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Current cloud infrastructures are important for their ease
of use and performance. However, they suffer from several
shortcomings. The main problem is inefficient data mobil-
ity due to the centralization of cloud resources. We believe
such clouds are highly unsuited for dispersed-data-intensive
applications, where the data may be spread at multiple ge-
ographical locations (e.g., distributed user blogs). Instead,
we propose a new cloud model called Nebula: a dispersed,
context-aware, and cost-effective cloud. We provide experi-
mental evidence for the need for Nebulas using a distributed
blog analysis application followed by the system architecture
and components of our system.

1. INTRODUCTION
The emergence of cloud computing has revolutionized com-

puting and software usage through infrastructure and ser-
vice outsourcing, and its pay-per-use model. Several cloud
services such as Amazon EC2, Google AppEngine, and Mi-
crosoft Azure are being used to provide a multitude of ser-
vices: long-term state and data storage [27], “one-shot”burst
of computation [18], and interactive end user-oriented ser-
vices [17]. The cloud paradigm has the potential to free
scientists and businesses from management and deployment
issues for their applications and services, leading to higher
productivity and more innovation in scientific, commercial,
and social arenas. In the cloud computing domain, a cloud
signifies a service provided to a user that hides details of the
actual location of the infrastructure resources from the user.
Most currently deployed clouds [12, 16, 19, 4] are built on
a well-provisioned and well-managed infrastructure, such as
a data center, that provides resources and services to users.
The underlying infrastructure is typically owned and man-
aged by the cloud provider (e.g., Amazon, IBM, Google,
Microsoft, etc.), while the user pays a certain price for their
resource use.

While the current cloud infrastructures are important for
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their ease of use and performance, they suffer from several
shortcomings. The first problem is inefficient data mobility:
many of the current clouds are largely centralized within a
few datacenters, and are highly unsuited for dispersed-data-
intensive applications, where the data may be spread at mul-
tiple geographical locations (e.g., distributed user blogs). In
such cases, moving the data to a centralized cloud location
before it can be processed can be prohibitively expensive,
both in time and cost [3], particularly if the data is chang-
ing dynamically. Thus existing clouds have largely been lim-
ited to services with limited data movement requirements,
or those that utilize data already inside the cloud (e.g. S3
public datasets). Secondly, current clouds suffer from lack of
user context: current cloud models, due to their centralized
nature, are largely separated from user context and location.
Finally, current cloud models also are expensive for many de-
velopers and application classes. Even though many of these
infrastructures charge on a pay-per-use basis, the costs can
be substantial for any long-term service deployment (such
examples are provided in [26, 29]). Such costs may be bar-
riers to entry for certain classes of users, particularly those
that can tolerate reduced service levels, including researchers
requiring long-running large-scale computations, and small
entrepreneurs wishing to test potential applications at scale.

To overcome the shortcomings of current cloud models,
we propose a new cloud model [5] called Nebula: a dis-
persed, context-aware, and cost-effective cloud. We envision
a Nebula to support many of the applications and services
supported by today’s clouds, however, it would differ in im-
portant ways in its design and implementation. First, a
Nebula would have a highly dispersed set of computational
and storage resources, so that it can exploit locality to data
sources and knowledge about user context more easily. In
particular, the Nebula will include edge machines, devices,
and data sources as part of its resources. Secondly, most re-
sources within a Nebula would be autonomous and loosely
managed, reducing the need for costly administration and
maintenance, thus making it highly cost-effective. Note that
we do not propose Nebulas as replacements to commercial
clouds - rather, we believe Nebulas to be fully complemen-
tary to commercial clouds and in some cases may represent
a transition pathway.

There are several classes of applications and services that
we believe would benefit greatly through deployment on such
Nebulas [5]. In this paper, we focus on one such class, dis-
persed data-intensive services. Such services rely on large
amounts of dispersed data where moving data to a central-
ized cloud can be prohibitively expensive and inefficient in



terms of the cost of network bandwidth and the time of data
transfer. It would be preferable to choose the computational
resources closer to the data which have sufficient computa-
tional capability.

