A Dynamic Approach for Characterizing Collusion in Desktop Grids

Louis-Claude Canon*§, Emmanuel JeannotT§, Jon Weissman?
*Nancy University, LORIA and LaBRI
Nancy & Bordeaux, France
Email: louis-claude.canon@labri.fr
YINRIA, LORIA, LaBRI
Nancy & Bordeaux, France
Email: emmanuel.jeannot@labri.fr
j;Dept. of Computer Science and Engineering
University of Minnesota, Twin Cities
Minneapolis, USA
Email: jon@cs.umn.edu

Abstract—By exploiting idle time on volunteer ma-
chines, desktop grids provide a way to execute large
sets of tasks with negligible maintenance and low cost.
Although desktop grids are attractive for cost-conscious
projects, relying on external resources may compromise
the correctness of application execution due to the well-
known unreliability of nodes. In this paper, we consider
the most challenging threat model: organized groups of
cheaters that may collude to produce incorrect results.
We propose two on-line algorithms for detecting collusion
and characterizing the participant behaviors. Using several
real-life traces, we show that our approach is accurate and
efficient in identifying collusion and in estimating group
behavior.

Keywords-Desktop Grid; Collusion; Modeling; Sabotage

I. INTRODUCTION

Desktop grids have proven to be a useful platform
for many long-running scientific and engineering appli-
cations [1]-[4]. The attractive features of this paradigm
include nearly infinite scale-out, low cost of deploy-
ment and management, and simplicity. However, these
benefits do not come for free. The wide-dispersion,
autonomous, and uncontrolled nature of the system,
make this platform inherently unpredictable and unsta-
ble. Network links may go up and down, nodes may
leave and join unpredictably including node failure, and
nodes may fail to deliver correct and timely results.
Much research has focused on how to mask this un-
certainty under a set of assumptions, the most common
is that failures are uncorrelated. With this assumption,
tasks may be replicated across nodes to improve their
reliability both in terms of timeliness (job completion
time) and correctness (accuracy). General solutions for
correctness assume a result cannot be certified in iso-
lation and requires indirect validation through the use

8This work was done while L.C. Canon and E. Jeannot moved from
the LORIA lab. (Nancy) to the LaBRI lab. (Bordeaux).

of pre-computed quizzes [5] or voting coupled with
reputation systems [6]. The latter can be effective if the
answer space is extremely large making the probability
that two uncorrelated errors produce the same wrong
result neglibly small. However, Internet-scale systems
are rich with examples of correlated misbehavior and
errors including botnet attacks, viruses, worms, sybil
attacks, and buggy software distributions, to name a
few. We believe that the long-running nature of desktop
grid systems make them particularly vulnerable to such
phenomena.

In this paper, we explore efficient and accurate tech-
niques for representing, detecting, and characterizing
the presence of correlated or collusive behavior in
desktop grid systems. We distinguish between collu-
sive behavior (correlated bad behavior) and agreement
(general agreeement between nodes whether good or
bad). Both concepts are useful for schedulers that wish
to thwart collusion in the system. The principal chal-
lenge is to derive trustworthy global knowledge from
unreliable sources. We present efficient data-structures
and procedures that store and update collusion and
agreement probabilities across arbitrary node groups.
We assume a very aggressive threat model and our
method requires only simple observations of worker
behavior to be effective. We assess the accuracy of our
approach using traces from well-known desktop grid
applications. The results reveal that our approach is both
accurate (the estimated collusion and agreement proba-
bilities are close to the actual values) and efficient (the
time required to compute these values across different
nodes is small). In addition, colluding and non-colluding
groups are accurately identified.

II. RELATED WORK

The goal of reputation systems is to associate repu-
tation indices to each known worker. The literature in



this area is rich and one of the best illustrative examples
is the EigenTrust algorithm [7] which can be applied
in desktop grids. Such methods do not target collusion
detection and hence are not robust to an orchestrated
attack.

Collusion estimation is also closely related to fault
diagnosis [8] whose goal is to find faulty processors
by performing a series of requests between pairs of
processors. This problem is based on the assumption
that processors are not hostile and do not try to deceive
the detection mechanism. In this paper, we propose
mechanisms based on observations that tolerate arbitrary
erroneous behaviors.

Considering collusion with scheduling has been ad-
dressed by several projects. Zhao, Lo, and Gauthier-
Dickey (see [5]) have analyzed two solutions based
on redundancy and spot-checking and provide proba-
bilistic analysis for both approaches. With their spot-
checking mechanism, quiz tasks with verifiable results
are inserted in the workload and allow the detection of
cheaters. Ensuring that quiz tasks are indistinguishable
from regular tasks, however, is a difficult problem.
Similarly, Yurkewych, Levine, and Rosenberg propose a
way to estimate the cost of a redundancy mechanism in
the presence of colluders using game theory (see [9]).
In this work, the goal is to determine the probability
of auditing a task that minimizes the risk of collusion.
These two works are based on the possibility of check-
ing the result of a job. We do not consider this option
as such a check is not always possible. However, such
approaches are complementary to ours.

Silaghi et al. in [10] have proposed a technique that
can thwart collusive behavior. The mechanism is based
on redundancy and a reputation system that uses the
EigenTrust algorithm. Workers detected as colluders
are blacklisted and their previously computed jobs are
resubmitted. However, this work has several drawbacks:
it assumes that the detection algorithm is not known
by the worker and it has to wait until the completion
of all jobs before certifying the result. In contrast
to this work, we propose a public algorithm where
collusion characterization is improved each time a result
is returned.

