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Abstract

We study the family of sliced Cramér metrics, showing that they are robust to a broad class of geometric
deformations. Our central results are that the sliced Cramér distance between a function and its deformation
may be bounded by certain natural measures of the deformation’s displacement, multiplied by the function’s
mean mixed norm. These results extend to sliced Cramér distances between tomographic projections. We also
remark on the effect of convolution on the sliced Cramér metrics. We compare these properties of sliced Cramér
metrics to similar properties satisfied by Wasserstein distances. In addition, we study computationally efficient
Fourier-based discretizations of the Cramér and sliced Cramér distances in 1D and 2D, and prove that they are
robust to heteroscedastic noise. The results are illustrated by numerical experiments.

1 Introduction

This paper is concerned with properties of the sliced Cramér metrics, a family of distances that extend the classical
univariate Cramér metrics [12, 56, 67, 79] to functions in Rd via the “slicing” operation. Sliced Cramér metrics have
been the subject of investigation in a number of recent works in machine learning and image processing [6, 39, 29, 61],
where they are contrasted with sliced Wasserstein distances. Our main results describe the robustness of these
distances to deformations of the input functions. The question of robustness is natural when considering which metric
to use for a given application, as one would often like to use a metric that is insensitive to small perturbations of
the input data. Prior work has explored the robustness of Wasserstein-type metrics, including the sliced Wasserstein
distances, to certain geometric deformations. In the present work, we will show that the sliced Cramér metrics
exhibit similar properties. In addition, we also study other properties of practical interest, namely the sliced Cramér
metrics’ behavior under convolutions and in the presence of additive heteroscedastic noise.

1.1 Geometric deformations

It is often desirable for a metric to be robust to a specified class of deformations of the inputs. For example, in image
processing, one may seek a metric that is insensitive to small translations, rotations, changes of scale, or perturbations
in the parameters that generate the image. While there are many classes of deformations of practical interest, in
this paper, we consider the family of push-forward deformations of a function: if Φ is a C1 bijection mapping into
the domain of a function f , it induces the deformation fΦ(x) = f(Φ(x))|∇Φ(x)| of f . Such deformations preserve
f ’s integral and L1 norm. Other works have considered metric stability under different classes of deformations,
such as those that preserve f ’s L∞ norm [42, 3]; however, integral-preserving deformations are more natural for
understanding sliced Cramér metrics, which are often used to compare probability measures.

In prior work [37, 54, 61], it is shown that certain metrics are robust to the action of deformations, in the sense
that the distance between a function and its deformation under Φ may be bounded above by a suitable measure of
the “size” of Φ. One possible definition of deformation size is the maximum displacement, maxx |x− Φ(x)|. In this
paper, we consider a family of measures of displacement size, defined in Section 2.1, which includes the maximum
displacement as a special case. Proposition 2.1 in Section 2.1 relates the different measures of deformation size.
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1.2 Wasserstein and sliced Wasserstein distances

Prior works on metric robustness have focused primarily on the family of Wasserstein distances, defined between
probability distributions. Informally, the p-Wasserstein distance between two probability distributions f and g is
equal to the minimal cost of transforming f into g by rearranging the mass, where the cost of moving mass from
x to y is proportional to |x − y|p [70, 71]; we review the precise definition of Wasserstein distances in Section
2.3. The Wasserstein distances are popular metrics in a range of machine learning and statistical applications
[50, 51, 59, 9, 52, 58, 38, 8, 55, 46, 10]. Sliced Wasserstein distances are defined by averaging the 1D Wasserstein
distances over all 1D tomographic projections of the functions [6, 39, 29, 61].

It is known that Wasserstein-type distances exhibit several kinds of geometric robustness, as explored in the
prior works [37, 54, 61]. Specifically, [54, 61] show robustness to rigid deformations (translations and rotations) for
comparing 2D tomographic projections of a 3D volume; this suggests that these distances – and other distances
satisfying similar properties – are a natural choice for studying tomographic images, such as those arising from
single particle cryogenic electron microscopy (cryo-EM) [64, 7, 15], as well as other scientific problems for which the
measurement modality only permits observing projections of an object [13, 48, 26, 27, 65, 11].

