
A GA-based Approach for Scheduling  

Decomposable Data Grid Applications  
 

Seonho Kim and Jon B. Weissman  
Dept. of Computer Science and Engineering,  

University of Minnesota, Twin Cities 

(shkim@cs.umn.edu) 

 

Abstract 
 

Data Grid technology promises geographically distributed scientists to access and share physically distributed 

resources such as compute resource, networks, storage, and most importantly data collections for large-scale data 

intensive problems. The massive size and distributed nature of these datasets poses challenges to data intensive 

applications. Scheduling Data Grid applications must consider communication and computation simultaneously to 

achieve high performance. In many Data Grid applications, Data can be decomposed into multiple independent sub 

datasets and distributed for parallel execution and analysis. In this paper, we exploit this property and propose a 

novel Genetic Algorithm based approach that automatically decomposes data onto communication and computation 

resources. The proposed GA-based scheduler takes advantage of the parallelism of decomposable Data Grid 

applications to achieve the desired performance level. We evaluate the proposed approach comparing with other 

algorithms. Simulation results show that the proposed GA-based approach can be a competitive choice for 

scheduling large Data Grid applications in terms of both scheduling overhead and the quality of solutions as 

compared to other algorithms 
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1. Introduction 

 
Grid computing has become a promising technology for providing seamless access to heterogeneous resources 

and achieving a high performance benefit in wide-area environments [1]. In its early stages, Grid computing 

research focused mainly on the coordination of geographically distributed compute resources for high performance. 

However, in many areas of science and engineering such as high-energy physics and aerospace, requirements have 
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emerged for collaborating and sharing huge amounts of widely distributed data as well as sharing high-performance 

compute resources. For example, in LHC experiments at CERN, huge amounts of data (tera byte or peta byte in 

scale) collected by observing collisions of particles, are analyzed through different levels of data processing 

operations [14][15]. Data Grids have been proposed to address this data requirement [20][21][22]. Data Grid 

technology enables geographically distributed scientists to access and share physically distributed heterogeneous 

resources such as compute resources, network, storage, and widely distributed datasets for large-scale data intensive 

problems. Research activities in the Data Grid community have mainly focused on defining core functionalities and 

basic infrastructure necessary for handling widely distributed large amounts of data [19].  

In a Data Grid, as in a Computational Grid, resources are shared among applications. To achieve high 

performance, applications and resources should be scheduled efficiently. While a Computational Grid achieves high 

performance mainly by scheduling applications to powerful computing resources, communication and computation 

should be considered jointly when scheduling Data Grid jobs because of the potential communication bottleneck 

originating from the massive size and the widely distributed nature of datasets. There have been studies on 

scheduling computation and communication jointly for Data Grid applications. However, most of them do not 

reflect a characteristic typical in many data intensive applications, that data can be decomposed into multiple 

independent sub datasets and distributed for parallel execution and analysis. High Energy Physics (HEP) 

experiments fall into this category [14]. HEP data are characterized by independent events, and therefore this 

characteristic can be exploited when parallelizing the analysis of data across multiple sites. We exploit the 

parallelism to achieve desired performance levels when scheduling large Data Grid applications. 

When parallel applications require multiple data from multiple data sources, the scheduling problem is 

challenging along several dimensions – how should data be decomposed, should data be moved to computation or 

vice-versa, and which computing resources should be used. We can solve the problem optimally by adding some 

constraints (e.g., decomposing data into sub datasets of the same size). Another approach is to use heuristics such as 

those based on optimization techniques e.g. genetic algorithm, simulated annealing, and tabu search.  

This paper proposes a novel Genetic Algorithm (GA) based approach to address scheduling of decomposable 

Data Grid applications, where communication and computation are considered at the same time. The proposed 

algorithm is novel in two ways. First, it automatically balances load, that is, data in our case, onto 

communication/computation resources and generates a near optimal schedule. Second, it does not require a job to be 

pre-decomposed - most GA based approaches for scheduling problems have addressed the problem of scheduling m 
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pre-decomposed tasks onto n computing nodes. We examined the relative quality of the solution generated with the 

GA-based approach as compared to other algorithms (constraint based approaches). We developed a suite of 

algorithms for comparison: two Divisible Load Theory (DLT) based algorithms (baseline algorithm and Iterative 

DLT (IDLT)) and Constrained DLT (CDLT) [9], and Tasks on Data Present (TDP) [2][5].  

