software
Engineering]: Software Architectures

General Terms
Design, Performance.
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Decentralised orchestration, workflow optimisation.
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1. INTRODUCTION

Efficiently executing large-scale, data-intensive workflows
common to scientific applications must take into account
the volume and pattern of communication. For example, in
Montage [7] an all-sky mosaic computation can require be-
tween 2-8 TB of data movement. Standard workflow tools
based on a centralised enactment engine, such as Taverna
[19] and OMII BPEL Designer [18] can easily become a per-
formance bottleneck for such applications, extra copies of
the data (intermediate data) are sent that consume network
bandwidth and overwhelm the central engine. Instead, a so-
lution is desired that permits data output from one stage to
be forwarded directly to where it is needed at the next stage
in the workflow. It is certainly possible to develop an op-
timised workflow system from scratch that implements this
kind of optimisation. In contrast workflow systems based on
concrete industrial standards offer a different set of benefits:
they have a much larger and wider user base, which allows
the leverage of a greater availability of supported tools and
application components. This paper explores the extent to
which the benefits of each approach can be realised. Can
a standards-based workflow system achieve the performance
optimisations of custom systems and what are the trade-
offs?

1.1 Orchestration and Choreography

There are two common architectural approaches to imple-
menting workflow; service orchestration and service chore-
ography. Service orchestration describes how services can
interact at the message level, with an explicit definition of
the control flow and data flow. Orchestrations can span mul-
tiple applications and/or organisations, and services them-
selves have no knowledge of their involvement in a higher
level application. A central process always acts as a con-
troller to the involved services, both control and data flow
messages pass through this centralised server. The Business
Process Ezecution Language (BPEL) [15] is the current de-
facto standard way of orchestrating Web services.

Service choreography on the other hand is more collabo-
rative in nature. A choreography model describes a peer-to-
peer collaboration between a collection of services in order to
achieve a common goal. Choreography focuses on message
exchange, all involved services are aware of their partners
and when to invoke operations. The Web services Chore-
ography Description Language (WS-CDL) [9] is an XML-
based language proposed for choreography. Currently this
language is in the W3C candidate recommendation stage
and there are no concrete implementations.



This paper presents a hybrid solution that “eliminates the
middle man” by adopting an orchestration model of central
control, but a choreography model of optimised distributed
data transport. Our architecture could be realised within
any existing workflow framework, even custom systems. In
this paper, we focus on a Web service based implementation
for the evaluation, a widely-promoted standard for building
distributed workflow applications based on a suite of simple
standards: XML, WSDL, SOAP, etc.

To explore the benefits of the hybrid approach for data-
intensive applications, a set of workflow patterns and input-
ouput relationships common to scientific applications (e.g.
Montage) are used in isolation and combination. The per-
formance analysis concludes that a substantial reduction in
communication overhead results in a 2—4 fold performance
benefit across all patterns. An end-to-end pattern through
the Montage workflow demonstrates how the advantage of
using the proxy architecture increases when patterns are
used in combination with another, resulting in a 8 fold per-
formance benefit. This paper does not address the perfor-
mance limitations inherent in SOAP, an issue well addressed
by other groups [5], [1].

2. SCIENTIFIC WORKFLOW PATTERNS

To identify data-centric workflow patterns, the Montage
application has been used as an exemplar. It is representa-
tive of a class of large-scale, data-intensive scientific work-
flows. Montage constructs custom “science-grade” astronom-
ical image mosaics from a set of input image samples [7].
The inputs to the workflow include the images in standard
FITS format (a file format used throughout the astronomy
community), and a “template header file” that specifies the
mosaic to be constructed. The workflow can be thought
of as having three parts, including re-projection of each in-
put image to the coordinate space of the output mosaic,
background rectification of the re-projected images, and co-
addition to form the final output mosaic [4]. A typical mon-
tage workflow is depicted in Figure 1. This workflow consists
of the following six components (with input-output relation-
ships listed):
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Figure 1: Montage Use-case scenario.

