
Journal of Parallel and Distributed Computing 62, 1248–1271 (2002)
doi:10.1006/jpdc.2002.1838

Predicting the Cost and Benefit of Adapting Data
Parallel Applications in Clusters

Jon B. Weissman

Department of Computer Science and Engineering, University of Minnesota, Twin Cities,

200 Union Street S.E., Minneapolis, Minnesota 55455

E-mail: jon@cs.umn.edu

Received January 26, 2001; accepted February 20, 2002

This paper examines the problem of adapting data parallel applications in a

shared dynamic environment of PC or workstation clusters. We developed an

analytic framework to compare and contrast a wide range of adaptation

strategies: dynamic load balancing, migration, processor addition and

removal. These strategies have been evaluated with respect to the cost and

benefit they provide for three representative parallel applications: an iterative

jacobi solver for Laplace’s equation, gaussian elimination with partial

pivoting, and a gene sequence comparison application. We found that the

cost and benefit of each method can be predicted with high accuracy (within

10%) for all applications and show that the framework is applicable to a wide

variety of parallel applications. We then show that accurate prediction allows

the most appropriate method to be selected dynamically. Performance

improvement for the three applications ranged from 25% to 45% using our

adaptation library. In addition, we dispel the conventional wisdom that

migration is too expensive, and show that it can be beneficial even for running

parallel applications with non-trivial communication. # 2002 Elsevier Science (USA)

Key Words: cluster computing; distributed computing; parallel proces-

sing.

1. INTRODUCTION

Shared cluster networks of PC workstations offer an attractive platform for

parallel applications due to their cost performance ratio. The cluster environment

can offer both high performance and high throughput if resources are allocated

effectively and managed efficiently. One of the impediments to achieving high

performance in clusters is that resources may not be fully under control of the

individual application. Networks, computers, and disks, are often shared among

competing applications. In this environment, parallel programs may be contending

for resources with other programs and may be subject to resource fluctuation during

execution. If such applications wish to continue to achieve high performance in the

face of resource sharing, they must adapt to changing resource availability. The need

12480743-7315/02 $35.00

2002 Elsevier Science (USA)
All rights reserved.

for adaptivity raises a set of questions: When should the application adapt? How

should the application adapt? What is the cost of adaptation? What is the benefit of

adaptation?

This is a complex set of questions that depends on the structure of the application,

problem parameters such as problem size, the type of resources allocated, and system

parameters such as machine and network performance. This paper examines

adaptivity for high-performance data parallel applications due to CPU sharing in

commodity clusters and workstation networks. We have focused on SPMD data

parallel applications because they represent a large and important class of scientific

applications. We also studied applications with a variety of communicating

structures including peer-to-peer local communication and global master–slave

communication. To simplify presentation of our model, it is assumed that the cluster

resources are homogeneous. While heterogeneous clusters can be handled with a few

simple modifications to our model, they are the subject of future work. Application

adaptivity in response to CPU sharing was achieved by the following techniques:

dynamic load balancing, migration, processor addition, and processor removal.

Prior work established that performance prediction for non-adaptive SPMD

applications can be done accurately [23, 24]. In this paper, we extend our earlier

models to include the cost and benefit of adaptation.

We found that the cost and benefit of each adaptation technique can be

characterized and predicted with high accuracy for all data parallel applications.

This cost is dependent on application parameters such as problem size and system

parameters such as the amount of resource fluctuation and network performance.

The most appropriate adaptive technique is also shown to depend on these

parameters. In addition, several optimized migration schemes were developed and

shown to be competitive with dynamic load balancing. These results provide part of

the answers to the how and cost questions concerning adaptation. The answer to the

question of when to adapt is more complex. An application should adapt when it can

improve its performance in response to a change in resource availability either due to

sharing or to exploit new resource opportunities. An application can utilize our cost

models to determine when to adapt by comparing the predicted benefit to the

predicted cost. The results indicate the answer to when also depends on problem size,

the amount of resource fluctuation, and when the necessary adaptations occur. We

also showed that a run-time system can automatically select among the adaptation

methods using these performance prediction models and achieve greater perfor-

mance on a shared cluster.

2. RELATED WORK

Techniques for adapting data parallel applications in response to dynamic

resource fluctuation have been well studied. Both migration [4, 12, 13, 22, 27] and

dynamic load balancing [1, 5, 9, 12, 14, 15, 18, 26] strategies have been proposed. The

majority of these systems focus on a single technique with particular attention paid

to the implementation mechanism. Several studies have affirmed that there is a

benefit to exploiting shared resources in a network environment and analyzed the

PREDICTING THE COST AND BENEFIT 1249

conditions that make it most beneficial [1]. In our work, we determine when it is

beneficial to use a set of resources and then analyze when adaptation is necessary to

continue to reap benefits. Other work has presented a general framework for

adaptation for several classes of programs, both parallel and non-parallel [12]. For

parallel applications, the focus was on threaded parallel programs in which the grain

of adaptation is a thread. In our work, the grain of adaptation is based on the data

itself. In other work, several adaptive methods (migration and load balancing) for

parallel PVM programs running in a network environment were implemented and

compared [4]. The focus of this system was on the efficient implementation of each

adaptive method as opposed to a cost-driven analysis of when and how to adapt.

Little research exists on quantitative comparison of different adaptation

mechanisms for performance. However, a quantitative model for performance-

based redistribution similar to our work was developed [17]. The results show that

the cost and benefit of dynamic load balancing can be predicted for a single

application. In addition, much of the research in migration is geared to OS

mechanisms [2, 6, 19], reclaiming desktop resources [13, 27], or space-sharing for

parallel jobs [16]. It is generally believed that migration is too expensive for high-

performance applications [7]. However, our results show that this conventional

wisdom may be false as confirmed by others [11]. In general, our work shows that

different adaptation methods are appropriate in different circumstances and

provides an analytic framework for comparison. Further, the framework can be

realized in a practical implementation.

Other related work has focused on performance prediction of parallel applications

in clusters and Grids [3, 8, 20, 21]. In particular, the AppLeS project [3, 8] and

MicroGrid simulation environment [20] have developed application performance

prediction models with similar accuracy to our prior [23] and current work. This

paper extends our prior work to performance prediction relating to the cost and

benefit of adaptation which is different from those other projects. The impact of

contention was investigated in [8] and accurate prediction models were developed.