Therefore, to the best of our knowledge, this work is
the first to tackle the problem of collusion characteriza-
tion in the context of desktop grids using both general
and practical assumptions.

III. MODELS AND DEFINITIONS

A. Platform and Threat Model

We propose the following model of a desktop grid
(see Figure 1), directly inspired from BOINC [1]:
o We are given a batch of jobs to be executed on the
platform.

Server

Batch of tasks

Figure 1: A Desktop Grid.

« We have n workers. Each worker w € W is able to
compute all jobs in the batch. However, as workers
may come and go they are not always available.
This availability is defined by a set of intervals. If
a worker, computing a job, leaves the system, it
resumes job execution when it comes back.

o The server assigns each job to a set of workers and
gathers the job results. For each job, we assume
that there is only one correct result. Moreover, the
result space is sufficiently large such that if two
workers return the same incorrect result this means
that they have colluded.

Collusion is defined as the cooperation of multiple
workers in order to send the same incorrect result. We
distinguish between two types of collusion. The first is
when the saboteurs voluntarily cooperate to send more
than one incorrect result trying to defeat the quorum
algorithm. The other case is where workers do not
deliberately collude as in the case of a virus or a
bug in the code executed by the workers. Moreover
it is possible that a worker (a colluder or not) may
simply fail to correctly execute the job. To model these
possibilities, we consider three worker behaviors:

o a worker may fail independently of others and
return an incorrect result. The failure probability
is fixed.

« a worker may belong to the non-colluding group.
Such a non colluding worker never colludes with
another worker but may fail. We assume that at
least half of the workers are of this class.

« a worker may belong to one or more colluding
groups. In order to reduce the chance of being
detected, members of a group will act sometimes
as colluders (return the same incorrect result) and
sometimes as non-colluding workers (returning the
same correct result). The probability that a group
decides to collude or not is fixed. Moreover, it is
possible that two different groups of colluders col-
lude together, (i.e., two workers from two different



groups may send the same incorrect result with a
given probability). A worker in a colluding group
may also fail independently (failures are predom-
inant over collusion), and it returns an incorrect
result alone.

We want to emphasize that the threat model proposed
here is very strong: a worker may belong to one or more
groups, groups can cooperate, colluders may sometime
send a correct result to stay undetected, colluders are
not required to synchronize to send the same incorrect
result, and none of this information is known a-priori
by the server.

B. Problem Definition

The problem we tackle focuses on characterizing
the collusion properties of the workers, we., for each
worker we estimate the group(s) to which it belongs
and collusion probability of each group and between
groups. We make no assumptions about how jobs are
mapped to workers other than jobs will be replicated.
Although the way jobs are scheduled to workers can
certainly help to detect and characterize the worker
behaviors, here we make almost no assumption on how
jobs are mapped to workers. Indeed, we want to propose
a general strategy to solve our problem that must work
for any (reasonable) scheduling algorithm. The only
explicit assumption we make is that jobs are replicated
for the sake of fault tolerance as in BOINC. Hence,
the input of our problem is composed of two types of
events:

o < t,w,j,r > at time t, worker w returns result r
for job j (job result).

e < t,j > attime t, all the workers assigned to job j

have finished their computation (job completion).

We assume that these events arrive in an order dic-

tated by the worker speed, and thus, are time-stamped.

C. Group Model and Metrics

To account for the property that a worker may belong
to several groups, we transform the input worker groups
to a new set of groups. In the new groups, each worker
belongs exactly to exactly one group and we update the
collusion probability accordingly. For example, if work-
ers wi and wo belong to group g and ¢’ respectively,
we put them in a third group ¢g” where the probability
of collusion between g and ¢” is the internal collusion
probability of g. Hence, in the remainder of this paper,
we presume that all workers are in exactly one group.

To model reality, we will group workers that share a
common behavior. The output of our collusion charac-
terization system will be a set of groups of workers that
have the same collusion characteristics (i.e when a job is
assigned to a subset of workers within this group, they
always send the same results, correct or incorrect). To

measure the accuracy of our solution, we will compare
the estimation with actual collusion probabilities and
group composition.

We denote by G the real group set and G the esti-
mated group set. We assume that both sets are complete
(every worker is in exactly one group). Let O,, € G
be the set of workers in the same group as worker w.
We want the observed groups | J,,cy Ow to agree with
the real group of colluding workers and the observed
probability to be close to the actual value. Combining
both of these qualitative and quantitative measures into
one accuracy metric is a difficult challenge. To do this,
we proceed as follows. Let g € G and ¢’ € G represent
two real groups of workers. Let eguy be the absolute
difference between the estimated probability that all
the workers from set g U ¢’ return the same incorrect
result for the same job, and the actual probability. We
then use the RMSD (Root Mean Square Deviation) for
aggregating the errors performed for each estimation:

1
@l 2 Gy (M
(

9,9')EG?

Smaller RMSD signals a more accurate group-based
estimation. How to compute e, depends on the way
we internally represent G. We propose two representa-
tions of G shortly, and we show how to bound eg 4
in section IV-A4. We consider two different aspects of
accuracy:

« convergence time: time needed in order to achieve
a desirable accuracy (defined by a threshold on the
RMSD)

« stabilized accuracy: the accuracy achieved after a
large number of events (median RMSD during the
last 100 events of the simulation)

IV. CHARACTERIZING COLLUSION

The characterization and representation of collusion
has several elements. We first present a way to model
and calculate interactions between worker groups, col-
luding or non-colluding. The goal is to efficiently
identify and update worker groups. For example, if all
workers within a group return the same result, we will
use only one entry to update the interactions. We then
present the grouping algorithms based on two different
representations, collusion and agreement, that each have
different useful properties for schedulers that wish to
thwart collusion. The dynamic/on-line algorithm we are
proposing provides new estimation each time an event
arrives.