In this paper, we describe our early experience with a Neb-
ula prototype based on one possible implementation model:
the use of volunteer dispersed resources. We first present a
motivating example for the Nebula cloud model: blog analy-
sis, a distributed data-intensive application. Our results exe-
cuting this application on PlanetLab indicate the promise of
our approach, in particular, how the Nebula-like1 version of
this application outperforms a centralized cloud-like version.
Second, we present an inside look at our current implementa-
tion of the Nebula framework, describing some of the Nebula
system components, and present some microbenchmarking
results for these components. These results support the effi-
cacy of the Nebula model and provide valuable insights into
the challenges involved in instantiating it as a real-world
platform.

2. MOTIVATING EXAMPLE: BLOG ANAL-
YSIS

Blogs are a hallmark of the Web 2.0 revolution where users
become content providers across the Internet. Blogs can be
large containing text, audio, and video content that is dy-
namically changing. In some cases, blogs are aggregated at
central blog servers (e.g. BlogSpot), but in general, they
may be scattered across thousands or millions of Web sites.
It is the latter case that motivates our work. Blogs tell us
something about what people are thinking and doing and
may be analyzed to identify interesting social trends. In
Figure 1, we show blogs stored at three locations, and con-
tent downloaded for analysis either to a single central“cloud”
or to more localized compute nodes. Note that in the dis-
tributed case, we are able to find nodes with high bandwidth
to all data servers (dark arrows) due to the large availabil-
ity of dispersed nodes. As shown, the path from D2 and
D3 may be poor to the central cloud. A cloud version of
this application may be deployed as a blog analysis service
where different users can request the analysis of blogs of
their choice.

Given the large number and size as well as the distributed
nature of such blogs, it may be beneficial to move the anal-
ysis service closer to where the blogs are actually stored.
In some types of analytics, it may be necessary to have all
of the blogs in one place for tightly-coupled processing. In
this case, a centralized cloud may be best. Alternatively,
if the blogs can be analyzed independently (in-situ) or may
require only a small degree of aggregation, for example, to
determine how many blogs are concerned with politics, we
need not bring them all together in one place. Addition-
ally, if the data is changing dynamically (and thus would
require extra bandwidth and cost) to update to a central
cloud, it may be more beneficial to compute on it in a more
distributed manner. We have developed a distributed blog

1We use the term“Nebula-like” to indicate that the applica-
tion does not yet use all of the Nebula software machinery
described in Section 4. Similarly, “cloud-like” refers to a
centralized pool of resources in the same domain, and not a
commercial cloud service, such as EC2. In the remainder of
the paper, we drop these distinctions and refer to the models
as Nebula and cloud respectively unless explicitly specified.

analysis service in Nebula that can exploit such opportuni-
ties and is now described.

3. NEBULA BLOG ANALYSIS

3.1 Blog Analysis Architecture
The distributed architecture for Nebula blog analysis con-

sists of following components: (i) master, (ii) client, (iii)
data node, (iv) execution node and (v) database (see Fig-
ure 2). We now describe each component.

The master node is a central controller that acts as the in-
terface to the blog analysis service from the user. The master
node has a centralized database that has details about the
execution nodes and data nodes participating in the applica-
tion. The functionality of the master node is as follows: (i)
it processes requests (blog analysis) from users (clients), (ii)
identifies the best live execution node for a data node and
then initiates blog analysis, (iii) keeps track of blog analysis
progress at execution nodes, (iv) keeps track of health sta-
tus of available execution nodes and data nodes, (v) sends
the analysis result back to user (client) and stores it in the
central DB (if required), and (vi) balances execution nodes
workload. The data node(s) contain the actual blog data for
analysis and are distributed geographically. Each data node
is implemented as a data server that serves the blog data to
an execution node upon request. The execution node serves
the request from the master node to analyze the blog data for
a particular data node. It downloads the blog data from the
data node to perform the analysis. The best execution node
for a given data node is chosen using network bandwidth
information provided by a network tool described shortly.
The central database acts as repository that stores the list
of execution nodes, data nodes and the network bandwidth
for all node pairs.

A network dashboard tool provides the network band-
width between a data node (source) and execution node
(destination). The network bandwidth found for all (data
node, execution node) pairs is recorded in the central database
maintained by master node. The master node uses this in-
formation to find the best execution node (having highest
bandwidth) for the given data node. The network band-
width is updated periodically in the central database using
a separate service called the node bandwidth updater. This
tool retrieves the network bandwidth from the dashboard
for all (data node, execution node) pairs available and up-
dates the central database. This program is run regularly
to update central DB with the latest network bandwidth.

