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This paper concerns two related problems in the analysis of data matrices whose 
rows and columns are equipped with tree metrics. First is the problem of recovering 
a matrix that has been corrupted by additive noise. Under the assumption that 
the clean matrix exhibits a specific regularity condition, known as the mixed 
Hölder condition, we adapt the well-known Donoho–Johnstone wavelet shrinkage 
methods from classical nonparametric statistics to obtain estimators that are within 
a logarithmic factor of the minimax error rate with respect to mean squared error 
loss.
The second part of this paper develops a theory of Besov spaces on products of tree 
geometries. We show that matrices with small Besov norm can be written as a sum 
of a mixed Hölder matrix and a matrix with small support. Such decompositions are 
known as Calderón–Zygmund decompositions and are of general interest in harmonic 
analysis. The decompositions we establish impose fewer conditions on the function 
with small support than previous decompositions of this type while maintaining 
the same guarantees on the mixed Hölder matrix. As such, they are applicable to a 
greater variety of matrices and should find use in many data organization problems. 
As part of our analysis, we provide characterizations of the underlying Besov spaces 
using wavelets and other multiscale difference operators that are analogous to those 
from the classical Euclidean theory.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with matrix decompositions of the following form: if f(x, y) is a matrix, by 
which we mean a function on the product of two discrete sets X and Y , we seek to write f = g + b, 
where g is a “good” matrix satisfying a certain regularity condition known as the mixed Hölder condition 
that we describe in Section 2, and b is a “bad” matrix that is nevertheless under control in some way. 
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Such decompositions are encountered throughout analysis and its applications, such as in signal and image 
processing [1].

In Sections 1.1–1.6, we briefly introduce the high-level ideas used throughout this paper. In Section 1.7, 
we discuss the contributions of this paper.

1.1. Wavelets and multiresolution analysis

We give a brief summary of some relevant facts from wavelet theory. Of particular concern to us will be 
the notion of a multiresolution analysis of L2(R) [2–4]. One starts with a function φ(x), and considers all 
its dyadic dilates and integer translates, given by

φj,k(x) = 2−j/2φ(2−jx− k) (1)

We define Vj as the linear span of the functions φj,k over all integers k. Under suitable conditions on φ, 
these spaces will be nested; that is, Vj � Vj−1, or in other words, we can write φ(x) as a linear combination 
of the functions φ(2x − k); and their union is all of L2(R). In this case the system of subspaces Vj forms
what is called a “multiresolution analysis” of L2(R), as each subspace captures activity at a certain dyadic 
scale, or resolution.

Wavelet analysis arises by looking at the orthogonal complement of Vj in Vj−1, which we denote by Wj . 
Given a multiresolution analysis as just described, one can construct a function ψ(x) whose integer translates 
span W0, and consequently where the functions ψj,k(x) = 2−j/2ψ(2−jx − k) span Wj . The function φ is 
known as the “father wavelet”, or “scaling function” and the function ψ is known as the “mother wavelet”.

Perhaps the simplest example of such a system is the Haar system. Here, the father wavelet φ is the 
indicator function of the interval [0, 1], and the mother wavelet is the function χ[0,1/2] − χ[1/2,1]. The space 
Vj is the span of indicator functions of dyadic intervals [2−jk, 2−j(k+1)] for all integers k. It is very simple 
to generalize this particular multiresolution analysis to the setting of partition trees on abstract sets [5], as 
we will describe in more detail later.

1.2. The classical Besov spaces

Given a metric space (X, d), a natural way of measuring the variation of a function f defined on X is its 
Lipschitz norm, defined by

sup
x�=y

f(x) − f(y)
d(x, y) . (2)

If f is a differentiable function on R, the Lipschitz norm (2) is equal to ‖f ′‖∞, the supremum of f ’s derivative. 
Expression (2), however, is defined for non-differentiable functions and makes sense in the abstract setting 
of any metric space.

A generalization of the Lipschitz norm is the Hölder norm, which replaces the metric d(x, y) by d(x, y)α
for some parameter α > 0. For functions on R, this space is only non-trivial when 0 < α ≤ 1. The space of 
Hölder functions when α is strictly less than 1 has nicer algebraic properties than the Lipschitz space; in 
particular, the Hölder norm of a function can be characterized by the size of its wavelet coefficients. If we 
take a sufficiently nice wavelet basis {ψj,k} of Rn (where j ∈ Z indexes the dyadic scale 2−j and k ∈ Z the 
location), then the expression

sup
j,k

2j(α+1/2)|〈f, ψj,k〉| (3)
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is equivalent in size to (2), which is to say that the ratio of the two quantities is bounded above and below 
by finite constants not depending on f . The wavelet coefficients 〈f, ψj,k〉 can be thought of as measuring 
f ’s variation across scales. The corresponding formula for α = 1 yields not the Lipschitz space but the 
Zygmund space [2].

There is a generalization of the Hölder spaces, known as the Besov spaces, that replace the L∞ norms 
used to define the Hölder spaces by Lp norms. To see how this works, rewrite the Hölder norm of f as:

sup
t>0

t−αwt,∞(f) (4)

where

wt,∞(f) = sup
|h|≤t

‖f − f(· − h)‖∞ (5)

is the L∞ modulus of continuity of f . If we replace the L∞ norm defining wt,∞(f) with an Lp norm, and 
the supremum in t in (4) with an Ls(dt/t) norm, we obtain the Besov norm:

( ∞∫
0

t−αswt,p(f)s dt
t

)1/s

(6)

where

wt,p(f) = sup
|h|≤t

‖f − f(· − h)‖p (7)

is the p-modulus of continuity of f . Like the Hölder norm, there are simple characterizations of this Besov 
norm using wavelets and other multiscale operators: for example, the quantity

(∑
j

2j(α+1/2−1/p)s
[∑

k

|〈f, ψj,k〉|p
]s/p)1/s

(8)

is equivalent to (6), in the sense that the ratio of the two is bounded above and below by constants 
independent of f .

Because the definition of the modulus of continuity wt,p makes use of the translation structure on Eu-
clidean space, it is unclear how one might define this quantity on an abstract metric/measure space, such 
as the tree metrics we consider later in this paper. It follows from results in Chapter 7 of [6] that wt,p(f) is 
equivalent in size to the quantity

ωt,p(f) =
(∫

R

1
|B(x, t)|

∫
B(x,t)

|f(x) − f(y)|pdydx
)1/p

. (9)

As the definition of ωt,p(f) only makes use of the metric and measure on R, it provides a way of extending 
the modulus of continuity to abstract metric/measure spaces.

Returning to Euclidean space, we note that the Besov spaces are also defined when α ≥ 1. For non-
integer α, one simply replaces α by α − �α	 and f with its �α	th derivative. Finally, we note that for 
technical reasons, in this paper we will restrict attention to the case when p = s; such two-parameter Besov 
spaces (the parameters being α and p) may be referred to in the literature as Slobodeckij spaces, Aronszajn 
spaces, Gagliardo spaces, Sobolev–Slobodeckij spaces, or other variations thereof. The first chapter of [7]
contains a history of these spaces and other approaches to their construction.
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1.3. Mixed Besov spaces

The function spaces we discussed in Section 1.2 are defined with respect to a single metric space. Many 
domains arising in applications, however, are not modeled well by one metric space, but rather the product 
of several metric spaces. Such datasets arise naturally in a variety of applications. For example, in the 
theory of transposable arrays [8,9], both the rows and columns of a dataset are studied. Similarly, methods 
of co-clustering [10,11] search for a clustering of both the row and column sets of a data matrix, and so fits 
into the same framework.

For simplicity, we restrict attention to the product of two spaces, (X, dX) and (Y, dY ). The notion of 
regularity we consider for a function f defined on X × Y is the mixed Hölder condition, which requires f
to have bounded mixed difference quotients; that is,

sup
x�=x′,y �=y′

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)
dX(x, x′)αdY (y, y′)α (10)

must be finite. We give a more formal definition of the mixed Hölder space in Section 2.
The expression (10) is unnatural in many applications in the Euclidean setting, depending as it does on 

the choice of x- and y-axes. In fact, it is not rotationally invariant. For simplicity, fix α = 1 and observe 
that the expression (10) is equivalent in size to ‖∂2

x,yf‖∞ for smooth functions on R2. Consider a function 
of the form f(x, y) = g(x)h(y), for smooth g and h. Then

∂2
xyf(x, y) = g′(x)h′(y) (11)

whereas

∂2
xyf

(
x + y√

2
,
x− y√

2

)
= 1

2g
′′
(
x + y√

2

)
h

(
x− y√

2

)
− 1

2g
(
x− y√

2

)
h′′

(
x + y√

2

)
(12)

and by constructing functions g and h with large zeroth and second derivatives but small first derivatives, 
one sees that the size of the quantity (10) depends on the coordinate system, a limitation in physical settings 
that exhibit rotational invariance and hence where the axes are essentially arbitrary.

By contrast, in many data-analysis problems the axes are not arbitrary, but rather intrinsic to the 
problem itself; consider, for example, the word/document axes of a word-document database [12], or the 
time/frequency axes of a spectrogram [13,14]. For such problems it is reasonable to look at norms, like the 
mixed Hölder norm, that depend on the choice of axes; indeed, such norms make the most sense in this 
context.

We can define mixed Besov spaces in much the same way as for a single space; we replace the L∞ norms 
implicit in the definition of the mixed Hölder norm by an Lp(dx) norm in space and an Ls(dt/t) norm across 
scales. This gives the norm:

( ∞∫
0

∞∫
0

wt,t′,p(f)s dt
t

dt′

t′

)1/s

(13)

where the modulus of continuity wt,t′,p is given by

wt,t′,p(f) = sup
|h|≤t,|h′|≤t′

(∫
R

∫
R

|f(x, y) − f(x− h, y) − f(x, y − h′) + f(x− h, y − h′)|pdxdy
)1/p

(14)

Such spaces have been well-studied and given characterizations similar to their one-dimensional versions. 
If f is defined on, say, [0, 1] × [0, 1] and has bounded mixed difference quotients, many favorable properties 
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follow. For instance, such functions can be reconstructed to precision ε using only O((1/ε) log(1/ε)) samples; 
these samples form what is known as a “sparse grid” [15,16]. This compares favorably with the Ω(1/ε2) points 
that would be needed if f were only known to be Lipschitz. Similarly, only O((1/ε) log(1/ε)) coefficients 
from a suitable wavelet basis are needed to reconstruct such a function f to precision ε [17]. Of particular 
relevance to the present work, statistical estimators of such an f from noisy samples achieve higher minimax 
rates than estimators of functions that are merely assumed to be Lipschitz [13,14]; this terminology will be 
explained in Section 1.4.

1.4. Statistical estimation and wavelet shrinkage

Statistical estimation is concerned with recovering a function f from noisy samples of the form f + noise. 
To have any hope of recovering the signal, we must impose some assumptions on it. Parametric models 
assume that the signal lies in a family defined by a finite number of parameters – for instance, a low-degree 
polynomial; the task is to estimate the parameters of this model. Nonparametric models impose weaker 
assumption on the function f , assuming only that it lies in, for example, a Besov ball (or a relative thereof, 
such as a Triebel or Sobolev ball).

For any estimation problem, a standard way of measuring the quality of an estimator is the minimax 
criterion. Here, we look at the estimator’s expected loss; that is, if the true function without noise is f
and our estimator is f̂ , we pay a price L(f, f̂). A standard loss is the squared Euclidean distance ‖f − f̂‖2

2
between the true function and our estimate.

The observed signal, and hence any estimator and its loss, are random quantities. We therefore consider 
the expected loss, or risk, of an estimator, which depends on the unknown true function f :

R(f, f̂) = EfL(f, f̂) (15)

If the true function f lies in a family F , then the worst performance of an estimator f̂ is its maximum 
risk over F , or supf∈F R(f, f̂). The minimax criterion for estimation seeks an estimator f̂∗ that minimizes 
this maximum risk; that is,

f̂∗ = argmin
f̂

sup
f∈F

R(f, f̂) (16)

In this paper, we will be concerned only with how the quantity minf̂ supf∈F R(f, f̂) depends on the prob-
lem size (the number of observations) and the problem parameters (the parameters defining the space F). 
Consequently, rather than seek estimators that achieve the exact minimax risk, we relax this problem to 
find estimators that differ from the minimax risk by at most a multiplicative constant C that does not 
depend on the number of samples or the relevant parameters. We will say that such an estimator “achieves 
the minimax rate” of the problem.

When the parameters of the Besov space are completely specified, explicit estimators can be derived that 
achieve the minimax rate; these estimators are also linear functions of the observed data, and amount to 
applying a low-pass filter to get rid of the noise. However, in many cases it is not reasonable to assume that 
the parameters of the Besov space – which, after all, is often only a heuristic model – are specified. It is 
therefore desirable to have estimators that perform well for a range of Besov spaces – that is, for a range of 
parameters.

The wavelet shrinkage estimators of Donoho and Johnstone succeed at this task [18–22]. These are defined 
by shrinking the wavelet coefficients of the observations towards zero. The shrinkage operator is a non-linear 
function of one variable, given by

ηt(x) = sgn(x)(|x| − t)+. (17)
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Donoho and Johnstone prove that the wavelet shrinkage estimator is nearly minimax for large ranges of 
Besov spaces simultaneously. More precisely, the error rate it achieves equals the minimax rate times a term 
log(n)r, where n is the number of samples and r < 1 is a parameter depending on the space F .

1.5. Calderón–Zygmund decompositions

A Calderón–Zygmund decomposition breaks a function f into a sum of two functions g + b, where g is 
well-behaved (for instance, is not too oscillatory) and b, while it may be highly irregular, has small support. 
In the classical Calderón–Zygmund decomposition, f is assumed to be in L1, and g then has small L2

norm, while b is highly oscillatory but is supported on a small set and has mean zero. See, for instance, 
[23,24,4]. This decomposition is a critical ingredient in proving classical results such as the Markinciewicz 
Interpolation Theorem [23,24,4,1]. It is also highly useful in the study of certain operators [1]. For instance, 
it is employed in the proof that the important class of Calderón-Zygmund operators map L1 to weak L1

[25].
Another class of Calderón–Zygmund decompositions impose conditions not on f itself but rather its 

gradient – for example, ∇f might be assumed to lie in Lp. The function g is then constructed to satisfy a 
stronger condition on its gradient, such as |∇g| ∈ L∞. See, for instance, [26,27] for results along these lines.

