
A GA-based Approach for Scheduling

Decomposable Data Grid Applications

Seonho Kim and Jon B. Weissman
Dept. of Computer Science and Engineering,

University of Minnesota, Twin Cities

(shkim@cs.umn.edu)

Abstract

Data Grid technology promises geographically distributed scientists to access and share physically distributed

resources such as compute resource, networks, storage, and most importantly data collections for large-scale data

intensive problems. The massive size and distributed nature of these datasets poses challenges to data intensive

applications. Scheduling Data Grid applications must consider communication and computation simultaneously to

achieve high performance. In many Data Grid applications, Data can be decomposed into multiple independent sub

datasets and distributed for parallel execution and analysis. In this paper, we exploit this property and propose a

novel Genetic Algorithm based approach that automatically decomposes data onto communication and computation

resources. The proposed GA-based scheduler takes advantage of the parallelism of decomposable Data Grid

applications to achieve the desired performance level. We evaluate the proposed approach comparing with other

algorithms. Simulation results show that the proposed GA-based approach can be a competitive choice for

scheduling large Data Grid applications in terms of both scheduling overhead and the quality of solutions as

compared to other algorithms

Key words: Grid computing, Data Grid, Job Scheduling, Genetic Algorithm, Parallel Processing

Relevant technical areas: Network-Based/Grid Computing, Algorithms and Applications

1. Introduction

Grid computing has become a promising technology for providing seamless access to heterogeneous resources

and achieving a high performance benefit in wide-area environments [1]. In its early stages, Grid computing

research focused mainly on the coordination of geographically distributed compute resources for high performance.

However, in many areas of science and engineering such as high-energy physics and aerospace, requirements have

 1

emerged for collaborating and sharing huge amounts of widely distributed data as well as sharing high-performance

compute resources. For example, in LHC experiments at CERN, huge amounts of data (tera byte or peta byte in

scale) collected by observing collisions of particles, are analyzed through different levels of data processing

operations [14][15]. Data Grids have been proposed to address this data requirement [20][21][22]. Data Grid

technology enables geographically distributed scientists to access and share physically distributed heterogeneous

resources such as compute resources, network, storage, and widely distributed datasets for large-scale data intensive

problems. Research activities in the Data Grid community have mainly focused on defining core functionalities and

basic infrastructure necessary for handling widely distributed large amounts of data [19].

In a Data Grid, as in a Computational Grid, resources are shared among applications. To achieve high

performance, applications and resources should be scheduled efficiently. While a Computational Grid achieves high

performance mainly by scheduling applications to powerful computing resources, communication and computation

should be considered jointly when scheduling Data Grid jobs because of the potential communication bottleneck

originating from the massive size and the widely distributed nature of datasets. There have been studies on

scheduling computation and communication jointly for Data Grid applications. However, most of them do not

reflect a characteristic typical in many data intensive applications, that data can be decomposed into multiple

independent sub datasets and distributed for parallel execution and analysis. High Energy Physics (HEP)

experiments fall into this category [14]. HEP data are characterized by independent events, and therefore this

characteristic can be exploited when parallelizing the analysis of data across multiple sites. We exploit the

parallelism to achieve desired performance levels when scheduling large Data Grid applications.

When parallel applications require multiple data from multiple data sources, the scheduling problem is

challenging along several dimensions – how should data be decomposed, should data be moved to computation or

vice-versa, and which computing resources should be used. We can solve the problem optimally by adding some

constraints (e.g., decomposing data into sub datasets of the same size). Another approach is to use heuristics such as

those based on optimization techniques e.g. genetic algorithm, simulated annealing, and tabu search.

This paper proposes a novel Genetic Algorithm (GA) based approach to address scheduling of decomposable

Data Grid applications, where communication and computation are considered at the same time. The proposed

algorithm is novel in two ways. First, it automatically balances load, that is, data in our case, onto

communication/computation resources and generates a near optimal schedule. Second, it does not require a job to be

pre-decomposed - most GA based approaches for scheduling problems have addressed the problem of scheduling m

 2

pre-decomposed tasks onto n computing nodes. We examined the relative quality of the solution generated with the

GA-based approach as compared to other algorithms (constraint based approaches). We developed a suite of

algorithms for comparison: two Divisible Load Theory (DLT) based algorithms (baseline algorithm and Iterative

DLT (IDLT)) and Constrained DLT (CDLT) [9], and Tasks on Data Present (TDP) [2][5].

We found that the GA based approach with a good initial population, in general, outperform other algorithms.