Our work also considers the impact of CPU contention, but then goes further to

decide how to adapt in response. Adapting master–slave parallel programs in

response to CPU load has been investigated by a number of researchers, including

for the Complib gene sequence comparison application, that we also study here [21].

Our version of Complib used static scheduling initially (as in [21]), but then used

dynamic load balancing instead of self-scheduling to perform the adaptation in

clusters and Grids. If the number of adaptive events is small, then the DLB approach

is superior since it only takes action when the load fluctuates, in contrast, self-

scheduling incurs overhead for each work distribution event.

3. APPLICATION MODEL AND ADAPTIVE METHODS

In the SPMD application model, the data domain is decomposed across a set of

workers that are implemented as address-space disjoint processes that communicate

via message-passing (Fig. 1a–c). Shared-memory is not assumed, but a shared-

memory version of our application and adaptation model can be easily constructed.

JON B. WEISSMAN1250

The applications under consideration are iterative with alternating computations

and communications. This is the most common model that fits many parallel

applications. We have experimented with three data parallel applications each with a

very different communication topology: an iterative jacobi solver for a 2-D Laplace’s

equation decomposed by row (1-D communication), gaussian elimination with

partial pivoting also decomposed by row (master–slave communication), and a

parallel gene sequence comparison application (tree communication), described fully

in Section 4.1. In each case, a main program (not shown) creates a number of parallel

workers across a set of processors within a cluster. The workers each compute on a

portion of the data domain.

To examine the cost and benefit of adaptivity on SPMD data parallel applications

in shared clusters, we implemented a library of adaptive techniques. In parallel, we

also developed an analytic model for characterizing the performance of the adaptive

methods and the applications to be described later. Library calls were inserted to

detect and initiate adaptation actions within the applications (Fig. 1d, lines 4, 4a,

5a). An adaptation event was triggered from an external detector process and sent to

all workers. The library implements the following adaptation techniques: migrate,

migrate-non-block, migrate-stream, migrate-ghost, add-processor, remove-processor,

and dynamic-load-balance. Migration involves remote worker or process creation

followed by the transmission of the old worker’s data to the new worker. Migration

events do not migrate the entire process image since we initiate migration events only

at predictable points in the worker’s execution and transmit the necessary state. This

state includes the portion of the data domain contained within the worker and

iteration indices. Non-blocking migration allows the remote process creation to be

FIG. 1. SPMD model. Three communication topologies are shown (1-D, master–slave, and tree) in

which the data domain is decomposed across four machines or workers (numbered 0 . . . 3) each given a

chunk of the data. The data domain need not be a grid or matrix despite its appearance above. Workers

communicate via message passing. In (d), pseudo-code for the SPMD worker loop including adaptation

detection and action is also shown.

PREDICTING THE COST AND BENEFIT 1251

initiated before the computation step in a non-blocking fashion which

permits the process creation and the computation of a single iteration

to be overlapped. The migrate-stream method takes this a step further by streaming

ahead a portion of the data to the newly created worker thereby providing some

parallelism in the computation step for a particular iteration (Fig. 2). This requires

that the new worker is created first unlike non-blocking migration. We set the

amount of data to stream to be half of the data held by a worker. More optimal

strategies that determine the most appropriate amount to stream are the subject of

future work.

Ghosting allows the re-use of an existing worker on a processor that was

removed or migrated earlier. When ghosting is enabled, migration and

processor removal will allow the process image to persist for the worker but

in a sleep state. This will reduce the overhead of remote process creation

significantly. Adding and removing processors is conceptually simple but

requires data transmission to maintain load balance and patching the commu-

nication topology. Finally, dynamic load balancing collects load indices, determines

a re-distribution of data that rebalances the workers, and initiates the data

transmission. Our dynamic load balancing implementation is based on Quinn’s

model [14].

The adaptation action was initiated by a single processor or worker (4a): for

migration and removal it is the worker being migrated or removed; for an add or

dynamic load balancing action it is worker 0 by convention. Most of the adaptive

techniques are well-known and their implementations straightforward. For all of

these techniques, we must insure that load balance is maintained. If workers are

added, removed, migrated, and explicitly load balanced, data must be moved

between the workers to maintain load balance. The amount of data transmitted is a

large component of the adaptation overhead. For migration, we simply transmit the

entire data domain from the old worker to the new worker. If the new worker

FIG. 2. Streaming. An old worker is migrating its data to a new worker. In the first case, the old worker

updates both halves of its data and then transmits the updated region. In the second case, the old worker

‘‘streams ahead’’ a portion of the data, thus enabling both the old and new workers to update different

parts of the data domain in parallel. The double-arrow indicates the potential performance pickup.

JON B. WEISSMAN1252

machine is more or less powerful than the old worker machine, then a re-balance

may be required. We handled this by detecting the load imbalance as a separate event

and responding to it.

Ghosting and streaming are designed to reduce the overhead of migration.

Ghosting is the re-use of a worker processor that was previously active. A ghost is

created when a current worker is migrated or is simply removed. When the worker is

finished, it releases its memory and goes to sleep consuming little or no resources

(5a), but the process image remains. At a later point in time, this worker may be

selected as the destination of a migrated worker or to add a new worker. While not

all systems will allow ghosts to linger, the use of ghosts can greatly reduce adaptation

overhead since it can prevent expensive dynamic process creation overhead.

Streaming is an optimization that is useful when the amount of computation (5) is

large. In streaming, the migrator first streams ahead a fraction of its data (typically

half) to the new worker before updating the data. At this point, the migrator and

migratee each update half of the data in parallel (for one iteration). When the

migrator is finished, it sends its updated half to the new worker. The advantage of

streaming is that the new worker need not have to wait for the computation of the

data domain within the migrator in one iteration (5).

To evaluate the cost and benefit of these adaptive methods, a performance

prediction framework has been developed for data parallel applications such as in

Fig. 1. This model is applicable to a wide variety of data parallel applications. The

model is based on the following terms (N is the data domain or problem size, data

elements are Esize bytes, P is the # of processors, i is the current iteration, and DM is

the amount of data that must be moved at iteration i to achieve load balance, it will

be defined shortly):

Tcomm ðN ; P ; j; iÞ is the cost of the ith communication step (3) for jth worker,

Tcomp ðN ; P ; j; iÞ the cost of the ith computation step (5) for jth worker,

Texec ðN ; P ; j; iÞ the total cost of the ith iteration for jth worker,

Tpc the cost of creating a remote process or worker,

Tgc the cost of waking up a ghost process or worker,

Tdm ðBÞ the cost of transferring B bytes of data, and

Tnn is the cost of establishing new worker neighbors.