A theorem of this kind was shown in [28] in the context of tree metrics, which are the kind of metrics 
we consider in this paper and which we will discuss in Section 1.6. The function f is assumed to lie in a 
particular mixed Besov space, and the good function g can be taken to be mixed Hölder. The decomposition 
of f into g + b depends on a wavelet expansion of f ; certain wavelet coefficients are grouped to form g, and 
the remaining ones form b.

1.6. Tree metrics

The spaces discussed in Sections 1.2 and 1.3 were defined for functions on Euclidean space. The present 
paper is concerned, however, with an analogous theory for a different kind of metric space, where the 
Euclidean metric is replaced by an abstract tree metric. Tree metrics are defined by breaking the space 
into a collection of folders, and placing a weight on each folder that defines its diameter. In this paper, the 
weights will equal the folder’s volume.

Because of their simple structure, tree metrics appear throughout pure and applied mathematics. There 
are numerous applications in computer science, where certain metric tasks are very simple to perform for 
tree metrics; by approximating an arbitrary metric by a family of tree metrics, one obtains fast, approximate 
solutions [29–31].

In [28,5] it is shown that the same wavelet characterizations of the Hölder and mixed Hölder spaces of 
functions on Euclidean space can be adapted to the Hölder and mixed Hölder spaces on trees and products 
of trees. The multiple partitions induced by the tree parallel the multiresolution analyses discussed in 
Section 1.1, and the classical wavelets are replaced by a family of Haar wavelets defined with respect to the 
partition trees; we will discuss their definition in more detail in Section 2.

In [28], it is shown that many of the properties of mixed Hölder functions on [0, 1] × [0, 1] also hold for 
mixed Hölder functions on the product of tree metric spaces. For instance, it is possible to compress a mixed 
Hölder function to high precision using a small number of its tensor Haar coefficients, and one can define 
the same notion of sparse grid for reconstruction as in the Euclidean case.
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1.7. The contributions of this paper

The present work further develops the theory of harmonic analysis on partition trees and their products. 
As stated earlier, we focus on the task of writing a function f(x, y) in the form f = g + b, where g has a 
small mixed Hölder norm and b is controlled in one of two ways.

The first such decomposition tries to make b look as unstructured as possible – that is, we want b to 
look like noise. The methods we develop in Sections 3 and 4 emerge from the statistical estimation theory 
discussed in Section 1.4. More precisely, in Section 3 we give a formal statement of the estimation problem 
in the presence of Gaussian noise, and in Section 3.1, specifically Theorem 2, we establish its minimax rate. 
In Section 4, we then show that the wavelet shrinkage estimators of Donoho and Johnstone, applied to 
the tensor Haar basis on products of trees, come within a logarithmic factor of achieving this rate, which 
is to be expected from the classical theory. In Section 4.3, we also show that the denoised function g will 
be smooth with high probability, and in Section 4.4 we provide approximation guarantees when multiple 
estimators are averaged over many trees whose metrics approximate another (non-tree) metric.

The second model for the bad function b, developed in Section 5, forces b to have small support; in 
other words, we establish a family of Calderón–Zygmund decompositions as discussed in Section 1.5. As a 
precursor to these decompositions, in Section 5.1 we develop analogues of the classical Besov spaces for tree 
metrics. In particular, we define a natural modulus of continuity for functions on tree metric spaces, define 
the analogues of the Besov norm (13) (when p = s), and give simple characterizations of the Besov norm of 
a function using its coefficients in various expansions.

From these simple characterizations of the Besov norms naturally emerges a broad class of Calderón–
Zygmund decompositions. Theorem 6 generalizes the Haar-based decomposition from [28] to the Besov 
spaces introduced in Section 5.1. Theorem 7 presents an entirely new decomposition that does not depend 
on the function f ’s Haar series, but rather on a minimal-cost expansion in an overdetermined set of simple 
functions. This decomposition imposes fewer constraints on the function b, and is able to recover the natural 
decomposition for a much broader range of functions. We illustrate the advantages of this decomposition 
over the Haar-based decomposition on numerical examples.

Appendix A contains basic results in the metric geometry of partition trees and estimation of mixed 
Hölder functions on tree metrics. In some cases, these results have not been stated previously in the literature, 
while in other cases they are sharper versions of estimates that have appeared in [28]. These estimates can 
also be used to improve results from [28] that are not used here, such as the sparse grid construction.

2. Preliminaries

Throughout this paper, X and Y will denote two spaces with nX and nY points, respectively, and we let 
n = nX · nY denote the number of points in X × Y . We will think of X and Y as, respectively, the set of 
rows and columns of a matrix. We will equip X and Y with finite measures, and assume for simplicity (and 
without loss of generality) that the total mass of each is 1. We denote by |S| the measure of a set, and #S

the number of elements it contains.
As a matter of notation, we will often use the letter C to denote an arbitrary constant. When stating 

results we will sometimes write expressions like C = C(a, b, c, d) to specify that C depends on the parameters 
a, b, c, d. In long strings of inequalities, the value of C may change from line to line.

2.1. Tree metrics, Hölder functions and mixed Hölder functions

We assume throughout this paper that both X and Y are equipped with partition trees, denoted by TX
and TY . A partition tree on X (or Y ) is a collection of subsets of X, called “folders”, that include X itself 
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and all singletons {x}, and with the property that for any two folders I and I ′, either I ⊂ I ′, I ′ ⊂ I, or I
and I ′ are disjoint.

Associated to any partition tree on X (or Y ) is a corresponding volume-based tree metric. If Ix,x′ denotes 
the smallest folder in TX containing both x and x′, then the tree distance dX(x, x′) equals

dX(x, x′) =

⎧⎨
⎩
|Ix,x′ |, if x = x′

0, if x = x′
(18)

Given a folder I, we will refer to the smallest folder containing but not equal to I as I’s “parent”. If I ′
is I’s parent, we will also say that I is a “child” of I ′.

As in [32,28,5], the critical assumption we will impose on the partition tree is that it is balanced, in the 
sense that there are constants BL and BU such that

0 < BL ≤ |child|
|parent| ≤ BU < 1. (19)

We will denote by TY a partition tree on Y , and assume the same balance condition (19) on Y ’s folders. 
We will denote the tree distance on Y by dY (y, y′).

For any folder I ∈ TX , define

(mIf)(y) = 1
|I|

∫
I

f(x, y)dx (20)

and define (mJf)(x) similarly for J ∈ TY .
Given any function f on X × Y and any α > 0, we say that f has mixed Hölder(α) norm L = L(f, α) if 

the maximum of the terms

sup
x�=x′,y �=y′

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)
dX(x, x′)αdY (y, y′)α (21)

sup
x�=x′

(mY f)(x) − (mY f)(x′)
dX(x, x′)α (22)

sup
y �=y′

(mXf)(y) − (mXf)(y′)
dY (y, y′)α (23)

is bounded above by L. We will refer to the quantity (21) alone as the mixed variation of f , and denote it 
M(f, α).

2.2. Haar systems on trees and tensor products

Given a set X with tree TX , we can build functions defined on X that mimic the classical Haar system. 
These functions are described in [32,28,5], and we will only review the basic properties here. Each Haar 
function φ is supported on a single non-singleton folder I ∈ TX , and is constant on the children of I. 
Furthermore, φ has mean zero, is normalized to have L2 norm 1, and is orthogonal to every other Haar 
function. Consequently, the collection of all Haar functions and the constant function 1 on the space form 
an orthonormal basis for the space of all functions on X.
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Given Haar systems {φ} on X and {ψ} on Y , we can consider their tensor product; this is the collection 
of all functions Φ(x, y) of the form φ(x)ψ(y), φ(x), and ψ(y). These functions form an orthonormal basis 
for the collection of all functions with mean zero on X × Y .

Given a Haar function φ(x) on X, we will use I(φ) to denote the smallest folder containing the support 
of φ; similarly, J(ψ) will denote the smallest folder containing the support of a Haar function ψ on Y . Given 
a tensor Haar function Φ(x, y) = φ(x)ψ(y) on X × Y , we will denote by R(Φ) = I(φ) × J(ψ) the smallest 
rectangle containing the support of Φ.

The following result, which gives a characterization of the mixed Hölder(α) norm of a function based on 
its tensor Haar coefficients 〈f, Φ〉, is key:

Theorem 1. For any α > 0, there is a constant C = C(BL, BU , α) > 1 such that for any function f on 
X × Y ,

1
C
L(f, α) ≤ sup

Φ

|〈f,Φ〉|
|R(Φ)|α+1/2 ≤ L(f, α) (24)

where the supremum is over all Haar functions Φ(x, y).

The proof is essentially contained in [28].

3. Matrix denoising

In this section, we assume that X and Y are equipped with normalized counting measure; in other 
words, the measure of any single point x ∈ X is n−1

X , and the measure of any single point y ∈ Y is n−1
Y . 

Recall that given any set S, we will always denote by #S the number of elements of S. If S ⊂ X, we 
will write its measure as |S|. To illustrate the notation, observe that for any S ⊂ X, since |S| denotes 
the measure of a set and #S denotes the number of elements, |S| = (#S)/nX ; similarly, if S ⊂ X × Y , 
|S| = (#S)/(nXnY ) = (#S)/n.

We suppose that we have a function f defined on X × Y , and that f has mixed Hölder(α) norm not 
exceeding L for some α > 0 and L > 0. Let F = F(α, L) denote the collection of all such functions. We do 
not observe f directly, however, but rather

T (x, y) = f(x, y) + η(x, y) (25)

where η(x, y) is a random variable. We will assume that the η(x, y)’s are independent, have mean zero, and 
have maximum variance ν < ∞.

Our goal is to estimate f from the noisy samples T , taking as our primary measure of the loss of an 
estimator f̂n the mean squared loss, or ‖f̂n − f‖2

2. As explained in Section 1.4, we are concerned with the 
minimax rate inf f̂n supf∈F Ef‖f̂n − f‖2

2, where the infimum is over all estimators.
In Section 3.1, we will give an explicit estimator f̂n for the function f , and derive bounds on the expected 

error of this estimator in terms of the parameters ν, α and L and the problem size, n. We will show in 
Section 3.1.3 that this estimator achieves the minimax rate in terms of its dependence on L, ν and n when 
the noise η is Gaussian.

The estimator f̂n we define in Section 3.1 depends on specification of L and α, which might be unnatural 
in practice, and the bounds we obtain are only for the L and α specified. In Section 4, we adapt the wavelet 
shrinkage estimators of Donoho and Johnstone [19] to define estimators that are nearly minimax for all 
α > 0 simultaneously when the noise is Gaussian.
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3.1. Optimal matrix denoising

We now consider the problem of recovering a mixed Hölder function f that has been corrupted by noise. 
We assume that we are given two spaces X and Y with, respectively, nX and nY points, and partition trees 
TX and TY whose folders satisfy (19).

We can think of X as the rows of a matrix and Y as the columns. A matrix itself will be described by a 
function f on X × Y . We suppose that f has mixed Hölder(α) norm not exceeding L, which by Theorem 1
implies that the size each Haar coefficients 〈f, Φ〉 is bounded by L|R(Φ)|α+1/2.

Before turning to the wavelet shrinkage estimator, however, we will first analyze how well we can do if 
we are willing to specify the parameters L and α, in the regime n → ∞. We will write down an explicit 
estimator and estimate its expected error. In Section 3.1.3, specifically Theorem 2, we will prove that this 
estimator’s mean squared error is optimal in its dependence on n = nXnY , L and ν for all n sufficiently 
large.

Define ε > 0 by

ε = min
{

1,
(

ν

nL2

)1/(2α+1)}
. (26)

Suppose for now that ε < 1. We will consider the case where ε = 1 separately. Define the estimator

f̂n(x, y) =
∑

Φ:|R(Φ)|≥ε

〈T,Φ〉Φ(x, y) (27)

where Φ runs over all Haar functions and the constant function 1. We will bound the expected squared error 
of f̂n, both pointwise and in L2.

3.1.1. Mean squared error of f̂n
Define the deterministic function

g(x, y) =
∑

Φ:|R(Φ)|≥ε

〈f,Φ〉Φ(x, y). (28)

We have ‖f̂n−f‖2
2 = ‖f̂n−g‖2

2+‖g−f‖2
2+2〈f̂n−g, g−f〉. Observe that EfT (x, y) = f(x, y); consequently, 

by linearity we have Ef f̂n = g and in particular Ef 〈f̂n − g, g − f〉 = 〈Ef f̂n − g, g − f〉 = 0. Therefore, we 
establish the bias-variance decomposition of the expected error

Ef‖f̂n − f‖2
2 = Ef‖f̂n − g‖2

2 + ‖g − f‖2
2. (29)

Now, by Corollary 3 we can control the bias term:

‖g − f‖2
2 ≤ CL2ε2α(logB−1

U
(1/ε) + 1), (30)

where C = C(BL, BU , α) is a constant. We will now derive an upper bound for Ef‖f̂n − g‖2
2. Observe that

Ef‖f̂n − g‖2
2 =

∑
Φ:|R(Φ)|≥ε

Ef 〈f − T,Φ〉2 =
∑

Φ:|R(Φ)|≥ε

Ef 〈η,Φ〉2. (31)

To compute an upper bound on Ef 〈η, Φ〉2, observe that Ef 〈η, Φ〉 = 0; consequently,
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Ef 〈η,Φ〉2 = Var(〈η,Φ〉) = Var
{

1
n

∑
x,y

η(x, y)Φ(x, y)
}

= 1
n2

∑
x,y

Var(η(x, y))Φ(x, y)2 ≤ ν

n
‖Φ‖2

2 = ν

n
.

(32)

Combining (31), (32) and Corollary 4 gives

Ef‖f̂n − g‖2
2 =

∑
Φ:|R(Φ)|≥ε

Ef 〈η,Φ〉2 ≤ 1
BL

ν

n
#{R : |R(Φ)| ≥ ε}

≤ 1
BL(1 −BU )

ν

n

( logB−1
U

(1/ε) + 1
ε

)
.