In Section 2, specifically Theorem 2.2 and Theorem 2.3, we state fairly general robustness properties of Wasser-
stein and sliced Wasserstein distances. Though we have not seen these results published previously, they follow
straightforwardly from prior work, and further help elucidate why Wasserstein distances are often a useful class of
distances. The fact that Wasserstein-type distances are robust to deformations is not surprising, as robustness is
essentially “baked into” the optimization problem that defines the Wasserstein distance. Indeed, from the Monge
formulation of Wasserstein distance it is tautologically true that the p-Wasserstein distance between a probability
density f and its deformation fΦ is bounded by the maximum displacement of Φ. It is therefore natural to ask
whether other families of metrics exhibit similar robustness properties, even when such robustness is not an intrinsic
part of their definition. This is one of the motivations behind our present work.

1.3 Cramér and sliced Cramér metrics

The focus of this work is the family of sliced Cramér metrics. We will recall the precise definition of these metrics
in Section 2.6: briefly, the p-Cramér distance between univariate functions f and g is the Lp distance between
the Volterra operator (the indefinite integral operator) applied to f and g, and the sliced Cramér distance between
multivariate functions f and g is defined by averaging the Cramér distances between all one-dimensional tomographic
projections of f and g.

The Cramér and sliced Cramér metrics have been proposed as alternatives to the Wasserstein and sliced Wasser-
stein distances in certain machine learning environments [6, 39, 29]. Despite this, it appears that the geometric
properties of the sliced Cramér metrics (or even the Cramér metrics themselves) have not been thoroughly explored.
Furthermore, whereas Wasserstein and sliced Wasserstein distances are defined between probability distributions,
certain applications require distances between functions with both positive and negative values (such as when ob-
servations are corrupted by additive noise). Because sliced Cramér distances are defined between any two functions,
not just probability distributions, and because the two families of metrics have similar definitions (in fact, the sliced
1-Cramér and sliced 1-Wasserstein metrics are identical), it is natural to consider using sliced Cramér distances
in these settings. It therefore becomes of particular interest to understand whether they share similar robustness
properties as Wasserstein-type distances.

We will show that, like Wasserstein and sliced Wasserstein distances, the sliced Cramér distances are provably
robust to deformations. In fact, the robustness bounds we prove for sliced Cramér metrics are in some sense stronger
than those for Wasserstein distances: more precisely, when p > 1, the sliced p-Cramér metric is bounded by a concave,
non-linear function of the deformation’s maximum displacement, whereas the corresponding bound on Wasserstein
grows linearly with the maximum displacement. That is, while the bounds are similar for small displacements,
the bounds for the sliced Cramér metrics are stronger for large displacements. Of course, whether or not this is
an advantage will depend on the specific application; nevertheless, it is of interest to understand the differences in
behavior between these metrics.

1.4 Noise and convolutions

In addition to showing their robustness to deformations, we will remark on the behavior of sliced Cramér metrics
under convolutions of the input functions. In typical scientific applications, each observation will be a convolution of
the underlying physical object with a filter that arises from the measurement apparatus. It is therefore of interest to
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understand how a metric changes when the inputs are each convolved by a common function. Since convolution is a
smoothing operation, one expects that the convolved functions will be closer to each other than the clean functions.
Indeed, this is the case for Lp distances (due to Young’s convolution inequality), and is also true for Wasserstein
and sliced Wasserstein distances. We make the simple observation that the same is true for sliced Cramér distances.
This result essentially appears in the paper [74]; though the statement there is restricted to comparing probability
distributions, it is straightforward to extend it to the case of general functions.

We will also study computationally efficient, Fourier-based discretizations of the 1D Cramér metric and 2D sliced
Cramér metric; the latter is based on the discretization described in [61]. We will show that this discretization
is robust to additive, heteroscedastic Gaussian noise: that is, when applied to samples from a signal-plus-noise
model, the estimated distance converges to the distance between the signals only, and filters out the noise. This
is a useful property for a metric to have (though one that is by no means unique to the sliced Cramér metrics –
there are many methods for filtering out noise). The result also highlights a difference between the sliced Cramér
and Wasserstein metrics, alluded to earlier in Section 1.3: because Wasserstein-type distances are defined between
probability distributions, it is not always clear how to define them for noisy samples, whose values may be positive
or negative and whose sums may not be equal. By contrast, sliced Cramér metrics are a priori defined between
functions with mixed signs and unequal integrals.