We found that the GA based approach with a good initial population, in general, outperform other algorithms. 

However, some approaches (IDLT and TDP) perform competitively under certain Grid configurations (short jobs: 

10 ~ 1000 seconds) compared to the GA based algorithms because their scheduling time (50 ~ 100 milli-seconds) is 

much less compared to that of GA based approaches (10 ~ 180 seconds). Since the running time of the GA-based 

approaches is negligible for large jobs (0.002% ~ 0.5% of total execution time), the proposed GA-based approach 

can achieve the desired performance level for large jobs (requiring at least a couple of hours of execution time) - 

common in Data Grid applications such as CMS experiments [14]. 

This paper is organized as follows. Some related works are reviewed in Section 2. In Section 3, problem space 

and models are described. Section 4 presents the proposed GA-based approach. Experimental results are discussed 

in Section 5. Finally, we conclude and discuss conclusion and future work in Section 6.  

 

2. Related Work 

 

In data intensive environments, the location of input data objects should be taken into consideration when 

selecting resources for a job. Intuitively, the scheduler should map a job to the site where the total latency of data 

transfer can be minimized. Job scheduling in data intensive environments, has recently been studied [2][3][4][5]. 

[2][5] examines several scheduling heuristics and several data replication strategies. In ChicSim [2], data movement 

and job scheduling are performed separately as decoupled processes. They found that benefits such as good system 

utilization and low response time can be achieved when jobs are always scheduled where data is located. In Bricks 

[5], they examined combinations of scheduling and file replication algorithms. They investigated several scheduling 

mechanisms considering computing resources and location of datasets as well as the impact of data replication. In 

[4], Park et al. propose a new scheduling model of executing a job on one site while considering both computation 

and communication in a Data Grid environment. They found that replication of data has considerable impact on 

enhancing the performance of the scheduler. Orlando et al [3] examined the on-line MCT (Minimum Completion 
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Time) heuristic strategy for scheduling high performance data mining tasks on top of the Knowledge Grid. The most 

important difference between these works and our work is that none of these works considered parallel applications. 

Parallelism significantly complicates the scheduling problem because problem partitioning now becomes an integral 

part of the scheduling process.  

Divisible Load Theory (DLT) has recently emerged as a powerful tool for modeling data-intensive 

computational problems and allowing tractable performance analysis of systems incorporating communication and 

computations issues [6][7][8][9]. DLT exploits the parallelism of a divisible application, a model of computation 

which is continuously divisible into parts of arbitrary size (chunks), by distributing loads in a single source onto 

multiple computing resources. However, in the real world, DLT is not applicable directly to the problem of finding a 

globally optimal distribution of load for applications requiring multiple datasets from different distributed data 

sources because the system of equations is under-constrained. In [8], Ko et al. suggested a two-step approach to 

address this problem: (1) finding the optimal number of computing nodes (a set) to distribute a particular load, and 

(2) balancing load over sets. Wong [9] addresses this problem by adding the additional constraint that each worker 

node receives the same load fraction from each data source. However, any solution provided by these approaches is 

not globally optimal. 

The Genetic Algorithm (GA) has widely been used as a practical and robust optimization and search method in 

various areas [10][11][13]. GA has recently been applied to many scheduling problems [10][11][18] which are, in 

general, NP-complete [17]. Most GA based approaches for scheduling problems have addressed the problem of 

scheduling m pre-decomposed tasks onto n computing nodes. However our approach is different in that we design 

and apply a novel GA-based approach for the decomposition of a job into multiple sub-tasks while simultaneously 

considering communication and computation.  