(33)

Since ε = (ν/(nL2))1/(2α+1), combining (29), (30), and (33) gives

sup
f∈F

Ef‖f̂n − f‖2
2 ≤ Cν2α/(2α+1)L2/(2α+1)n−2α/(2α+1) logB−1

U
(L2n/ν) (34)

where C = C(BL, BU , α) is a constant. We show in Section 3.1.3 that, when n is sufficiently big, no other 
estimator of f can outperform this one in terms of its dependence on L, ν and n.

Finally, note that if ε = 1, we can combine (29), (30), and (33) to obtain the estimate supf∈F Ef‖f̂n −
f‖2

2 ≤ Cν/n.

3.1.2. Pointwise squared error of f̂n
We will now derive an upper bound on the pointwise squared error of the estimator f̂n. That is, for any 

point (x0, y0) ∈ X×Y , we will bound Ef{(f(x0, y0) − f̂n(x0, y0))2}. Note that we only need to estimate the 
size of wavelet coefficients for wavelets containing (x0, y0); in particular, we only require that f be mixed 
Hölder(α) at (x0, y0).

Suppose first that ε < 1. Take the function g defined by (28). Observe that, since Ef f̂n(x0, y0) = g(x0, y0), 
we can write

Ef{(f(x0, y0) − f̂n(x0, y0))2}

= Ef (f̂n(x0, y0) − g(x0, y0))2 + {(f(x0, y0) − g(x0, y0))2}.
(35)

From Corollary 6, we have the bound

(f(x0, y0) − g(x0, y0))2 ≤ CL2ε2α(logB−1
U

(1/ε) + 1)2. (36)

As for the second term on the right side of (35), we have (with the sum over all wavelets Φ with 
(x0, y0) ∈ R(Φ) and |R(Φ)| ≥ ε)

Ef (f̂n(x0, y0) − g(x0, y0))2 = Ef

{∑
Φ

〈η,Φ〉Φ(x0, y0)
}2

≤ C

{∑
Φ

√
Ef 〈η,Φ〉2|R(Φ)|−1

}2

≤ C
ν

n

{∑
|R(Φ)|−1/2

}2

≤ C
ν

n

(logB−1
U

(1/ε) + 1)2

ε

(37)
Φ
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where we have used Corollary 5. Substituting the value ε = (ν/(nL2))1/(2α+1) and combining (35), (36) and 
(37) gives

Ef{(f̂n(x0, y0) − f(x0, y0))2} ≤ Cν2α/(2α+1)L2/(2α+1)n−2α/(2α+1) log2
B−1

U
(L2n/ν), (38)

where C = C(BL, BU , α) is a constant. Note that the pointwise bound is worse by an extra factor of 
logB−1

U
(L2n/ν) when compared to the mean squared estimate (34).

Finally, observe that if ε = 1, (35), (36) and (37) give supf∈F Ef{(f̂n(x0, y0) − f(x0, y0))2} ≤ Cν/n.

3.1.3. The minimax lower bound
In this section, we will show that under the Gaussian noise model with variance ν = σ2 the mean squared 

error of the estimator f̂n from Section 3.1 cannot be improved in its dependence on L, ν and n, as given by 
the bound (34) whenever n is sufficiently big, the parameters L, σ2, BL, BU , CL, CU are assumed fixed, and 
nX and nY are of comparable size: that is, we assume that there are positive constants CL and CU such 
that

CL ≤ nX

nY
≤ CU . (39)

Theorem 2. Let X and Y be finite sets with, respectively, nX and nY points satisfying (39) and partition 
trees TX and TY satisfying (19). Equip X and Y with normalized counting measure.

Fix α > 0, and let F = F(α, L) denote the set of functions with mixed Hölder(α) norm not exceeding L. 
Suppose we observe a single draw from each of a collection of independent random variables T (x, y) ∼
N(f(x, y), σ2), (x, y) ∈ X × Y , where σ2 is a known variance and f ∈ F is an unknown function. Then 
there is an N = N(BL, BU , α, L, σ2, CL, CU ) constant C = C(BL, BU , α, CL, CU ) > 0 such that for all 
n ≥ N ,

inf
f̂n

sup
f∈F

Ef‖f̂n − f‖2
2 ≥ Cσ4α/(2α+1)L2/(2α+1)n−2α/(2α+1) logB−1

U
(L2n/σ2). (40)

The infimum is over all estimators of f .

The proof we give is adapted from proofs of classical minimax lower bounds (see, for instance, [33,34]), 
and rests on the following lemma from Chapter 2 of [34].

Lemma 1. Suppose f0, . . . , fM ∈ F satisfy

1. ‖fj − fj′‖2 ≥ 2sn > 0 for all j = j′;
2. The likelihood ratios of the distribution under f0 and the distribution under fj are of the form

Λ(f0, fj) = dPf0

dPfj

= exp{Δj − λj lnM}

where 0 < λj < λ < 1 and the random variables Δj are positive with probability bounded away from 0 
under the model fj, i.e. Pfj (Δj ≥ 0) ≥ p > 0. Here, Δj is a random variable that may depend on n, and 
λj is a non-random number that may depend on n. The non-random constants p and λ are independent 
of n and j.

Then for any estimator f̂n,

max
1≤j≤M

Pfj (‖f̂n − fj‖2 ≥ sn) ≥ p/2.
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The strategy of the proof is as follows. We will construct a collection of functions f0, f1, . . . , fM ∈ F
satisfying the conditions of Lemma 1 when n is sufficiently large with

s2
n = Cσ4α/(2α+1)L2/(2α+1)n−2α/(2α+1) logB−1

U
(L2n/σ2) (41)

where C = C(BL, BU , α, CL, CU ) > 0 is a constant, and where p = 1/2. Chebyshev’s inequality tells us 
that

sup
f∈F

Ef (s−2
n ‖f̂n − f‖2

2) ≥ sup
f∈F

Pf (‖f̂n − f‖2 ≥ sn)

≥ max
1≤j≤M

Pfj (‖f̂n − fj‖2 ≥ sn)
(42)

Consequently,

sup
f∈F

Ef (‖f̂n − f‖2
2) ≥ s2

n max
1≤j≤M

Pfj (‖f̂n − fj‖2 ≥ sn)

≥ p

2Cσ4α/(2α+1)L2/(2α+1)n−2α/(2α+1) logB−1
U

(L2n/σ2)
(43)

which is the desired result.
We now turn to the construction of the functions f0, f1, . . . , fM . Let ε = (σ2/(nL2))1/(2α+1). Let R

denote the collection of rectangles R with area εBL ≤ |R| ≤ ε/BL, and let Nε denote the number of such 
rectangles.

For each rectangle R ∈ R, pick any wavelet ΦR(x, y) supported on R. Define

fR(x, y) = δLεα+1/2ΦR(x, y) (44)

where δ > 0 is a small constant to be chosen later. Since ‖ΦR‖2 = 1, ‖fR‖2
2 = δ2L2ε2α+1. The functions fR

are the basic building blocks of the functions fj , as we now describe.
The Varshamov–Gilbert bound states that there at least M ≡ �2Nε/8	 binary vectors of length Nε

whose pairwise Hamming distance ρH exceeds Nε/16; see [34] for a proof. For each such vector ωj =
(ωj,1, . . . , ωj,Nε

), define the function

fj(x, y) =
Nε∑
i=1

ωj,ifRi
(x, y) (45)

where R1, . . . , RNε
is some fixed but otherwise arbitrary ordering of the rectangles in R. Observe that the 

magnitude of the wavelet coefficients 〈fj , ΦR〉 are either 0 (if R /∈ R) or of size

δLεα+1/2 ≤ δL|R|α+1/2/B
α+1/2
L . (46)

By Theorem 1, by picking δ = δ(BL, BU , α) sufficiently small, we can guarantee that fj has mixed Hölder(α) 
norm not exceeding L.

Since the functions fRi
are pairwise orthogonal, the lower bound on Nε provided by Lemma 8 yields, for 

all n sufficiently large,

‖fj − fj′‖2
2 =

Nε∑
i=1

(ωj,i − ωj′,i)2‖fRi
‖2
2 = δ2L2ε2α+1ρH(ωj , ωj′)

≥ Nε

16 δ2L2ε2α+1 ≥ Cδ2L2ε2α log(1/ε)

= Cσ4α/(2α+1)L2/(2α+1)n−2α/(2α+1) log −1(L2n/σ2)

(47)
BU
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where in the last line we have substituted ε = (σ2/(nL2))1/(2α+1) and where C = C(BL, CL, CU , α) is a 
constant.

Now, let f0 ≡ 0. Then the likelihood ratio Λ(f0, fj) can be explicitly computed:

Λ(f0, fj) =
∏

(x,y) exp{−(2σ2)−1T (x, y)2}∏
(x,y) exp{−(2σ2)−1(T (x, y) − fj(x, y))2}

=
∏
(x,y)

exp{−(2σ2)−1(2T (x, y)fj(x, y) − fj(x, y)2)}

= exp
{

1
2σ2

∑
(x,y)

fj(x, y)2 −
1
σ2

∑
(x,y)

T (x, y)fj(x, y)
}

= exp
{

1
σ2

∑
(x,y)

(fj(x, y) − T (x, y))fj(x, y) −
1

2σ2n‖fj‖
2
2

}

(48)

Let Δj = 1
σ2

∑
(x,y)(fj(x, y) − T (x, y))fj(x, y) and λj lnM = 1

2σ2n‖fj‖2
2. Since T (x, y) − fj(x, y) ∼

N(0, σ2) under the model fj , Pfj (Δj ≥ 0) = 1/2 ≡ p. To apply Lemma 1, it remains to show that there is 
a λ ∈ (0, 1) such that λj < λ. We have

λj lnM = 1
2σ2n‖fj‖

2
2 = 1

2σ2n

Nε∑
j=1

δ2L2ε2α+1

= 1
2σ2nNεδ

2L2ε2α+1 = 1
2σ2nNεδ

2L2 σ2

nL2 = Nεδ
2

2

(49)

where we have used that ε = (σ2/(nL2))1/(2α+1). Since log2(M + 1) ≥ Nε/8, we can choose δ small enough 
so that λ ≡ (δ2Nε)/ lnM < 1. This completes the proof.

4. Simultaneous adaptation to all Hölder classes

We adapt the work of Donoho and Johnstone [19] to develop an estimator that is nearly optimal over 
all smoothness classes (that is, over all α > 0) in the presence of Gaussian noise. As in [19], this follows 
by developing an estimate of each wavelet coefficient of the function. Since the wavelet transform is an 
orthogonal transformation, each wavelet coefficient of the observed, noisy function is normally distributed 
around the true value, and we can reduce the argument we give to that of estimating a single normally 
distributed random variable.

Suppose Y ∼ N(θ, 1). For any δ ∈ (0, 1), p ∈ (0, 2), and τ =
√

2 log(1/δ), define mp
δ(θ) by

mp
δ(θ) = τp min{(θ/τ)2, 1}. (50)

Donoho and Johnstone consider the problem of estimating θ using with loss function (θ̂− θ)2/(δ +mp
δ(θ)), 

where θ̂ is the estimator. Since this loss function penalizes mistakes made at small values of θ more than 
those made at large values of θ, it pays to “shrink” the standard estimate Y of θ towards 0. Formally, for 
any τ > 0 we define the function

ητ (x) = (|x| − τ)+ sgn(x) (51)

which moves x closer to 0 by min{τ, |x|}. We then estimate θ by ητ (Y ) with τ =
√

2 log(1/δ).
Let M∗

p (δ) denote the maximum risk of this estimator; that is,
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M∗
p (δ) = sup

θ

Eθ[(θ − θ̂)2]
δ + mp

δ(θ)
. (52)

We then have the following lemma from [19]:

Lemma 2. There is a C > 0 so that for all δ sufficiently small,

M∗
p (δ) ≤ C log(1/δ)1−p/2. (53)

We will make use of the following trivial corollary to Lemma 2:

Corollary 1. Suppose Y ∼ N(θ, σ2), where σ2 is assumed to be known. Define the estimator of θ to be 
θ̂ = ηστ (Y ) where τ =

√
2 log(1/δ) and δ ∈ (0, 1). Then there is a constant C > 0 such that for all δ

sufficiently small,

sup
θ

Eθ[(θ̂ − θ)2]
δ + mp

δ(θ/σ) ≤ Cσ2 log(1/δ)1−p/2. (54)

We now define the estimator we will use. Following the notation in [19], let r = 2α/(2α + 1) and let 
p = 2(1 − r). Expand f in a two-dimensional Haar series:

f(x, y) =
∑
Φ

〈f,Φ〉Φ(x, y) ≡
∑
Φ

AΦΦ(x, y) (55)

Since the Haar transform is orthogonal, each observed Haar coefficient 〈T, Φ〉 is normally distributed 
around the true coefficient 〈f, Φ〉, with variance ε2 ≡ σ2/n. We will define the estimator f̂∗

n(x, y) by letting 
its wavelet coefficients be shrinkage estimators of f ’s wavelet coefficients; that is, let ÂΦ = ηετ (〈T, Φ〉) for 
non-constant tensor Haar functions Φ, and Â1 = 〈T, 1〉 and define f̂∗

n(x, y) by

f̂∗
n(x, y) =

∑
Φ

ÂΦΦ(x, y) (56)

where τ =
√

2 log(n). We will bound the mean squared error and the pointwise squared error of f̂∗
n.

4.1. Mean squared error of f̂∗
n

Suppose that the function f has mixed Hölder(α) norm L, for some α > 0. Since the squared error from 
estimating 〈f, 1〉 is of size O(1/n), we can ignore its contribution for, as we shall see, this is a smaller order 
of magnitude than that contributed by estimating the other Haar coefficients. By Corollary 1 with δ = 1/n
we have

Ef‖f − f̂∗
n‖2

2 =
∑
Φ

Ef{(AΦ − ÂΦ)2} ≤ C log(n)r
∑
Φ

(ε2/n + ε2mp
1/n(AΦ/ε))

= C log(n)r
∑
Φ

ε2/n + C log(n)rε2
∑
Φ

mp
1/n(AΦ/ε).