The term Tcomp includes any memory overhead required as part of the

computation. After a response to an adaptive event, load balance will be restored

and Texec will be the same for all workers. For regular applications such as the jacobi

solver, Tcomm and Tcomp are the same for each iteration, but for less regular

applications such as gaussian elimination the amount of computation and

communication are a function of the current iteration. Using these terms, equations

that capture the overhead for each adaptive method are defined (all methods except

dynamic load balancing include Tnn since the communicating neighbors will change

for at least one of the workers):

TmigrateðN ; P ; iÞ ¼ Tpc þ TdmðEsize DMðN ; P ; iÞÞ þ Tnn;

PREDICTING THE COST AND BENEFIT 1253

migrate includes process creation and data movement;

Tmigrate-non-blockðN ; P ; iÞ ¼ maxf0; Tpc � TcompðN ; P ; iÞg þ TdmðEsize DMðN ; P ; iÞÞ þ Tnn;

migrate-non-block overlaps process creation and computation;

Tmigrate-ghostðN ; P ; iÞ ¼ Tgc þ TdmðEsize DMðN ; P ; iÞÞ þ Tnn;

migrate-ghost includes ghost creation and data movement;

Tmigrate-streamðN ; P ; iÞ ¼ Tpc � TcompðN ; P ; iÞ=2 þ TdmðEsize DMðN ; P ; iÞÞ þ Tnn;

migrate-stream includes process creation and data movement; it streams ahead 1
2

of

the data to allow parallel execution in the inner loop;

TaddðN ; P ; iÞmaxfTdmðEsize DMðN ; P ; iÞÞ; Tpcg þ TdmðEsize DMðN ; P þ 1; iÞÞ þ Tnn;

add includes two data movement steps: first, each worker sends a fraction of their

data to worker 0 (in parallel with this step, a process is created for the new worker),

second: worker 0 then distributes the collected data to the new worker;

TremoveðN ; P ; iÞ ¼ 2TdmðEsize DMðN ; P ; iÞÞ þ Tnn;

remove includes two data movement steps: first, the exiting worker’s data is

sent to a worker 0, second: this data is then distributed across each remaining

worker;

TdlbðN ; P ; iÞ ¼ 2TdmðEsize DMðN ; P ; iÞÞ;

the cost of dynamic load balancing is the cost of moving data from overloaded to

underloaded workers and is done in three steps: first, the load indices of each worker

are collected by worker 0 (this cost is negligible and is omitted), second, this

worker computes the re-distribution and collects the data from each overloaded

worker, third, worker 0 transmits data to each underloaded worker to achieve load

balance.

Streaming has the effect of reducing the effective cost of computation by streaming

ahead a portion of the data. This overall cost reduction is captured by the minus term

in the overhead. It is possible that Tmigrate-stream can be negative indicating

a net improvement in performance if Tcomp is sufficiently large. All of these

methods depend on DMðN ; P ; iÞ, the amount of data that must be moved to

achieve load balance. We defined this function in terms of the individual load indices

Lðj; iÞ of the jth worker (processor) at iteration i, and the current amount of data Dðj; iÞ
held by each worker (processor) as follows (a load value of 1.0 is unloaded or idle):

DMðN ; P ; iÞ ¼
XP
j¼1

Dðj; iÞ �
N

Lðj; iÞLnormal

����
����; where Lnormal ¼

XP
j¼1

1

Lðj; iÞ

� �
:

Finally, we determined the benefit to performing an adaptive method A (Texec is the

execution time without performing the adaptation, T *
exec is the execution time if the

JON B. WEISSMAN1254

adaptation is performed, and Tmethod is the cost of method A, e.g., if A ¼ dlb, then

Tmethod ¼ Tdlb):

TbenefitðA;N ; P ; iÞ ¼
X
k>i

TexecðN ; P ; j; kÞ �
X
k>i

T *
execðN ; P ; j; kÞ þ TmethodðN ; P ; iÞ:

This adaptation model is applicable to the two dominant models of shared cluster

computing: (1) space-shared clusters and (2) networks of shared PCs or workstations.

In pure space-sharing, adaptation due to external load is not an issue, but opportunistic

adaptation (adding and possibly removing processors) would be. In a time-shared

cluster or networks of shared PCs or workstations, competing workload will be

submitted by other users or the resource owner. This is captured by our load measure

L, and several of our adaptive methods are useful in this context (migration, DLB, and

possible removal). In both models, we focused on CPU contention and taking adaptive

action is response. Contention for communication and disk resources may also be

present, but our prior work with communication contention [25] for compute-intensive

data parallel applications indicates that the impact of communication contention is

likely to be minimal.

4. RESULTS

Our experimental environment was a shared Unix cluster containing 10

UltraSparc workstations (166 MHz; 64 MB memory) connected by a dual network

of 10 Mbps (non-switched) ethernet and 155 Mbps ATM. Each node was running

Solaris 5.7. We ran experiments both when the cluster was dedicated to us, and when

other users were running. These modes allowed us to experiment with space-shared

clusters and networks of shared PCs or workstations. We implemented our

applications and adaptive library in C with hand-coded TCP-IP communications

to compare the cost/benefit of each adaptive method quantitatively. Workers were

created with the Unix rsh command.

4.1. Applications

We applied the adaptation methods to three distinct parallel applications, an

iterative jacobi solver, gaussian elimination with partial pivoting, and gene sequence

comparison, to test the performance prediction models and to gain insight into the

questions posed in Section 1.0. In all applications, the cost of updating the neighbors

Tnn was a local operation and patching the communication topology was very

inexpensive relative to the other components of the overhead (under 5 ms for both

ATM and ethernet) and was omitted from the cost equations. We first determined

the cluster-specific cost constants by running a few test programs that performed

communication and process creation ðTnn; Tpc; Tgc; TdmÞ. We then ran each applica-

tion on three problem sizes using three processor configurations to determine the

application-specific constants for these cost equations. For Tcomm, latency and per-

byte costs were determined by the communication overhead for transmitting a 1 byte

and M byte message within the application, respectively. This provided sufficient

accuracy. In general, the procedure for a new application consists of first

PREDICTING THE COST AND BENEFIT 1255

determining the Tcomm and Tcomp equations and then running several problem

instances (three or more) to determine the new cost constants.