However, some approaches (IDLT and TDP) perform competitively under certain Grid configurations (short jobs:

10 ~ 1000 seconds) compared to the GA based algorithms because their scheduling time (50 ~ 100 milli-seconds) is

much less compared to that of GA based approaches (10 ~ 180 seconds). Since the running time of the GA-based

approaches is negligible for large jobs (0.002% ~ 0.5% of total execution time), the proposed GA-based approach

can achieve the desired performance level for large jobs (requiring at least a couple of hours of execution time) -

common in Data Grid applications such as CMS experiments [14].

This paper is organized as follows. Some related works are reviewed in Section 2. In Section 3, problem space

and models are described. Section 4 presents the proposed GA-based approach. Experimental results are discussed

in Section 5. Finally, we conclude and discuss conclusion and future work in Section 6.

2. Related Work

In data intensive environments, the location of input data objects should be taken into consideration when

selecting resources for a job. Intuitively, the scheduler should map a job to the site where the total latency of data

transfer can be minimized. Job scheduling in data intensive environments, has recently been studied [2][3][4][5].

[2][5] examines several scheduling heuristics and several data replication strategies. In ChicSim [2], data movement

and job scheduling are performed separately as decoupled processes. They found that benefits such as good system

utilization and low response time can be achieved when jobs are always scheduled where data is located. In Bricks

[5], they examined combinations of scheduling and file replication algorithms. They investigated several scheduling

mechanisms considering computing resources and location of datasets as well as the impact of data replication. In

[4], Park et al. propose a new scheduling model of executing a job on one site while considering both computation

and communication in a Data Grid environment. They found that replication of data has considerable impact on

enhancing the performance of the scheduler. Orlando et al [3] examined the on-line MCT (Minimum Completion

 3

Time) heuristic strategy for scheduling high performance data mining tasks on top of the Knowledge Grid. The most

important difference between these works and our work is that none of these works considered parallel applications.

Parallelism significantly complicates the scheduling problem because problem partitioning now becomes an integral

part of the scheduling process.

Divisible Load Theory (DLT) has recently emerged as a powerful tool for modeling data-intensive

computational problems and allowing tractable performance analysis of systems incorporating communication and

computations issues [6][7][8][9]. DLT exploits the parallelism of a divisible application, a model of computation

which is continuously divisible into parts of arbitrary size (chunks), by distributing loads in a single source onto

multiple computing resources. However, in the real world, DLT is not applicable directly to the problem of finding a

globally optimal distribution of load for applications requiring multiple datasets from different distributed data

sources because the system of equations is under-constrained. In [8], Ko et al. suggested a two-step approach to

address this problem: (1) finding the optimal number of computing nodes (a set) to distribute a particular load, and

(2) balancing load over sets. Wong [9] addresses this problem by adding the additional constraint that each worker

node receives the same load fraction from each data source. However, any solution provided by these approaches is

not globally optimal.

The Genetic Algorithm (GA) has widely been used as a practical and robust optimization and search method in

various areas [10][11][13]. GA has recently been applied to many scheduling problems [10][11][18] which are, in

general, NP-complete [17]. Most GA based approaches for scheduling problems have addressed the problem of

scheduling m pre-decomposed tasks onto n computing nodes. However our approach is different in that we design

and apply a novel GA-based approach for the decomposition of a job into multiple sub-tasks while simultaneously

considering communication and computation.

3. Problem Description and Models

We consider a virtual organization (VO) Grid model, as shown in figure 1, that is applicable to numerous

distributed science applications such as high energy and nuclear physics [20][21][22], climate analysis [23], and bio-

informatics [24], to name a few. A VO consists of n virtual sites. We assume virtual sites are connected to the Grid

with a relatively low bandwidth network relative to the network within a virtual site. A virtual site may consist of

multiple physical sites if they are interconnected by a high bandwidth network. Each site consists of computing

 4

resources, storage systems, large data collections. A virtual site, e.g., in the MONARC [16] context, can be thought

of as a “regional center”, a composite object containing a number of data servers and processing nodes where all are

connected to a LAN. In this paper, we consider scheduling of a single parallel Data Grid application onto a network

such as in figure 1. Scheduling multiple Data Grid applications competing for shared resources is a subject of future

work.