1. mProject: Re-projects a single image to the coordinate
system defined in a header file (output = input)

2. mDiff/mFitPlane: Finds the difference between two
images and fits a plane to the difference image (output
= 15-20 % of a typical image for each image triplet)

3. mConcatFit: A simple concatenation of the plane fit
parameters from multiple mDiff/mFitPlane jobs into
a single file (see 4)

4. mBgModel: Models the sky background using the plane
fit parameters from mDiff/mFitPlane and computes
planar corrections for the input images that will rec-
tify the background across the entire mosaic (output
= a subset of inputs are output from mConcatFit and
mBgModel)

5. mBackground: Rectifies the background in a single im-
age (output = input)

6. mAdd: Co-adds a set of reprojected images to produce
a mosaic as specified in a template header file (output
= 70-90 % the size of inputs put together)

Montage illustrates several features of data-intensive sci-
entific workflows. First, Montage can result in huge dataflow
requirements. For example, a small input file is 1.5 MB and
a small Montage application can consist of hundreds of input
files, a larger problem, 10K—100K image files, all input in the
mProject phase. The intermediate data can be 3 times the
size of the input data. And a big problem, e.g. an all-sky
mosaic can result in 2-8 TB of data. Such a problem might
be run daily. Second, Montage contains workflow patterns
common to many scientific applications:

1. Fan-in: e.g. mDiff/mFitPlane — mConcatFit
2. Fan-out: e.g. mBgModel — Background

3. Sequential: e.g. mConcat — mBgModel

Large-scale scientific workflows such as Montage may also
have significant computational requirements that must be
considered in deployment. In this paper, we consider op-
timisation of workflow patterns as representative of a class
of large-scale data-intensive scientific workflows. We focus
only on the orchestrations and techniques required to reduce
the cost of communication, assuming the computational re-
sources for executing the workflow have been identified.

3. HYBRID ARCHITECTURE

Currently most research has focused on designing lan-
guages for implementing service orchestrations, where both
control and data flow pass through a centralised server. There
are a plethora of orchestration frameworks which will auto-
mate these tasks, examples of which can be found in the
Business Process Modelling community through implemen-
tations of BPEL, in the Life Sciences through Taverna [19]
and in the computational Grid community through Pega-
sus [4], Triana[14] and Kepler [13]. Choreography, although
an established concept is a less well researched and imple-
mented architecture, due to the complexity of message pass-
ing between distributed, concurrent processes.

To address the challenges posed by scientific workflow
patterns both in size and structure, we propose a hybrid
workflow architecture based on centralised control flow, dis-
tributed data flow [11]. A centralised orchestration engine



issues control flow messages to Web services taking part in
the workflow, however enrolled Web services can pass data
flow messages amongst themselves, in a peer-to-peer fash-
ion. This model maintains the robustness and simplicity
of centralised orchestration but facilities choreography by
avoiding the need to pass large quantities of intermediate
data through a centralised server.

In order to provide Web services with the required func-
tionality to realise a centralised control flow, distributed
data flow model, this paper presents a proxy architecture.
Our proxy is a lightweight, non-intrusive piece of middle-
ware, which provides a gateway and standard API to Web
service invocation. This API contains the following opera-
tions: invoke, stage, returnData, flushTempData, addSer-
vice, removeService, 1listOps, listOpParams, 1istOpRe-
turnType, and listServices. Full details of the API and
implementation of the proxy can be found in a complemen-
tary paper [2].

Proxies are installed as “near” as possible to enrolled Web
services; by near we mean preferably on the same Web server
or network domain, so that communication between a proxy
and a Web service happens over a local network. Depend-
ing on the preference of an administrator, a proxy can be
responsible for one Web service, 1:1 or many Web services,
1:N, see the top and middle of Figure 2.
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Figure 2: 1:N (top), 1:1 (middle), mixed (bottom).