(57)

We will estimate each of the two sums on the right side of (57). For the first, since any rectangle can 
support no more than a constant (in fact, B−2

L −1) number of Haar functions, and the number of rectangles 
is no more than O(n), we have:

log(n)r
∑
Φ

ε2/n ≤ C log(n)rε2 = C log(n)r σ
2

n
. (58)
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As n → ∞, this term will become negligible.
We turn to the second sum from (57). Because f has mixed Hölder(α) norm L, |AΦ| ≤ L|R(Φ)|α+1/2. If 

we let ξΦ = L|R(Φ)|α+1/2/ε, we can write

ε2mp
1/n(AΦ/ε) ≤ ε2mp

1/n(ξΦ)

= L2/(2α+1)|R(Φ)|ε2rξ2(r−1)
Φ mp

1/n(ξΦ)

= L2/(2α+1)|R(Φ)|ε2r min
{(

ξΦ
τn

)2r

,

(
τn
ξΦ

)2(1−r)} (59)

where τn =
√

2 log(n). The last equality is easily verified from the definition of mp
1/n(ξΦ).

Let S > 0 satisfy Sα+1/2 = ετn/L. Then we observe that ξΦ/τn = (|R(Φ)|/S)α+1/2, and substituting this 
into (59) yields

ε2mp
1/n(AΦ/ε) ≤ L2/(2α+1)|R(Φ)|ε2r min

{(
|R(Φ)|

S

)2α

,
S

|R(Φ)|

}
. (60)

Summing over all wavelets Φ yields (with the constant C changing meaning from line to line):

ε2
∑
Φ

mp
1/n(AΦ/ε) ≤ L2/(2α+1)ε2r

∑
Φ

|R(Φ)|min
{(

|R(Φ)|
S

)2α

,
S

|R(Φ)|

}

≤ CL2/(2α+1)ε2r
∑
R

|R|min
{(

|R|
S

)2α

,
S

|R|

}

= CL2/(2α+1)ε2r
{ ∑

R:|R|≥S

S +
∑

R:|R|<S

|R|2α+1

S2α

}

≤ CL2/(2α+1)ε2r
{

logB−1
U

(1/S) + 1
}

≤ CL2/(2α+1)ε2r logB−1
U

(nL/σ2),

(61)

where we have used Corollary 4 and Corollary 5. Combining (57), (58) and (61) yields the estimate:

Ef‖f − f̂∗
n‖2

2 ≤ C log(n)r
(
σ2

n
+ L2/(2α+1)ε2r logB−1

U
(nL/σ2)

)

≤ C log2α/(2α+1)(n)(σ2L1/α/n)2α/(2α+1) logB−1
U

(nL/σ2)(1 + o(1))
(62)

Comparing (62) to (34), we see that the bound on the shrinkage estimator is only a factor of 
C log(n)2α/(2α+1) worse than that on the estimator (27) from Section 3.1, with C = C(BL, BU , α), even 
though the shrinkage estimator is not defined using the parameters L and α.

4.2. Pointwise squared error of f̂∗
n

We bound the expected squared error of f̂∗
n at an arbitrary point (x0, y0) ∈ X × Y . As we observed 

when estimating the mean squared error, the squared error from estimating 〈f, 1〉 is of size O(1/n), and 
hence we can ignore its contribution because, as we will see, this is a smaller order of magnitude than that 
contributed by estimating the other Haar coefficients. We have

f(x0, y0) − f̂∗
n(x0, y0) =

∑
Φ

(AΦ − ÂΦ)Φ(x0, y0) (63)
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the sum being over all Φ whose support contains (x0, y0). We have:

E(f(x0, y0) − f̂∗
n(x0, y0))2 ≤

(∑
Φ

√
E{(AΦ − ÂΦ)2}|Φ(x0, y0)|2

)2

≤ C

(∑
Φ

√
E{(AΦ − ÂΦ)2}|R(Φ)|−1

)2
(64)

where we have used the bound ‖Φ‖∞ = O(|R(Φ)|−1/2).
Observe that by Corollary 1 with δ = 1/n we get

E{(AΦ − ÂΦ)2} ≤ C log(n)1−p/2{ε2/n + ε2mp
1/n(AΦ/ε)}. (65)

Substituting (65) into (64) and using (a + b)1/2 ≤ a1/2 + b1/2 gives

E(f(x0, y0) − f̂∗
n(x0, y0))2 ≤ C

(∑
Φ

√
|R(Φ)|−1 log(n)r{ε2/n + ε2mp

1/n(AΦ/ε)}
)2

≤ C

(∑
Φ

√
|R(Φ)|−1 log(n)rε2/n

+ C
∑
Φ

√
|R(Φ)|−1 log(n)rε2mp

1/n(AΦ/ε)
)2

.

(66)

We estimate each summand on the right side of (66) separately. For the first sum, we have

∑
Φ

√
|R(Φ)|−1 log(n)rε2/n = log(n)r/2εn−1/2

∑
Φ

|R(Φ)|−1/2

≤ C log(n)r/2εn−1/2n1/2 logB−1
U

(n)

= C log(n)r/2ε logB−1
U

(n) = C
σ

n1/2 log(n)r/2 logB−1
U

(n)

(67)

where we have used Corollary 5. This term will become negligible as n → ∞.
As for the second sum on the right side of (66), by inequality (60) we have

∑
Φ

√
|R(Φ)|−1 log(n)rε2mp

1/n(AΦ/ε)

≤ C log(n)r/2L1/(2α+1)εr
∑
R

min
{(

|R|
S

)α

,

(
S

|R|

)1/2} (68)

where the sum is over all rectangles containing (x0, y0), and Sα+1/2 = ετn.
We can write the sum over R as:

∑
R

min
{(

|R|
S

)α

,

(
S

|R|

)1/2}
=

∑
|R|≤S

(
|R|
S

)α

+
∑

|R|>S

(
S

|R|

)1/2

≤ C(logB−1
U

(1/S) + 1) ≤ C logB−1
U

(nL/σ)

(69)

where we have used Corollary 5.
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From (68) and (69), we get
∑
Φ

√
|R(Φ)|−1 log(n)rε2mp

1/n(AΦ/ε) ≤ C log(n)r/2εr logB−1
U

(nL/σ). (70)

Consequently, combining (66), (67) and (70) with ε = σ2/n we get

E(f(x0, y0) − f̂∗
n(x0, y0))2

≤ C log(n)2α/(2α+1)(σ2L1/α/n)2α/(2α+1) log2
B−1

U
(nL/σ2)(1 + o(1))

(71)

This is only a factor of C log(n)2α/(2α+1) worse than (38), with C = C(BL, BU , α), even though the 
shrinkage estimator is not defined using the parameters L and α.

4.3. The mixed Hölder norm of f̂∗
n

We have shown that the shrinkage f̂∗
n estimator is expected to be reasonably close to the true function f , 

measured in L2 or pointwise. However, this property alone does not guarantee that f̂∗
n itself has small mixed 

Hölder norm. It follows from a result of Donoho [20] that f̂∗
n will have mixed Hölder(α) within a constant 

factor of f ’s with high probability (converging to 1 as n → ∞). Indeed, from Theorem 4.1 in [20] we have:

Theorem 3. The probability

Pr
{
|ÂΦ| ≤ |AΦ| for all Φ

}
(72)

that all the wavelet coefficients of the shrinkage estimator do not exceed those of the true function f converges 
to 1 as n → ∞.

Using the characterization of the mixed Hölder(α) norm L(f, α) via the magnitude of the wavelet coeffi-
cients, the next result is immediate:

Theorem 4. For any α > 0, there is a constant C = C(BL, BU , α) such that

Pr
{
L(f̂∗

n, α) ≤ CL(f, α)
}

(73)

converges to 1 as n → ∞.

In other words, the estimator f̂∗
n is almost as smooth as the true function f with high probability.

We illustrate the performance of the shrinkage estimator f̂∗
n numerically. We note that in order for the 

theory to apply, we must know the variance σ2. Absent this knowledge, Donoho and Johnstone [18,20,21]
propose using the robust estimator of σ defined as the median absolute deviation of the finest scale wavelet 
coefficients, divided by .6745; see also [35–37] for justification of this estimator. We adapt this idea to our 
setting and take our estimator σ̂ to be the median absolute deviation of the Haar coefficients at the product 
of the finest scales of each estimator, divided by .6745.

We note that there is a tendency for the shrinkage estimator to oversmooth the data; for instance, it 
is apparent from Fig. 1 that some of the small-scale Haar coefficients in the original function have been 
washed away by the shrinkage estimator. This phenomenon is apparent in the classical application of wavelet 
shrinkage estimators to signal denoising [20]. In the classical setting, it can be remedied by changing the 
amount of shrinkage based on the wavelet’s scale; the resulting estimator is known as the SUREShrink 
estimator [18]. However, with the SUREShrink estimator one loses the probabilistic guarantees that the 
resulting estimator is as smooth as f .
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Fig. 1. Right to left, top to bottom: the original matrix; the matrix plus i.i.d. Gaussian noise; the denoised matrix; the residual.

4.4. Averaging over trees

In many problems in data analysis, tree metrics are only used to approximate some other, continuous 
metric (or quasi-metric). The tree will most likely separate certain points at a high level that are actually 
close together in the true geometry. In many constructions of trees used in machine learning (see, e.g. [38–40], 
among others), the trees depend on certain parameters. By varying these parameters, we obtain a family 
of trees and corresponding tree metrics. Although any one tree will introduce artificial breaks between data 
points, combining the output from all the trees will help wash away these artifacts.

On this subject, we mention that there is a vast literature in theoretical computer science on ap-
proximating arbitrary metrics by averaging tree metrics; seminal papers on this subject include [29–31]. 
A conceptually similar idea appears in the paper [41], in which Coifman and Donoho confront the problem 
that classical wavelets are attached to the dyadic grid, which creates artifacts when the signal being pro-
cessed does not align with the grid. Their proposed solution involves combining the outputs from a number 
of shifted dyadic grids.

In the context of the present work, we consider the following scenario. Suppose that there are a family 
of pairs of tree metrics on X and Y , and that f has mixed Hölder norm not exceeding L for all pairs. This 
assumption will hold if, for example, there are intrinsic metrics on X and Y with respect to which f has 
mixed Hölder norm L, and each tree metric on X or Y dominates the intrinsic metric on that space.

We will denote by Π a distribution over pairs of trees; so if G is some random variable that depends on 
the tree pairs, EΠ[G] denotes its expected value. Let f̂∗

T ,n denote the shrinkage estimator based on the pair 
of trees T = (TX , TY ), and let f̂∗

Π,n = EΠf̂
∗
T ,n denote the expectation of these estimators over the family of 

random trees equipped with distribution Π.
For any function f , it follows easily from Jensen’s inequality that:

Ef‖f − f̂∗
Π,n‖2

2 ≤ EΠEf‖f − f̂∗
T ,n‖2

2 (74)

Taking supremums then yields:
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Fig. 2. Right to left, top to bottom: the clean function f , the function f with i.i.d. Gaussian noise added, the estimator with a 
single tree pair, the average of 5 estimators using random shifts of the trees, the average of 50 estimators using random shifts of 
the trees, the final residual.

sup
f

Ef‖f − f̂∗
Π,n‖2

2 ≤ EΠ sup
f

Ef‖f − f̂∗
T ,n‖2

2

≤ C log2α/(2α+1)(n)(σ2L1/α/n)−2α/(2α+1) logB−1
U

(nL/σ2)(1 + o(1)) (75)

This implies that as long as f has the same mixed Hölder norm L for all trees being averaged, then 
the maximum risk for the average estimator cannot be worse than the expected risk for each individual 
estimator. Consequently, we do not expect to do worse by averaging over multiple trees; in fact, we should 
do much better as averaging will wash away many of the artificial discontinuities any estimator based on a 
single tree will be faced with.

To illustrate this observation, we took the smooth function f(x, y) = (x − .5)(y − .5) on [0, 1] × [0, 1], 
sampled at an 32-by-32 equispaced grid of points, and built a family of randomly shifted (on the circle) 
dyadic trees. Since each tree metric dominates the Euclidean metric, if the function f has mixed Hölder(α)
norm L with respect to the Euclidean metric then it will have mixed Hölder(α) norm not exceeding L with 
respect to all the tree metrics, and so we may apply our analysis.

In Fig. 2, we show the original function with and without noise, and the denoised versions based on 1, 
5 and 50 random tree pairs, as well as the final residual (from the average of 50 estimators). In Fig. 3, 
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Fig. 3. The root mean square error of the average estimator, as a function of the number of tree pairs ranging from 1 to 50.

we plot the root mean squared error of the estimator obtained by averaging the individual estimators over 
increasing numbers of trees. We observe a dramatic improvement in the error rate.

5. Besov spaces and Calderón–Zygmund type decompositions

Sections 3 and 4 were concerned with recovering a mixed Hölder matrix that has been corrupted by noise. 
When the noise is Gaussian, an adaptation of the wavelet shrinkage estimator of Donoho and Johnstone was 
adapted to produce a matrix that is expected to be close to the noise-free matrix, and have mixed Hölder 
constant almost as small with high probability. In other words, if T (x, y) was the matrix of observations, 
we wrote T = f̂∗

n + δ, where f̂∗
n is as almost as smooth as the unknown f with high probability, and close 

to f in L2; and the residuals δ are approximately Gaussian.
The generative model we impose on the data is not always realistic. In particular, in many problems 

the partition trees on the rows and columns of the matrix are not known ahead of time; only the raw data 
matrix is given, and the part of the task is to discover the geometry by rearranging the rows and columns 
of the matrix. The trees built after such a process are likely to violate the assumption that the noise is 
independent. The analysis we have given in Section 4 of the wavelet shrinkage operator does not apply in 
this scenario.

We therefore turn to another way of extracting a mixed Hölder matrix from an arbitrary data matrix that 
does not impose a possibly unrealistic statistical model on the data when the partition trees are not known 
in advance. Instead of the model from Sections 3 and 4, we instead impose a weaker regularity condition 
on the data matrix – namely, that it lies in a Besov ball, which will be defined shortly. As discussed in the 
introduction, the Besov norms provide a different way of measuring a function’s regularity by looking at 
its variation at different scales. In Section 5.1, we will introduce multiple Besov norms analogous to those 
encountered in the Euclidean setting and prove their equivalence.