4.1.1. STEN. STEN is a five-point stencil iterative jacobi solver for solving

Laplace’s equation uxx þ uyy ¼ 0 on the unit square. Using finite-differences, a 2-D

grid is imposed over this domain with the grid points uij related in the following way:

�uiþ1;j � ui�1;j � ui;jþ1 � ui;j�1 þ 4ui;j ¼ 0; i; j ¼ 1; . . . ;N . A grid of size N produces

a linear system that contains N 2 equations corresponding to N2 interior grid points.

The SPMD implementation of STEN divides the N � N grid into a number of

contiguous rows and assigns them to workers as depicted in Fig. 1a. The resulting

communication topology of STEN is a 1-D in which workers transmit border rows

north or south during each iteration. In STEN, the size of each data point Esize is 8

bytes. The number of iterations of STEN is normally unknown since it runs until

convergence. For convenience, we have added an iteration parameter that allows us

to control the experiments. For the stencil application in the UltraSparc cluster, we

determined

Tnn 	 0 ðand is ignoredÞ;

TcommðN ; P ; j; iÞ 	 5 þ 0:00219 � 8N ms ½for ethernet�;

	 3 þ 0:00010 � 8N ms ½for ATM�;

5
3

ms are the latency and 0:00219=0:0001 are the per byte transfer costs, respectively,

for a 1-D communication; 8N is the message size;

TcompðN ; P ; j; iÞ 	 0:000263 � 5NDðj; iÞLðj; iÞ ms;

5 floating point operations per element in the stencil code; the constant 0.000263 is

the cost to perform the update of a single element on an unloaded Sparc;

TexecðN ; P ; j; iÞ ¼ TcommðN ; P ; j; iÞ þ TcompðN ; P ; j; iÞ;

Tpc 	 330 ms;

process creation cost for a worker binary of size � 50 kB;

Tgc 	 10 ms

TdmðMÞ 	 1 þ 0:00103M ms ½for ethernet�;

	 1 þ 0:00009M ms ½for ATM�;

1 ms is the latency and 0:00103=0:00009 are the per byte transfer costs, respectively,

for a point-to-point communication.

Because STEN is regular both in computation and communication, the cost

functions do not depend on i. The units of Dðj; iÞ are the number of rows of the grid.

4.1.2. GE. Gaussian elimination with partial pivoting (GE) is perhaps the

most well-known direct method for solving a linear system of equations of

JON B. WEISSMAN1256

the form, Ax ¼ b, where A is an N � N coefficient matrix, b is a right-hand vector,

and x is the solution vector. GE is a floating-point numeric computation that

contains two phases, forward reduction and back substitution. The

forward-reduction phase reduces the matrix to an upper-triangular form and is

dominant with OðN3Þ complexity, while back substitution solves the upper-triangular

system and has OðN2Þ complexity. The results we present are for the more

dominant forward-reduction phase. In the parallel implementation of GE, the

implementation performs an initial row-cyclic decomposition of the matrix to give

load balance since the amount of computation decreases for rows further down in

the matrix. The tasks are arranged in a master–slave broadcast topology for pivot

exchange (Fig. 1b). In GE, the size of each matrix value Esize is also 8 bytes. The

number of iterations of GE is N . For the GE in the UltraSparc cluster, we

determined

Tnn 	 0 ðand is ignoredÞ;

TcommðN ; P ; j; iÞ 	 1:14 þ 0:00114 � 8 ðN � iÞP ms ½for ethernet�;

	 0:5 þ 0:000137 � 8 ðN � iÞP ms ½for ATM�;

1:14=0:5 ms are the latency and 0:00114=0:000137 are the per byte transfer

costs, respectively, for a broadcast communication; 8ðN � iÞ is the message size at

the ith iteration and P determines the total amount of messages (hence the amount of

data);

TcompðN ; P ; j; iÞ 	 0:000335ðN � iÞDðj; iÞLðj; iÞ ms;

for each row held by a worker, the number of entries modified is ðN � iÞ; the constant

0.000335 is the cost to perform the reduction of a single element on an unloaded

Sparc;

TexecðN ; P ; j; iÞ ¼ TcommðN ; P ; j; iÞ þ TcompðN ; P ; j; iÞ;

6Tpc 	 330 ms;

process creation cost for a worker binary of size � 50 kB;

Tgc 	 10 ms;

TdmðMÞ 	 1 þ 0:00103 �M ms ½for ethernet�;

	 1 þ 0:00009 �M ms ½for ATM�;

1 ms is the latency and 0:00103=0:00009 are the per byte transfer costs, respectively,

for a point-to-point communication.

Unlike STEN, the cost functions do depend on the iteration i. In addition, the

amount of data that is transferred (e.g., M in Tdm) also depends on i. This dependence is

not shown in the generic DM function shown earlier. In the case of GE, DM was

modified to reflect an optimized transfer based on i (i.e., for a data transfer at iteration

i, there is no reason to transmit 0’s in the upper triangle of the matrix for columns 5i).
As with STEN, the units of Dðj; iÞ are number of rows of the matrix.

PREDICTING THE COST AND BENEFIT 1257

4.1.3. CL. Complib (CL) is a biology application that classifies protein sequences

that have been determined by DNA cloning and sequencing techniques. CL compares a

source library of sequences to a target library of sequences. Comparing protein or

DNA sequences is a string matching problem over strings of base pairs (A, C, G, T). In

this paper, a set of DNA sequence libraries initially randomized for load balance have

been used with the Fasta (FA) comparison algorithm [10]. In the parallel

implementation of CL, the target library is decomposed across the workers in a load

balanced fashion. Each worker compares all of the sequences it is assigned to a

sequence in the source library during a single iteration. During each iteration, a new

source sequence is sent to each worker. The number of iterations is known and is equal

to the number of source sequences. The workers are arranged in a tree with the leaves

performing the computation which generates a comparison score for the current source

based on the target sequences (Fig. 1c). The amount of computation to do a

comparison (by a single worker) is linearly dependent on the size of the current source

sequence and the size of its stored target sequences. The data elements of CL are the

target sequences of varying size. N is the total number of target sequence blocks and