 

3. Problem Description and Models 

 

We consider a virtual organization (VO) Grid model, as shown in figure 1, that is applicable to numerous 

distributed science applications such as high energy and nuclear physics [20][21][22], climate analysis [23], and bio-

informatics [24], to name a few. A VO consists of n virtual sites. We assume virtual sites are connected to the Grid 

with a relatively low bandwidth network relative to the network within a virtual site. A virtual site may consist of 

multiple physical sites if they are interconnected by a high bandwidth network. Each site consists of computing 
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resources, storage systems, large data collections. A virtual site, e.g., in the MONARC [16] context, can be thought 

of as a “regional center”, a composite object containing a number of data servers and processing nodes where all are 

connected to a LAN. In this paper, we consider scheduling of a single parallel Data Grid application onto a network 

such as in figure 1. Scheduling multiple Data Grid applications competing for shared resources is a subject of future 

work.   

 

 

 

 

 

 

 

Figure1. Virtual Organization Grid model 

 

3.1 Job and Data Model 
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We target data intensive applications that can be decomposed into multiple independent subtasks and executed 

in parallel across multiple sites without any interaction among sub tasks. We consider job decomposition by 

decomposing input data objects into multiple smaller data objects of arbitrary size and processing them on multiple 

virtual sites. For example, in theory, HEP jobs are arbitrarily divisible at event granularity and intermediate data 

product processing granularity [14]. The physical datasets may represent raw data (collected with detectors) or an 

intermediate data product stored at different locations. We assume that a job requires a very large logical input data 

set (D) that consists of m physical datasets and each physical dataset (of size Lk) resides at a data source (DSk, 

k=1..m) of a particular site. The scheduling problem is to decompose D into datasets (Di, i=1..n) across n virtual 

sites in a VO given its initial physical decomposition. We assume that the decomposed data can be analyzed on any 

site by applying the same data parallel operation p. Hence a decomposable job J can be modeled as follows:   
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We assume that the cost of p in processing Di is linear in the size of data object Di and that the size of output 

data generated by p is linear with respect to the size of input data Di. However, both of these assumptions can be 

easily relaxed. Figure 2 shows how the logical input data (D) is decomposed onto networks and computing resources. 

A dataset of size Lk in a data source DSk is decomposed into { : kil ∑= kik lL , where i=1..n } and transferred to 

each worker site. After processing the datasets transferred to site i (Di, where size(Di) = di, , k=1.. m), 

the output is transferred to the destination site and aggregated. The size of output data is a function of the size of the 

data (d

∑= kii ld

i).   
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Figure 2. Data Decomposition and processing 
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In this paper, we do not consider the replication of data and the overlapping of communication and computation 

(we will investigate these in future work). The execution time of an application is the maximum among all the 

execution times of the sub tasks.   

 

3.2 Cost Model 

The execution time of a subtask allocated to the site i (Ti) and the turn around time of a job J (Tturn_around_time) 

can be expressed as follows:  
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The cost (Ti) includes input data transfer (Tinput_cm(i)), computation (Tcp(i)), and output data transfer to the client 

at the destination site d (Toutput_cm(i,d)). 

}1{max)(
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kimkcminput z

liT ⋅=
=

 

iicp diT ω⋅=)(  

idicmoutput zdfdiT ⋅= )(),(_  

where : the network bandwidth between site i and j and ijz

        iω : the computing time to process a unit dataset of size 1MB at site i 

        : output data size : a function of the size of input data     )( idf

 

We assume that data from multiple data sources can be transferred to a site i concurrently in the wide area 

environment and computation starts only after the assigned data set is totally transferred to the site. Hence, the 

problem of scheduling a divisible job onto n sites can be stated as deciding the portion of original workload (D) to 

be allocated to each site, that is, finding a distribution of { }kil which minimizes the turn-around time of a job. The 

proposed GA-based approach uses this cost model when evaluating solutions at each generation.  

 

4. GA-based Job Decomposition and Scheduling 

 

The GA based search methods are rooted from the mechanisms of evolution and natural genetics [13]. They 

search large solution spaces to find near-optimal solutions. A general genetic algorithm consists of several steps. 