In [28], the norm
(∑

Φ
|〈f,Φ〉|p

)1/p

(76)

is introduced, where 0 < p < 2. It is shown in [28] that one can write a function f as a sum of a “good” 
function g, which is smooth, and a “bad” function b, which has small support, where the guarantees on g’s 
smoothness and b’s support size improve as this norm on f shrinks.
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In this section, we extend this result to a broader family of Besov norms, and give characterizations 
of these spaces without using the Haar system. These alternate characterizations will yield additional 
Calderón–Zygmund decompositions of f that are of potentially greater applicability than the one from 
[28].

In Appendix B.1 we will define the Besov norms and prove their equivalence for a single space X equipped 
with a partition tree. In Section 5.1, we will generalize these results to the case of the product X×Y of two 
spaces. In Section 5.2, we will prove additional Calderón-Zygmund decompositions based on these Besov 
norms.

5.1. Product Besov spaces

We now turn to defining equivalent Besov-type norms on the product X × Y of two spaces with tree 
metrics dX and dY , respectively. We first define the mixed modulus of continuity in the product of folders 
R = I × J ∈ TX × TY :

ωR,p(f) =
(

1
|R|

∫
R

∫
R

|f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)|pdxdydx′dy′
)1/p

. (77)

We then define the Besov norm, as in the case of a single space, by

‖f‖α,p =
( ∑

R=I×J:
I �=X,J �=Y

|R|−αpωR,p(f)p
)1/p

(78)

We will show that whenever p ≥ 1 and α > 0, this norm is equivalent to five other norms that measure the 
mixed variation of f on rectangles. We will also show that these five other norms are also equivalent to each 
other when p > 0, even though they are not equivalent to ‖f‖α,p for 0 < p < 1.

Let p > 0. We define the local p-variation of a function f on a rectangle R = I × J to be

vR,p(f) =
(∫

R

|f(x, y) −mX,If(y) −mY,Jf(x) + mR(f)|pdxdy
)1/p

(79)

and for α > 0, p > 0, we define the norm:

‖f‖(0)
α,p =

(∑
R

|R|−αpvR,p(f)p
)1/p

. (80)

We also define the wavelet norm

‖f‖(1)
α,p =

(∑
Φ

|R(Φ)|(−α−1/2+1/p)p|〈f,Φ〉|p
)1/p

(81)

where the sum is over all tensor products of Haar functions on X and Y , that do not include the constant 
functions.

Another equivalent norm is

‖f‖(2)
α,p =

(∑
R

|R|−αp‖ΔRf‖pp
)1/p

(82)

where the difference operators ΔR, R = I × J , are defined by
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ΔRf(x, y) = ΔX,IΔY,Jf(x, y) (83)

where

ΔX,If(x, y) =
∑

Ĩ∈sub(I)

mX,Ĩ(f)χĨ(x, y) −mX,I(f)χI(x, y) (84)

and

mX,If(y) = 1
|I|

∫
I

f(x, y)dx (85)

and the corresponding operators for Y are defined similarly.
Another equivalent norm is

‖f‖(3)
α,p =

(∑
R

|R|−(α+1/p)p|δR(f)|p
)1/p

(86)

where for any folders I ∈ TX and J ∈ TY , we define

δI×J (f) = 1
|I||J |

∫
I×J

f − 1
|I ′||J |

∫
I′×J

f − 1
|I||J ′|

∫
I×J ′

f + 1
|I ′||J ′|

∫
I′×J ′

f (87)

where I ′ and J ′ denote the parent folders of I and J , respectively. It will also be convenient to define the 
one-dimensional differences

δX,I(f) = 1
|I|

∫
I×Y

f − 1
|I ′|

∫
I′×Y

f (88)

and

δY,J(f) = 1
|J |

∫
X×J

f − 1
|J ′|

∫
X×J ′

f. (89)

Note that we can expand f as

f =
∑

I �=X,J �=Y

δI×J(f)χI×J(x, y) +
∑
I �=X

δX,I(f)χI(x) +
∑
J �=Y

δY,J(f)χJ(y) +
∫

X×Y

f. (90)

It will be convenient to define, for I ∈ TX and J ∈ TY

δ̂If(y) = 1
|I|

∫
I

f(x, y)dx− 1
|I ′|

∫
I′

f(x, y)dx (91)

and

δ̂Jf(x) = 1
|J |

∫
J

f(x, y)dy − 1
|J ′|

∫
J ′

f(x, y)dy (92)

where I ′ denotes the parent of I and J ′ the parent of J . Note that δI×Jf = δ̂I δ̂Jf = δI(δ̂Jf) = δJ(δ̂If), 
where δI and δJ are defined by
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δI(f) = 1
|I|

∫
I

f − 1
|I ′|

∫
I′

f (93)

and similarly for δJ .
Finally, we also define the norm

‖f‖(4)
α,p = inf

{( ∑
R=I×J:

I �=X,J �=Y

|aR|p|R|(−α+1/p)p
)1/p

: f =
∑
R

aRχR

}
(94)

In other words, for every expansion of f as a linear combination of indicator functions on rectangles, we 
look at the weighted p-norm of the expansion coefficients (excluding those rectangles of the form X × J

or I × Y ), where the weights are powers of the rectangle’s area. The norm of f is then the minimum such 
p-norm.

Note that the norms ‖f‖α,p and ‖f‖(i)
α,p, 0 ≤ i ≤ 4 do not change if we add to f any function that is 

constant in one of the variables. Strictly speaking, we should use the term “semi-norm”, though we will 
continue to use the term “norm” instead.

We say two norms are “equivalent” if the ratio of those two norms of a function f are bounded above 
and below by constants that depend only on the intrinsic parameters of the space, namely BL, BU , α and p. 
We prove the following result in Appendix B:

Theorem 5. The norms ‖f‖α,p and ‖f‖(i)
α,p, 0 ≤ i ≤ 4, are equivalent for all p ≥ 1 and all α > 0. The norms 

‖f‖(i)
α,p, 0 ≤ i ≤ 4 are equivalent for all p > 0 and all α > 0.

5.2. Calderón–Zygmund decompositions

We now turn to the main result of this section, namely the use of the Besov norms in writing Calderón–
Zygmund decompositions of f . In particular, we show that a matrix f can be decomposed into a sum of 
two matrices, one with a prescribed a mixed Hölder norm and the other with small support; the quality of 
this decomposition can be controlled by the sizes of the Besov norms from Section 5.1.

We will define two explicit decompositions, one based on the norm ‖f‖(1)
α,p and the other on the norm 

‖f‖(4)
α,p. For the first, we expand f in a Haar series:

f =
∑
R

〈f,Φ〉Φ. (95)

We define the function S by

S(x, y) =
∑
R

|R|(−α−1/2+1/p)p |〈f,Φ〉|p
|R| χR(x, y) (96)

and, for a parameter λ > 0, we also define the set Eλ by

Eλ = {(x, y) : S(x, y) ≥ λ}. (97)

We then define the bad function bλ by

bλ(x, y) =
∑

R(Φ)⊂Eλ

〈f,Φ〉χR(x, y), (98)

and the good function gλ by
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gλ = f − bλ =
∑

R:R∩Ec
λ �=∅

〈f,Φ〉χR. (99)

We then have the following theorem:

Theorem 6. Suppose p > 0 and α > 0. Let f be a function on X × Y . Then for any λ > 0, with gλ and bλ
defined by (98) and (99), we have f = gλ + bλ, and the following properties hold:

1. gλ has mixed variation M(g, α) ≤ Cλ1/p, for a constant C = C(BL, BU , α)
2. The support of bλ is contained in the set Eλ, and

|Eλ| ≤
(‖f‖(1)

α,p)p

λ
(100)

3. Eλ2 ⊂ Eλ1 whenever λ1 < λ2.
4. bλ has mean zero and zero marginals (that is, mXbλ = mY bλ = 0).

When α = 1/p −1/2 and 0 < p < 2, this is exactly the decomposition described in [28]. We next consider 
a different decomposition, which imposes fewer restrictions on the bad function bλ; in particular, it is not 
required to have zero marginals. We illustrate on selected examples that the new decomposition is far more 
natural in many settings.

Suppose we expand f as a linear combination of indicator functions of rectangles:

f =
∑
R

aRχR. (101)

Define D = D(f, {aR}R, α, p) by

D =
( ∑

R=I×J:
I �=X,J �=Y

|R|(−α+1/p)p|aR|p
)1/p

. (102)

Note that with appropriate choices of coefficients aR, we can have D = ‖f‖(3)
α,p, or D = ‖f‖(4)

α,p.
We define the function S by

S(x, y) =
∑

R=I×J:
I �=X,J �=Y

|R|(−α+1/p)p |aR|p
|R| χR(x, y) (103)

and, for a parameter λ > 0, we also define the set Eλ by

Eλ = {(x, y) : S(x, y) ≥ λ}. (104)

We then define the bad function bλ by

bλ(x, y) =
∑

R⊂Eλ

aRχR(x, y), (105)

and the good function gλ by

gλ = f − bλ =
∑

R:R∩Ec
λ �=∅

aRχR. (106)

We then have the following theorem:
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Theorem 7. Suppose p > 0 and α > 0. Let f be a function on X × Y . Then for any λ > 0, with gλ and bλ
defined by (105) and (106), we have f = gλ + bλ, and the following properties hold:

1. gλ has mixed variation M(g, α) ≤ Cλ1/p, for a constant C = C(BL, BU , α, p)
2. The support of bλ is contained in the set Eλ, and

|Eλ| ≤
Dp

λ
(107)

3. Eλ2 ⊂ Eλ1 whenever λ1 < λ2.

Unlike Theorem 6, there is no requirement that bλ will have zero marginals, and in general, it will not. 
However, this turns out to be an advantage in many applications. Many quite reasonable models of noise or 
outliers do not satisfy such a stringent assumption. We will illustrate this by example following the proof.

The proof of Theorem 7 mimics the proof of the result from [28]; the proof of Theorem 6 is similar and 
will be omitted.

Proof of Theorem 7. First, observe that the function S satisfies:
∫

X×Y

S(x, y)dxdy =
∑
R

|aR|p|R|(−α+1/p)p = Dp. (108)

Consequently, since Eλ ≡ {(x, y) : S(x, y) ≥ λ} it follows from Chebyshev’s inequality

|Eλ| ≤
Dp

λ
. (109)

It is also obvious that if λ1 < λ2, then Eλ2 ⊂ Eλ1 .
Finally, for any R not contained in Eλ, there is some (x, y) ∈ R with S(x, y) < λ; consequently,

|R|(−α+1/p)p |aR|p
|R| ≤ S(x, y) < λ (110)

and so |aR| ≤ λ1/p|R|α. From Proposition 1, it follows that M(gλ, α) ≤ Cλ1/p, as desired. �
Finding the decomposition f =

∑
R aRχR with minimum value of 

∑
R |R|(−α+1/p)p|aR|p is a convex 

optimization problem when p ≥ 1. The case p = 1 is particularly well-suited to the Calderón–Zygmund 
decomposition, as expansions that minimize l1 norms are generally sparse [42,43] and so encourage the 
sparsity of the function bλ.

We tested two different decompositions on functions of the form f = g+b, where g is a function with small 
mixed Hölder(1) norm and b is a “bad” function. For the first choice of b, we took a function b consisting of 
randomly placed bottom-level (on both trees) tensor Haar functions, with large coefficients. The resulting 
function f is shown in Fig. 4, along with the individual functions g and b. Note that the color scalings are 
different so that the non-zero values of b can be shown more clearly.

We compared a Haar-based decomposition described in Theorem 6 with a minimization-based decom-
position from Theorem 7, where the coefficients are obtained by solving the minimization problem, with 
parameters p = 1 and α = 1. This minimization problem can be formulated as a linear program; to compute 
the solution numerically, we used the CVX optimization package [44,45].

In general, the coefficients {aR}R that solve the minimization problem are not uniquely defined, and hence 
there is a not a unique definition of the functions gλ and bλ using the minimization-based decomposition. 
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Fig. 4. The function f = g + b.

Fig. 5. The functions f = g + b (on the left), g (in the middle) and b (on the right). The colors for b have been rescaled for display 
purposes.

However, the solutions we obtained all yielded functions bλ whose support coincided with the spikes. In this 
sense, both decompositions are successful in that they identify the support of the bad function b.

However, the two decompositions are not equally successful when we run the same experiment with a 
different bad function b, consisting of rectangular bumps instead of Haar functions. The resulting function 
f is shown in Fig. 5, along with the individual functions g and b; the color scalings are different so that 
the non-zero values of b can be shown more clearly. In Fig. 6, we show the Haar-based decomposition for 
the choice of λ with the smallest error between the original function g and the function gλ. Since the bad 
function b in this case cannot be written as a sum of Haar functions with small support, the Haar-based 
decomposition fails to cleanly split g and b for any value of λ; that is, it does not recover the correct 
decomposition.

By contrast, for a large range of values of λ the minimization approach recovers a bad function bλ whose 
support coincides with the function b. We show the functions gλ and bλ from this decomposition in Fig. 6
as well.

6. Conclusion

This paper has considered two different ways of writing a data matrix with tree metrics on the rows 
and columns as a sum of a mixed Hölder matrix and a well-modeled residual. In Sections 3 and 4, we 
adapted the wavelet shrinkage estimators of Donoho and Johnstone to remove Gaussian noise from a mixed 
Hölder matrix. In the classical case, these results depend largely on the equivalence of the Hölder norm of 
a function and the magnitude of its wavelet coefficients; because this equivalence also applies to the mixed 
Hölder norm on tree metrics and the size of the tensor Haar coefficients, the same analysis goes through. 
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Fig. 6. The first row shows the Calderón–Zygmund decomposition using l1 minimization, while the second row shows the Haar-based 
decomposition.

The primary technical challenge in this theory results from the non-homogeneity of the trees (there is not 
a strong notion of the level of the tree, since the decay rates of folders can differ drastically down different 
branches).

In Section 5, we developed a theory of Besov spaces on trees and the products of trees. In particular, 
we defined a natural modulus of continuity and a corresponding multiscale Besov norm, and showed that 
this norm is equivalent to other norms that measure the variation of a function across different scales. 
Extending the results from one dimension to multiple dimensions was straightforward in all cases; we apply 
the one-dimensional result to the function’s variation in each variable separately. The main application of 
this theory is that a function can be decomposed into a sum of a mixed Hölder function and a function with 
small support; the Besov norm controls the quality of this decomposition.