Dðj; iÞ is the number of target sequence blocks stored with the jth worker. Each target

sequence block is 5000 bytes and the target sequences are allocated in multiples of this

block size (Dðj; iÞ5000 is the number of target bytes stored with the worker). The source

sequences are also of varying size (given by seqðiÞ for the ith sequence). The amount of

data transferred in a single iteration includes the source sequence sent to each worker

and the results sent back up the tree. For CL in the UltraSparc cluster, we determined

Tnn 	 0 ðand is ignoredÞ;

TcommðN ; P ; j; iÞ 	 1:14P þ 0:00130ðseqðiÞ þ 180Dðj; iÞÞ ms ½for ethernet�;

	 1:0P þ 0:000538P ðseqðiÞ þ 180Dðj; iÞÞ ½for ATM�;

1:14=1:0P ms are the latency and 0:0013=0:000538 are the per byte transfer costs,

respectively, for a tree communication}here the latency depends on P unlike the 1-D

and broadcast of STEN and GE; the message size includes the source sequence sent to

the worker and the comparison score which is 180 bytes for each target sequence stored

with the worker;

TcompðN ; P ; j; iÞ 	 0:00000424Dðj; iÞ5000seqðiÞ Lðj; iÞ ms

cost depends on the number of target sequences stored with worker and the size of the

current source sequence; 5000 is the size of an assigned sequence block, the constant

0.00000424 is the cost to perform an integer comparison between a single

byte of a target and source sequence on an unloaded Sparc;

TexecðN ; P ; j; iÞ ¼ TcommðN ; P ; j; iÞ þ TcompðN ; P ; j; iÞ;

Tpc 	 550 ms;

process creation cost for a worker binary of size � 100 kB;

Tgc 	 10 ms;

JON B. WEISSMAN1258

TdmðMÞ 	 1 þ 0:00103M ms ½for ethernet�;

	 1 þ 0:00009M ms ½for ATM�;

1 ms is the latency and 0:00103=0:00009 are the per byte transfer costs, respectively, for

a point-to-point communication.

Like GE, the amount of computation and communication per iteration is data

dependent in CL and depends on the size of the current source sequence, seqðiÞ, that

is being compared to the target library.

4.2. Experimental Results

For the experiments, we initiated a number of adaptive events at different

iterations within the applications (Table 1). For all experiments, we start with an

initial set of P ¼ 3 processors. The cluster was under our control for these initial

experiments. To simulate resource sharing, we ran a competing sequential program

on one or more nodes. The amount of CPU used by this program was controllable

for our experiments. For each application, we ran four problem sizes on both

ethernet and ATM networks within the cluster (Table 2). The first question we

investigated was how well our analytic model predicted the costs of adaptation. The

first set of data indicates that the framework can accurately model the cost of

adaptation for all of the adaptation methods and all of the applications within 10%,

and often within 5% for both ethernet and ATM configurations (Fig. 3, Tables 3 and

4). In this paper, all data presented are the average of five or more data values (unless

otherwise stated). We show a few representative problem instances for each

application, and cumulative average performance over all application instances and

methods (Tables 3 and 4). In the tables, the percent deviation from the predicted

value is shown. In the graphs, basic is a run with no adaptations and is shown as a

baseline, load is a run with a load spike generated for one of the workers, and non- is

non-blocking migration. Load simulated the introduction of a competing sequential

program on one of the nodes. The results substantiate our claim that the cost of

adaptation can be accurately predicted. Also, observe that the migration

optimizations of ghosting, streaming, and non-blocking can further reduce the

adaptation overhead relative to blocking migration. This was observed for all

problem instances. The ghosting data contains an initial blocking migration (to

create a ghost), so its actual cost is the plotted cost minus the cost of a blocking

migration. Overall, overhead estimation achieved similar accuracy on ethernet

(3.8%) and ATM (5.2%). For the methods, accuracy was also high ð510%Þ
although there was more variance observed on ethernet as compared to ATM.

Similarly, the applications had comparable accuracy: STEN (4.4%), GE (5.2%), and

CL (4.2%).

The second question is how well the analytic model predicted the benefit of

adaptation. The next set of data indicates that the benefit of adaptation can also be

predicted with the same high accuracy as above (Fig. 4, Tables 5 and 6). Again, we

present results for representative problem instances and cumulative average

performance (Tables 5 and 6). We show the total elapsed time which includes the

PREDICTING THE COST AND BENEFIT 1259

execution time, adaptation benefit, and adaptation cost all together. Overall,

prediction accuracy is similar for ethernet (2.1%) and ATM (1.7%). Similarly, the

applications had comparable accuracy: STEN (1.6%), GE (2.3%), and CL (1.8%).

The results for adding processors is particularly important because it represents the

benefit/cost of performing opportunistic adaptation. It helps answer the following

questions. If resources become available during the course of execution, is there a

benefit to dynamically adding them to the running application? At what point does

TABLE 1

Adaptation Parameters

Adaptive event Iteration Comments

Leave-1 20 Worker #1 leaves at this iter

Leave-2 20, 100 Workers #1 and #2 leave at

these iters, respectively

Migrate 10 Migrate to an unloaded processor

Migrate-stream 10 Migrate-stream to an unloaded processor

Migrate-ghost 100 Ghost was done following migrate

event (which was needed to create

the ghost) at iter 10

Migrate-

non-block

10 Migrate-non-block to an unloaded processor

Load 10 (1 worker is given L½j� ¼ 2:0; double the load)

dlb 100 dlb was done following load event

at iter 10 (1 worker is given L½j� ¼ 2:0;

double the load)

Add-1 10 (GE),

20 (STEN), 20 (CL)

1 idle processor is added at these iters,

respectively, for each appln

Add-2 100 (GE), 50 (STEN),

30 (CL)

2 idle processors . . .

Add-3 220 (GE), 85 (STEN),

50 (CL)

3 idle processors . . .

Add-4 330 (GE), 140 (STEN),

60 (CL)

4 idle processors . . .

Add-5 380 (GE), 220 (STEN),

70 (CL)

5 idle processors . . .