Figure1. Virtual Organization Grid model

3.1 Job and Data Model

D Data Source

Computing Node

Virtual Site 1

D

D

D

D
D

WAN

Virtual Site 2

Virtual Site n

We target data intensive applications that can be decomposed into multiple independent subtasks and executed

in parallel across multiple sites without any interaction among sub tasks. We consider job decomposition by

decomposing input data objects into multiple smaller data objects of arbitrary size and processing them on multiple

virtual sites. For example, in theory, HEP jobs are arbitrarily divisible at event granularity and intermediate data

product processing granularity [14]. The physical datasets may represent raw data (collected with detectors) or an

intermediate data product stored at different locations. We assume that a job requires a very large logical input data

set (D) that consists of m physical datasets and each physical dataset (of size Lk) resides at a data source (DSk,

k=1..m) of a particular site. The scheduling problem is to decompose D into datasets (Di, i=1..n) across n virtual

sites in a VO given its initial physical decomposition. We assume that the decomposed data can be analyzed on any

site by applying the same data parallel operation p. Hence a decomposable job J can be modeled as follows:

 p(Di) : an operator p is applied to Di at site i

paggr: an operator aggregating output data sets

))(),(),(()(21 naggr DpDpDppDpJ K==

∑
=

=
m

k
kLDsize

1
)(∑

=

=
n

i
iDD

1

 5

We assume that the cost of p in processing Di is linear in the size of data object Di and that the size of output

data generated by p is linear with respect to the size of input data Di. However, both of these assumptions can be

easily relaxed. Figure 2 shows how the logical input data (D) is decomposed onto networks and computing resources.

A dataset of size Lk in a data source DSk is decomposed into { : kil ∑= kik lL , where i=1..n } and transferred to

each worker site. After processing the datasets transferred to site i (Di, where size(Di) = di, , k=1.. m),

the output is transferred to the destination site and aggregated. The size of output data is a function of the size of the

data (d

∑= kii ld

i).

mnl

Input data
transfer Output data

transfer Site 1
Site k

Site n
Site q

il1

mil

11l

nl1

1ml
DS1

.
 Site d

data sources aggregator workers

. . .
Site i

..

DSm

Figure 2. Data Decomposition and processing

L1

Lm

Di

Dn

D1

In this paper, we do not consider the replication of data and the overlapping of communication and computation

(we will investigate these in future work). The execution time of an application is the maximum among all the

execution times of the sub tasks.

3.2 Cost Model

The execution time of a subtask allocated to the site i (Ti) and the turn around time of a job J (Tturn_around_time)

can be expressed as follows:

),()()(__ diTiTiTT cmoutputcpcminputi ++=

initimeturnaround TT
,...,1_ max

=
=

 6

The cost (Ti) includes input data transfer (Tinput_cm(i)), computation (Tcp(i)), and output data transfer to the client

at the destination site d (Toutput_cm(i,d)).

}1{max)(
..1_

ki
kimkcminput z

liT ⋅=
=

iicp diT ω⋅=)(

idicmoutput zdfdiT ⋅=)(),(_

where : the network bandwidth between site i and j and ijz

 iω : the computing time to process a unit dataset of size 1MB at site i

 : output data size : a function of the size of input data)(idf

We assume that data from multiple data sources can be transferred to a site i concurrently in the wide area

environment and computation starts only after the assigned data set is totally transferred to the site. Hence, the

problem of scheduling a divisible job onto n sites can be stated as deciding the portion of original workload (D) to

be allocated to each site, that is, finding a distribution of { }kil which minimizes the turn-around time of a job. The

proposed GA-based approach uses this cost model when evaluating solutions at each generation.

4. GA-based Job Decomposition and Scheduling

The GA based search methods are rooted from the mechanisms of evolution and natural genetics [13]. They

search large solution spaces to find near-optimal solutions. A general genetic algorithm consists of several steps.

The first step of the GA is to generate an initial population. The second step is to evaluate chromosomes with a

fitness function and rank them by fitness value reflecting how good a chromosome is. After the evaluation of the

initial population, evolution starts. The first step of evolution is the selection process. In this step, competitive

chromosomes (the fittest ones) survive and are duplicated with high probability. After a new generation is produced

by the selection process crossover operation follows. In this step, pairs of chromosomes are randomly selected and

some of their corresponding genes are exchanged to generate two new chromosomes. In the next step, some of

chromosomes are transformed into other chromosomes by the mutation process. Finally, chromosomes are evaluated

and ranked for next round of evolution. These four steps (selection/ crossover/ mutation/ evaluation) are applied

iteratively until stopping condition is met.

 7

4.1 Problem Representation for GA

4.1.1 Chromosome Representation. To apply the GA approach to an optimization problem, a solution needs to be

represented as a chromosome encoded as a set of strings. We designed a representation for our problem as follows.