The blog analysis service accepts requests from a user to
perform blog analysis by specifying the number of blogs and
data node server on which blogs reside. Upon getting the
request, the master node identifies the best available live
execution node for each data node and initiates the analysis
by sending a request to the identified execution node. The
execution node then makes a connection to its assigned data
node, retrieves the blog data to perform the analysis and
finally returns the result to master node. The dashboard
monitors nodes that are used for Nebula and exposes a Web
API that enables the real time bandwidth between data node
and execution to be known. We maintain a list of data nodes
and execution nodes in the central database. At the start of
blog analysis, the network bandwidth data already recorded
in the database is used to find best execution node for given
data nodes.



Figure 1: Distributed Blog Analysis. The nodes inside the network cloud contain individual Nebula nodes
and a centralized cloud (depicted as stackable computers). The light arrows indicate low bandwidth paths
and the dark, high bandwidth paths from a data source to a compute node or cloud.

Figure 2: Architecture of Blog Analysis Service for Nebula



3.2 Experimental Results
We deployed our Nebula prototype on PlanetLab [7] as

it represents a good approximation to the geographically
dispersed resource pool that we envision for Nebula. We
deploy various Nebula components and the blog application
on it for an experimental evaluation. Within the Nebula
PlanetLab slice, several of the nodes were fixed to be data
nodes while the remaining nodes were considered as execu-
tion nodes. Both sets of nodes are disjoint. The system
locates execution nodes that are estimated to be “close” to
data sources.

The analysis code is an adaptation of Google’s Blogger ser-
vice written in Java [14]. We are showing results for a sim-
ple analysis: word count. The blog data was extracted from
the Web using the WebHarvest Web crawler [30] to create a
large blog dataset for experiments. The starting link given to
the Web crawler is http://www.blogger.com/changes10.g

that shows list of up to 2000 latest updated blogs. The blog
data on all data nodes is unique.

We have compared the performance of the blog applica-
tion in Nebula with a centralized cloud emulator. The cen-
tralized cloud emulator consists of nodes at same physical
location in the same LAN domain. The blog analysis for all
(data node, execution node) pairs was carried out in par-
allel during a single run. The Nebula cloud for dispersed
data intensive applications was evaluated with and without
failures, and for scalability.
Nebula without Failures
This experiment was conducted assuming that Nebula has
no failures. The blog analysis application was run on the
Nebula, centralized cloud emulator (CCE) experimental se-
tups, and the following measurements were made: overall
total time, cumulative time, blog data transfer time for each
node pair, blog data processing time for each node pair, and
total time to analyze the blogs for each node pair.

The overall total time is the time taken to complete blog
analysis for all data nodes. The cumulative time is time
taken to complete a certain percentage of analysis within a
single run (useful if partial results are meaningful). The to-
tal time taken to analyze blogs for each node pair includes
time taken to make an FTP connection to a data node (FTP
server), browse the directory on the FTP server to get the
data, retrieve the blog data (blog data transfer time), ana-
lyze the data (blog data processing time) and close the FTP
connection.

PlanetLab nodes at Minnesota, California, Florida, and
Europe were fixed as the four data nodes. Four PlanetLab
nodes which are in same domain at Illinois were fixed as ex-
ecution nodes for CCE. In the case of Nebula, for each data
node, the best execution node was chosen based on network
bandwidth data available in the central database. The blog
analysis was conducted on both Nebula and CCE varying
the count of blogs to be analyzed on each data node. The
graph in Figure 3 shows the overall total time taken by Neb-
ula and CCE to complete blog analysis for a varied count of
blogs. This graph clearly shows the large difference in total
time savings. The experiments show that there is a total
time savings of 53% on average and significant data transfer
time savings in Nebula compared to CCE. The graph in Fig-
ure 4 shows the total time savings percentage and the graph
in Figure 5 shows the data transfer time savings percentage
achieved for each (data node, execution node) pair in Neb-
ula over CCE for a varied number of analyzed blogs. For the
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Figure 4: Total Time Savings