The algorithm groups workers sharing similar char-
acteristics. Events are treated as observations about
the interactions between the groups (non-colluding or
colluding) of workers. Thus, in some cases, as we work



w Set of workers

n Number of workers (n = |W|)

G Real set of worker groups

G Observed set of worker groups

C Real collusion matrix (C' is of size [G])

C Observed collusion matrix (|C| = |G|)

A Observed agreement matrix (|A| = |G|)

Cij Probability of collusion between group ¢ and j

o Probability that workers of group ¢ collude
w when assigned to the same job

o Observed probability of collusion between
K group ¢ and j

s Observed probability of agreement between
K group ¢ and j

o Set of workers that are put in the same group
v as worker w (O € GY)

L Subset of workers (L C W)

e Set of groups covering every workers of L
£ (Kp, :UweL Oy)

B Event that all workers of L have colluded to
L return the same incorrect result for a given job

Set of workers that have returned result r
Wi | for job j

Table I: List of symbols

at the group level we will receive redundant information
from individual workers. In this case the algorithm will
take care to update its internal representation only once.
For instance, if all the workers belonging to the same
group return the same result, we will use only one entry
to update the interaction between this group and the
other groups.

A. Interaction Model

Each interaction between or within groups are repre-
sented by a random variable having a beta distribution.
Using a beta distribution comes from the Bayesian
inference theory in which observations are used to
update or infer the probability of an hypothesis [11].
In our case, it works as follows. A beta distribution
has two parameters o and (3. The average value of that
distribution represents the estimated probability of an
interaction and is equal to #—ﬁ At the beginning of
the process, we set @« = 1 and 5 = 1. When an event
reinforces an interaction, we increment the . parameter
of the corresponding distribution and we increment
the 0 parameter in the opposite case. Moreover, the
confidence interval of a given distribution represents the
confidence that we have in the corresponding estima-
tion. This confidence interval is a function of « and (3
(i.e., the number of observations).

1) Collusion-based Representation: The first repre-
sentation of the interactions is based on estimations
of collusion probabilities between groups. A matrix C
contains the beta distributions corresponding to the col-
lusion probability estimation between observed groups.
The estimated probability that workers of groups ¢ and

j return the same incorrect result for a job is the
mean of this distribution which we denote by ¢;;. This
representation has one drawback. When two workers
return the same result we need another mechanism to
determine if this result is correct or incorrect to decide
if there is collusion or not. Since this mechanism has
to be based on the previous estimates, there is a risk
that the system might amplify estimation errors and fail
to converge. We propose an adaptation technique in
Section IV-B1 that allows us to remedy this problem.

Let L be any subset of workers (L C W) and K, be
the set of groups covering all of the workers of L, i.e.,
K = Uw cr O.,. Let E}, be the event that all workers
of L have colluded to return the same incorrect result
for a given job. The following two lemmas are used to
produce estimations on the collusive behaviors between
any subset of workers L.

Lemma 1.

0<PrlE;] < min (¢
< Prifu < (w‘)eKi( )

Proof: These bounds are trivially obtained from
the definitions: probabilities are positive; the probability
that all workers in L collude cannot exceeds pairwise
collusion probabilities. [ ]

Lemma 2. Let K, = iUj Uk such that (i,j,k) € G>.
Then:

SIS 1
max (07 Gij tc k;— Gk ) < Pr[EL]

PI‘[EL] < min(cij, Cik,s Cjk)

Proof: By definition, groups ¢ and j either collude
together with k, or they collude together without k:

¢;j = Pr[Er] + Pr[E;u; N EL]. Analogously, ¢;;, =
Pr[EL]+Pr[E;uxNEL] and cj; = Pr[EL]+Pr[E;urN
E] AISO, PI‘[Ein QE] + PI‘[Eiuk HE] —|—PI‘[Ejuk N
Er] + Pr[Er] < 1 because the events are disjoint.
Hence:
Cij + Cik + Cjk —
2
The upper bound is obtained by applying Lemma 1 and
by observing that V(i, j), ¢;; < ¢;; (groups never collude
more with others than they do internally). [ ]
The worst case scenario that maximizes the bounds
given in Lemma 2 is achieved when c¢;; = ¢, = ¢ =
+. In this case, the range defined by the bounds is %

3
2) Agreement-based Representation:

L piEy

The second
representation is based on absolute observations, i.e.,
agreements between groups. A matrix A contains the
beta distributions corresponding to agreement proba-
bility estimation between the observed groups. The
probability that workers of group ¢ return the same
result (correct or incorrect) as the workers of group j



is the mean of the corresponding distribution which we
denote by a,;. With this absolute representation, there
is no need for an external mechanism to determine if
the result is correct and hence the system will converge.

The following two lemmas provides bounds for esti-
mating the probability that a set of workers L collude
together to return the same incorrect result, i.e., Pr[Ey].

Recall that the largest group is indexed to be 1 and
is assumed to be the non-colluding group.