Given n sites, a job is decomposed into n sub tasks and each task is allocated to one of n sites. The job may require

multiple input files distributed among m data sources. A chromosome consists of n genes and each gene is

composed of m sub-genes as shown in Fig. 3. Each gene in a chromosome matches a task allocated to a site. That is,

a gene gi corresponds to a task ti assigned to site Si for 1 ≤ i ≤ n. Each sub-gene of a gene is associated with a real

value, fki, in the range 0 to 1, where 1 ≤ k ≤ m and 1 ≤ i ≤ n. This value represents a portion of workload assigned to

task ti from data source DSk, the Sk containing the required input data. Since fki is a portion of workload Li in DSi,

, for each k from 1 to m [Gene-Value Constraint]. In order to associate a sub gene with a float value, a

binary string representation of a float is used [12]. We discuss this in more detail when we discuss the mutation

operation.

1
1

=∑
=

n

i
kif

Figure 3. Chromosome Representation

.

Data
Sources

Tgene_i= Tinput + Texec + Toutput

Cost model in section 3.2 f21

Chromosome

Task1

S1

Task2

S2

Taskn

Sn

.

f11 Gene

f11+f12+ . . . +f1n = 1 (Gene-Value constraint)

DS1 DS2 DS3

f31

sub genes

4.1.2 Fitness Function and Evaluation. Each chromosome is associated with a fitness value evaluated by a fitness

function (or objective function) and all chromosomes in the population are ranked by these values. The associated

 8

fitness value is the time when the last subtask finishes its execution. The cost model discussed in section 3.2 is used

as a fitness function.

4.1.3 Population Initialization. In this step, a collection of chromosomes is generated as an initial population. We

developed two methods: Random Initialization (GA_Random) and Initialization based on application hint

(GA_Hint). GA_Random spawns a pool of chromosomes randomly and selects a predetermined number of

chromosomes after evaluating chromosomes according to their fitness values.

The basic idea behind the method GA_Hint is using application specific information (e.g. the ratio of

computation to communication) to generate a seed chromosome of good quality (high fitness value). Intuitively,

computation intensive jobs would be better scheduled on sites with powerful computing resources, while

communication intensive jobs on sites with required input data sets to reduce data transfer time. We calculate

ccRatiodataccRatiocompcap iii +⋅= for each site, where compi is the normalized computing power of site i, datai

represents the normalized portion of required input data sets residing in site i and ccRatio is the non-zero ratio of

computation and communication. The value of each gene is, then, set with ∑
=

n

i
ii cap

1
cap . Now each sub gene of a

gene has the same value. Since data transfers from other data source sites to a data source site are unnecessary, we

adjust values of sub genes representing the transfer of input data sets from other data source sites. We use the

sigmoid function to smoothly and continuously threshold those values:
)log(1 ccRatioa

current
adjusted e

value
⋅−+

=value . Finally, a

predefined number of slightly different twin chromosomes are generated mutating the seed chromosome. After

extensive experiments, we found that a=2 gives the best result. In order to prevent premature convergence, identical

chromosomes are not allowed as members of the initial population.

4.1.4 Selection Methods. After each generation, a new generation is generated from the previous population. The

chromosomes in the population are sorted by fitness values. Better solutions have more chance to survive through

the selection step. Two selection schemes are implemented and tested: rank-based roulette wheel selection scheme

[13] and proportionate selection scheme. The rank-based roulette wheel selection scheme allocates a sector on a

roulette wheel to each chromosome. The ratio of angles of two adjacent sectors is a constant. The basic idea of rank-

based roulette wheel selection is to allocate larger sector angle to better chromosomes so that better solutions will be

 9

included in the next generation with higher probability. A new chromosome for the next generation is cloned after a

chromosome as an offspring if a randomly generated number falls in the sector corresponding to the chromosome.

Alternatively, the proportionate selection scheme generates chromosomes for the next generation only from a

predefined percentage of the previous population.

4.1.5 Crossover Operation. In this step, pairs of chromosomes are picked at random from the current population

and a uniform crossover operator is applied only if a randomly generated number is less than a predefined crossover

rate (rx) (chromosome-level crossover). As shown in figure 4, for each gene in a chromosome, a random number is

generated and two genes are exchanged only if the number is less than a predefined gene crossover rate (rgx) (gene-

level crossover). After crossover, each chromosome is normalized to meet the Gene-Value Constraint. From

extensive experiments, we found the proposed GA-based approaches works with rx=rgx=0.6.

Figure 4. Uniform Crossover

exchange if (random number < rgx)

.

.