The first step of the GA is to generate an initial population. The second step is to evaluate chromosomes with a 

fitness function and rank them by fitness value reflecting how good a chromosome is. After the evaluation of the 

initial population, evolution starts. The first step of evolution is the selection process. In this step, competitive 

chromosomes (the fittest ones) survive and are duplicated with high probability. After a new generation is produced 

by the selection process crossover operation follows. In this step, pairs of chromosomes are randomly selected and 

some of their corresponding genes are exchanged to generate two new chromosomes. In the next step, some of 

chromosomes are transformed into other chromosomes by the mutation process. Finally, chromosomes are evaluated 

and ranked for next round of evolution. These four steps (selection/ crossover/ mutation/ evaluation) are applied 

iteratively until stopping condition is met.  
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4.1 Problem Representation for GA 

4.1.1 Chromosome Representation. To apply the GA approach to an optimization problem, a solution needs to be 

represented as a chromosome encoded as a set of strings. We designed a representation for our problem as follows. 

Given n sites, a job is decomposed into n sub tasks and each task is allocated to one of n sites. The job may require 

multiple input files distributed among m data sources. A chromosome consists of n genes and each gene is 

composed of m sub-genes as shown in Fig. 3. Each gene in a chromosome matches a task allocated to a site. That is, 

a gene gi corresponds to a task ti assigned to site Si for 1 ≤ i ≤ n. Each sub-gene of a gene is associated with a real 

value, fki, in the range 0 to 1, where 1 ≤ k ≤ m and 1 ≤ i ≤ n. This value represents a portion of workload assigned to 

task ti from data source DSk, the Sk containing the required input data. Since fki is a portion of workload Li in DSi, 

, for each k from 1 to m [Gene-Value Constraint]. In order to associate a sub gene with a float value, a 

binary string representation of a float is used [12]. We discuss this in more detail when we discuss the mutation 

operation.  
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Figure 3. Chromosome Representation  
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4.1.2 Fitness Function and Evaluation. Each chromosome is associated with a fitness value evaluated by a fitness 

function (or objective function) and all chromosomes in the population are ranked by these values. The associated 
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fitness value is the time when the last subtask finishes its execution. The cost model discussed in section 3.2 is used 

as a fitness function.  

 

4.1.3 Population Initialization. In this step, a collection of chromosomes is generated as an initial population. We 

developed two methods: Random Initialization (GA_Random) and Initialization based on application hint 

(GA_Hint). GA_Random spawns a pool of chromosomes randomly and selects a predetermined number of 

chromosomes after evaluating chromosomes according to their fitness values.  

The basic idea behind the method GA_Hint is using application specific information (e.g. the ratio of 

computation to communication) to generate a seed chromosome of good quality (high fitness value). Intuitively, 

computation intensive jobs would be better scheduled on sites with powerful computing resources, while 

communication intensive jobs on sites with required input data sets to reduce data transfer time. We calculate 

ccRatiodataccRatiocompcap iii +⋅= for each site, where compi is the normalized computing power of site i, datai 

represents the normalized portion of required input data sets residing in site i and ccRatio is the non-zero ratio of 

computation and communication. The value of each gene is, then, set with ∑
=

n

i
ii cap

1
cap . Now each sub gene of a 

gene has the same value. Since data transfers from other data source sites to a data source site are unnecessary, we 

adjust values of sub genes representing the transfer of input data sets from other data source sites. We use the 

sigmoid function to smoothly and continuously threshold those values: 
)log(1 ccRatioa

current
adjusted e

value
⋅−+

=value . Finally, a 

predefined number of slightly different twin chromosomes are generated mutating the seed chromosome. After 

extensive experiments, we found that a=2 gives the best result. In order to prevent premature convergence, identical 

chromosomes are not allowed as members of the initial population.  

 

4.1.4 Selection Methods. After each generation, a new generation is generated from the previous population. The 

chromosomes in the population are sorted by fitness values. Better solutions have more chance to survive through 

the selection step. Two selection schemes are implemented and tested: rank-based roulette wheel selection scheme 

[13] and proportionate selection scheme. The rank-based roulette wheel selection scheme allocates a sector on a 

roulette wheel to each chromosome. The ratio of angles of two adjacent sectors is a constant. The basic idea of rank-

based roulette wheel selection is to allocate larger sector angle to better chromosomes so that better solutions will be 
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included in the next generation with higher probability. A new chromosome for the next generation is cloned after a 

chromosome as an offspring if a randomly generated number falls in the sector corresponding to the chromosome. 