To realise a centralised control flow, distributed data flow
model, proxies are controlled by a centralised orchestra-
tion engine, however only control flow messages are passed
through the orchestration engine, larger data flow messages
are exchanged between proxies in a peer-to-peer fashion, un-
less a proxy is explicitly told to do otherwise. Proxies ex-
change references to the data with the orchestration engine
and pass the real data directly to where it is required for the
next service invocation; this allows the orchestration engine
to monitor the progress and make changes to the execution
of a workflow.

Proxies themselves are exposed through a WSDL inter-
face, allowing them to be built into workflows or higher level
applications, like any other Web service. This means that
workflows can be constructed from a combination of proxies
and vanilla Web services, illustrated by the bottom of Fig-
ure 2. Unlike a pure choreography model, our architecture
allows integration with centralised workflow systems mak-
ing it easier to detect and handle failures. Furthermore the
architecture offers the following software engineering advan-
tages:

e Transition is non-disruptive: The architecture can
be deployed without disrupting current services and with
minimal changes in the workflows that make use of them.
This flexibility allows a gradual change of infrastructures,
where one could concentrate first on improving data trans-
fers between services that handle large amounts data.

e Simplicity of deployment: The proxy services can be
installed without the need for writing any additional code.
Configuration can be done remotely and dynamically. It
simply requires the whereabouts of WSDL descriptions for
any services that will be enabled through the proxy.

e Non-intrusive deployment: A proxy need not be
installed on the same server as the Web service, and does not
interfere with the current vanilla Web service as is the case
with pure choreography models, e.g. WS-CDL. However,
to gain more performance, the proxy should be as near as
possible to the Web services it is enabling.

3.1 Web Service Based Implementation

The Web service based proxy architecture is available as
an Open Source toolkit, which is implemented using a com-
bination of Java and the Apache Axis Web services toolkit
[16]. A proxy is extremely simple to install and configure, it
can be dropped into an Axis container running on a Tomcat
server and can then be configured remotely. No specialised
programming is needed to exploit the functionality. The ar-
chitecture is multi-threaded and allows several applications
to invoke methods concurrently. A proxy has a thread pool
and when that thread pool is full the request is placed on
an input queue, which deals with it in a First-In-First-Out
(FIFO) order. Results from Web service invocations are
tagged with a UID reference and stored at a proxy by writ-
ing the results to disk. Proxies are made available through
a standard WSDL interface.

3.2 Example Application

The proxy architecture is most effectively illustrated through

an example. Referring back to the Montage scenario, Fig-
ure 3 illustrates how our hybrid architecture can be applied
to a section of the Montage scenario, in this case the se-
quence pattern discussed in Section 2. Active components
in the scenario are coloured grey. In Figure 3 and the re-
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Figure 3: Example scenario - proxy architecture applied to the Montage sequential pattern using 4 services.

maining diagrams within this paper, control flow is displayed
as a solid black line and data flow as a dashed black line.
The workflow is described using a standards based workflow
language (e.g. BPEL) and is enacted by a centralised or-
chestration engine. It is important to note that the choice
of workflow language used to coordinate the proxies is en-
tirely based on a user’s preference and does not affect the
proxy architecture. The workflow explicitly interacts with
the proxy when necessary. In order to orchestrate the work-
flow the following process takes place:

e Phases 1-2: The first step in the workflow pattern
involves making an invocation to WS-1, however instead of
contacting the service directly, a call is made to a proxy (P-
1) which has been installed on the same server as the Web
service, passing the name of the Web service, port type and
operation to be invoked, along with any required input pa-
rameters. The proxy spawns a new thread of control and
invokes the required operation, passing in the necessary in-
put parameters. The output from the service invocation, in
this case R-WS1 is passed back to the proxy, tagged with a
unique identifier (for reference later, e.g. retrieval, deletion
etc.) and stored within the proxy; there is a requirement
that the proxy has enough disk space to store the results.
Instead of the proxy directly passing the data back to the
orchestration engine, a reference to the data, $R-WS1 is re-
turned. In a standard orchestration scenario the results of
the Web service invocation would have first been moved to
the orchestration engine and then moved to where they are
needed at the analysis Web service. However, as the proxy
has been installed on the same server as WS-1, the data can
be transferred locally between the proxy and the Web ser-
vice and did not have to move over a Wide Area network,
effectively saving a Wide Area hop. The only data returned

to the orchestration engine was a reference to the output
of the service invocation, $R-WS1. This process is repeated
for WS-2 and WS-3 which could be served through the same
proxy or an independent proxy, addressed by Figure 2.