Lemma 3. Let K1 = iUj such that (i,7) € G*. Then:

max (0, Qi5 — A1, Q45 — alj) S PI[EL]

14 a5 — ay; — ay;
Pr[F] < min (aij, + aij 2a1 al])

Proof: We separate the sample
space  into  the following disjoint events:
E;NE; neither group ¢ nor j collude

E,NE; group j collude but not group ¢
E,NE; group ¢ collude but not group j
ErNE;N E; group ¢ and j collude but not together
Ep group ¢ and j collude together
By construction, aj; = Pr[E; N E;| + Pr[E; N Ej],
a; = Pr[E; n E;] + Pr[E; N Ej], and

a;; = Pr[E; N E;] + Pr[EL]. Since, all the sample
space is covered by these events, the sum of their
probability is equals to 1. Thus:

PI‘[EL] _ 1+a;; —ay —ayy _ PI"[EL NE; N Ej]
2 2

Pr[Er N E; NE;] < 1—ay; because group 7 colludes
less often than it agrees with the largest group (assumed
to be a non-colluding group). Analogously, Pr[Ez N
E; N E;] <1 —ay; and the lower bound can then be
deduced. The superior bound is derived by noting that
probabilities are positive and the collusion probability
between groups ¢ and j cannot exceed their agreement.
|
The largest range of the bounds given in Lemma 3 is
% when a;; = ay;

_ _ 1
—alj—g.

Lemma 4.

1 i — i — .
0 <Pr[Fr] < min <aij, tay —a alj)
(1.)EK3 2

Proof: 1t is a direct generalization of Lemma 3. W

3) Relation between both Representations: We now

present some mathematical relations between these two
representations.

Theorem 1. Let C' = c¢;; and A = a;; represent
the actual group collusion and agreement matrices
respectively. The largest group is indexed to be 1 and
is assumed to be the non-colluding group. Then, we

can bound A from C and C from A with the following
equations:

aij§1+2><cij—cii—cjj

1+ a;; — a1 —ayy
Cij <
ij X D)

Proof: Groups ¢ and j are agreeing either if they
do not collude or if they collude together. Hence:

a;; = Pr[E;y; UEzTE]]
a;; = Pr[E;y;] + 1 —Pr[E; U Ej]
ai; = ¢ij + 1 — Pr[E;] — Pr[Ej] + Pr[E; N E}j]
aij = ¢ij+1—ci — ¢+ Pr[E ]+ Pr[E, ;N E; N Ej]

As there is the case where groups ¢ and j collude
individually, we end up with the following bound:

aijSQXCZ'j—‘r].—Cii—ij

Bounding matrix C from matrix A is an application of
Lemma 4:

l+aij —an —ay
cij <
i > 9

|

4) Evaluation of the errors in Equation 1: Based
on the above result we can now expand equation (1).
We use the upper bound of the estimated probability
of collusion of workers in g U ¢’ to compute ey .
Hence, we have: e,y = |cg. g — min(i,j)eKjug,(éijN
when using the collusion representation and eguy =
Cg,g/ — min(i,j)eK2 , (dij, m

gUg

‘ when us-
ing the agreement representation.

B. On-line Algorithm

Above, we have described the data structures used in
the algorithm. We now describe how groups are built
and updated. This is done through the merge and split
of worker groups. Initially, each worker is put in a
singleton group. After some interactions, there may be
enough observations to determine a similarity between
two groups, which are then subsequently merged into a
single group. Since the conditions for merging groups
of workers is statistical, erroneous merges can happen.
In this case, a worker should be separated from a set of
workers when it is observed to behave differently. We
call this operation a split. The objective is to create a
correspondence between the observed groups of similar
workers, and the actual non-colluding and colluding
groups. The conditions for merging and splitting are
different in both representations (collusion and agree-
ment). Note that due to merge and split the size of the
agreement and collusion matrices change with time.



Algorithm 1: Dynamic merge and split with collusion representation

foreach event e do

if e=<t,w,j,r > then // Job result
1 foreach v € W, ;,7" #7do // v found a result different than w
2 if |W,n/7j\ # 1 then // The result cannot be a failure because several workers have
computed it
3 if it corresponds to an observation between 2 worker sets that was not already considered for job j then
4 if Oy, = Oy then // v and w computed two different results but are observed to be
in the same group
5 ‘ split w from Oy,
[3 else // v and w are not observed to be in the same group
7 L decrease the collusion probability estimation between O, and O,
8 else // e=<t,7 > Job completion
9 execute external mechanism for certifying the best result among those generated for job j
10 foreach result r computed for job j do
11 if [W;. ;| =1 then
12 ‘ the result might be a failure thus the observation is discarded
13 else
14 foreach (v,w) € Wij do
15 if the interaction between Oy and O, has not already been considered for job j then
16 if r is the certified result then
17 \ Decrease the collusion probability estimation between O, and O,
18 else
19 L Increase the collusion probability estimation between O, and O,
20 if Oy # Oy, and merge is possible then
21 L merge O, and Oy