Minnesota DN, the selected Nebula node has a modest im-
provement relative to the others. For a very small number of
blogs (10), it is latency-bound, and performs slightly worse
than the CCE. The graph in Figure 6 shows the cumulative
time taken to analyze 25%, 50%, 75% and 100% of blog data
in a single run for a varied blog count. This graph shows
that Nebula is ahead of CCE at all stages of blog data anal-
ysis. The reason why Nebula is far superior, is that with a
single central location, there is a higher likelihood that some
data node will have a poor path to the centralized cloud. In
contrast, Nebula is able to select a high-quality execution
node for each data node due to the network dispersion of
compute nodes.
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Figure 5: Data Transfer Time Savings
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Figure 6: Cumulative Time
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Figure 7: Overall Total Time (with failures)

Nebula with Failures
An advantage of the centralized cloud is reliability and sta-
bility. Nebula nodes based on volunteers can go down at
any time and are more likely prone to failures. To see the
effect of failure, we emulated failures in Nebula nodes. The
failure model used in Nebula is fairly simple: failures were
emulated by failing a random execution node after a ran-
dom amount of time uniformly selected from a fixed range
of 1-10 seconds. When an execution node fails, another exe-
cution node is selected dynamically. The experiment is run
by varying number of failures for a fixed blog count. The
graph in Figure 7 shows the overall total time taken to
complete blog analysis for varied number of blogs. For the
basic failure model, it is evident from the graph that Nebula
performs better than CCE even after 3 failures.

4. INSIDE NEBULA
We now describe the Nebula system architecture and com-

ponents of the software stack: distributed DataStore, net-
work dashboard, and the secure NodeGroup. At a high
level, a Nebula contains a pool of distributed resources and
a control manager that we call Nebula Central (Figure 8).
Nodes may be used to host data (A) or computation (B),
or both. The Nebula Central is a control node (or group
of nodes) that manages the participant nodes in the Nebula
and the applications that are deployed inside the Nebula. It
is in charge of various management tasks including resource
management, code distribution, data coordination, etc. The
nodes that participate in the Nebula can take one (or both)

of two roles: they can act as data nodes by contributing
their storage and bandwidth resources to store and cache
application data, or they can act as compute nodes by con-
tributing their CPU cycles to carry out a task execution for
a Nebula application. We group together the resources pro-
vided by the participant nodes to create two abstractions:
a DataStore and a secure NodeGroup, described in detail
next.

4.1 DataStore
The DataStore provides the basic storage capability for

application data as well as Nebula specific system/management
data. It is used by applications to store their input and out-
put data. Additionally, it may also store dynamic application-
specific state that might be useful for overcoming component
failures or churn. The DataStore will also serve to store and
retrieve data generated by various Nebula services, such as
monitoring data or events.

To support the DataStore concept as a primitive service,
and also to support a wide variety of application/service
needs and policies, we provide a very simple interface and
storage capability partially inspired by the Amazon S3 ab-
straction, and similar to it, we support a flat hierarchy of
data objects, where each object is identified by a unique
key. In this model, we assume the objects to be immutable,
i.e., we do not support deleting or editing objects explicitly.
We expect a higher-level abstraction (similar to a file sys-
tem) to provide such operations on top of the DataStore,
e.g., through versioning and ordering/merging of concurrent
operations.

For our blog analysis example, the DataStore consists
of blogs which are distributed geographically. In selecting
nodes to be part of a DataStore, we have to consider the
relative connectivity and bandwidth among the data nodes,
compute nodes, as well as external data sources from which
data may be downloaded into the DataStore. Further, the
DataStore needs to be reliable even in the presence of vol-
unteer nodes. Next we describe the design of the DataStore
along with the various operations supported by it. Many
DataStore instances will co-exist in a specific Nebula. An ap-
plication can create a DataStore with certain desired prop-
erties. In this paper, we use the term DataStore to refer to
the both the concept or service and a specific instance (i.e.
a subset or group of nodes storing data).

The DataStore contains nodes running the DataStore soft-
ware as well as a centralized nameserver. We envision volun-
teers may be willing to contribute only bandwidth and stor-
age, so the DataStore software is separate from other parts of
the Nebula system. Communication between clients, nodes,
and the nameserver are done using XML-RPC.