Alternatively, the proportionate selection scheme generates chromosomes for the next generation only from a 

predefined percentage of the previous population.  

 

4.1.5 Crossover Operation. In this step, pairs of chromosomes are picked at random from the current population 

and a uniform crossover operator is applied only if a randomly generated number is less than a predefined crossover 

rate (rx) (chromosome-level crossover). As shown in figure 4, for each gene in a chromosome, a random number is 

generated and two genes are exchanged only if the number is less than a predefined gene crossover rate (rgx) (gene-

level crossover). After crossover, each chromosome is normalized to meet the Gene-Value Constraint. From 

extensive experiments, we found the proposed GA-based approaches works with rx=rgx=0.6.   

 

 

 

 

 

 

Figure 4. Uniform Crossover 

exchange if (random number < rgx) 

.  .  .  .  .  .  .

.  .  .  .  .  .  .

 

4.1.6 Mutation Operation. After the crossover operation, chromosomes are subjected to a mutation operation. Each 

sub gene contains a binary array string representation of a 32 bit floating point number as shown in Fig. 5 and 

randomly selected bits are flipped from 0 to 1 or vice versa. Since real numbers associated with each sub gene are in 

the range 0 to 1, the mutation operator flips only bits from the mantissa part. We tested two different mutation 

schemes: uniform mutation and two points mutation. For both schemes, two parameters are given: mutation rate (rm) 

and gene mutation rate (rgm). For each chromosome in current population, a random number is generated and the 

mutation operator is applied only if the random number is less than rm. If a chromosome is subjected to the mutation 

operation (chromosome-level mutation), then the two points mutation scheme selects two genes randomly and sub 

genes of one of the two genes are mutated (gene-level mutation). Each bit from the mantissa is flipped only if a 

random number is less than rm. After mutating one of two genes, the sub-gene values of the other gene are revised as 
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shown in figure 5. On the other hand, in the uniform mutation scheme, all genes in a chromosome that is subjected 

to chromosome-level mutation are subjected to gene-level mutation in a manner similar to the two-points mutation 

scheme.  

 

4.2.7 Stopping Condition. We used three criteria as stopping conditions. (1) The evolution stops if the total number 

of iterations reaches a predefined number of iterations, (2) if the fittest chromosome of each generation has not 

changed much, that is, the difference is less than 10-3 over a predefined number, or (3) if all chromosomes have the 

same fitness values, i.e., when the algorithm has converged. 
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5. Experiment Results 

5.1 Algorithms  

To investigate the effectiveness of the proposed GA approach as compared to other constraint based approaches, 

we developed two DLT based algorithms (a baseline algorithm and IDLT) and for comparison, we examined 

another DLT based algorithm (CDLT) discussed in [9] and a simple mapping strategy named TDP (Tasks on Data 

Present). We compared them with two different GA approaches: GA_Random and GA_Hint discussed in section 

4.1.3. Our intuition is that different approaches may be better in different situations.   
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5.1.1 Baseline Algorithm. The basic idea behind the baseline algorithm is to collect all required input datasets to 

one site and then apply DLT to get a distribution of load. In this algorithm, one data source is selected from a set of 

data sources by evaluating and ranking them based on two values: the estimated transfer time of all input data sets 

from other data sources to the data source site (Data Gathering Time: DGTi) and the estimated execution time 

(EETi). Since we assume concurrent data transfer, DGTi is the maximum among all the data transfer times from 

other data sources to the data source i. Since DLT gives the optimal solution for the single data source case, we 

apply DLT to get EETi. Finally, we choose a data source with min }{ iii
EETDGT + and collect all input data sets 

into this site and apply DLT to decide the optimal distribution of loads.   

 

5.1.2 Iterative DLT (IDLT). For the case of a single data source, DLT finds the optimal distribution of the load by 

solving equations systematically. However, for the case of multiple sources, DLT cannot get the optimal distribution 

of load because the system of equations is under-constrained. We developed a near optimal algorithm based on the 

DLT algorithm: Iterative DLT. In this algorithm, DLT is applied to each data source to find the optimal distribution 

of workloads for the workload in the data source. Then it allows one-directional data transfer between two data 

source sites in order to eliminate unnecessary data transfer between data sources.  