e Phases 3—4: The output from the Web service invoca-
tions are needed as input to the next service in the workflow,
in this case the mFitPlane Web service. The orchestration
engine contacts the peer (P-1) storing the data with the
three references $R-WS1, $R-WS2, $R-WS3 along with the
WSDL address of the peer which is sitting in-front of the
mFitPlane Web service. Once this invocation is received
by P-1, the proxy retrieves the stored data and transfers
it across the network by invoking a stage operation on P-
Fit. The data is then stored at P-Fit and if successful an
acknowledgement message is sent back to P-1 which is re-
turned to the orchestration engine.

e Phases 5—6: The final stage in the workflow pattern
requires using the output from the first three services as
input to the mFitPlane Web service. In order to achieve
this the orchestration engine passes the name of the service,
port type, operation to invoke and the references to the out-
put data, which is required as input, in this case $R-WS1,
$R-WS2, $R-WS3. The proxy then moves the data across
the local network and invokes the operation which has been
specified as input. The output, R-mFit is again stored lo-
cally on the proxy and a reference $R-mFit is passed back to
the orchestration engine. The orchestration engine can then
retrieve the actual data from the proxy when necessary.



Figure 4: Dataflow in the sequential (first column), fan-in (second column) and fan-out (third column)
patterns for the centralised architecture using vanilla services (1,3,5) and the proxy architecture (2,4,6). This
example shows 4 services, all services are remote and all proxies are installed on the same server as the

service they are invoking.

4. PERFORMANCE ANALYSIS

To verify our hypothesis we perform a set of performance
analysis tests where our centralised control flow, distributed
data flow proxy architecture is evaluated against a more tra-
ditional centralised control flow, centralised data flow or-
chestration engine.

4.1 Experiment Description

Taking inspiration from the Montage workflow, we per-
form tests with the patterns common to many scientific ap-
plications (sequential, fan-in and fan-out) both in isolation
and in a combination. Furthermore, we show best-case and
worst-case performance of our proposed architecture with
respect to the location of the engine relative to the proxies.
Throughout this paper we maintain the input-output data
ratios discussed in Section 2. With reference to Figure 4,
the patterns have been configured as follows:

e Sequential pattern: This pattern involves the chain-
ing of services together, where the output of one service in-
vocation is used directly as input to another. Once a service
receives input data, its output is calculated by increasing the
size of that input data by 20%, e.g. if the service receives
5Mb of data as input, 6Mb is returned as output. There is a
snowball effect whereby the size of the data being transferred
is increased after each service invocation. The configuration
for this pattern on a fully centralised architecture is illus-
trated by phase 1 of Figure 4, and the configuration using
our proxy architecture is illustrated by phase 2 of Figure 4.

e Fan-in pattern: The fan-in pattern explores what
happens when data is gathered from multiple distributed

sources, concatenated and sent to a service acting as a sink.
Multiple services are invoked with a control flow (no data
is sent) message asynchronously, in parallel, a block of data
is then returned as output. Once data has been received
from all enrolled services it is concatenated and sent to the
sink service as input, where 20% of that input is returned as
output. The configuration for this pattern using a fully cen-
tralised architecture is illustrated by phase 3 of Figure 4 and
the configuration using our proxy architecture is illustrated
by phase 4 of Figure 4.

e Fan-out pattern: This pattern is the reverse of the
fan-in pattern, here the output from a single source is sent
to multiple sinks. An initial service is invoked with a con-
trol flow message (again no actual data is sent), the service
returns a block of data as output. This data is then sent,
asynchronously in parallel to multiple services as input, each
service returns as output the same size block of data it re-
ceived as input. The configuration for this pattern using a
fully centralised architecture is illustrated by phase 5 of Fig-
ure 4 and the configuration using our proxy architecture is
illustrated by phase 6 of Figure 4.