To apply these decompositions to a real data matrix, the user must have row and column trees so that 
the matrix in question satisfies the necessary conditions. In many data analysis problems that we encounter 
in practice, however, such trees may not be known a priori, and it is incumbent on the practitioner to 
construct these trees from scratch.

In [32,28], heuristic methods for achieving a good matrix organization are discussed. The basic technique 
for matrix organization described there is to iterate between organizing the rows and columns of the matrix, 
using the organization of one to refine the organization of the other. Much recent work has been done 
following this same framework; detailed experimental results are contained in Jerrod Ankenman’s doctoral 
dissertation [46], which can be explored interactively online [47]. The algorithms used in this work are based 
on a metric between vectors related to the Earth Mover’s Distance (EMD) between probability measures 
[48]; the computation of EMD on trees is studied in the papers [49] and [50].

Finally, we note that it is straightforward to extend the theoretical results on the product of two spaces 
to the product of d ≥ 3 spaces. In applications where data is indexed by three or more coordinate axes this 
extension may be useful; for instance, see the recent work [51], in which an experimental database with three 
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axes is studied by building trees on each axis. The tree-building algorithms are based on multi-dimensional 
versions of EMD and related metrics, described in [50].
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Appendix A. Estimates for trees and function approximation

In this subsection, we will prove some basic estimates we will need throughout the paper. Some of these 
are improved versions of estimates found in [28].

Lemma 3. For every 0 < ε ≤ 1

∑
I:|I|≥ε

|I| ≤ logB−1
U

(1/ε) + 1.

Proof. Let P0 = {X}, and for n ≥ 1 let Pn contain all the folders in TX that are children of the folders 
in Pn−1. Then by condition (19), for every I ∈ Pn |I| ≤ Bn

U . Consequently, if n > logB−1
U

(1/ε), then every 
folder in Pn is of size smaller than ε. So

∑
I:|I|≥ε

|I| ≤

⌊
log

B
−1
U

(1/ε)
⌋

∑
n=0

∑
I∈Pn

|I| ≤ �logB−1
U

(1/ε)	 + 1

which gives the desired result. �
Lemma 4. For every 0 < ε ≤ 1 and β > 0

∑
I:|I|≤ε

|I|β+1 ≤ 1
1 −Bβ

U

εβ .

Proof. Let P0 be the set of all folders I such that |I| ≤ ε but whose parent has size strictly bigger than ε; 
if ε = 1, take P0 = {X}. It is easy to see that the folders in P0 are disjoint. For every n ≥ 1, recursively 
define Pn to be the collection of all children of the folders in the partition Pn−1; note that the folders in Pn

are also disjoint. Then

∑
I:|I|≤ε

|I|β+1 =
∑
n≥0

∑
I∈Pn

|I|β+1.

We will estimate 
∑

I∈Pn
|I|β+1 for each n ≥ 0. Observe that for any folder I ∈ Pn, |I| ≤ Bn

U ε. Since the 
folders in Pn are disjoint, the sum of their measures is no greater than 1; therefore

∑
I∈Pn

|I|β+1 ≤ (Bn
U ε)β

∑
I∈Pn

|I| ≤ (Bn
U ε)β .

Consequently,
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∑
I:|I|≤ε

|I|β+1 ≤ εβ
∑
n≥0

Bnβ
U = 1

1 −Bβ
U

εβ

as desired. �
Corollary 2. For any 0 < ε < 1, we have

∑
R:|R|≤ε

|R|β+1 ≤ εβ
(

1
1 −Bβ

U

logB−1
U

(1/ε) + 1
(1 −Bβ

U )2
+ 1

1 −Bβ
U

)
.

(The sum is over rectangles R = I × J of area not exceeding ε, where I ∈ TX and J ∈ TY .)

Proof. We can write
∑

R:|R|≤ε

|R|β+1 =
∑

I∈TX :
|I|≤ε

|I|β+1
∑
J∈TY

|J |β+1 +
∑

I∈TX :
|I|>ε

|I|β+1
∑

J∈TY :
|J|≤ε/|I|

|J |β+1

≤ 1
(1 −Bβ

U )2
εβ + 1

1 −Bβ
U

∑
I:|I|>ε

|I|β+1εβ |I|−β

≤ 1
(1 −Bβ

U )2
εβ + 1

1 −Bβ
U

εβ
∑

I:|I|>ε

|I|

≤ 1
(1 −Bβ

U )2
εβ + 1

1 −Bβ
U

εβ(logB−1
U

(1/ε) + 1). �

We deduce a sharper version of an approximation theorem found in [28].

Corollary 3. Let f have mixed Hölder(α) constant L. Let

g(x, y) =
∑

Φ:|R(Φ)|≥ε

〈f,Φ〉Φ(x, y).

Then

‖f − g‖2
2 ≤ L2

B2
L

ε2α
(

1
1 −B2α

U

logB−1
U

(1/ε) + 1
(1 −B2α

U )2 + 1
1 −B2α

U

)
.

Proof. The proof is exactly the same as in [28], except we use the tighter estimate for 
∑

R:|R|≤ε |R|2α+1. �
Lemma 5. For every 0 < ε ≤ 1, the number of folders I ∈ TX of area greater than or equal to ε is no more 
than

1
1 −BU

1
ε
.

Proof. Let S0 denote the set of all folders of size greater than or equal to ε and with the additional property 
that they are either singletons or all of their children are of size strictly less than ε. Then the folders in S0
are all disjoint. For n ≥ 1, inductively define the set Sn, n ≥ 1, to be the collection of folders I such that 
I is a parent of a folder in Sn−1 and I does not contain any other parent of a folder in Sn−1. Again, the 
folders in Sn are all disjoint. Furthermore, each folder in Sn has size greater than or equal to B−n

U ε, and 
consequently,
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#Sn
ε

Bn
U

≤
∑
I∈Sn

|I| ≤ |X| = 1

and so #Sn ≤ Bn
U/ε.

We will show that any folder of size greater than or equal to ε must lie in some Sn. Assuming this for 
the moment, it implies that the total number of such folders can be upper bounded by

∑
n≥0

#Sn ≤
∑
n≥0

Bn
U

ε
= 1

ε

1
1 −BU

,

which is the desired result.
We now show that any folder of size greater than or equal to ε lies in some Sn. Given the collection Sn, 

call I a kth generation ancestor of Sn if I contains some folder in Sn, and if k is the maximum number of 
folders sitting between I and some folder in Sn, not including this folder or I.

We will prove the following claim by induction on k: for any n, all kth generation ancestors of Sn lie in 
Sm for some m ≥ n. To establish the base case k = 0, suppose that I is a 0th generation ancestor of Sn. 
Then I is the parent of some folder J ∈ Sn. Suppose that I contained the parent Ĵ ′ of some other folder 
Ĵ ∈ Sn. Then we have the chain of inclusions Ĵ � Ĵ ′ � I, with Ĵ ∈ Sn; but this violates the condition 
that the maximal such chain ending with I can have length 0. By this contradiction, I does not contain the 
parent of any folder in Sn, and hence is an element of Sn+1.

Now suppose the claim is true for some k ≥ 0. Take any n and any (k+ 1)st generation ancestor I of Sn. 
Then there is a chain of folders J0 � J1 � · · · � Jk+1 � I where J0 ∈ Sn; and no longer such chain exists. 
In particular, Jl is the parent folder of Jl−1.

Now, J1 is the parent of J0 ∈ Sn; so the only way for J1 to not be in Sn+1 would be if it contained the 
parent of some other folder in Sn; i.e. if there were folders F0, F1 where F0 ∈ Sn and F0 � F1 � J1. But 
this is impossible, since we could then form the chain F0 � F1 � J1 � · · · � Jk+1 � I which has length 
k + 2. Consequently, J1 must lie in Sn+1. But then the chain J1 � · · · � Jk+1 � I shows that I is a kth

generation ancestor of Sn+1, and by the induction hypothesis I ∈ Sm for some m ≥ n + 1.
In particular, we have shown that all the ancestors of S0 must lie in some Sn. We conclude by observing 

that any folder of size greater than or equal to ε is an ancestor of Sn. To see this, take any such folder I
and let I0 be its largest child; let I1 be the largest child of I0; and proceed in this manner. Since the folder 
sizes decay, eventually some Il will either be a singleton of size exceeding ε, which is an element of S0; or 
some Il will be of size less than ε. Take the first such Il; so |Il−1| ≥ ε. Since Il is the largest child of Il−1, 
all the children of Il−1 have size less than ε, and hence Il−1 ∈ S0. This completes the proof. �
Corollary 4. For every 0 < ε ≤ 1, the number of rectangles R = I × J of area greater than or equal to ε is 
bounded above by

1
1 −BU

1
ε
(logB−1

U
(1/ε) + 1).

Proof. The number of rectangles of area greater than or equal to ε is

∑
R:|R|≥ε

1 =
∑

J∈TY :
|J|≥ε

∑
I∈TX :

|I|≥ε/|J|

1 ≤ 1
1 −BU

∑
J∈TY :
|J|≥ε

|J |
ε

≤ 1
1 −BU

1
ε
(logB−1

U
(1/ε) + 1)

which is the desired result. �
Lemma 6. Suppose x ∈ X, β > 0 and 0 < ε ≤ 1. Then
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∑
I�x:|I|≤ε

|I|β ≤ 1
1 −Bβ

U

εβ (A.1)

and
∑

I�x:|I|≥ε

|I|−β ≤ 1
1 −Bβ

U

ε−β . (A.2)

Proof. For the first inequality, order the folders in the sum as I0 � I1 � . . . . Then |Ij | ≤ Bj
U |I0| ≤ Bj

U ε, 
and consequently

∑
I∈Sx,ε

|I|β ≤ εβ
∑
j≥0

Bjβ
U = εβ

1
1 −Bβ

U

. (A.3)

The proof of the second inequality is similar. �
Corollary 5. Suppose (x, y) ∈ X × Y , β > 0 and 0 < ε ≤ 1. Let Sx,y,ε denote the set of all rectangles 
R = I × J ∈ TX × TY containing (x, y) and of size not exceeding ε. Then

∑
R�(x,y):|R|≤ε

|R|β ≤ εβ
(

1
1 −Bβ

U

logB−1
U

(1/ε) + 1
(1 −Bβ

U )2
+ 1

1 −Bβ
U

)
(A.4)

and
∑

R�(x,y):|R|≥ε

|R|−β ≤ 1
1 −Bβ

U

ε−β(logB−1
U

(1/ε) + 1). (A.5)

Proof. To prove the first inequality, we have
∑

R�(x,y):|R|≤ε

|R|β =
∑
I�x

|I|β
∑
J�y:

|J|≤min{ε/|I|,1}

|J |β

=
∑
I�x:
|I|≥ε

|I|β
∑
J�y:

|J|≤|I|/ε

|J |β +
∑
I�x:
|I|<ε

|I|β
∑
J�y

|J |β

≤
∑
I�x:
|I|≥ε

|I|β
∑
J�y:

|J|≤|I|/ε

|J |β + 1
(1 −Bβ

U )2
εβ

≤ 1
1 −Bβ

U

∑
I�x:
|I|≥ε

|I|β εβ

|I|β + 1
(1 −Bβ

U )2
εβ

≤ εβ

1 −Bβ
U

(logB−1
U

(1/ε) + 1) + 1
(1 −Bβ

U )2
εβ

as desired.
For the second inequality, we have

∑
R∈Sx,y,ε

|R|−β =
∑
I�x:
|I|≥ε

|I|−β
∑
J�y:

|J|≥ε/|I|

|J |−β

≤
∑
I�x:
|I|≥ε

|I|−β ε−β

1 −Bβ
U

|I|β ≤ 1
1 −Bβ

U

ε−β(logB−1
U

(1/ε) + 1). �
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We can deduce a stronger version of a result from [28].

Corollary 6. Let f have mixed Hölder(α) constant L. Let

g(x, y) =
∑

Φ:|R(Φ)|≥ε

〈f,Φ〉Φ(x, y) (A.6)

and let C(BL, BU ) = supΦ‖Φ‖|R(Φ)|1/2. Then

‖f − g‖∞ ≤ C(BL, BU )
B2

L

Lεα
(

1
1 −Bα

U

logB−1
U

(1/ε) + 1
(1 −Bα

U )2 + 1
1 −Bα

U

)
.

Proof. The proof is exactly the same as in [28], except we use the tighter estimate for 
∑

R:|R|≤ε |R|α. �
Corollary 7. For any β > 0 and for any rectangle R ∈ TX × TY ,

∑
R̃⊇R

|R̃|−β ≤
(

1
1 −Bβ

U

)2

|R|−β . (A.7)

Proof. First, note that for any folder |I|, taking ε = |I| Lemma 6 gives 
∑

J⊇I |J |−β ≤ 1
1−Bβ

U

|I|−β . The 

result follows easily. �
The following result will be useful in Section 5.

Proposition 1. Suppose f =
∑

R aRχR. Suppose that for every rectangle R = I×J with I = X and J = Y we 
have |aR| ≤ Af |R|α. Then the mixed variation M(f, α) of f does not exceed C ·Af , where C = C(BL, BU , α)
is a constant.

We will deduce this from the one-dimensional version:

Lemma 7. Suppose f =
∑

I aIχI . Suppose that for every folder I = X, |aI | ≤ Af |I|α. Then f(x) − f(y) ≤
CAfdX(x, y)α for all x = y, where C = C(BL, BU , α) is a constant.