1.5 Mean mixed norms

The main results in this paper bound the sliced Cramér distance between a function f and its deformation fΦ. Of
course, these bounds necessarily depend on both the function f and the deformation Φ. We have already alluded
to the dependence on Φ in Section 1.1. The dependence on f is through its so-called mean mixed norm, defined
by averaging f ’s mixed L1-Lp norms; the precise definition may be found in Section 2.2. While they may appear
complicated at first glance, the use of the function’s mean mixed norm, as opposed to the more simpy defined Lp

norm, permits bounds that do not explicitly depend on the size of f ’s support. We also observe (see Remark 1 in
Section 2.2 below) that compactly supported functions in Lp necessarily have finite mean mixed norm.

1.6 Notation and conventions

Throughout the paper, we will assume familiarity with basic concepts of measure and integration, e.g. at the level of
[19] or [25], and the rudiments of probability theory. In this section we briefly review several definitions and introduce
the notational conventions that we will use.

1.6.1 Lebesgue norms

Throughout, we denote by ‖f‖Lp =
(´

Rd |f(x)|pdx
)1/p

the Lebesgue p-norm of a function f : Rd → R (with the
obvious modification when p = ∞), and denote the standard inner product as 〈f, g〉 =

´
Rd f(x)g(x)dx. We also

define the p-norm ‖x‖p for vectors x in Rd as ‖x‖p =
(∑d

j=1 |xj |p
)1/p

(again, with the obvious modification when

p = ∞). When convenient, we will also denote the 2-norm of a vector x in Rd by |x|. We also denote the inner

product between two vectors x and y in Rd by 〈x, y〉 =
∑d
j=1 xjyj .

1.6.2 Absolute continuity

For a given interval (a, b) ⊂ R, we denote by A0 = A0(a, b) the set of absolutely continuous functions G on (a, b)

satisfying G(b) = 0; note that such functions may be written in the form G(x) = −
´ b
x
g(t) dt where g = G′ almost

everywhere.

1.6.3 The Fourier transform

We denote the Fourier transform of a function f : Rd → R in L1 by f̂(ξ) =
´
Rd f(x)e−2πi〈x,ξ〉dx. With this convention,

under mild conditions f may be recovered using the inverse Fourier transform f(x) =
´
Rd f̂(ξ)e2πi〈x,ξ〉dξ.
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1.6.4 Tomographic projections and the Radon transform

Let U =
(
u(1), . . . , u(r)

)
∈ Sd−1 × · · · × Sd−1 (where Sd−1 ⊂ Rd is the (d − 1)-dimensional unit sphere) denote an

ordered collection of r unit vectors in Rd. Let u(r+1), . . . , u(d) denote d− r orthonormal vectors that are orthogonal
to u1, . . . , ur. We define the tomographic projection PU onto span{u(1), . . . , u(r)} by

(PUf)(t1, . . . , tr) =

ˆ
Rd−r

f(t1u
(1) + · · ·+ tru

(r) + s1u
(r+1) + · · ·+ sd−ru

(d)) ds. (1)

When r = 1, we denote the tomographic projection of f onto the span of a unit vector u by Puf . Note that in this
case, the Radon transform Rf : R×Sd−1 of the function f is defined by (Rf)(t, u) = (Puf)(t). For more background
on these transforms, see, for example, the references [48, 26]. A standard result that we will use is the Fourier slice

theorem: (̂Puf)(ξ) = f̂(ξu), for any unit vector u ∈ Rd and real number ξ.

1.6.5 Push-forwards

If Ω ⊂ Rd is a (non-empty) open set, µ is a finite, signed measure on Ω, and Ψ : Ω → Rd is a measurable function,
we denote by Ψ]µ the push-forward measure, (Ψ]µ)(E) = µ(Ψ−1(E)); e.g. see [51]. Note that (Ψ]µ)(Ψ(Ω)) =
µ(Ψ−1(Ψ(Ω))) = µ(Ω). When µ is induced from a function f supported on Ω, i.e. µ(E) =

´
E
f(x)dx, and Ψ is a

diffeomorphism between Ω and Ψ(Ω) with inverse Φ = Ψ−1, then Ψ]µ has density f(Φ(x))|det(∇Φ(x))|. We will
write (Ψ]f)(x) = (Φ−1

] f)(x) = f(Φ(x))|det(∇Φ(x))|, or fΦ(x) = f(Φ(x))|det(∇Φ(x))| for short.