TABLE 2

Application Instances

Application

STEN N ¼ 400; 600; 800; 1000 ðN � N gridÞ
GE N ¼ 400; 600; 800; 1000 ðN � N matrixÞ
CL ðT ¼ 50; S ¼ 100Þ; ðT ¼ 100; S ¼ 100Þ; ðT ¼ 200; S ¼ 100Þ; ðT ¼ 200; S ¼ 200Þ

T is the number of target sequence blocks and S is the number

of source sequences (S also determines the number of iterations)

JON B. WEISSMAN1260

FIG. 3. Predicting adaptation overhead for STEN, GE, and CL on ethernet and ATM.

TABLE 3

Result Summary: Overhead Accuracy (Ethernet)

Adaptive method STEN GE CL Overall

Add 0.069 0.047 0.034 0.050

Leave 0.051 0.043 0.017 0.037

Migrate 0.008 0.009 0.010 0.009

Migrate-stream 0.019 0.025 0.059 0.034

Migrate-ghost 0.015 0.031 0.015 0.020

Migrate-non-block 0.037 0.046 0.073 0.052

dlb 0.034 0.055 0.089 0.059

Overall 0.042 0.039 0.032 0.038

PREDICTING THE COST AND BENEFIT 1261

TABLE 4

Result Summary: Overhead Accuracy (ATM)

Adaptive method STEN GE CL Overall

Add 0.049 0.040 0.039 0.043

Leave 0.056 0.089 0.028 0.057

Migrate 0.050 0.072 0.047 0.056

Migrate-stream 0.045 0.066 0.089 0.067

Migrate-ghost 0.023 0.046 0.043 0.037

Migrate-non-block 0.033 0.068 0.059 0.053

dlb 0.017 0.078 0.063 0.053

Overall 0.046 0.066 0.053 0.052

FIG. 4. Predicting total execution time for STEN, GE, and CL on ethernet and ATM. This includes the

prediction of adaptation cost and benefit.

JON B. WEISSMAN1262

the overhead of adding resources begin to diminish the overall performance of the

application? We will return to this question shortly.

The third question of interest is the sensitivity of the adaptation method to

different load conditions: which adaptation method is best? We simulated load by

the arrival of a competing sequential application whose CPU utilization (i.e., load)

we controlled (0:1 ¼ 10%; 0:2 ¼ 20%; 1:0 ¼ 100% of its running time). For this

study, the competing application arrived approximately at the midpoint iteration of

each application and the adaptation response was initiated 10 iterations later. The

results indicate that migration was very competitive with dynamic load balancing

and in fact preferable, particularly as the load imbalance increases. We show results

for a single problem size for each application, STEN and GE ðN ¼ 800Þ, and CL

ðtarget ¼ 100 sequence blocks and source library ¼ 100 sequences) (FIG. 5). As a

baseline, we also show the results of having no load induced (basic) and not adapting

even if load is initiated (load-no-dlb). At high loads, the comparative performance of

migration and dynamic load balancing is not surprising as the increased load serves

to decrease the overall compute power of the cluster, but at low loads it was more

TABLE 5

Result Summary: Elapsed Time Accuracy (Ethernet)

Adaptive method STEN GE CL Overall

Add 0.021 0.040 0.024 0.028

Leave 0.031 0.024 0.010 0.022

Migrate 0.009 0.031 0.016 0.019

Migrate-stream 0.008 0.009 0.018 0.012

Migrate-ghost 0.008 0.018 0.018 0.015

Migrate-non-block 0.011 0.016 0.005 0.011

Load 0.026 0.070 0.027 0.041

dlb 0.004 0.043 0.009 0.019

Overall 0.014 0.032 0.018 0.021

TABLE 6

Result Summary: Elapsed Time Accuracy (ATM)

Adaptive method STEN GE CL Overall

Add 0.026 0.014 0.022 0.021

Leave 0.013 0.011 0.013 0.012

Migrate 0.004 0.013 0.017 0.011

Migrate-stream 0.016 0.019 0.017 0.017

Migrate-ghost 0.014 0.010 0.017 0.010

Migrate-non-block 0.004 0.015 0.021 0.013

Load 0.038 0.037 0.028 0.034

dlb 0.009 0.014 0.011 0.011

Overall 0.018 0.014 0.019 0.017

PREDICTING THE COST AND BENEFIT 1263

surprising to see the penalty for dynamic load balancing to be so easily amortized. In

addition, under very light load, the best action may be to take no adaptive action at

all. The results also indicate that while migration appears to always be beneficial

relative to removing a processor, this distinction begins to narrow significantly under

high load. Under high loads if a free processor does not exist, the results suggest that

it may be preferable to simply vacate the processor. These trends were observed for

all problem sizes that we ran on both ATM and ethernet.

These results, however, depend on when the load and adaptation events are

initiated (in this case in the middle of each execution). The fourth question is the

FIG. 5. Comparative performance sensitivity to amount of load imbalance.

JON B. WEISSMAN1264

sensitivity of the overall performance of the adaptation method to when these events

occur. For this study, we held the amount of load imbalance constant (0.5% or 50%

performance degradation on one node), but varied when the load was spiked (i.e.,

when the competing application was run). The adaptation response was initiated 10

iterations following the detection of load increase. The results show that the

comparative performance depends on when the load spike occurs (Fig. 6). The

results are shown for an instance of each application, but the same pattern was

observed for other problem sizes on ATM and ethernet. As the load spike occurs

later, migration becomes an increasingly expensive option relative to dynamic load

balancing or to simply taking no adaptive action at all. These results confirm our

intuition that the best response to a load event depends on the degree of load

imbalance and when it is detected.

Since migration was established to be a competitive adaptation method, the next

question we investigated was the comparative performance (overhead) of the

different migration methods and their sensitivity to problem size (Fig. 7). The results

show that the optimized migration strategies provided improvement over standard

migration with respect to overhead. In addition, the best method depends on the

problem size. In almost all cases, ghost-based migration was the obvious choice but

this depends on the existence of a ghost worker from a prior migration or processor

FIG. 6. Comparative performance sensitivity to adaptation method temporal placement.

PREDICTING THE COST AND BENEFIT 1265

removal (leave) event. However, not all systems will allow ghosts to linger.

Following ghost, non-blocking migration was the second best as it can hide the

process creation overhead when Tpc5Tcomp. For larger problems when Tcomp > Tpc,

streaming becomes the best because it reduces the overhead by an amount

proportional to Tcomp. As Tcomp grows, the benefit of streaming may actually lead

to a reduction in overall execution time! This is seen for CL the most

computationally intensive of the applications. For large target sizes, Tcomp was so

large that streaming can actually reduce the total elapsed time due to the parallelism

provided by streaming. In this case, the effective overhead of streaming is actually

FIG. 7. Adaptation overhead sensitivity to application problem size.