1) Collusion-based Grouping: The procedure used
with the collusion representation is depicted in Algo-
rithm 1. We call W,. ; the set of workers which have
all computed r for job j. Each event is examined
in chronological order as would be done in an on-
line scheduling framework. The observed groups with
which w disagrees are then considered (line 1). If the
interaction is relevant and new, either a split happens
because each worker in the same group should agree
(line 5) or the collusion estimation is decreased as both
groups disagree (line 7). The second kind of event
denotes the termination of a job which triggers the
certification mechanism (line 9). The proposed algo-
rithm does not depend on any specific certification
mechanism and hence this mechanism is not described
here. However, it is expected that such a mechanism
is sufficiently accurate to give relevant answers and
ensures convergence. Once a result has been certified
and thus considered to be correct, all of the results are
examined (line 10). If only one worker has computed
a particular result, it is possible that the system faces a
failure and hence no update of the collusion probability
is performed (line 12). Otherwise, we consider all pairs
of workers that have returned this result (line 14). If
the interaction between the observed groups O, and
O, has not been accounted for (line 15), we decrease
or increase the estimation of the collusion probability

between these two groups based on whether r is the
certified result or not (lines 16-19). Last, if the two
groups are different but share common characteristics,
we merge them (lines 20-21). In all the cases (line 7,
17, 19), the update of the collusion probability is done
using the method described in Section IV-A.

By assumption, the largest group must be the non-
colluding group (the percentage of colluders is assumed
to always be below 50%) and hence the probability
of collusion within this group must be 0. However,
when a merge or split happens, the largest group may
change and the internal collusion probability may not
necessarily be 0. It is the job of the adaptation process
to update the observed collusion probabilities to make
them coherent. Without loss of generality, let 1 be
the index of the new largest group. The adaptation
process modifies the matrix C in two steps: the collusion
matrix is first converted into an agreement matrix, with-
out changing the composition of the observed group;
bounds are then used to regenerate a collusion matrix
C’. From Theorem 1, we have the following inequality
for each element of the new matrix:

5 . . . .
Cij < Cij —C1i — €15 T cn

As this is the best bound we have, we use it for
computing the adapted matrix.
These arithmetic operations are actually performed



on the beta distributions related to the collusion estima-
tions. Since addition operations over random variables
propagate errors, the resulting distributions have less
precision. Adaptation should thus be avoided if possible.

The merging condition is critical for the success
of the algorithm. The key idea is to favor early but
possibly imprecise merges and late but precise merges.
Two groups need to be merged if they collude together
with the same probability as when they are operating
alone. Let us first describe some notation for specify-
ing the merging condition between observed groups ¢
and j (line 20). Let ¢4, ¢;; and cj; be the collusion
estimates. N(c) is the number of observations that
led to ¢ and e, is its error interval. Let m be the
number of observed groups. Then, 7 and j are merged
if: |C“‘—Cij| < Ceia oy ;enij /\|C“‘—ij‘ < 76‘@“42-6‘@“ /\|Cij -
¢jy] < “at% and if min(N(ci), N(ci), N(ej5)) >

yxmax(|iUj], 2 ) Wh
. ere
(I=leii—cij[)(A=lcii—cj;[)(1=lcij —cjjl)

if the largest observed group will change
~v=<{ " due to this merge
1 otherwise

The first set of conditions check the consistency of
the values. The second condition imposes a minimal
number of observations that depends on four principles.
The ~ value, found empirically, reduces the likelihood
of merges if the largest observed group will change due
to the merge (as it would then induce an adaptation
which introduces uncertainties in the estimations). |iUj|
allows us to increase the precision requirement when
observed groups grow larger. The idea of early and
imprecise merge is meaningless when large observed
groups already exist (this is the meaning of ). Fi-
nally, the denominator takes into account the numerical
similarities between the collusion estimations.

The value of 2.5 for y is empirical. It has to be larger
than 2 but values greater than 3 hinder the convergence
speed. The chosen value has been experimentally tested
and leads to a good compromise between accuracy and
convergence speed.

An additional splitting mechanism takes place when
an update is performed on the collusion probabilities. If
the collusion estimation of the largest observed group
has to be increased, then the worker responsible for the
increase is split from the observed group.

2) Agreement-based Grouping: The agreement rep-
resentation requires a simpler algorithm than the collu-
sion case as shown in Algorithm 2. First, the agreement
and disagreement observations are easy to detect. More-
over, the second kind of event (< ¢, 5 >) is not needed
and there is no need for a result certification mechanism.

Merge and split operations are simpler. Observed
groups ¢ and j are merged only if no disagreement

between the groups have been observed (i.e., a;; = 1)
and if the number of observations is greater than |iU j|.
Splits only happen if two workers from the same
observed group disagree.

V. EMPIRICAL VALIDATION

Both approaches are compared empirically using
large-scale (on the order of 1 million) real-life inputs
(i.e., values of < t,w,j,r > and < t,7 >). Since
no complete trace is available for our study as of this
writing, we aggregate different traces of several desktop
grid projects with a synthetic model of threat in order
to obtain complete traces. Both heuristics are then run
with all of the generated traces.

A. Input Description

The first main source of traces used is the Fail-
ure Trace Archive (FTA [12]) which provides worker
availability traces of parallel and distributed systems.
In particular, we use availability and performance in-
formation from the SETI@home project. Additional
projects we used include: Overnet, a P2P network; and,
Microsoft, an enterprise network. While these traces
allow us to assign jobs to machines, the job durations
need to be defined to time-stamp the inputs. Michela
Taufer et. al. [13] modeled the in-progress delay, i.e.,
the computation time required by jobs in several desktop
grid projects. Additionally, she provided us a workload
trace of the docking@home volunteer project, which we
have used.