4.1.6 Mutation Operation. After the crossover operation, chromosomes are subjected to a mutation operation. Each

sub gene contains a binary array string representation of a 32 bit floating point number as shown in Fig. 5 and

randomly selected bits are flipped from 0 to 1 or vice versa. Since real numbers associated with each sub gene are in

the range 0 to 1, the mutation operator flips only bits from the mantissa part. We tested two different mutation

schemes: uniform mutation and two points mutation. For both schemes, two parameters are given: mutation rate (rm)

and gene mutation rate (rgm). For each chromosome in current population, a random number is generated and the

mutation operator is applied only if the random number is less than rm. If a chromosome is subjected to the mutation

operation (chromosome-level mutation), then the two points mutation scheme selects two genes randomly and sub

genes of one of the two genes are mutated (gene-level mutation). Each bit from the mantissa is flipped only if a

random number is less than rm. After mutating one of two genes, the sub-gene values of the other gene are revised as

 10

shown in figure 5. On the other hand, in the uniform mutation scheme, all genes in a chromosome that is subjected

to chromosome-level mutation are subjected to gene-level mutation in a manner similar to the two-points mutation

scheme.

4.2.7 Stopping Condition. We used three criteria as stopping conditions. (1) The evolution stops if the total number

of iterations reaches a predefined number of iterations, (2) if the fittest chromosome of each generation has not

changed much, that is, the difference is less than 10-3 over a predefined number, or (3) if all chromosomes have the

same fitness values, i.e., when the algorithm has converged.

1kf ′ : mutated value

111111)(kk ffff ′−+=′

Figure 5. Two Points Mutation

flip if (random number < rgm)

Sign (1) Exponent (8) Mantissa (23) Mutation by flipping

1 1 0 0 0 0 0 1 1

fk1 f11

0

5. Experiment Results

5.1 Algorithms

To investigate the effectiveness of the proposed GA approach as compared to other constraint based approaches,

we developed two DLT based algorithms (a baseline algorithm and IDLT) and for comparison, we examined

another DLT based algorithm (CDLT) discussed in [9] and a simple mapping strategy named TDP (Tasks on Data

Present). We compared them with two different GA approaches: GA_Random and GA_Hint discussed in section

4.1.3. Our intuition is that different approaches may be better in different situations.

 11

5.1.1 Baseline Algorithm. The basic idea behind the baseline algorithm is to collect all required input datasets to

one site and then apply DLT to get a distribution of load. In this algorithm, one data source is selected from a set of

data sources by evaluating and ranking them based on two values: the estimated transfer time of all input data sets

from other data sources to the data source site (Data Gathering Time: DGTi) and the estimated execution time

(EETi). Since we assume concurrent data transfer, DGTi is the maximum among all the data transfer times from

other data sources to the data source i. Since DLT gives the optimal solution for the single data source case, we

apply DLT to get EETi. Finally, we choose a data source with min }{ iii
EETDGT + and collect all input data sets

into this site and apply DLT to decide the optimal distribution of loads.

5.1.2 Iterative DLT (IDLT). For the case of a single data source, DLT finds the optimal distribution of the load by

solving equations systematically. However, for the case of multiple sources, DLT cannot get the optimal distribution

of load because the system of equations is under-constrained. We developed a near optimal algorithm based on the

DLT algorithm: Iterative DLT. In this algorithm, DLT is applied to each data source to find the optimal distribution

of workloads for the workload in the data source. Then it allows one-directional data transfer between two data

source sites in order to eliminate unnecessary data transfer between data sources.

5.1.3 Constrained DLT (CDLT). For the case of m data sources and n sites, we have n equations with mn

unknowns (lki’s). In order to solve this under-constrained system, additional constraints need to be added to this

system. One possible constraint we tested, suggested in [9], is that each worker node receives the same load fraction

from each data source. With this constraint, the system of equations is solvable for a unique solution.

5.1.4 Task Data Present (TDP). Since applications in a Data Grid usually deal with huge data sets of tera- or peta-

byte scale, running jobs on sites having required data sets might be a better choice than moving data to sites with

powerful computing resources. In previous work [2][5], this heuristic was examined with other strategies for non-

divisible applications. We modified this heuristic for our job model. This strategy maps tasks only to the sites where

required data is present. Each task processes the data sets residing at that site. There is no input data transfer in this

case.

 12

5.2 Experimental Results

To measure the performance of the proposed GA-based approach against other approaches, randomly generated

experimental configurations were used. The estimated expected execution time for processing a unit dataset on each

site, the network bandwidth between sites, input data size, and the ratio of output data size to input data size were

randomly generated with uniform probability over some predefined ranges. The network bandwidth between sites is

uniformly distributed between 1Mbyte/sec and 10Mbyte/sec. The location of m data sources (DSk) is randomly

selected and each physical dataset size (Lk) is randomly selected with a uniform distribution in the range of 1GB to

1TB. We assume that the computing time spent in a site i to process a unit dataset of size 1MB is uniformly

distributed in the range 1/rcb to 10/rcb seconds, where rcb is the ratio of computation speed to communication speed.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