1.7 Outline of the remainder of the paper

The remainder of the paper is structured as follows:

1. Section 2 introduces key definitions and background material. Theorem 2.2 and Theorem 2.3 establish general
robustnes properties of Wasserstein and sliced Wasserstein distances, respectively; these results appear to be
new, though they follow easily from prior literature.

2. Section 3 states the main theorems on the robustness of sliced Cramér distances to geometric deformations.
Theorem 3.1 and Corollary 3.2 give bounds under quite general conditions. Sharper bounds are proved for
several special cases of interest in Section 3.2, including rotations, translations, and dilations. In addition,
Theorem 3.13 describes the behavior of sliced Cramér metrics under convolutions.

3. Section 4 analyzes Fourier-based approximations to the Cramér distances and the 2D sliced Cramér distances,
the latter with respect to the uniform measure over S1. Theorems 4.1 and 4.10 show that these discretizations
are robust to additive heteroscedastic Gaussian noise.

4. Section 5 shows the results of several numerical experiments illustrating the theoretical results, including
comparisons between the sliced Cramér, sliced Wasserstein, and Lebesgue distances.

5. Section 6 concludes the paper, providing a summary and topics for future research.

2 Background definitions and theory

This section introduces key definitions and background results that will be referred to in the rest of the paper. We
draw particular attention to Theorem 2.2 and Theorem 2.3 on the robustness of Wasserstein and sliced Wasserstein
distances, which we have not seen published in the literature (but which follow straightforwardly from previously
published results).

2.1 Deformations and displacement

Given an open, non-empty Ω ⊂ Rd and a C1, invertible Ψ defined on Ω with inverse Φ = Ψ−1, we will call the
push-forward fΦ(x) = f(Φ(x))|det(∇Φ(x))| a deformation of f , and will also call the mappings Φ and Ψ themselves
deformations.
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We define the maximum displacement of the deformation Φ by

ε∞(Φ) = max
x∈Ψ(Ω)

|x− Φ(x)|. (2)

For example, if u is a fixed unit vector, then the function Ψ(x) = x+ εu has ε∞(Ψ) = ε.
If u is a unit vector and Ψ is a C1, 1-to-1 mapping defined on Ω, we define the maximum displacement of Ψ along

u to be

ε(Ψ, u) = max
x∈Ω
|〈x−Ψ(x), u〉|. (3)

Note that the maximum displacement can be written as

ε∞(Ψ) = max
u∈Sd−1

ε(Ψ, u). (4)

For a given probability distribution η over Sd−1, and a value 1 ≤ p < ∞, we define the mean displacement of Ψ
as

εη,p(Ψ) =

(ˆ
Sd−1

ε(Ψ, u)p dη(u)

)1/p

. (5)

Note that if Φ = Ψ−1, then for all u,

ε(Ψ, u) = max
x∈Ω
|〈x−Ψ(x), u〉|

= max
y∈Ψ(Ω)

|〈Φ(y)−Ψ(Φ(y)), u〉|

= max
y∈Ψ(Ω)

|〈Φ(y)− y, u〉|

= ε(Φ, u). (6)

It then follows immediately that ε∞(Φ) = ε∞(Ψ) and εη,p(Φ) = εη,p(Ψ). When η is the uniform measure, we will
denote εη,p(Ψ) by εp(Ψ). Also, when d = 1, all measures of distortion are identical, and we will denote their common
value by ε(Ψ).