Proof. The proof is nearly identical to the corresponding result for the Haar system in [5]. �
Proof of Proposition 1. For any fixed folder I = X, the function 

∑
J∈TY

aI×JχJ(y) has coefficients |aI×J | ≤
Af |I|α|J |α when J = Y ; so by Lemma 7,

∣∣∣∣
∑
J∈TY

aI×J (χJ(y) − χJ(y′))
∣∣∣∣ ≤ CAf |I|αdY (y, y′)α (A.8)

Now, for any fixed y, y′ ∈ Y , we write the difference

f(x, y) − f(x, y′) =
∑
I∈TX

χI(x)
{ ∑

J∈TY

aI×J(χJ(y) − χJ(y′))
}
. (A.9)

Viewing this as a function of x, by (A.8) and Lemma 7 we see

f(x, y) − f(x, y′) − f(x′, y) − f(x′, y′) ≤ CAfdY (y, y′)αdX(x, x′)α (A.10)

which is the desired result. �
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For the next result, we will assume that the number of points in X and Y are comparable; more precisely, 
that there are positive constants CL and CU such that

CL ≤ nX

nY
≤ CU (A.11)

Lemma 8. Suppose (A.11) holds, and suppose that X and Y are equipped with normalized counting measure; 
that is, every singleton in X has measure n−1

X , and every singleton in Y has measure n−1
Y . Let b > 0, β > 0, 

and suppose that ε = b · n−1/(β+1). Let Nε denote the number of rectangles R such that

εBL ≤ |R| ≤ ε/BL. (A.12)

Then there is an N = N(BL, CL, CU , b, β) and a constant C = C(BL, CL, CU , β) such that for all n > N

Nε ≥ C
1
ε

logB−1
L

(n). (A.13)

Proof. For any δ > 0, let TX(δ) denote the set of all folders I ∈ TX of size |I| ≤ δ, but whose parent I ′
has size |I ′| > δ. As long as δ ≥ 1/nX , the folders in TX(δ) form a partition of X (they are disjoint and 
cover X). Consequently,

1 = |X| =
∑

I∈TX(δ)

|I| ≤ δ(#TX(δ))

and so there are at least 1/δ folders in TX(δ). Note too that any folder I in TX(δ) satisfies |I| ≥ BL|I ′| ≥ BLδ, 
where I ′ denotes I’s parent. Define TY (δ) similarly.

We will count rectangles of the form R = I × J where I ∈ TX(
√
εB−l−1

L ) and J ∈ TY (
√
εBl

L). To ensure 
n−1
X ≤ |I| ≤ 1 and n−1

Y ≤ |J | ≤ 1, it suffices to take values of l satisfying

l ≥ −β

2(β + 1) logB−1
L

(n) − 1
2 logB−1

L
(CL) − 1

2 logB−1
L

(b) (A.14)

l ≤ 1
2(β + 1) logB−1

L
(n) − 1

2 logB−1
L

(b) − 1 (A.15)

l ≤ β

2(β + 1) logB−1
L

(n) − 1
2 logB−1

L
(CU ) + 1

2 logB−1
L

(b) − 1 (A.16)

l ≥ −1
2(β + 1) logB−1

L
(n) + 1

2 logB−1
L

(b). (A.17)

When n is sufficiently large, there are at least C logB−1
L

(n) such values of l, where C = C(BL, CL, CU , β). 
Furthermore, for each l, there are at least ε−1/2Bl+1

L folders in TX(
√
εB−l−1

L ), and at least ε−1/2B−l
L folders 

in TY (
√
εBl

L); consequently, there are at least BL/ε such rectangles R for each l, and so in total there are 
at least Cε−1 logB−1

L
(n) rectangles.

Observe that for any such R, |R| ≤ √
εB−l−1

L

√
εBl

L = ε/BL and |R| ≥ B2
L

√
εB−l−1

L

√
εBl

L = εBL, so these 
rectangles satisfy condition (A.12). This proves the desired lower bound on Nε. �
Appendix B. Besov spaces and the proof of Theorem 5

The purpose of this section is to prove Theorem 5, on the equivalence of the product Besov norms. 
However, before doing so it is convenient to state and prove the analogous result for Besov norms on a 
single space. The proof for product spaces will be easier to derive using the one-dimensional result.
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B.1. Besov spaces on a single space

We define the analogue of the classical modulus of continuity as follows. For p > 0 and any folder I ∈ TX , 
let

ωI,p(f) =
(

1
|I|

∫
I

∫
I

|f(x) − f(y)|pdxdy
)1/p

(B.1)

when p < ∞, and

ωI,∞(f) = sup
x,y∈I

|f(x) − f(y)|. (B.2)

ωI,p(f) measures the p-variation of f on the folder I. Let α > 0 and p > 0. We define the following 
Besov-type norm for functions on X.

‖f‖α,p =
( ∑

I �=X

|I|−αpωI,p(f)p
)1/p

. (B.3)

In other words, we measure the variation of f on each folder I, as measured by ωI,p(f), and then take 
a weighted Lp-norm of these variations. When p = ∞, the p-norm of the summands is replaced by the 
supremum; note that ‖f‖α,∞ is simply the Hölder(α) norm of f .

Whenever p ≥ 1 and α > 0, we will show that the norm ‖f‖α,p is equivalent to five other norms, each 
of which measures the variation of the averages of f across different folders in a different way. We will also 
show that these five other norms are all equivalent to each other for all p > 0 and α > 0.

Let f be a function on X and α > 0. Then for any folder I ∈ TX , define the mean p-variation of f on I
by

vI,p(f) =
(∫

I

|f(x) −mI(f)|pdx
)1/p

(B.4)

when p < ∞, and

vI,∞(p) = sup
x∈I

|f(x) −mI(f)|. (B.5)

In other words, vI,p(f) measures how far f differs from its average on I, where the difference is measured 
in Lp.

Let α > 0 and p > 0. We define:

‖f‖(0)
α,p =

( ∑
I �=X

|I|−αpvI,p(f)p
)1/p

. (B.6)

In other words, we measure the mean variation of f on each folder I, as measured by vI,p(f), and then take 
a weighted Lp-norm of these variations.

We can also use the Haar coefficients to measure the function’s variation, defining

‖f‖(1)
α,p =

(∑
φ

|I(φ)|(−α−1/2+1/p)p|〈f, φ〉|p
)1/p

(B.7)

Another equivalent norm is
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‖f‖(2)
α,p =

( ∑
I �=X

|I|−αp‖ΔIf‖pp
)1/p

(B.8)

where the difference operators ΔI are defined by

ΔIf(x) =
∑

Ĩ∈sub(I)

mĨ(f)χĨ(x) −mI(f)χI(x) (B.9)

Yet another equivalent norm is

‖f‖(3)
α,p =

( ∑
I �=X

|I|(−α+1/p)p|δI(f)|p
)1/p

(B.10)

where the difference operators δI are defined by

δI(f) = 1
|I|

∫
I

f − 1
|I ′|

∫
I′

f (B.11)

and where I ′ denotes the parent folder of the folder I.
Finally, we also define the norm

‖f‖(4)
α,p = inf

{( ∑
I �=X

|aI |p|I|(−α+1/p)p
)1/p

: f =
∑
I

aIχI

}
(B.12)

In other words, for every expansion of f as a linear combination of indicator functions on folders, we look at 
the weighted p-norm of the expansion coefficients (excluding the topmost folder I = X), where the weights 
are powers of the folder’s measure. The norm of f is then the minimum such p-norm.

All the norms we have defined are equivalent in size, for appropriate parameter ranges. More precisely, 
we have the following theorem:

Theorem 8. The norms ‖f‖α,p and ‖f‖(i)
α,p, 0 ≤ i ≤ 4, are equivalent for all p ≥ 1 and all α > 0. The norms 

‖f‖(i)
α,p, 0 ≤ i ≤ 4 are equivalent for all p > 0 and all α > 0.

The remainder of this section is devoted to proving Theorem 8. In Section B.2, we will then give the 
proof of the two-dimensional version, Theorem 5.

Lemma 9. For p > 0, there is a constant C = C(BL, BU , p) such that ωI,p(f) ≤ CvI,p(f) for all functions 
f on X.

Proof. For p < ∞, we write

|f(x) − f(y)|p ≤ C(p)(|f(x) −mI(f)|p + |f(y) −mI(f)|p). (B.13)

Integrating each side in both x and y over I yields and dividing by |I| yields the result. The case p = ∞ is 
even simpler. �
Corollary 8. For p > 0 and α > 0, there is a constant C = C(BL, BU , p) such that ‖f‖α,p ≤ C‖f‖(0)

α,p for 
all functions f on X.

Lemma 10. For p ≥ 1, there is a constant C = C(BL, BU , p) such that vI,p(f) ≤ CωI,p(f) for all functions 
f on X.
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Proof. From Jensen’s inequality, we have

∫
I

|f(x) −mI(f)|pdx =
∫
I

∣∣∣∣f(x) − 1
|I|

∫
I

f(y)dy
∣∣∣∣
p

dx

=
∫
I

∣∣∣∣ 1
|I|

∫
I

f(x) − f(y)dy
∣∣∣∣
p

dx

≤ 1
|I|

∫
I

∫
I

|f(x) − f(y)|pdydx (B.14)

which immediately yields the desired result. �
Corollary 9. For p ≥ 1 and α > 0, there is a constant C = C(BL, BU , p) such that ‖f‖(0)

α,p ≤ C‖f‖α,p for 
all functions f on X.

Lemma 10 and Corollary 9 are not true when 0 < p < 1. It is easy to build a counterexample; take, for 
instance, the function f defined by

f(x) =

⎧⎨
⎩
|I|−1, if x ∈ I

(1 − |I|)−1, if x /∈ I
(B.15)

where I is some folder in TX . It is easy to check that the ratio vX,p(f)p/ω(X, p)(f)p is proportional to 
|I|p−1 + (1 − |I|)p−1, and so is unbounded as |I| goes to zero whenever 0 < p < 1.

Lemma 11. For any function f on X, any folder I ∈ TX and any p > 0,

‖ΔIf‖pp =
∑

Ĩ∈sub(I)

|δĨ(f)|p|Ĩ| (B.16)

Proof. We have

ΔIf =
∑

Ĩ∈sub(I)

mI(f)χĨ −
∑

Ĩ∈sub(I)

mĨ(f)χĨ =
∑

Ĩ∈sub(I)

δĨ(f)χĨ (B.17)

and the result follows. �
The following corollary is immediate:

Corollary 10. The norms ‖f‖(2)
α,p and ‖f‖(3)

α,p are equivalent.

We turn to the other norms. The following lemma will be convenient.

Lemma 12. Suppose {aI}I⊂I∗ is any collection of numbers, indexed by the folders in TX contained in I∗; 
suppose too that p > 0 and 0 < s < 1/p. Then there is a constant C = C(p, s) such that

( ∑
I⊂I∗

|aI ||I|
)p

≤ C|I∗|p(1−s)
∑
I⊂I∗

|I|sp|aI |p (B.18)
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Proof. If 0 < p ≤ 1, the result is immediate, since
( ∑

I⊂I∗

|aI ||I|
)p

≤
∑
I⊂I∗

(|aI ||I|)p. (B.19)

Suppose p > 1. Let Pl denote the set of subfolders of I∗ such that 2−(l+1) < |I|/|I∗| ≤ 2−l, and let 
1/p + 1/q = 1. Then

∑
I⊂I∗

|aI ||I| =
∑
l≥0

∑
I∈Pl

|aI ||I| ≤
∑
l≥0

( ∑
I∈Pl

|aI |p
)1/p( ∑

I∈Pl

|I|q
)1/q

. (B.20)

Now
∑
I∈Pl

|I|q ≤ |I∗|q
∑
I∈Pl

2−lq ≤ 2|I∗|q2−l(q−1)
(B.21)

since there are no more than 2l+1 folders in Pl. Consequently,

∑
I⊂I∗

|aI ||I| ≤
∑
l≥0

( ∑
I∈Pl

|aI |p
)1/p( ∑

I∈Pl

|I|q
)1/q

≤ C
∑
l≥0

( ∑
I∈Pl

|aI |p
)1/p(

|I∗|q2−l(q−1)
)1/q

= C|I∗|
∑
l≥0

2−l(1−1/q)
( ∑

I∈Pl

|aI |p
)1/p

≤ C|I∗|
(∑

l≥0

2−l(q−1)2lsq
)1/q(∑

l≥0

∑
I∈Pl

2−lsp|aI |p
)1/p

≤ C|I∗|1−s

(∑
l≥0

∑
I∈Pl

|I|sp|aI |p
)1/p

= C|I∗|1−s

( ∑
I⊂I∗

|I|sp|aI |p
)1/p

(B.22)

Note that the geometric series converges since s < 1/p. This completes the proof. �
We now show the equivalence of ‖f‖(3)

α,p and ‖f‖(4)
α,p.

Proposition 2. The norms ‖f‖(3)
α,p and ‖f‖(4)

α,p are equivalent.

Proof. Since we can write

f −mXf =
∑
I �=X

δI(f)χI (B.23)

the inequality ‖f‖(4)
α,p ≤ ‖f‖(3)

α,p is immediate. For the other direction, take any expansion of f as a linear 
combination of indicator functions, f(x) =

∑
I aIχI(x). Take any I = X. We will estimate the size of δI . 

First, observe that
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δI =
∑
Ĩ

aĨ

(
|I ∩ Ĩ|
|I| − |I ′ ∩ Ĩ|

|I ′|

)
. (B.24)

The only summands that are non-zero are those with Ĩ � I ′. Suppose Ĩ � I ′; then a crude estimate yields
∣∣∣∣ |I ∩ Ĩ|

|I| − |I ′ ∩ Ĩ|
|I ′|

∣∣∣∣ ≤ 2 |Ĩ||I| . (B.25)

We get the estimate

|δI | ≤ 2
∑
Ĩ�I′

|aĨ |
|Ĩ|
|I| . (B.26)

Consequently, if max{0, 1/p − α} < s < 1/p we have, using Lemma 12

∑
I �=X

|I|(−α+1/p)p|δI |p ≤ C
∑
I �=X

|I|−(α+1/p)p
( ∑

Ĩ�I′

|aĨ |
|Ĩ|
|I|

)p

≤ C
∑
I �=X

|I|(−α+1/p−s)p
∑
Ĩ�I′

|aĨ |p|Ĩ|sp

≤ C
∑
Ĩ �=X

|aĨ |p|Ĩ|sp
∑
I⊃Ĩ

|I|(−α+1/p−s)p

≤ C
∑
Ĩ �=X

|aĨ |p|Ĩ|(−α+1/p)p

(B.27)

which is the desired result. �
Next we bring the wavelet norm into the picture.

Lemma 13. There is a constant C = C(BL, BU , p) such that

‖ΔIf‖pp ≤ C
∑

φ:I(φ)=I

|〈f, φ〉|p|I|1−p/2 (B.28)

for all functions f on X

Proof. One easily checks that

ΔIf =
∑

φ:I(φ)=I

〈f, φ〉φ. (B.29)

From the estimate ‖φ‖∞ ≤ C|I(φ)|−1/2, it follows that ‖φ‖p ≤ C|I(φ)|1/p−1/2, from which we get

‖ΔIf‖pp ≤ C
∑

φ:I(φ)=I

|〈f, φ〉|p|I|1−p/2. � (B.30)

Corollary 11. There is a constant C = C(BL, BU , p) such that ‖f‖(2)
α,p ≤ C‖f‖(1)

α,p for all functions f on X.