Randomly generated configurations

Ex
pe

ct
ed

 E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

IDLT CDLT
TDP GA_Random
GA_Hint Baseline

0

100

200
300

400

500

600

700
800

900

1000

IDLT CDLT TDP GA_Random Baseline

A
ve

ra
ge

 R
ela

tiv
e S

ol
ut

io
n

Q
ua

lit
y

of
 G

A
_H

in
t

(%
)

Figure 6. Experiments on 200 randomly generated configurations (a) the expected execution time (b) the

average relative quality of solutions of GA_Hint compared to other algorithms

(b)

(a)

 13

We examined the overall performance of each algorithm by running them under 200 randomly generated Grid

configurations. We set the GA related parameters (rx = rgx = 0.6, rm = 0.5, and rgm = 0.6) with values that we found

after some preliminary experiments and we varied other parameters: ccRatio (0.001 ~ 1000), oiRatio: the ratio of

output data size to input data size (0 ~ 1), rcb (10 ~ 500), n (3 ~ 20), m (2 ~ 20). Overall, GA_Hint outperforms other

algorithms including GA_Random as shown in figure 6 (a) and (b). GA_Hint finds the best solution in general

(averagely 45% better solutions compared to IDLT algorithm, 140% for CDLT, 160% for TDP, 13% for

GA_Random, and 800% for Baseline algorithm). However, for some configurations (short jobs, ccRatio=0.001),

TDP and IDLT occasionally offer slightly better solutions, as marked in circles in figure 6 (a).

We further examined the impact of various parameters by conducting two different experiments: (1) varying

GA-related parameters such as mutation rate, crossover rate, generation number, selection schemes, and population

initialization schemes and (2) varying application specific parameters.

5.2.1 Impact of application related parameters. Figure 7 and 8 show the impact of application specific parameters

on the performance of the algorithms. As shown in figure 7 (a), for communication intensive applications (small

ccRatio), TDP, GA-based approaches, and IDLT generate better solutions than other algorithms in general. On the

other hand, TDP does not perform well for compute intensive applications (large ccRatio) because applications that

fall into this type should be scheduled on sites with powerful computing resources to reduce data transfer overhead.

As ccRatio increases, GA based approaches, IDLT, CDLT, and the baseline algorithm show similar performance.

However, GA_Hint offers more performance gain as ccRatio increases even though the relative solution quality

decreases as shown in figure 7 (b). It is because the total execution time also increases. In terms of the ratio of

performance gain, GA-based approaches give the best results around ccRatio=10 by at least 40 % as shown in figure

7 (c)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

ccRatio

Ex
pe

ct
ed

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

IDLT GA_Hint
GA_Random TDP
CDLT Baseline

(a)

 14

1

10

100

1000

10000

100000

0.0001 0.01 1 10 100 10000
ccRatio

D
iff

er
en

ce
 in

 E
st

im
at

ed

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

0

10

20

30

40

50

60

70

0.0001 0.01 1 10 100 10000

ccRatio

R
at

io
 o

f p
er

fo
rm

an
ce

 g
ai

n
(%

)

0.00E+00

5.00E+06

1.00E+07

1.50E+07

ccRatio=1000

IDLT

GA_Hint

GA_Random

TDP

CDLT

Baseline

 Figure 7. Impact of the ratio of computation to communication (a) The expected execution time as ccRatio
increases (b) The difference in estimated execution time of solutions between GA_Hint and IDLT (c) The ratio
of performance gain to total execution time

Figure 8 shows the impact of the ratio of output data size to input data size. GA_Hint and TDP perform well for

communication intensive applications that generate small output data compared to input data size (low oiRatio)

while GA_Random does not perform well because this algorithm starts with a population of poor quality as shown

in figure 8 (a). For computation intensive applications, the ratio of output data size to input data size does not affect

the performance of the algorithms much.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

ccRatio=1000

IDLT
GA_Hint
GA_Random
TDP
CDLT
Baseline

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

ccRatio=1

1.0E+01

1.0E+03

1.0E+05

1.0E+07

ccRatio=0.001

(b) (c)

Figure 8. The impact of output data size to input data size
(a) oiRatio = 0 : No output or small size of output (b) oiRatio > 0.5

(b) oiRatio > 0.5

(a) oiRatio = 0

1.6E+06
5.9E+07

5.9E+07

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

ccRatio=0.001
0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

ccRatio=1

 15

0

500

1000

1500

2000

2500

3000

3500

4000

Communication Intensive

5.2.2 Impact of GA related parameters. Figure 9 shows the performance comparison of two GA related schemes:

selection scheme and population initialization scheme. In terms of selection scheme, proportionate scheme

outperforms rank-based roulette wheel selection scheme (RW) for non compute intensive jobs while RW works

better for compute intensive jobs. From the observation that GA_Hint outperformed GA_Random, we found that

heuristic information about system or applications can be used to enhance the performance of the GA-based

approach when generating the initial population.