Jobs are assigned to workers using a quorum-based
scheduling algorithm such as the one used in BOINC.
Namely, each job is first assigned to k£ workers. When-
ever a quorum of ¢ is achieved for a given job (¢ workers
agreeing on an identical result), no more workers are
assigned to this job. Moreover, a job cannot be assigned
to more than [ workers, though a large [ may be needed
to detect collusion. The performance heterogeneity is
determined by normalizing the job durations for each
worker. For example, we consider that a machine twice
as fast as the mean speed will take half as long for
a given job. Whenever a worker becomes unavailable,
its current computation is postponed until it rejoins the
network. Finally, a timeout is associated to each job (14
days) and to each worker computation (4 days).

We overlay a threat model over the trace which allows
workers to return erroneous results. Any worker returns
a correct result by default, except if it fails or if it
colludes. Failures are modeled as follows: a percentage
of workers are completely reliable; unreliable workers
return a reliable result with the same reliability proba-
bility. Colluding groups are based on the same principle:
several "fractions" of colluders, one for each group, are



Algorithm 2: Dynamic merge and split with agreement representation

foreach event e do
if e=<t,w,j,r > then // Job result

if Oy # Oy and merge is possible then
| merge Oy and Oy

computed it

if O, = Oy then
| split w and v from Oy,
else

if W, j| # 1 then // The result cannot be a failure because several workers have computed it
foreach v € W, j do // v and w found the same result
if it corresponds to an observation between 2 worker sets that was not already considered for job j then
increase the agreement probability estimation between O, and O,

foreach v € W, ;,7" #7do // v and w found a different result
if [W,/ ;| # 1 then // The result cannot be a failure because several workers have

if it corresponds to an observation between 2 worker sets that was not already considered for job j then

| decrease the agreement probability estimation between O, and Oy

specified; for each group, a probability of collusion is
specified.

Table II depicts the empirical settings. For each
parameter, every tested value is used (with all the other
parameters set to their default value) for generating
a trace. For the reliability and the collusion related
parameters, 4 scenarios for reliability and 9 scenarios
for collusion are generated. The additional Pair setting
means that 40% of the workers belong to one of two
colluding groups of equal size. In the first group, the
probability to collude is 0.2 while in the second group
workers always collude. In addition, we have used
5 parts of the huge SETI@home trace at different
time periods to yield separate traces. This leads to 27
scenarios plus the default one. For each scenario, the
seeds used for random generation (workload model and
threat setting) take 20 distinct values. We then generate
560 traces on which both heuristics are run.

B. Results Analysis

For the first plot (Figure 2), we show a typical
run that illustrates the accuracy evolution with time.
After less than 10 hours, the RSMD drops for both
approaches and stabilizes until the end of the trace.
For this trace, the agreement-based algorithm eventually
regroups workers into 3 sets (of sizes 79, 20 and 1)
which matches the actual sets except for the singleton.
Additionally, the RMSD is largely impacted by the
agreement estimation between the two main sets which
is 0.8 when it should be 0.5 (however, there is no error
in the internal agreement probability of 1 in both cases).
The collusion-based algorithm produces the same sets
of size 79 and 1. However, the set of colluders, of size
20, is separated into 3 sets of sizes 10, 7 and 3. It’s
probability of collusion is estimated to be 0.28 when it
is 0.5 in reality, and it is the main source of error that

impacts the RMSD. In both cases, the estimated worker
group structure is accraute as there are no false positives
and negatives (workers wrongly considered as colluders
or wrongly considered as non-colluders).

Although both heuristics have converged in Figure 2,
the collusion is underestimated (and the agreement over-
estimated). This phenomenon is related to the following
conditions that must all hold: a collusion probability
lower than 1, a low quorum value, and a small fraction
of colluders. With these settings, there are many cases
where a worker assigned to a given job produces a
wrong result due to collusion that is not matched by
any of the results produced for this job. This happens
if this worker is the only one of its colluding group
assigned to this job and it is treated as a buggy worker.
In this case, the wrong result is considered as being due
to unreliability and not collusion by our approach (see
line 12 of Algorithm 1). This inability to determine the
cause of an incorrect orphan result implies that even if
our techniques converge, it will produce less accurate
estimations. A simple solution would be to increment
the quorum (to reduce the risk of having orphan results)
or to resubmit the job to a new worker in the same group
of the orphan. However, these workarounds concern the
scheduling level and are thus left to future work.

The next set of figures show results across the differ-
ent traces. Generally, it is expected that our heuristics
converge before the end of the traces (for instance,
3 days for most of the traces). We have empirically
observed that when the RMSD is below 0.2, the struc-
ture of the worker groups is correctly estimated (i.e.,
observed groups are close to the real groups).

Figures 3 to 8 illustrate the convergence time and
stabilized accuracy measures for both heuristics. Each
figure depicts the effect of the variation of one param-
eter, the others being set to their default value. The



Parameter

Default value

Tested values

Worker availability trace Seti@home Overnet, Microsoft, ...
‘Workload model or trace charmm mfold, docking@home
Quorum (k, q, 1) 4, 3, 10) (2,1, 2), (19, 15, 19)
Number of workers (n) 100 30, 50, 70, 80, 200
Reliability (fraction, probability) (0.7, 0.7) {0.7,0.99} x {0.7,0.99} \ (0.7,0.7)
Collusion (fraction, 02, 0.5) {0.02,0.2,0.49} x {0.01,

probability)

0.5,1}\ (0.2,0.5), Pair

Table II: Experimental Paramaters

Error committed at each iteration

0.30
1

o Agreement representation
A Collusion representation

Lt

Collusion RMSD
0.20
1

0.15
1

T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Time (days)

Figure 2: Analysis of a specific run with default settings.

results are graphically represented through the use of
violin plots. These plots are a combination of box plot
and kernel density plot. The box plot is the internal
line and rectangle in the painted area. The rectangle
extends from the median (the white mark) in both
directions to the first and third quartile. The line extends
to 1.5 times the interquartile range beyond each of the
quartiles. Intuitively, most measures are concealed in
the area where the line is drawn and 50% of them are
in the rectangle. The kernel density is an estimation
of the density of measured points. It can be thought
as a smoothed histogram. The larger an area, the more
points are contained within it. Violin plots are useful
when multiple modalities exists, i.e., when measures are
regrouped in multiple locations.