DataStore nodes are grouped for certain functionality as
desired from the client. Groups can be determined using
client-provided scoring functions utilizing various metrics in-
cluding connectivity of the DataStore nodes and the planned
computing or client nodes. These groups are then registered
with the nameserver and the nodes themselves. It is impor-
tant to stress that the DataStore provides a mechanism for
organizing data nodes based on application-specified prop-
erties of the DataStore, such as reliability, bandwidth, etc.
We do not expect the clients or even the nameserver to know
which nodes are best suited for the task, but such nodes are
automatically determined based on the application-desired
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Operation Parameters Description
client_create_group datastore_id, source, destination, scoring_function, number Create data node group
client_put source, datastore_id, file_id, number Put a file in a data group
client_get datastore_id, file_id Fetch a file from a data group

Table 1: Client-side DataStore operations

metrics. We envision monitoring frameworks like OPEN [21]
to provide policy implementations for the DataStore.

Table 1 shows a portion of the client-side interface to the
DataStore. A client node can issue these operations to the
DataStore via any Nebula node. Each of these operations
has a corresponding internal operation that carries out the
actual node selection, data movement, notification, etc. A
typical set of DataStore operations would work as follows.
First, a client interacts with a Nebula node to create a data
store group for its data by using client_create_group oper-
ation. As part of this operation, it specifies a scoring func-
tion based on its desired metric as well as the number of
nodes to be part of the group. The Nebula node receiving
the client request determines which nodes best fit the scor-
ing function by using an internal get_nodes operation. The
selected nodes are informed of the new group using an inter-
nal create_group operation, and the nameserver is notified
of the new group mapping as well.

With a group set up, data can now be transferred to the
nodes that are part of the group. With client_put, the
client starts a request to move a file to the group. An internal
operation called node_put is used to download this file to a
certain number of nodes in the group from the source. With
client_get, the client requests the file from the group. Files
are retrievable by clients by contacting nodes in the group
directly. The client requests the nodes in the group from the
nameserver.

The system has features to ensure reliability. Files are
stored with a back-to-front parted hashing scheme to ensure
file consistency with the ability to detect errors before the
entire file has been received. The hash values are sent to the
origin node on a client_put command to ensure consistent
data is stored between nodes.

The scoring function of nodes is used to rank nodes based
on a desired metric, and can be used for a variety of differ-

ent use cases. For instance, if the DataStore is being used
for large temporary files produced by computation nodes, a
very simple scoring function may suffice:

scoring_function = latencyseconds +
filesizebytes

bandwidth

Nodes with lower scores will have better response. This
scoring policy may be suitable for a DataStore used as a
temporary cache where the data is probably used once. In
a second scenario, a more complex scoring function would
be to needed to find a DataNode that is near both a remote
data source and the client - this would be needed in the blog
scenario.

As part of our prototype, a network of DataStore nodes
was deployed on PlanetLab and two scenarios described above
were tested. In the first scenario, the DataStore was built to
act as a cache between the source nodes and the computing
nodes. A file was sent from the source node to the DataS-
tore. Later when the computing node needed the file, it was
sent from the DataStore to the computing node.

The average performance results can be seen in Figure 9,
which compares node selection based on the above scoring
function to that for random a node selection. It took 25
seconds on average to send the file from the source to the
DataStore and then from the DataStore to the computing
node. When the selection was random, the average transfer
time was both much higher and had a much larger variance
than when it was selected for good connectivity using the
scoring function. In the second scenario, a great deal of
data would be transmitted between the DataStore and com-
puting nodes (e.g. blog data). We model this as the trans-
mission of N large data transfers, and we show N=5 in our
experiments. A scoring function which weighted the trans-
fer time between the DataStore and the computing node
more heavily was used to ensure a better locality between



Figure 9: DataStore caching

Figure 10: DataStore computation filesystem sce-
nario

the DataStore and the computing node. The average per-
formance results of this scenario can be seen in Figure 10.
The results compare a weighted scoring policy for choosing
the DataStore, a random selector for the DataStore, and a
system where there was no DataStore and files were trans-
ferred directly between the source and the computing nodes.
As can be seen, selecting a DataStore with a proper scoring
policy was much more effective than not using a DataStore
at all. Ensuring locality of the DataStore with both the
source and computation node also kept the variance low in
the case of a properly selected DataStore.