0

2000

4000

6000

8000

10000

12000

Intermediate
940000

945000

950000

955000

960000

965000

Compute Intensive

GA_Random_Proportionate
GA_Random_RW
GA_Hint_Proportionate
GA_Hint_RW

11840

Type of Application

Figure 9. Comparison of GA related schemes: selection scheme and Initialization scheme

We examined the impact of the number of iterations on the quality of solutions generated. Figure 10 (a) shows

GA_Hint starts converging after about 1500 iterations for communication intensive applications. However,

GA_Random converges relatively slowly. Shown in figure 10 (b) and (c), both GA_Hint and GA_Random

converge quickly as ccRatio increases: after about 700 iterations for intermediate type of applications and 300 for

compute intensive type of applications.

1.E+00

1.E+03

1.E+06

10 100 500 1000 2000 5000
Number of Iterations

Ex
pe

ct
ed

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

GA_Random GA_Hint
IDLT CDLT
TDP Baseline

7

 (a) ccRatio=0.001

 16

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

10 100 500 1000 2000 5000
Number of Iterations

Ex
pe

ct
ed

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)
GA_Random GA_Hint
IDLT CDLT
TDP Baseline

 (b) ccRatio=1

1.E+05

1.E+06

1.E+07

10 100 500 1000 2000 5000

Number of Iterations

Ex
pe

ct
ed

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

GA_Random GA_Hint
IDLT CDLT
TDP Baseline

(c) ccRatio=1000

Figure 10. Impact of number of iteration (a) communication intensive application (ccRatio=0.001)

(b) intermediate application (ccRatio=1) (c) compute intensive application (ccRatio=1000)

Finally, we measured the scheduling overhead of the GA-based approach with 1000 iterations to investigate the

applicability of the approach. We tried different population sizes from 100 to 10000. The population size represents

the total number of genes in population: (n x m x # of chromosomes in population). Figure 11 shows that the GA

based approach takes about 3 minutes for 1000 iterations with the configuration of population size 10000. Compared

to other algorithms (scheduling time: 50 ~ 100 ms), the running time of the GA-based approach will be much longer.

However the running time of the GA-based approach is negligible (0.002% ~ 0.5% of total execution time) for large

jobs (104~108 seconds, as shown in Figure 6 (a)) - the most common case in Data Grid applications. On the other

hand, the GA-based approach might not be a good choice for short jobs (10~1000 seconds). This observation

 17

suggests that the proposed GA-based approach can be a competitive choice for scheduling large jobs (requiring at

least a couple of hours of execution time) common in Data Grid applications such as CMS experiments [14].

0

60000

120000

180000

100 200 400 800 1600 3200 6400 10000

Population Size

Sc
he

du
lin

g
Ti

m
e

(M
ill

i S
ec

on
ds

)

Figure 11. Running time of GA-based algorithm

(measured on Pentium 4 2.x GHz dual processors, RAM: 512 MB, OS: Linux)

In summary, we found the following: (1) In general, GA_Hint outperforms other algorithms over a wide set of

parameters. (2) The proposed GA-based approach will be a competitive choice for scheduling large Data Grid

applications in terms of both the scheduling overhead and the quality of solutions as compared to other algorithms.

(3) Since a good initial population can improve the solution quality and convergence rate (reduced scheduling time),

we may use one of the other less expensive algorithms to generate an initial population.

6. Conclusion and Future work

In this paper, a novel GA-based approach is proposed to address the problem of scheduling a divisible Data

Grid application while considering communication and computation at the same time in wide area data intensive

environment. We examined the overall performance of the proposed approach and investigated the impact of various

parameters such as ccRatio, oiRatio, selection schemes, population initialization schemes, and the number of

iterations. Results show that the proposed GA-based approach outperformed other algorithms in general. The

proposed GA-based approach will be a competitive choice for scheduling large Data Grid applications in terms of

both scheduling overhead and the quality of solutions as compared to other algorithms. The results from experiments

 18

on GA-related parameters suggest that the initialization of population with chromosomes of good quality is critical

to GA-based approach in terms of the quality of solution and the convergence rate.

Even though we targeted Data Grid applications as an application model, this approach can be applied to other

applications where computation and communication should be considered simultaneously. As a next step, we will

extend this work for the case of multiple jobs competing for shared resources.