Several traces are used and the efficiency of our
methods is represented in Figure 3. We see that sim-
ulations behave similarly for each SETI@home trace.
Namely, both heuristics converge in less than half a
day in most of the cases. Additionally, the stabilized
accuracy is better with collusion, though with agreement
it is still within a tolerable range. With the microsoft

trace, the convergence time is lower. Indeed, participants
are more active in an entreprise network and thus there
are more interactions. Although the overnet trace reveals
similar stabilized accuracy than with the other traces, the
convergence times are strangely distributed. This has yet
to be investigated.

Several workloads are represented in Figure 4. We
can draw the same conclusions about the stabilized
accuracy, namely, collusion is better than the agreement
representation and results are independant of the work-
load. The convergence times for the docking@home
project are out of range because each job takes much
more longer as compared to the charmm and mfold
workload models. For these two last, however, the
convergence time is very similar.

Time required for convergence

<

0.5

B Agreement convergence time =
@ Collusion convergence time

W Agreement stabilized accuracy
O Collusion stabilized accuracy

0.4

Time (days)
2
I
Collusion RMSD

0.2

0.1

9!

charmm docking mfold

Workload
Figure 4: Workload model or trace

The effect of the quorum is represented in Figure 5.
As expected, a quorum of one does not allow any of our
approaches to converge. Indeed, with such a quorum,
there is no interactions between worker groups (for
building an observation, at least four results distributed
in two sets of equal size are needed). Although the
convergence time is similar with a quorum of 15, the



Time required for convergence

0.5

0.4

0.3

0.2

0.1

< -1 B Agreement convergence time
B Collusion convergence time
B Agreement stabilized accuracy
O Collusion stabilized accuracy
o
2
K
3 o
[
£
E
o
o
T T T T T T T
setil microsoft overnet03 seti2 seti3 seti4 seti5
Avaibility trace
Figure 3: Availability traces
Time required for convergence mgX}mum conv'ergence't time decrea'ses. Indeed, with 1
million events in the input trace, time advances more
< - m Agreement convergence time -2 slowly if there are more workers and it takes a longer
B Collusion convergence time . . . .
B Agreement stabilized accuracy time to get a accurate estimate of this environment.
@ Collusion stabilized accuracy
-3 In Figures 7 and 8, we vary both the fraction of
o
- colluders and their probability to collude. For example,
w a in the first column on Figure 7, the collusion probability
— —_— [ o @ . . . . .
2 2 is 0.01, but the collusion fraction is either 0.02, 0.2,
kS - c . ey .
g © 3 or 0.49. The scenario where the probability is 0.5 and
a -3 3 the fraction is 0.02 appears to be the most difficult.
Neither of our approaches are able to converge and
= . the upper modality in both plots corresponds to this
g & © setting. In every case, specifying a probability of 0.01

ob

T T T
1 3 15

Quorum

Figure 5: Quorum effect

agreement representation becomes extremely precise.
Intuitively, this is due to the increase in observations
that are done.

Figure 6 depicts the efficiency of our methods when
the number of workers in the system increases. Results
are stable until there are more than 100, with a slight
increase in convergence time. With 200 workers, half
of the runs do not converge before the end of the traces
which explains why the precision degrades. Also, the

leads to a good accuracy with fast convergence relative
to the RMSD metric. However, for such small proba-
bility values, the RMSD is perhaps not the best way
to measure accuracy. Indeed, our algorithms converge
to estimations equal to O for which the RMSD (that
computes absolute difference) is very low. Actually this
setting is very hard to detect and the quick convergence
indicates that our techniques do not detect the collusion.
These low values explain the lower modality in Figure 8.
On the other hand, colluding almost surely allows an
easier and more precise detection for both heuristics
than when it occurs with a 0.5 probability. The high
precision indicates that the heuristics performs well
when the probability value to estimate is close to 1.
Another reason for which a probability of 1 is easier to
detect is that it requires statistically fewer observations
to be precisely estimated. It was expected that having a
near majority of colluders (49%) would be harder to

Collusion RMSD



Time required for convergence

Agrdement convergence|tim
Collyision convergence time
Agrgement stabilized ac
Coll

uracy
sion stabilized accurac!

omEm

Time (days)

o0

éo

0.5

0.4

0.3

0.2

&4

o w

30 50

T
70

100 200

Worker quantity

Figure 6: Worker quantity effect

detect than with a significant but limited fraction of
colluders. Although there are indeed some cases with
the 0.49 fraction that do not converge, the difference is
small with the 0.2 fraction. Finally, dealing with a pair
of colluding groups does not present a challenge for our
approach.