4.2 Secure NodeGroups
The NodeGroup abstraction identifies a related set of com-

putational nodes to host applications and services. It is par-
tially inspired by Amazon EC2 instances and the PlanetLab
slice abstraction. The composition of a node group may
change over time as nodes may be added or removed dy-
namically. Nodes may be allocated or deallocated to a node
group, and application components may be deployed or re-
moved from its nodes. Since Nebula nodes may host arbi-
trary code, it is crucial that such code be executed securely.
The NodeGroup complements the DataStore abstraction.

The computation node is the node where the actual ap-
plication computation happens. The computation node in-
teracts with the Nebula Central to register itself as part of
the Nebula. It contains little intelligence about the rest of
the Nebula, and relies on the Nebula Central to get relevant
information regarding pending tasks and DataStore nodes
that are close to it.

The computation nodes, just as the DataStore nodes, con-
sist of voluntary resources that can join and leave the Nebula
on an ad-hoc basis. In our initial prototype, we have focused
on three issues: a) security b) performance and c) cross plat-
form support. We propose a system by which any user with
an Internet connection and a modern browser like Chrome
can volunteer as a compute node. To join the Nebula as a
compute node, the user can just open a Web page on his
browser and start the computation. To stop the computa-
tion, the user just needs to close the page or the browser.

The main component that we use to implement a secure
compute node is NativeClient, a browser plugin developed
by Google [15] to achieve portability and sandboxing for
running native code in Web applications. An appealing fea-
ture of this approach is that a participating machine only
needs only to run a browser to securely participate vs. a
more heavy-weight solution such as virtual machines. We
have integrated NativeClient into our system as part of our
Nebula implementation. Nebula applications are written in
C/C++ and compiled against the NativeClient specific com-
pilers provided by the SDK. On compiling, we get Native-
Client compatible binaries, or .nexe files. These .nexe files
can now be embedded in Web pages, and any browser with
the plugin enabled can execute them. In other words, the
compute node is nothing but a regular computer where the
user has opened the Web page hosted by the Nebula Central
in his browser.

Depending on the application, the browser downloads the
appropriate .nexe file from the server. Once the user directs
the page to start the computation, it retrieves pending tasks
and details about the data from the server. On receiving
this information, it begins pulling data from the DataStore
nodes asynchronously and passes it on to the actual native



code. We have currently implemented this in JavaScript,
although in the future, this can be handled by the applica-
tion code itself. The application code then executes on the
client machine and returns the results back to the server.
As described earlier, it is the job of the DataStore to assign
nodes that are most optimal for the given compute nodes,
such that there is minimal latency in data transfer.

All of the interactions between the components are stan-
dard HTTP calls. The data exchange format used is JSON,
which has the important characteristic of being lightweight
in comparison to other formats like XML. We define a few
basic REST-based Web services for this implementation.
The first one retrieves pending tasks for a particular ap-
plication. This service also returns a list of URLs from
where data can be retrieved as needed by the task. The
JavaScript then makes regular AJAX calls to retrieve the
data and passes it on to the NativeClient plugin. The appli-
cation code then does the required computation, and returns
the result back to the JavaScript layer. The JavaScript then
makes another Web service call to report back the result.

This implementation implies that the user does not have
to explicitly download potentially untrusted software to con-
tribute to the computation. The application code is down-
loaded by the browser and it is sandboxed within the Native-
Client architecture throughout it’s entire execution cycle.
The sandbox implements some constraints on the Native-
Client binaries by which it can ensure security. NativeClient
applications have performance comparable to that of the
equivalent independent native code binaries. The primary
overhead is the context switch from the browser to the ap-
plication code. There are examples where similar compute
nodes have been implemented, but with the computation
done by JavaScript to achieve sandboxing [9]. Although such
implementations might be simpler, the performance would
start degrading once the nature of the computation becomes
more complex and resource heavy.

Figure 11 shows the overhead of using NativeClient with a
C benchmark code relative to executing the native code di-
rectly. We used two types of benchmarks in this experiment.
The first experiment uses a simple program to calculate the
number of steps it takes to obtain the Collatz Sequence [10]
of a number. The program repeatedly calculates this for
numbers from 1 to a limit defined by the program. This
uses a simple recursive algorithm and performs some basic
mathematical operations. The nature of the algorithm is
also such that it is guaranteed to terminate. For our com-
parison, we’ve started with a limit of 1 million numbers, to a
limit of 5 million numbers. The code is then run outside the
NativeClient container, as a regular executable, and then
within the container via Chrome. The execution times for
these form the basis of our comparison. It is worth noting
that executing the same code with JavaScript takes over 10
seconds for 1 million numbers. We can thus safely ignore
that implementation from our comparison.