Proposition 3. The norms ‖f‖(0)
α,p and ‖f‖(2)

α,p are equivalent.
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Proof. First, we write

(ΔIf)(x) =
∑

Ĩ∈sub(I)

mĨ(f)χĨ(x) −mI(f)χI(x)

=
∑

Ĩ∈sub(I)

(mĨ(f) − f(x))χĨ(x) − (mI(f) − f(x))χI(x)
(B.31)

Therefore,

‖ΔI‖pp ≤ C

{ ∑
Ĩ∈sub(I)

vĨ,p(f)p + vI,p(f)p
}

(B.32)

from which ‖f‖(2)
α,p ≤ C‖f‖α,p easily follows.

For the other direction, we write (f −mI(f))χI as a telescopic sum:

(f −mI(f))χI =
∑
Î⊂I

ΔÎf (B.33)

When 0 < p ≤ 1, this yields the estimate

vI,p(f)p ≤
∑
Î⊂I

‖ΔÎf‖pp (B.34)

from which it follows that
∑
I �=X

|I|−αpvpI,p ≤
∑
I �=X

|I|−αp
∑
Î⊂I

‖ΔÎf‖pp

=
∑
Î �=X

‖ΔÎf‖pp
∑
I⊃Î

|I|−αp ≤ C
∑
Î �=X

|Î|−αp‖ΔÎf‖pp
(B.35)

where C = C(BU , α, p); so ‖f‖α,p ≤ C‖f‖(2)
α,p. When p > 1, a little more work is required. For l ≥ 0, let Pl

denote the folders sitting l levels below I (so P0 = {I}, P1 = sub(I), etc.). (B.33) can then be written as:

(f −mI(f))χI =
∑
l≥0

∑
Î∈Pl

ΔÎf (B.36)

Let 0 < s < α, and 1/p + 1/q = 1. We have

|(f −mI(f))χI |p ≤
(∑

l≥0

∑
Î∈Pl

|ΔÎf |
)p

≤
(∑

l≥0

B−lsq
U

)p/q ∑
l≥0

Blsp
U

( ∑
Î∈Pl

|ΔÎf |
)p

= C
∑
l≥0

Blsp
U

∑
Î∈Pl

|ΔÎf |p ≤ C|I|sp
∑
Î⊂I

|Î|−sp|ΔÎf |p
(B.37)

where we have used the fact that the supports of the functions ΔÎf are disjoint, so 
∑

Î∈Pl
|ΔÎf |p =∑

Î∈Pl
|ΔÎf |p. Taking the integral of each side yields:

vI,p(f)p ≤ C|I|sp
∑
Î⊂I

|Î|−sp‖ΔÎf‖pp (B.38)
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Consequently, we have
∑
I �=X

|I|−αpvI,p(f)p ≤ C
∑
I �=X

|I|(−α+s)p
∑
Î⊂I

|Î|−sp‖ΔÎf‖pp

= C
∑
Î �=X

|Î|−sp‖ΔÎf‖pp
∑
I⊃Î

|I|(−α+s)p

≤ C
∑
Î �=X

|Î|−αp‖ΔÎf‖pp

(B.39)

i.e. ‖f‖α,p ≤ C‖f‖(2)
α,p. �

We now complete the full proof of equivalence of all the norms:

Proposition 4. There is a constant C = C(BL, BU , α, p) such that ‖f‖(1)
α,p ≤ C‖f‖(4)

α,p for all functions f
on X.

Proof. We introduce some notation. For any Haar function φ(x), if I is a child folder of I(φ) let aφI denote 
the unique value that φ takes on I. We can therefore write φ =

∑
I∈sub(I(φ)) a

φ
IχI . We have the estimate 

|aφI | ≤ C|I(φ)|−1/2.
Take any expansion of f as a linear combination of indicator functions, f =

∑
I aIχI . Since the Haar 

functions are all mean zero, we have

〈f, φ〉 =
∑

Ĩ�I(φ)

∑
I∈sub(I(φ))

aĨa
φ
I |Ĩ ∩ I| ≤ C|I(φ)|−1/2

∑
Ĩ�I(Φ)

|aĨ ||Ĩ|. (B.40)

Using this estimate, we apply Lemma 12 and get, for max{0, 1/p − α} < s < 1/p,

∑
φ

|I(φ)|(−α−1/2+1/p)p|〈f, φ〉|p ≤ C
∑
φ

|I(φ)|(−α−1+1/p)p
( ∑

I�I(φ)

|aI ||I|
)p

≤ C
∑
Ĩ

|Ĩ|(−α+1/p−s)p
∑
I⊂Ĩ

|aI |p|I|sp

= C
∑
I

|aI |p|I|sp
∑
Ĩ⊃I

|Ĩ|(−α+1/p−s)p

≤ C
∑
I

|aI |p|I|(−α+1/p)p

(B.41)

or in other words, ‖f‖(1)
α,p ≤ C‖f‖(4)

α,p, as desired. �
Combining Corollary 8, Corollary 9, Corollary 10, Corollary 11, Proposition 2, Proposition 3 and Propo-

sition 4, we have completed the proof of Theorem 8.

B.2. Proof of Theorem 5

We now turn to the proof of Theorem 5 on the equivalence of the two-dimensional Besov norms.

Lemma 14. For p > 0, there is a constant C = C(BL, BU , p) such that ωR,p(f) ≤ CvR,p(f) for all functions 
f on X × Y and rectangles R = I × J .
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Proof. We apply Lemma 9, the corresponding result for one space, twice. For fixed x, consider f(x, y) −
mX,If(y) as a function of y. By Lemma 9, we have

1
|J |

∫
J

∫
J

|f(x, y) −mX,If(y) − f(x, y′) + mX,If(y′)|pdydy′

≤ C

∫
J

|f(x, y) −mX,If(y) −mY,Jf(x) + mRf |pdy. (B.42)

Now we fix y and y′ and consider f(x, y) − f(x, y′) as a function of x. Applying Lemma 9 again to this 
function yields

1
|I|

∫
I

∫
I

|f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)|pdxdx′

≤ C

∫
I

|f(x, y) − f(x, y′) −mX,If(y) + mX,If(y′)|pdx (B.43)

Putting (B.42) and (B.43) together gives the result. �
Corollary 12. For p > 0 and α > 0, there is a constant C = C(BL, BU , p) such that ‖f‖α,p ≤ C‖f‖(0)

α,p for 
all functions f on X.

Lemma 15. For p ≥ 1, there is a constant C = C(BL, BU , p) such that vI,p(f) ≤ CωI,p(f) for all functions 
f on X.

Proof. As in the proof of Lemma 14, applying Lemma 10 to the functions x �→ f(x, y) − f(x, y′) and 
y �→ f(x, y) −mX,If(y) gives the result. �
Corollary 13. For p ≥ 1 and α > 0, there is a constant C = C(BL, BU , p) such that ‖f‖(0)

α,p ≤ C‖f‖α,p for 
all functions f on X.

Lemma 16. For any function f on X × Y , rectangle R = I × J , I ∈ TX and J ∈ TY , and any p > 0,

‖ΔR‖pp =
∑

Ĩ∈sub(I)

∑
J̃∈sub(J)

|δĨ×J̃ (f)|p|Ĩ|p|J̃ |p. (B.44)

Proof. This follows by repeated application of the corresponding one-dimensional result, Lemma 11. By 
Lemma 11, we have

∫
|ΔX,IΔY,Jf(x, y)|pdx =

∑
Ĩ∈sub(I)

|δ̂ĨΔY,Jf(y)|p|Ĩ|. (B.45)

Integrating out in y and applying Lemma 11 again then yields
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∫ ∫
|ΔX,IΔY,Jf(x, y)|pdxdy =

∫ ∑
Ĩ∈sub(I)

|δ̂ĨΔY,Jf(y)|p|Ĩ|dy

=
∑

Ĩ∈sub(I)

∫
|ΔY,J δ̂Ĩf(y)|p|Ĩ|dy

=
∑

Ĩ∈sub(I)

∑
J̃∈sub(J)

|δ̂J̃ δ̂Ĩf |p|Ĩ||J̃ |

=
∑

Ĩ∈sub(I)

∑
J̃∈sub(J)

|δĨ×J̃f |p|Ĩ||J̃ |

(B.46)

which is the desired result. �
Corollary 14. The norms ‖f‖(2)

α,p and ‖f‖(3)
α,p are equivalent.

Proposition 5. The norms ‖f‖(3)
α,p and ‖f‖(4)

α,p are equivalent.

Proof. Since we can write

f =
∑

I �=X,J �=Y

δI×J(f)χI×J(x, y) +
∑
I �=X

δI(f)χI(x) +
∑
J �=Y

δJ(f)χJ(y) +
∫

X×Y

f, (B.47)

the inequality ‖f‖(4)
α,p ≤ ‖f‖(3)

α,p is immediate.
For the other direction, take any expansion of f as a linear combination of indicator functions of rectangles: 

f =
∑

R aRχR. Fix any folder I, and define the function

gI(y) =
∑
J∈TY

aI×JχJ(y). (B.48)

By Proposition 2, we have the inequality
∑
J �=Y

|δJ (g)|p|J |(−α+1/p)p ≤ C
∑
J �=Y

|aI×J |p|J |(−α+1/p)p (B.49)

Now, we have

δ̂Jf(x) =
∑
I∈TX

δJ(gI)χI(x) (B.50)

and so another application of Proposition 2 yields
∑
I �=X

|δI×J (f)|p|I|(−α+1/p)p =
∑
I �=X

|δI(δ̂Jf)|p|I|(−α+1/p)p

≤ C
∑
I �=X

|δJ(gI)|p|I|(−α+1/p)p (B.51)

Combining (B.49) and (B.51) yields the desired result. �
Lemma 17. There is a constant C = C(BL, BU , p) such that

‖ΔRf‖pp ≤ C
∑

Φ:R(Φ)=R

|〈f,Φ〉|p|R|1−p/2 (B.52)



JID:YACHA AID:1181 /FLA [m3L; v1.199; Prn:1/02/2017; 11:53] P.44 (1-46)
44 J. Ankenman, W. Leeb / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
for all functions f on X × Y . Note that the sum is over all tensor Haar functions φ(x)ψ(y) (non-constant) 
so that I(φ) × J(ψ) = R.

Proof. We prove this by repeated application of the corresponding one-dimensional result, Lemma 13. 
Suppose R = I×J . We fix an arbitrary y and consider ΔY,Jf(x, y) as a function of x. Lemma 13 then gives

∫
|ΔX,IΔY,Jf(x, y)|pdx ≤ C

∑
φ:I(φ)=I

|〈ΔY,Jf(·, y), φ〉|p|I|1−p/2. (B.53)

Now fix any φ with I(φ) = I and consider the function y �→ 〈f(·, y), φ〉. From Lemma 13 applied to this 
function, we observe:

∫
|〈ΔY,Jf(·, y), φ〉|pdy =

∫
|ΔY,J〈f(·, y), φ〉|pdy

≤ C
∑

ψ:J(ψ)=J

|〈〈f, φ〉, ψ〉|p|J |1−p/2

= C
∑

ψ:J(ψ)=J

|〈f, φψ〉|p|J |1−p/2. (B.54)

Combining (B.53) and (B.54) yields the desired result. �
Corollary 15. There is a constant C = C(BL, BU , p) such that ‖f‖(2)

α,p ≤ C‖f‖(1)
α,p for all functions f on 

X × Y .

Proposition 6. There is a constant C = C(BL, BU , α, p) such that ‖f‖(1)
α,p ≤ C‖f‖(2)

α,p for all functions f on 
X × Y .

Proof. The proof is nearly identical to that of Proposition 7 below; we leave the details to the reader. �
We complete the proof that all norms are equivalent by showing ‖f‖(0)

α,p � ‖f‖(1)
α,p.

Proposition 7. The norms ‖f‖(0)
α,p and ‖f‖(1)

α,p are equivalent.

Proof. As usual, we reduce to the corresponding statement for the one-dimensional norms. Fix a Haar
function φ on X let gφ = 〈f(·, y), φ〉. Observe that

vJ,p(gφ)p =
∫
J

|〈f(·, y), φ〉 −mJ〈f, φ〉|pdy

=
∫
J

|〈f(·, y) −mY,J(f), φ〉|pdy. (B.55)

Then Theorem 8 implies
∑
ψ

|J(ψ)|(−α−1/2+1/p)p|〈gφ, ψ〉|p �
∑
J �=Y

|J |−αp|vp,J(gφ)|p

=
∑
J �=Y

|J |−αp

∫
J

|〈f(·, y) −mY,J(f), φ〉|pdy. (B.56)

Now, again by Theorem 8 we have
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∑
φ

|I(φ)|(−α−1/2+1/p)p|〈f(·, y) −mY,J(f), φ〉|p

�
∑
I �=X

|I|−αp

∫
I

|f(x, y) −mY,Jf(x) −mX,If(y) + mI×J(f)|pdx. (B.57)

Putting (B.56) and (B.57) together, we get:

‖f‖(1)
α,p =

∑
φ

∑
ψ

(|I(φ)||J(ψ)|)(−α−1/2+1/p)p|〈f, φψ〉|p

=
∑
φ

|I(φ)|(−α+1/2)p
∑
ψ

|J(ψ)|(−α−1/2+1/p)p|〈gφ, ψ〉|p

�
∑
φ

|I(φ)|(−α−1/2+1/p)p
∑
J �=Y

|J |−αp

∫
J

|〈f(·, y) −mY,J(f), φ〉|pdy

= C
∑
J �=Y

|J |−αp

∫
J

∑
φ

|I(φ)|(−α−1/2+1/p)p|〈f(·, y) −mY,J(f), φ〉|pdy

�
∑
J �=Y

|J |−αp

∫
J

∑
I �=X

|I|−αp

∫
I

|f(x, y) −mY,Jf(x) −mX,If(y) + mI×J(f)|pdxdy

= C‖f‖(0)
α,p (B.58)

which is the desired result. �
This completes the proof of Theorem 5.
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