Acknowledgements

The authors would like to acknowledge the support of the National Science Foundation under grants NGS-

0305641 and ITR-0325949, the Department of Energy's Office of Science under grant DE-FG02-03ER25554, the

Minnesota Supercomputing Institute and the Digital Technology Center at the University of Minnesota.

References

[1] I. Foster and C. Kesselman, The GRID: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999

[2] K. Ranganathan, I. Foster, “Decoupling Computation and Data Scheduling in Distributed Data-Intensive

Applications”, 11th IEEE International Symposium on High Performance Distributed Computing, 2002

[3] S. Orlando, et al, “Scheduling High Performance Data Mining Tasks on a Data Grid Environment”, Proceedings

of Int. Conf. Euro-Par 2002

[4] S.M. Park, and J.H. Kim, “Chameleon: A Resource Scheduler in A Data Grid Environment”, In Proceedings of

the 3rd IEEE International Symposium on Cluster Computing and the Grid (CC-GRID 2003), 2003

[5] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita, “Performance Analysis of Scheduling and Replication

Algorithms on Grid Datafarm Architecture for High Energy Physics Applications,” Proceedings on the 12 IEEE

international symposium on HPDC, 2003

[6] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory”, IEEE Computer, 63-68, May 2003

[7] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible Loads in Parallel and Distributed

Systems. IEEE Computer Society Press, 1996

[8] K. Ko and T.G. Robertazzi., Scheduling in an Environment of Multiple Job Submissions,” Proceedings of the

2002 Conference on Information Sciences and Systems, Princeton University, Princeton NJ, March 2002

 19

[9] H.M. Wong, D. Yu, V. Bharadwaj, T.G. Robertazzi., “Data Intensive Grid Scheduling: Multiple Sources with

Capacity Constraints”, 2003, Submitted for publication

[10] L. Wang, H.J. Siegel, V.P. Roychowdhury, and A.A. Maciejewski, “Task Matching and Scheduling in

Heterogeneous Computing Environments Using a Genetic Algorithm-Based Approach”, Journal of Parallel and

Distributed Computing47, 8-22, 1997

[11] A. Abraham, R. Buyya, and B. Nath., “Nature’s Heuristics for Scheduling Jobs on Computational Grids”,

Proceedings of 8th IEEE International Conference on Advanced Computing and Communications, 2000

[12] L. Budin, M. Golub, and A. Budin., “Traditional Techniques of Genetic Algorithms Applied to Floating-Point

Chromosome Representations,” Proceddings of the 41st Annual Conference KoREMA, pp.93-96, Opatija, 1996,

[13] M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A Survey,” IEEE Computer 27, 617-26, June 1994

[14] K. Holtman, “CMS Requirements for the Grid”, in Proceedings of the International Conference on Computing

in High Energy and Nuclear Physics (CHEP2001), 2001

[15] K. Holtman, “HEPGRID2001: A Model of a Virtual Data Grid Application”, in Proceedings of HPCN

Europe2001, 2001

[16] “Models of Networked Analysis at Regional Centers for LHC Experiments (MONARC) Phase 2 Report”, 2000

[17] M.R. Garey and D.S. Johnson, “Computers and Intractability, a Guide to the Theory of NP-Completeness”,

W.H. Freeman and Company, New York, 1979

[18] A.Y. Zomaya, F. Ercal, and S. Olariu., “Solutions to Parallel and Distributed Computing Problems”, A Wiely-

Interscience Publication, 2001

[19] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke,., “The Data Grid: Towards an Architecture for

the Distributed Management and Analysis of Large Scientific Datasets”, Journal of Network and Computer

Applications, 2001

[20] Particle Physics Data Grid, http://www.ppdg.net/

[21] Grid Physics Network, http://www.griphyn.org/

[22] EU DataGrid Project, http://www.eu-datagrid.org/

[23] Earth Science System, http://www.npaci.edu/Thrusts/ESS/projects/geography.html

[24] Bioinformatics Infrastructure for Large-Scale Analyses, http://www.npaci.edu/Alpha/bioinfo.html

 20

http://www.ppdg.net/
http://www.griphyn.org/
http://www.eu-datagrid.org/
http://www.npaci.edu/Thrusts/ESS/projects/geography.html
http://www.npaci.edu/Alpha/bioinfo.html

	4.1 Problem Representation for GA
	4.1.1 Chromosome Representation. To apply the GA approach to an optimization problem, a solution needs to be represented as a chromosome encoded as a set of strings. We designed a representation for our problem as follows. Given n sites, a job is decompo
	
	5.1 Algorithms
	
	
	
	5.2 Experimental Results