Time required for convergence

N 0
B Agreement convergence time o
B Collusion convergence time

< 4

B Agreement stabilized accuracy
@ Collusion stabilized accuracy

% | <

Time (days)
2
!
Collusion RMSD

Wy

T T T T
0.01 0.5 1

A ==

Pair

Collusion probability

Figure 7: Collusion probabilities effect

Lastly, as our systems rely on the use of beta distri-
butions, they are able to give an error interval for each
estimation called the introspection. We assume that such
an interval is an estimation of the error and we measure
the accuracy of the introspection (the error on the error
estimation). All these errors are aggregated with the
RMSD (between the estimated error and the real error)

Time required for convergence

< - H Agreement convergence time r g
B Collusion convergence time

W Agreement stabilized accuracy
@ Collusion stabilized accuracy

[ 2% FS

Time (days)
2
I
Collusion RMSD

o 4 A ﬂ L

T T T T
0.02 0.2 0.49

Pair

Collusion fraction

Figure 8: Colluder’s fraction effect

and their statistical repartition for each run is shown
on Figure 9 as an empirical cumulative distribution
function (ECDF). Each value is the median RMSD over
all iterations for one specific run. All of the values
greater than 0.22 (8% of the measures) correspond to
settings for which our algorithms do not converge. 63%
of the error RMSD are between 0.1 and 0.22. This is
related to the fact that, in most of the settings, the final
collusion RMSD is subject to these bounds.

Finally, better introspection is observed for the col-
lusion representation.



Median RMSD of the estimated error for each run

1.0

0.8

0.6

o Agreement representation
A Collusion representation

ECDF

0.4

0.2

0.0
|
|

T T T T T
0.0 0.1 0.2 0.3 0.4

Introspection accuracy

Figure 9: Empirical cumulative distribution function of
the introspection accuracy for all runs.

VI. CONCLUSION

Coordinated attacks against a desktop grid remain
a major threat to their correct functioning. In this
paper, we proposed two algorithms for detecting and
characterizing collusion in a desktop grid. Despite the
fact that the threat model is very strong (a worker may
belong to one or several groups, groups can cooperate,
colluders may sometime send a correct result to stay
undetected, colluders are not required to synchronize
to send the same incorrect result, and no information
is known a-priori by the server), the input events are
minimal (we only know which workers have returned
a given result for a given job) and that no assumption
is made on the way jobs are scheduled to workers, the
proposed solutions are very effective. Indeed, experi-
mental results show that they are able to accurately and
rapidly characterize collusion, most of the time. Among
the two algorithms, we see that the collusion method is
slightly better than the agreement method especially in
terms of accuracy. However the agreement method is
much simpler to implement and does not rely on any
certification mechanism.

Future works are directed towards non-stationarity
(when worker behavior changes with time). A simple
method would be to reset the probabilities from time
to time. Other techniques for non-stationarity includ-
ing aging of prior observations to enable more rapid
transitions will be studied. We also plan to work on
the design of a scheduling method for a desktop grid
that would defeat collusion. Indeed, we think that our

characterization mechanism is accurate and fast enough
to be used at the scheduling level. Finally, we anticipate
that a scheduling algorithm could improve the collusion
characterization by adapting the replication ratio accord-
ing to its estimated accuracy.

REFERENCES

[1] D. P. Anderson, “Boinc: A system for public-resource
computing and storage,” in GRID. IEEE Computer
Society, 2004, pp. 4-10.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “SETI@home: An Experiment in Public-
Resource Computing,” Communications of the ACM,
vol. 45, no. 11, pp. 56-61, 2002.

[3] “Climateprediction.net,” http://climateprediction.net/.
[4] “Folding@home,” http://folding.stanford.edu/.

[5] S. Zhao, V. M. Lo, and C. Gauthier-Dickey, “Result
verification and trust-based scheduling in peer-to-peer
grids,” in Peer-to-Peer Computing.  IEEE Computer
Society, 2005, pp. 31-38.

[6] J. D. Sonnek, A. Chandra, and J. B. Weissman, “Adap-
tive reputation-based scheduling on unreliable distributed
infrastructures,” [EEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 11, pp. 1551-1564, 2007.

[7]1 S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina,
“The EigenTrust Algorithm for Reputation Management
in P2P Networks,” in WWW °03: Proceedings of the
12th international conference on World Wide Web. New
York, NY, USA: ACM, 2003, pp. 640-651.

[8] E. P. D. Jr. and T. Nanya, “A hierarchical adaptive dis-
tributed system-level diagnosis algorithm,” IEEE Trans-
actions on Computers, vol. 47, no. 1, pp. 34-45, 1998.

[9] M. Yurkewych, B. N. Levine, and A. L. Rosenberg, “On
the cost-ineffectiveness of redundancy in commercial
p2p computing,” in ACM Conference on Computer and
Communications Security. ACM, 2005, pp. 280-288.

[10] G. Silaghi, P. Domingues, F. Araujo, L. M. Silva, and
A. Arenas, “Defeating Colluding Nodes in Desktop
Grid Computing Platforms,” in Parallel and Distributed
Processing (IPDPS), Miami, Florida, USA, Apr. 2008,

pp. 1-8.

[11] A. Jgsang, “The beta reputation system,” in In Proceed-
ings of the 15th Bled Electronic Commerce Conference,
2002.

[12] “Failure trace archive,” http://fta.inria.fr/.

[13] T. Estrada, M. Taufer, and K. Reed, “Modeling job
lifespan delays in volunteer computing projects,” in
CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the
Grid. Washington, DC, USA: IEEE Computer Society,
2009, pp. 331-338.