Clearly, εη,p(Ψ) ≤ ε∞(Ψ) for all p. The following result shows what is lost when the inequality is reversed:

Proposition 2.1. Let x∗ = arg maxx |x−Ψ(x)|, and let u∗ = (x∗ −Ψ(x∗))/|x∗ −Ψ(x∗)|. Then

εη,p(Ψ) ≥ ε∞(Ψ) ·
(ˆ

Sd−1

|〈u∗, u〉|p dη(u)

)1/p

. (7)

Proof. By definition, ε∞(Ψ) = |x∗ −Ψ(x∗)|. For all unit vectors u,

ε(Ψ, u) = max
x
|〈x−Ψ(x), u〉| ≥ |〈x∗ −Ψ(x∗), u〉| = |x∗ −Ψ(x∗)| · |〈u∗, u〉| = ε∞(Ψ) · |〈u∗, u〉|. (8)

The result then follows from averaging over u.

For example, if d = 2 and η is the uniform measure over S1,(ˆ
S1

|〈u∗, u〉|p dη(u)

)1/p

=

(
2

π

ˆ π/2

0

cos(θ)p dθ

)1/p

=

(
Γ(p/2 + 1/2)

Γ(p/2 + 1)
√
π

)1/p

. (9)

2.2 Mean mixed norms

Fix a probability measure η over the unit sphere Sd−1 in Rd. For a function f on Rd, we define the mean mixed
norm

‖f‖Mp,r
η

=

(ˆ
Sd−1

‖Pu(|f |)‖rLp(R)dη(u)

)1/r

(10)
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for any 1 ≤ p ≤ ∞ and 1 ≤ r <∞; and

‖f‖Mp,∞ = ‖f‖Mp,∞
η

= ess sup
u∈Sd−1

‖Pu(|f |)‖Lp(R). (11)

When p = r, we will define ‖f‖Mp
η
≡ ‖f‖Mp,p

η
.

For a fixed u, ‖Pu(|f |)‖Lp(R) is an example of a so-called mixed norm [28], namely, the Lp norm of the L1 norm
of f . The mean mixed norm is then obtained by averaging this mixed norm over the choice of Lp variable.

Remark 1. If f is supported on a bounded open set and f ∈ Lp, then ‖f‖Mp,r
η

< ∞. More precisely, if f is

supported on a ball of radius R > 0, then, ‖f‖Mp,r
η
≤ (2R)(d−1)(p−1)/p‖f‖Lp .

Remark 2. If η is the uniform measure, or if r =∞, then ‖f‖Mp,r
η

is rotationally-invariant.

2.3 Wasserstein distances

If f and g are probability densities on a subset Ω ⊂ Rd, their p-Wasserstein distance Wp(f, g) (also known as the
Kantorovich distance) is defined as

Wp(f, g) = min
Π∈M(f,g)

(ˆ
Ω

ˆ
Ω

|x− y|pdΠ(x, y)

)1/p

, (12)

where M(f, g) denotes the space of all probability measures on Ω×Ω with marginals equal to f and g, respectively
[70, 71]. That is, Π ∈M(f, g) if for all measurable E ⊂ Ω,

Π(E × Ω) =

ˆ
E

f(x)dx, (13)

and

Π(Ω× E) =

ˆ
E

g(y)dy. (14)

Informally, Wp(f, g) is the minimal cost of rearranging a unit of mass with distribution f into one with distribution
G, where the cost of moving mass between locations x and y is |x− y|p. The distance W1(f, g) is also known as the
Earth Mover’s Distance (EMD) between the probability measures f and g [70, 71]. The Wasserstein distances and
their variants have been widely used in statistics, machine learning, image processing, and related areas [50, 51, 59,
9, 52, 58, 38, 8, 55, 46, 10].

The Wasserstein distance is a relaxation of the Monge distance, defined by

Mp(f, g) = min
Φ∈T (f,g)

(ˆ
Ω

|x− Φ(x)|pf(x) dx

)1/p

(15)

where T (f, g) contains those functions Φ : Ω→ Ω such that
´
E
g(x)dx =

´
Φ−1(E)

f(x)dx, that is, which which push

f onto g. Indeed, any Φ in T (f, g) induces a measure ΠΦ in M(f, g), withˆ
Ω

ˆ
Ω

|x− y|pdΠΦ(x, y) =

ˆ
Ω

|x− Φ(x)|pf(x) dx, (16)

and hence Wp(f, g) ≤ Mp(f, g). (In fact, when Mp(f, g) is finite, equality holds; see [59].) Consequently, if Φ is a
smooth bijection on Ω and fΦ(x) = f(Φ(x))|det(∇Φ(x))|, then Φ is contained in T (f, fΦ), and so

Wp(f, fΦ) ≤ Mp(f, fΦ) ≤
(ˆ

Ω

|x− Φ(x)|pf(x) dx

)1/p

≤ ε∞(Φ)

(ˆ
Ω

f(x) dx

)1/p

= ε∞(Φ). (17)

In fact, a more general robustness result may be easily shown, which we state now. The proof is nearly identical
to that found in [54].