For each of the workflow patterns: sequence, fan-in and
fan-out the time taken for the pattern to complete is recorded
(in milliseconds) as the size of the input data (in Megabytes)
is increased; for the sequential pattern this means the size of
the file sent to the first service, for the remaining patterns
this means the size of the input file returned by the first ser-
vice. The number of services involved in each of the patterns
range from 3 to 17, this takes into account the lower bound
(mProject — mDiff) and upper bound (mFitPlane — mCon-



catFit) limits of the Montage workflow scenario discussed in
Section 2.

The configuration of our experiments mirror that of a typ-
ical workflow scenario, where collections of physically dis-
tributed services need to be composed into a higher level
application. For each combination of input size, number of
services and pattern type the experiment has been run in-
dependently 100 times over a cluster of distributed Linux
machines. Wherever we report the time elapsed in millisec-
onds, 99% confidence intervals are included for each data
point; some of these intervals are so small they are barely
visible. Each line on the Figure 5, 6 and 7 displays the mean
speedup ratio of each workflow pattern as the size of the in-
put file increases. The mean speedup ratio is calculated by
taking the average elapsed time (of 100 runs) for a vanilla
(non-proxy, fully centralised) run of a workflow pattern and
dividing it by the average elapsed time (of 100 runs) using
our proxy architecture. The number of services involved is
independent of the ratio as we have taken the mean ratio for
all combinations of services (i.e. running the experiment it-
eratively on 3 to 17 services) from our scaling experiments’.

In order to explore locality, the placement of the orches-
tration engine is also taken into consideration, displayed on
each graph are four sub-experiments, in descending order
according to the graphs the following has been plotted:

e Remote best-case: The orchestration engine is en-
tirely remote to the services/proxies it is invoking, by re-
mote we mean that the orchestration engine has to connect
over a Wide Area network. It is the best-case as the fi-
nal results are stored on the proxy and not returned to the
orchestration engine. The best-case scenario is realistic as
often individual patterns form only a small piece of a larger
workflow as highlighted by the Montage scenario.

¢ Remote worst-case: In this sub-experiment the or-
chestration engine is again remote but the final output data
of the workflow pattern are not stored at the proxy but sent
back to the orchestration engine.

e Local best-case: The orchestration engine is deployed
locally (i.e. on the same network) as the services/proxies it
is invoking. The best-case represents the scenario where the
final output from the pattern execution is stored within a
proxy.

e Local worst-case: The final sub-experiment represents
the case where the orchestration engine is again local but the
final output of the pattern is sent back to the orchestration
engine.

The input and output data in all the experiments are Java
byte arrays passed around using SOAP. To prevent the data
processing from influencing our evaluation, it has not been
accounted for in the performance analysis tests.

4.2 Analysis of the Results

A collective summary of the performance analysis exper-
iments is presented in Table 1. Displayed on each row is
the pattern type, the corresponding experiment configura-
tion, i.e. where the orchestration is and how the proxy be-
haves (best/worst-case), along with the mean speedup ratio,
standard deviation, minimum and maximum speedup ratios.
The end-to-end pattern is discussed in Section 4.3

The performance analysis tests verify our hypothesis that

! As an example the Appendix displays the elapsed time of
the sequence, fan-in and fan-out workflow patterns using 4
distributed services when the orchestration engine is remote.

Mean speedup ratio
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Figure 5: Sequential pattern - mean speedup ratio
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Figure 6: Fan-in pattern - mean speedup ratio
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Figure 7: Fan-out pattern - mean speedup ratio



Table 1: Overview of performance analysis.