The second experiment is closer in nature to blog anal-
ysis and performs a variety of text based computations2.
We added some changes to the simple word count applica-
tion to show that code running withing NativeClient can in-
deed scale with increasing complexity. The program takes in
text as input and then breaks it down to individual words

2We are the process of porting the Java-based Google blog
analysis to native code for an end-to-end integration with
NativeClient and the rest of the Nebula software stack.

0 5 10 15 20 25

200

220

240

260

280

300

320

340

Time (hours)

T
C

P
 B

an
dw

id
th

 (
K

B
ps

)

 

 

Direct
Proxy L
Proxy E
Proxy I
Proxy J
Proxy A
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using the standard C strtok function. The next step is
to insert each word into a linked list in alphabetical order.
This involves calls to the calloc and strcmp functions. The
list is then traversed to find the number of words, which
is equivalent to the number of nodes. Finally, the dynami-
cally allocated memory is released using the free function.
The added functionality is not required for calculating the
word count, but demonstrates frequent memory accesses and
other functions that you might use in a typical blog analy-
sis application. For our benchmarking, we provide inputs of
different word counts and measure the execution time.

As can be seen from the figures, the overhead ranges from
2% to 30% (worst case). We believe this overhead is ac-
ceptable given the isolation and security provided. Another
point to note is that the overhead does not seem to increase
based on increasing input size.

4.3 DashBoard
The network dashboard (netstat.cs.umn.edu) is a set of

network monitoring tools deployed across all participating
Nebula nodes. The dashboard periodically measures TCP,
UDP, bandwidth between node pairs, as well as jitter and
mean delay. The dashboard can also identify overlay net-
work paths that can out-perform the default Internet rout-
ing paths [25]. The data collection methodology is simple.
Every few minutes, our program wakes up, queries our cen-
tral server to locate the addresses of other nodes running the
same program. This stub then takes point-to-point measure-
ments and reports it back to the central server. The data
is stored in a network database. When a node joins the
Nebula, it downloads the necessary dashboard components
which run inside NativeClient. A sample of the dashboard
data is shown in Figure 12 for two endpoints using TCP
(additional paths using routing proxies are also shown).

The dashboard can be used by Nebula to select nodes
for deployment, identify network bottlenecks, replace failed
nodes, depending on the needs of the Nebula application.
For example, some applications may require low latency or
high-bandwidth between nodes if they interact frequently.
In other cases, e.g. a replicated stateless service, little inter-
action may be needed, thus, the network requirements may
be minimal.

5. RELATED WORK
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Our projects is related to a number of different works.
Volunteer edge computing and data sharing systems are
best exemplified by Grid and peer-to-peer systems includ-
ing, Kazaa [28], Bittorrent [8], Globus [13], BOINC [2], and
@home projects [23]. These systems provide the ability to
tap into idle donated resources such as CPU capacity or ag-
gregate network bandwidth, but they are not designed to
exploit the characteristics of specific nodes on behalf of ap-
plications or services. Furthermore, they are not typically
used to host persistent services that one may envision in the
cloud.

Estimating network paths and forecasting future network
conditions are addressed by [31]. We have used simple active
probing techniques and network heuristics for prototyping
and evaluation of network paths in our dashboard. Existing
tools [24], [11], [22] would give us a more accurate view of the
network as a whole. Direct probing in a large network isn‘t
scalable, and we advocate the use of passive or secondhand
measurements [21]. [20] shows that it is possible to infer
network conditions based on CDN [1] redirections and [6] is
an implementation of such a scheme.

6. CONCLUSION
In this paper, we have presented Nebulas, a new cloud ar-

chitecture designed to support distributed data-intensive ap-
plications using volunteer nodes. We described the Nebula
system architecture and software services needed to support
Nebula applications: network dashboard, DataStore, and se-
cure NodeGroups. We used a distributed blog analysis ap-
plication to illustrate the potential performance benefits of
the Nebula cloud vs. a centralized cloud. The result show
that a Nebula can be beneficial even in the face of node
failures. Future work is targeted at completing the Nebula
software stack and to begin to deploy real applications.
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