Theorem 2.2. Suppose f is a probability density supported on a bounded, open set Ω ⊂ RD, and let Φ : Ω → Ω be
a smooth bijection. Let Q be a tomographic projection operator onto a d-dimensional subspace, d ≤ D. Then for all
p ≥ 1,

Wp(Qf,QfΦ) ≤ ε∞(Φ). (18)
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Proof. An identical proof to that of Lemma 1 in [54] shows that Wp(Qf,QfΦ) ≤Wp(f, fΦ) (note that the left side
refers to transportation in Rd, and the right side to RD). The bound then follows from (17).

It is well-known that Wasserstein distances in 1D take a on a particularly simple form. Denote by V the Volterra
operator [23] on L1([a, b]), defined by

(Vf)(x) =

ˆ x

a

f(t)dt. (19)

Then when d = 1, it is known [59] that Wp(f, g) may be written as follows:

Wp(f, g) = ‖(Vf)−1 − (Vg)−1‖Lp . (20)

Here, (Vf)−1 denotes the functional inverse of Vf , defined as

(Vf)−1(x) = inf{t ∈ [a, b] : (Vf)(t) ≥ x}. (21)

When p = 1, it is also true that W1(f, g) = ‖Vf − Vg‖L1 .

2.4 Sliced metrics

Given a metric D(f, g) between univariate functions, a value p ≥ 1, and a probability density η over the unit sphere
in Rd, one can define a corresponding sliced metric SDη,p(f, g) defined between functions f and g of d variables, as
follows:

SDη,p(f, g) =

(ˆ
Sd−1

D(Puf,Pug)pdη(u)

)1/p

. (22)

That is, SDη,p(f, g) is obtained by averaging the distances between the one-dimensional projections of f and g over
all directions.

Taking D to be the p-Wasserstein distance Wp, we denote by SWη,p the corresponding sliced Wasserstein distance.
Sliced Wasserstein distances have been the subject of considerable research activity in recent years [52, 9, 31, 32,
14, 49, 61]. The work [61] proves that sliced Wasserstein distances are robust to rotations and translations, and also
describes a fast discretization, which we will make use of in the present work.

We prove an analogue of Theorem 2.2 for sliced Wasserstein distances:

Theorem 2.3. Suppose f is a probability density supported on a bounded, open set Ω ⊂ RD, and let Φ : Ω → Ω be
a smooth bijection. Let Q be a tomographic projection operator onto d-dimensional subspace, d ≤ D. Then for all
p ≥ 1,

SWη,p(Qf,QfΦ) ≤ ε∞(Φ). (23)

Proof. Without loss of generality, suppose Q projects onto the first d coordinates. Let u ∈ Sd−1. It is easy to see
(and will be shown later, in the proof of Corollary 3.2 in Section 3) that (PuQf)(t) = (P(u,0)f)(t), which is the

tomographic projection of f onto the span of (u, 0) ∈ Rd × RD−d. Consequently, from Theorem 2.2,

Wp(PuQf,PuQfΦ) = Wp(P(u,0)f,P(u,0)fΦ) ≤ ε∞(Φ). (24)

The result now follows by averaging over u.

2.5 Wasserstein distances and convolution

In signal and image processing applications, one typically observes signals/images that have been convolved with a
filter induced from the measurement process. It is therefore of interest to understand how metrics behave when their
inputs are convolved by a common function. For Wasserstein distances, we have the following result:

Theorem 2.4. Suppose f , g and w are probability densities on Rd. Then for all p ≥ 1,

Wp(f ∗ w, g ∗ w) ≤Wp(f, g). (25)
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This property is referred to by Zolotarev as regularity of the metric [78, 77, 79].1 The result is certainly known
and is easy to prove, though we had some difficulty finding a reference for a proof of the precise statement; for the
reader’s convenience we provide a proof here.