Pattern Config Mean | S Dev | Min | Max
Sequence Local best 2.21 0.33 1.40 | 2.84
Local worst 1.29 0.14 0.93 | 1.51
Remote best 3.47 0.54 1.83 | 4.41
Remote worst | 2.03 0.18 1.48 | 2.28
Fan-in Local best 2.18 0.32 1.25 | 2.74
Local worst 1.52 0.19 0.97 | 1.81
Remote best 3.88 0.53 2.23 | 4.97
Remote worst | 2.83 0.27 2.14 | 3.41
Fan-out Local best 2.25 0.34 1.19 | 2.88
Local worst 1.26 0.13 0.96 | 1.49
Remote best 3.61 0.51 2.13 | 4.94
Remote worst | 2.07 0.21 1.57 | 2.63
End-to-End | Remote worst | 8.18 0.94 5.58 | 9.86

when services are subscribed to our proxy architecture the
execution time of common, isolated workflow patterns sig-
nificantly decreases.

The locality experiments confirm that the most dramatic
benefit occurs when the orchestration engine is connected
to the services/proxies through a Wide Area network. To
quantify, the worst-case remote configuration, patterns saw
an average performance benefit of between 2.03 and 2.83
times and in the best-case remote configuration patterns an
average performance benefit of between 3.47 and 3.88 times,
with the fan-in pattern showing the largest speedup.

A surprising result of our experimentation is that even
when the orchestration engine is deployed on the same net-
work as the services/proxies it is invoking (i.e. all communi-
cation is local) there is a benefit to using the proxy architec-
ture. In the worst-case local configuration patterns saw an
average performance benefit of between 1.26 and 1.52 times
and in the best-case local configuration patterns an average
performance benefit of between 2.18 and 2.25 times.

To explain the results in relation to our proxy architec-
ture, when using a fully centralised approach the intermedi-
ate data have to make a costly hop back to the orchestration
engine before being again sent across the network to be used
as input to the next service in the workflow. However, us-
ing the proxy architecture, intermediate data are stored at
the proxy and sent directly to the next proxy which requires
them as input, therefore for each input-output chain, one
hop is avoided. In effect, this reduces the amount of inter-
mediate data by 50%. This is, of course assuming that the
proxy is installed as near as possible (i.e. on the same server
or network) as the service it is invoking. This benefit is valid
no matter where the orchestration is engine is placed, lo-
cally or remotely. Our locality experiments verify that even
if workflows are orchestrated with locally deployed services
the proxy architecture speeds up the overall execution time
of a workflow pattern. However, as the orchestration engines
moves further away, the hop any intermediate data has to
make increases in cost and the benefit of using the proxy ar-
chitecture increases accordingly. This explains why there is
an increased benefit in the remotely deployed orchestration
engine in relation to a locally deployed one. The difference in
benefit is between 1.26 times and 1.70 times (mean remote-
best — mean local-best across all patterns) in the best-case
and between 0.74 times and 1.31 times (mean remote-worst
— mean local-worst across all patterns) in the worst-case.

The results (Figure 5, 6 and 7) confirm our intuition that
the co-plots are bounded by remote best-case (best per-
formance) and local worst-case (worst performance) for all
patterns. The other cases lie in-between and their relative
position depends on the specific pattern. The results also
show that the relative speed up is mildly sensitive to data
size. This can be explained as the speed up ratio depends
on the relative amount of data sent and the relative net-
work bandwidth for the local and non-local cases, both of
which are approximately constant. The later may have some
SOAP/HTTP/TCP dependencies which likely accounts for
the small variation seen. However, the raw differential per-
formance between the proxy and vanilla version does scale
with data size (see Appendix).

Although our experimentation is run at lower data sizes to
Montage, patterns and input-output data relationships are
maintained, this suggests that a similar performance benefit
could be expected when scaling up the data injected into the
workflow. Further experiments not discussed in this paper
run over the PlanetLab [17] framework confirm that the ra-
tios displayed in Table 1 match those obtained from running
the same experiments over an Internet scale network.