 

5.1.3 Constrained DLT (CDLT). For the case of m data sources and n sites, we have n equations with mn 

unknowns (lki’s). In order to solve this under-constrained system, additional constraints need to be added to this 

system. One possible constraint we tested, suggested in [9], is that each worker node receives the same load fraction 

from each data source. With this constraint, the system of equations is solvable for a unique solution.  

 

5.1.4 Task Data Present (TDP). Since applications in a Data Grid usually deal with huge data sets of tera- or peta- 

byte scale, running jobs on sites having required data sets might be a better choice than moving data to sites with 

powerful computing resources. In previous work [2][5], this heuristic was examined with other strategies for non-

divisible applications. We modified this heuristic for our job model. This strategy maps tasks only to the sites where 

required data is present. Each task processes the data sets residing at that site. There is no input data transfer in this 

case.  
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5.2 Experimental Results 

To measure the performance of the proposed GA-based approach against other approaches, randomly generated 

experimental configurations were used. The estimated expected execution time for processing a unit dataset on each 

site, the network bandwidth between sites, input data size, and the ratio of output data size to input data size were 

randomly generated with uniform probability over some predefined ranges. The network bandwidth between sites is 

uniformly distributed between 1Mbyte/sec and 10Mbyte/sec. The location of m data sources (DSk) is randomly 

selected and each physical dataset size (Lk) is randomly selected with a uniform distribution in the range of 1GB to 

1TB. We assume that the computing time spent in a site i to process a unit dataset of size 1MB is uniformly 

distributed in the range 1/rcb to 10/rcb seconds, where rcb is the ratio of computation speed to communication speed.  
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Figure 6. Experiments on 200 randomly generated configurations (a) the expected execution time (b) the 

average relative quality of solutions of GA_Hint compared to other algorithms 
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We examined the overall performance of each algorithm by running them under 200 randomly generated Grid 

configurations. We set the GA related parameters (rx = rgx = 0.6,  rm = 0.5, and rgm = 0.6) with values that we found 

after some preliminary experiments and we varied other parameters: ccRatio (0.001 ~ 1000), oiRatio: the ratio of 

output data size to input data size (0 ~ 1), rcb (10 ~ 500), n (3 ~ 20), m (2 ~ 20). Overall, GA_Hint outperforms other 

algorithms including GA_Random as shown in figure 6 (a) and (b). GA_Hint finds the best solution in general 

(averagely 45% better solutions compared to IDLT algorithm, 140% for CDLT, 160% for TDP, 13% for 

GA_Random, and 800% for Baseline algorithm). However, for some configurations (short jobs, ccRatio=0.001), 

TDP and IDLT occasionally offer slightly better solutions, as marked in circles in figure 6 (a).  

We further examined the impact of various parameters by conducting two different experiments: (1) varying 

GA-related parameters such as mutation rate, crossover rate, generation number, selection schemes, and population 

initialization schemes and (2) varying application specific parameters. 

 

5.2.1 Impact of application related parameters. Figure 7 and 8 show the impact of application specific parameters 

on the performance of the algorithms. As shown in figure 7 (a), for communication intensive applications (small 

ccRatio), TDP, GA-based approaches, and IDLT generate better solutions than other algorithms in general. On the 

other hand, TDP does not perform well for compute intensive applications (large ccRatio) because applications that 

fall into this type should be scheduled on sites with powerful computing resources to reduce data transfer overhead. 

As ccRatio increases, GA based approaches, IDLT, CDLT, and the baseline algorithm show similar performance. 