Proof of Theorem 2.4. By Kantorovich duality (see, e.g., Chapter 5 in [71]),

Wp(f, g)p = sup
(ϕ,ψ)∈Fp

{ˆ
f(x)ϕ(x) dx+

ˆ
g(y)ψ(y) dy

}
, (26)

where Fp contains all pairs (ϕ,ψ) of integrable functions ϕ and ψ satisfying ϕ(x) + ψ(y) ≤ |x− y|p. Take any such
ϕ and ψ. Letting w̃(z) = w(−z), we have

ˆ
(f ∗ w)(x)ϕ(x) dx =

ˆ
(ϕ ∗ w̃)(z)f(z) dz, (27)

and ˆ
(g ∗ w)(y)ψ(y) dy =

ˆ
(ψ ∗ w̃)(z)g(z) dz. (28)

For any x and y we have

(ϕ ∗ w̃)(x) + (ψ ∗ w̃)(y) =

ˆ
(ϕ(x− z) + ψ(y − z))w̃(z) dz ≤ |x− y|p

ˆ
w̃(z) dz = |x− y|p. (29)

Therefore, (ϕ ∗ w̃, ψ ∗ w̃) ∈ Fp, and

ˆ
(f ∗ w)(x)ϕ(x) dx+

ˆ
(g ∗ w)(y)ψ(y) dy =

ˆ
(ϕ ∗ w̃)(z)f(z) dz +

ˆ
(ψ ∗ w̃)(z)g(z) dz ≤Wp(f, g), (30)

and so taking the supremum over all (ϕ,ψ) ∈ Fp proves the result.

Corollary 2.5. Suppose f , g and w are probability densities on Rd, and let η be a probability density over Sd−1.
Then for all p ≥ 1,

SWp(f ∗ w, g ∗ w) ≤ SWp(f, g). (31)

Proof. It is straightforward to see (and will be shown in Section 3.3) that for any unit vector u in Rd, Pu(f ∗ w) =
(Puf) ∗ (Puw). Then from the d = 1 case of Theorem 2.4,

Wp(Pu(f ∗ w),Pu(g ∗ w)) = Wp((Puf) ∗ (Puw), (Pug) ∗ (Puw)) ≤Wp(Puf,Pug). (32)

Averaging over all u ∈ Sd−1 then proves the result.

Remark 3. Young’s convolutional inequality (e.g. see Chapter 8 in [19]) states that the same property holds for the
ordinary Lp distances on Rd, namely, for f and g in Lp and w in L1, ‖f ∗ w − g ∗ w‖Lp ≤ ‖w‖L1‖f − g‖Lp .

2.6 Cramér and sliced Cramér metrics

Let f be in L1(a, b). For any value 1 ≤ p ≤ ∞, we will refer to ‖f‖V p ≡ ‖Vf‖Lp as the Volterra p-norm of f .
Note that, because Vf is in L∞(a, b), the Volterra p-norm of f is finite for any function f in L1(a, b). We denote by
Cp(f, g) = ‖f − g‖V p the p-Cramér metric (or p-Cramér distance) between functions f and g, named after Harald
Cramér [12, 56, 67].2

Remark 4. While the Cramér metrics are often used to compare probability distributions, they are well-defined for
any f and g in L1(a, b). Our analysis of the Cramér metrics in this paper is not restricted to probability densities.

1An equivalent statement of regularity for a metric D between random variables is that for all random variables X, Y and Z, where
Z is independent of X and Y , D(X + Z, Y + Z) ≤ D(X,Y ).

2In [79], Zolotarev refers to the p-Cramér distance more simply as the “Lp-metric”.
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Remark 5. When f and g are probability measures, the ∞-Cramér metric is also known as the Kolmogorov Metric
between f and g [22]. The Kolmogorov Metric arises in the context of goodness-of-fit testing in statistics [21].
The 1-Cramér metric is equal to the 1-Wasserstein distance, or Earth Mover’s Distance, between the probability
distributions f and g described in Section 2.3. The 2-Cramér metric is the 1D energy distance [56].