4.3 End-to-End Execution

Section 4.1 and 4.2 discussed workflow patterns in isola-
tion, however the sequential nature of the Montage work-
flow suggests that the optimisations of different workflow
patterns will have an end-to-end cumulative performance
benefit, e.g. speeding up the time to perform mConcatFit
will allow mBgModel to execute earlier, and so on. In order
to verify this hypothesis a path through the Montage work-
flow was investigated, this end-to-end pattern is illustrated
in Figure 8.
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Figure 8: An end-to-end workflow, with a fan-in,
fan-out followed by a series of sequential operations.
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Figure 9: End-to-end pattern.

This combination of patterns comprises of the following



steps, firstly a fan-in pattern that asynchronously in paral-
lel gathers data from 3 different services, the output of which
is sent to a further service which returns 20% of the input
data as output data. This data is then sent asynchronously
in parallel to 3 services which each return the same volume
of output data as they received as input. The output data
is concatenated and sent through a further 2 services in se-
quence, each return 50% of the data they received as input.
These input-output data relationships mirror those found in
the Montage scenario.

The end-to-end pattern displayed in Figure 8 is executed
100 times on our proxy architecture (using the worst-case,
i.e. the final output data returns to the orchestration engine)
and 100 times on a fully centralised orchestration engine
with vanilla Web services, on both occasions the orchestra-
tion engine is remote. Figure 9 shows the results with a con-
fidence interval of 99% where the z-axis displays the input
data size in Megabytes and the y-axis displays the time taken
in milliseconds to complete the workflow. The end-to-end
execution results in a mean speedup of 8.18 times using the
proxy architecture, confirming our hypothesis that the per-
formance benefit increases when isolated patterns are placed
together to form a larger workflow. This sample end-to-end
execution demonstrates the concept, however this combina-
tion pattern itself would only form a small part of larger
scientific workflows, such as Montage.

4.4 Break Even Point

Invoking a proxy has an overhead in that a call is first
made to a proxy, which invokes the service on the orches-
tration engines behalf, writes the result to disk and then
returns a reference to that data. As the previous perfor-
mance analysis tests demonstrate what occurs on relatively
large data sizes, it is important to highlight what happens
when dealing with Kilobytes instead of Megabytes of data
in order to determine the break even point, i.e. when using
a proxy is preferable to a vanilla service invocation.
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Figure 10: The overhead of invoking a proxy.

Figure 10 displays (with a 99% confidence interval) the av-
erage time it takes to make a single invocation to a vanilla
Web service and obtain the result vs. an invocation to a
proxy that invokes the service on the orchestration engines
behalf and returns a reference to its data. From the results
we conclude that due to the overhead of the proxy, when
dealing with input data sizes of less than ~120K of data the
proxy architecture offers no performance benefit to vanilla
Web services. Anything over ~120K of data the proxy be-

gins to speedup the execution time of the invocation. The
proxy architecture is suited to larger scale workflows (such
as Montage) and not workflows where very small quantities
of intermediate data are passed around between services, i.e.
typical scenarios in business.

5. RELATED WORK

There are a limited number of research papers which have
identified the problem of a centralised approach to service or-
chestration when dealing with data-centric workflows. This
Section will outline the main approaches which sit between
standard orchestration and choreography techniques.

5.1 FICAS Architecture

The Flow-based Infrastructure for Composing Autonomous
Services or FICAS [12] is a distributed data-flow architecture
for composing software services. Composition of the services
in the FICAS architecture is specified using the Composi-
tional Language for Autonomous Services (CLAS), which
is essentially a sequential specification of the relationships
among collaborating services. This CLAS program is then
translated by the build-time environment into a a control se-
quence that can be executed by the FICAS runtime environ-
ment. Although FICAS is an architecture for decentralised
orchestration it does not deal directly with modern stan-
dards and is a prototype and proof of concept. The issue of
Web services integration is not addressed, nor does it discuss
how this architecture could be incorporated into an orches-
tration language such as the de-facto standard, BPEL. More
importantly FICAS is intrusive to the application code as
each application that is to be deployed needs to be wrapped
with a FICAS interface. In contrast, our proxy approach
is more flexible as the services themselves require no alter-
ation and do not even need to know that they are interacting
with a proxy. Furthermore our proxy approach introduces
the concept of passing references to data around and deals
directly with modern workflow standards.