However, GA_Hint offers more performance gain as ccRatio increases even though the relative solution quality 

decreases as shown in figure 7 (b). It is because the total execution time also increases. In terms of the ratio of 

performance gain, GA-based approaches give the best results around ccRatio=10 by at least 40 % as shown in figure 

7 (c) 
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 Figure 7. Impact of the ratio of computation to communication (a) The expected execution time as ccRatio 
increases (b) The difference in estimated execution time of solutions between GA_Hint and IDLT (c) The ratio 
of performance gain to total execution time 

 

Figure 8 shows the impact of the ratio of output data size to input data size. GA_Hint and TDP perform well for 

communication intensive applications that generate small output data compared to input data size (low oiRatio) 

while GA_Random does not perform well because this algorithm starts with a population of poor quality as shown 

in figure 8 (a). For computation intensive applications, the ratio of output data size to input data size does not affect 

the performance of the algorithms much.  
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5.2.2 Impact of GA related parameters. Figure 9 shows the performance comparison of two GA related schemes: 

selection scheme and population initialization scheme. In terms of selection scheme, proportionate scheme 

outperforms rank-based roulette wheel selection scheme (RW) for non compute intensive jobs while RW works 

better for compute intensive jobs. From the observation that GA_Hint outperformed GA_Random, we found that 

heuristic information about system or applications can be used to enhance the performance of the GA-based 

approach when generating the initial population.  
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Figure 9. Comparison of GA related schemes: selection scheme and Initialization scheme 

 

We examined the impact of the number of iterations on the quality of solutions generated. Figure 10 (a) shows 

GA_Hint starts converging after about 1500 iterations for communication intensive applications. However, 

GA_Random converges relatively slowly.  Shown in figure 10 (b) and (c), both GA_Hint and GA_Random 

converge quickly as ccRatio increases: after about 700 iterations for intermediate type of applications and 300 for 

compute intensive type of applications.  
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(c) ccRatio=1000

Figure 10. Impact of number of iteration (a) communication intensive application (ccRatio=0.001) 

(b) intermediate application (ccRatio=1) (c) compute intensive application (ccRatio=1000) 

 

Finally, we measured the scheduling overhead of the GA-based approach with 1000 iterations to investigate the 

applicability of the approach. We tried different population sizes from 100 to 10000. The population size represents 

the total number of genes in population: (n x m x # of chromosomes in population). Figure 11 shows that the GA 

based approach takes about 3 minutes for 1000 iterations with the configuration of population size 10000. Compared 

to other algorithms (scheduling time: 50 ~ 100 ms), the running time of the GA-based approach will be much longer. 

However the running time of the GA-based approach is negligible (0.002% ~ 0.5% of total execution time) for large 

jobs (104~108 seconds, as shown in Figure 6 (a)) - the most common case in Data Grid applications. On the other 

hand, the GA-based approach might not be a good choice for short jobs (10~1000 seconds). This observation 
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suggests that the proposed GA-based approach can be a competitive choice for scheduling large jobs (requiring at 

least a couple of hours of execution time) common in Data Grid applications such as CMS experiments [14].  
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Figure 11. Running time of GA-based algorithm 

(measured on Pentium 4 2.x GHz dual processors, RAM: 512 MB, OS: Linux) 

 

In summary, we found the following: (1) In general, GA_Hint outperforms other algorithms over a wide set of 

parameters. (2) The proposed GA-based approach will be a competitive choice for scheduling large Data Grid 

applications in terms of both the scheduling overhead and the quality of solutions as compared to other algorithms. 

(3) Since a good initial population can improve the solution quality and convergence rate (reduced scheduling time), 

we may use one of the other less expensive algorithms to generate an initial population.  

 

6. Conclusion and Future work  

 

In this paper, a novel GA-based approach is proposed to address the problem of scheduling a divisible Data 

Grid application while considering communication and computation at the same time in wide area data intensive 

environment. We examined the overall performance of the proposed approach and investigated the impact of various 

parameters such as ccRatio, oiRatio, selection schemes, population initialization schemes, and the number of 

iterations. Results show that the proposed GA-based approach outperformed other algorithms in general. The 

proposed GA-based approach will be a competitive choice for scheduling large Data Grid applications in terms of 

both scheduling overhead and the quality of solutions as compared to other algorithms. The results from experiments 
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on GA-related parameters suggest that the initialization of population with chromosomes of good quality is critical 

to GA-based approach in terms of the quality of solution and the convergence rate.  

Even though we targeted Data Grid applications as an application model, this approach can be applied to other 

applications where computation and communication should be considered simultaneously. As a next step, we will 

extend this work for the case of multiple jobs competing for shared resources.  
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