JON B. WEISSMAN1266

negative in value. A negative value is certainly possible given our formulation of

Tmigrate-stream. For large values of Tcomp, the performance of ghost migration and non-

blocking was nearly identical. This is not surprising as once Tpc is fully overlapped

then this is equivalent to a zero cost process creation. For CL, given a target size

4200, non-blocking migration is best (assuming no ghost workers); above this,

streaming is best. For very large problems, streaming even outperformed the use of

ghost workers. However, it is likely that performance can be further improved by

combining ghosts with streaming.

Our prior results have established that high prediction accuracy for adaptation cost

and benefit is feasible, but that method performance was sensitive to the degree of

load imbalance, temporal occurrence of adaptive events, and problem size. The next

logical step is to show how an adaptive run-time system could utilize these models to

improve application performance by intelligent method selection. Such a run-time

system could use these cost models to determine if an adaptive response is in the best

interest of the application, and which method is most appropriate. We have

implemented such a scheme within a run-time system used by the STEN and CL

applications and examined automated adaptive method selection in response to two

events: (1) discovery of a new processor and (2) the presence of external CPU load.

The discovery of a new processor can be exploited by opportunistic adaptation.

The earlier results indicated that the benefit of adding workers depends on the

problem size, when the adaptations occur, and the number of iterations. In many

data parallel applications, the current iteration relative to the total number of

iterations will be known or can be estimated as was the case with GE, STEN, and

CL. However, there is always a point of diminishing returns both due to the

overhead of adding processors and the ability of the application to exploit additional

parallelism. As the problem size increases, the benefit of additional processors

increases because these problems typically run longer, can better amortize the

adaptation overhead, and contain more parallelism. We ran several problem

instances and announced the availability of free nodes periodically during the

application execution. Our library added free nodes when their benefit was predicted

to exceed their cost (via the cost functions). We repeated the experiments (by

announcing free nodes at the same point in time), and had the system choose 1; 2;
. . . ; 7 additional nodes (Fig. 8). Our scheme always chose the appropriate number of

nodes, and also outperformed greedy adaptation which would always grab a free

processor (i.e., 7). We observed that our adaptive library avoided new nodes when

the benefit was too little given the cost, or when the new node appeared late in the

execution (i.e., the current iteration was near the final iteration).

In the next set of experiments, we examined the impact of adaptation due to load

events. In these experiments, the runs were performed over the course of a week in

which other users were on the cluster. Load detectors were installed on each node

and when a load event was detected, the adaptive library either migrated (by

selecting any of the different migration versions), performed a DLB, or took no

action based on the predicted cost/benefit. We compared this automated selection

strategy against one that always performed a migration, always performed a DLB,

or always took no action, when the load event was detected. We ran experiments

using each adaptive strategy one after the other and then repeatedly to ensure that

PREDICTING THE COST AND BENEFIT 1267

each technique was run in similar load conditions. The results indicated that

automated selection outperformed any single adaptive technique (Fig. 8, Table 7). In

our traces, we observed that automated selection was able to take no action for low-

load events or for events that occurred near the end of the application as opposed to

migrate- or DLB-only which always took action in response to a load event. In

addition, for very high loads, our selection strategy migrated when DLB-only did

not, and for moderate loads it performed a DLB when migration-only did not. Thus,

it exploited the advantages of each approach. For the larger problem instances,

automated selection also correctly determined that streaming would be the best

migration strategy in terms of overhead (as predicted from Fig. 7).

The results establish the feasibility of predicting the cost/benefit of adaptation and

exploiting it for improved application performance in small-to-medium size clusters

and shared workstation networks. We believe that the majority of our results will be

valid in larger clusters (e.g., prediction accuracy should not depend on cluster size).

In clusters of small-to-medium size, adaptation based on the use of a single worker

for data collection and transmission is feasible. However, for larger cluster systems

more distributed data collection and transmission schemes are needed within the

adaptive methods.

5. SUMMARY

Exploiting the full power of shared commodity clusters and workstation networks

for executing parallel applications requires the ability to adapt to changing resource

FIG. 8. Adaptive method selection for opportunistic adaptation. The number of processors marked * is

the point picked by automated selection.

JON B. WEISSMAN1268

availability. We examined adaptivity to the most common form of resource

fluctuation, CPU sharing, for three representative SPMD applications. We

investigated answers to the following four questions: When should the application

adapt? How should the application adapt? What is the cost of adaptation? What is

the benefit of adaptation? To answer these questions, we developed a series of

quantitative performance prediction models that were general enough to accurately

characterize the behavior of three distinct parallel applications on two different

network types (ATM and ethernet).

Collectively, the results indicate that the cost and benefit of adaptation can be

characterized with high accuracy and that different methods perform best under

different situations. We found that surprisingly, migration was very competitive with

dynamic load balancing. In addition, we showed that cost functions can be used to

predict the best adaptation method as a function of problem size, amount of load

imbalance, and temporal placement of adaptation events. We then implemented a

run-time system that made adaptive method selections automatically based on these

models. We showed that superior performance can be achieved as compared to more

monolithic adaptation strategies that are commonly implemented. Experience with

three applications that differ in structure, communication topology, and degree of

regularity suggests to us that these results are likely to be applicable to a wide variety

of SPMD data parallel applications. Future work includes extending our models to

heterogeneous clusters and larger cluster systems. We also plan to apply the

performance models to the problem of parallel job scheduling in which jobs can

dynamically shrink and grow. In this context, predicting the cost/benefit of adding

and removing processors will be a very useful input to a space-sharing parallel job

scheduler.

ACKNOWLEDGMENT

This work was sponsored in part by the Army High Performance Computing Research Center

(AHPCRC) under the auspices of the Department of the Army, Army Research Laboratory cooperative

agreement DAAD19-01-2-0014.