5.2 Service Invocation Triggers

Service Invocation Triggers [3] are also a response to the
problem of centralised orchestration engines when dealing
with large-scale data sets. Triggers collect the required in-
put data before they invoke a service, forwarding the results
directly to where the data is required. For this decentralised
execution to take place, a workflow must be deconstructed
into sequential fragments which contain neither loops nor
conditionals and the data dependancies must be encoded
within the triggers themselves.

The approach outlined by our paper and Service Invoca-
tion Triggers both rely on proxies to solve the problem of
decentralised orchestration. While Triggers address the is-
sue of decentralised control, to realise these benefits their
architecture is based around a pure choreography model,
which as discussed in this paper has many extra problems
associated with it. Furthermore, before execution can begin
the input workflow must be deconstructed into sequential
fragments, these fragments cannot contain loops and must
be installed at a trigger; this is a rigid and limiting solution
and is a barrier to entry for the use of proxy technology. In
contrast with our proxy approach, because data references
are passed around, nothing in the workflow has to be de-
constructed or altered, which means standard orchestration
languages such as BPEL can be used to coordinate the prox-



ies. Finally, Triggers does not deal with modern Web service
standards.

5.3 Techniques in Data Flow Optimisation

e OGSA-DAI [8] middleware supports the exposure of
data resources on to Grids and facilitates data streaming
between local OGSA-DALI instances.

e Grid Services Flow Language (GSFL) [10] addresses
some of the issues discussed in this paper in the context
of Grid services, in particular services adopt a peer-to-peer
dataflow model. However, individual services have to be al-
tered prior to enactment, which is an invasive and custom
solution, something avoided in our hybrid architecture.

e Graph-forwarding is a technique [6] applied to distributed
Objects, allowing the results of an RPC to be forwarded to
the next object to invoke instead of the invoking object.

6. CONCLUSIONS

This paper presented a light-weight hybrid architecture for
executing large-scale data-centric workflows. Our architec-
ture maintains the robustness and simplicity of centralised
orchestration, but facilitates choreography by allowing ser-
vices to exchange data directly with one another. Using
Montage as a guide, a number of common workflow pat-
terns and input-output relationships are evaluated in a Web
services based framework. Although this paper discussed
the hybrid architecture in a Web services context, it is a
general architecture and can therefore be implemented us-
ing different technologies and integrated into existing sys-
tems. Furthermore our architecture is non-invasive to the
Web services themselves.

Unlike the standard orchestration model, proxies can ex-
change data flow messages directly with one another avoid-
ing the need to pass large quantities of intermediate data
through a centralised server. The results indicate that sub-
stantial reduction in communication overhead results in a
performance benefit of between 2.03 and 3.88 times. The ad-
vantage of using the proxy architecture increases if isolated
patterns are used in combination with another, the end-to-
end pattern demonstrates an 8 fold performance benefit.

Future directions include evaluating the benefits of our ap-
proach within other workflow frameworks and in other net-
work environments (e.g. Wide Area, mobile) to assess the
impact in different contexts. The analysis of additional ap-
plications to identify and evaluate other end-to-end workflow
patterns is also planned. This architecture also opens up a
rich set of additional optimisations with respect to proxy
deployment which will be evaluated in future work.
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APPENDIX
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Figure 11: An example experiment, using 4 services, recording the average time it takes for each pattern
to complete as the size of the input data increases. The xz-axis display the size of the initial input file in
Megabytes (Mb) and the y-axis displays the elapsed time of the workflow pattern in milliseconds (ms). In
11(a), 11(c) and 11(e) the orchestration engine is locally deployed, in 11(b), 11(d) and 11(f) the orchestration
is remotely deployed.