TABLE 7

Prediction-Based Adaptation

Adaptive method STEN STEN CL CL

ðN ¼ 200Þ ðN ¼ 2000Þ ðT ¼ 100; S ¼ 400Þ ðT ¼ 300; S ¼ 400Þ

Prediction-based 14 137 1 019 537 238 972 740 201

Migrate-only 16 776 1 072 418 246 037 755 459

DLB-only 15 075 1 111 583 277 375 748 426

No action 19 246 1 631 781 424 863 1 182 726

PREDICTING THE COST AND BENEFIT 1269

REFERENCES

1. A. Acharya, G. Edjlali, and J. Saltz, The utility of exploiting idle workstations for parallel

computation, in ‘‘Proceedings of the 1997 ACM SIGMETRICS International Conference on

Measurement and Modelling of Computer Systems,’’ Seattle, WA, 1997.

2. Y. Artsy and R. Finkel, Designing a process migration facility: The Charlotte experience, IEEE

Comput. 4(1), (September 1989), 22–28.

3. F. Berman et al., Application-level scheduling on distributed heterogenous networks, in ‘‘Proceedings

of Supercomputing ’96,’’ Pittsburgh, PA, November 1996.

4. J. Casas et al., Adaptive load migration systems for PVM, in ‘‘Proceedings of Supercomputing,’’

Washington, DC, 1994.

5. M. Colajanni and M. Cermele, DAME: An environment for preserving the efficiency on data parallel

computations on distributed systems, IEEE Concurrency 5(1), (January 1997), 41–55.

6. F. Douglis and J. Ousterhout, Process migration in the sprite operating system, in ‘‘Proceedings of the

7th International Conference on Distributed Computer Systems,’’ Berlin, Germany, 1987.

7. D. Eager, E. Lazowska, and J. Zahorjan. The limited performance benefits of migrating active

processes for load sharing, in ‘‘Proceedings of the 1988 ACM SIGMETRICS International

Conference on Measurement and Modelling of Computer Systems,’’ Madison, WI, 1988.

8. S. M. Figueira and F. Berman, Modeling the effects of contention on the performance of

heterogeneous applications, in ‘‘Proceedings of the Fifth IEEE International Symposium on High

Performance Distributed Computing,’’ Syracuse, NY, August 1996.

9. D. Gelernter et al., Adaptive parallelism and piranha, IEEE Comput. 28(1), 1995, 46–49.

10. A. S. Grimshaw, E. A. West, and W. R. Pearson, No pain and gain!}Experiences with mentat on

biological application, Concurrency: Pract. Exp., 5(4) (July 1993), 309–328.

11. M. Harchol-Balter and A. B. Downey, Exploiting process lifetime distributions for dynamic load

balancing, ACM Trans. Comput. Syst. 15(3) (1997), 253–285.

12. J. K. Hollingsworth and P. J. Keleher, Prediction and adaptation in active harmony, in ‘‘Proceedings

of the Seventh IEEE International Symposium on High Performance Distributed Computing,’’

Chicago, IL, July 1998.

13. M. J. Litzkow et al., Condor}A hunter of idle workstations, in ‘‘Proceedings of the 8th International

Conference on Distributed Computing Systems,’’ San Jose, CA, June 1988.

14. N. Nedeljkovic and M. J. Quinn, Data parallel programming on a network of heterogeneous

workstations, Concurrency: Pract. Exp. 5(4) (June 1993), 257–268.

15. J. Pruyne and M. Livny, Parallel processing on dynamic resources with Carmi, in ‘‘Proceedings of the

Workshop on Job Scheduling for Parallel Processing,’’ Santa Barbara, CA, 1995.

16. S. Setia et al., Supporting dynamic space-sharing on clusters of non-dedicated workstations, in

‘‘Proceedings of the 17th International Conference on Distributed Computer Systems,’’ Baltimore,

MD, 1997.

17. S. Shao, R. Wolski, and F. Berman, Modeling the cost of redistribution in scheduling, in ‘‘Proceedings

of the 8th SIAM Conference on Parallel Processing for Scientific Computing,’’ Minneapolis, MN,

1998.

18. B. S. Siegell and P. Steenkiste, Automatic generation of parallel programs with dynamic load

balancing, in ‘‘Proceedings of the Third IEEE International Symposium on High Performance

Distributed Computing,’’ San Francisco, CA, 1994.

19. J. Smith, A survey of process migration mechanisms, Oper. Syst. Rev. 22(3) (July 1988).

20. H. J. Song et al., The MicroGrid: A scientific tool for modelling computational grids, in ‘‘Proceedings

of SC2000,’’ Dallas, TX, November 2000.

21. N. Spring and R. Wolski, Application level scheduling of gene sequence comparison on

metacomputers, in ‘‘Proceedings of the 12th ACM International Conference on Supercomputing,’’

Melbourne, Australia, July 1998.

JON B. WEISSMAN1270

22. B. Weissmane et al., Efficient fine-grain migration with active threads, in ‘‘Proceedings of the Joint

12th International Parallel Processing Symposium and Symposium on Parallel and Distributed

Processing,’’ Orlando, FL, March 1998.

23. J. B. Weissman, Prophet: Automated scheduling of SPMD programs in workstation networks,

Concurrency: Pract. Exp. 11(6) (May 1999), 301–321.

24. J. B. Weissman, Gallop: The benefits of wide-area computing for parallel processing, J. Parallel

Distributed Comput. 54(2) (November 1998), 183–265.

25. J. B. Weissman and X. Zhao, Run-time support for scheduling parallel applications in heterogeneous

NOWs, in ‘‘Proceedings of the Sixth IEEE International Symposium on High Performance

Distributed Computing,’’ Portland, OR, August 1997.

26. M. J. Zaki et al., Customized dynamic load balancing, in ‘‘Proceedings of the Fifth IEEE International

Symposium on High Performance Distributed Computing,’’ Suracuse, NY, 1996.

27. V. Zandy, B. Miller, and M. Livny, Process hijacking, in ‘‘Proceedings of the Eighth IEEE

International Symposium on High Performance Distributed Computing,’’ Redondo Beach, CA, 1999.

JON B. WEISSMAN received the B.S. from Carnegie-Mellon University in 1984, and the M.S. and

Ph.D. from the University of Virginia in 1989 and 1995, respectively, all in computer science. He has been

an assistant professor of computer science at the University of Minnesota since 1999. He was an active

member of the Mentat and Legion research groups while at the University of Virginia. His current

research interests are in resource management in parallel and distributed systems and Grid computing. He

is the architect of two software systems, Prophet and Gallop, that provide automated scheduling support

in Grid systems. His research is supported by NSF and the AHPCRC.

PREDICTING THE COST AND BENEFIT 1271