The following result provides a dual formulation of the Volterra p-norm (and hence of the p-Cramér metric) that
will be useful in our subsequent analysis. It essentially appears as Theorem 1 in [41]; because of its key role in this
paper, we provide a self-contained proof for the reader’s convenience.

Proposition 2.6. Let 1 ≤ p ≤ ∞ and let q be the conjugate exponent: 1/p + 1/q = 1. Then for any function f in
L1(a, b),

‖f‖V p = sup
G∈A0:‖G′‖Lq≤1

〈f,G〉. (33)

Proof. First, note that the adjoint transform V∗ is given by

(V∗f)(x) =

ˆ b

x

f(t)dt. (34)

This operator satisfies

〈Vf, g〉 = 〈f,V∗g〉 (35)

where f and g are two functions in L1(a, b).
By duality of Lp and Lq, we have:

‖f‖V p = ‖Vf‖Lp = sup
g:‖g‖Lq≤1

ˆ b

a

(Vf)(x)g(x)dx = sup
g:‖g‖Lq≤1

〈Vf, g〉 = sup
g:‖g‖Lq≤1

〈f,V∗g〉. (36)

Any function of the form V∗g is contained in A0, and any function G in A0 is of the form G = V∗g where g = G′

almost everywhere. Consequently:

‖f‖V p = sup
g:‖g‖Lq≤1

〈f,V∗g〉 = sup
G∈A0:‖G′‖Lq≤1

〈f,G〉, (37)

which completes the proof.

Following the framework from Section 2.4, given a probability measure η over the unit sphere Sd−1 ⊂ Rd, for all
1 ≤ p <∞ we define sliced p-Cramér metric between f, g : Rd → R as

SCη,p(f, g) =

(ˆ
Sd−1

Cp(Puf,Pug)p dη(u)

)1/p

, (38)

and

SC∞(f, g) = SCη,∞(f, g) = sup
u∈Sd−1

C∞(Puf,Pug). (39)

Sliced Cramér metrics have garnered attention in recent years as metrics for comparing probability measures in
machine learning applications [47, 30, 6, 39, 29]. In Section 3, we will study the geometric properties of sliced Cramér
metrics. In Section 4 we will study efficient, Fourier-based discretizations for the 1D and 2D distances (based on
those in [61]) between functions with equal integrals, and prove their robustness to additive heteroscedastic noise.

For a function f of two variables, we define its sliced Volterra norm by

‖f‖SV pη =

(ˆ
Sd−1

‖Puf‖pLp dη(u)

)1/p

(40)

when 1 ≤ p <∞, and

‖f‖SV∞ = ‖f‖SV∞η = sup
u∈Sd−1

‖Puf‖L∞ . (41)

Then for two functions f and g, SCη,p(f, g) = ‖f − g‖SV pη .

When η is the uniform measure over Sd−1, we will denote the sliced Cramér metric more simply as SCp(f, g),
and the sliced Volterra norm more simply as ‖f‖SV p .
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3 Properties of sliced Cramér metrics

In this section, we will prove that the sliced Cramér metrics defined in Section 2.6 are robust to deformations
of the input functions; more precisely, that the distance between a function and its deformation is bounded by a
monotonic function of the deformations’s maximum displacement. These results are similar in spirit to the bounds
for Wasserstein and sliced Wasserstein distances found in Theorem 2.2 and Theorem 2.3, respectively. Bounds for
general deformations are provided in Theorem 3.1 and Corollary 3.2, in Section 3.1. Sharper bounds are then derived
for more specific deformations in Section 3.2. Section 3.3 analyzes the behavior of the sliced Cramér distances under
convolution of the inputs, stating a bound analagous to Theorem 2.4 and Corollary 2.5.

3.1 Robustness to deformations

We start with a general result that quantifies sliced Cramér metrics’ robustness to deformations.

Theorem 3.1. Let 1 ≤ p ≤ ∞. Let A and B be non-empty, bounded, open sets in Rd, f be in Lp(A), Φ : B → A be
a C1 bijection, and fΦ(x) = f(Φ(x))|det(∇Φ(x))| on B, and 0 elsewhere. Then for any probability measure η over
Sd−1,

SCη,p(f, fΦ) ≤ 2(p−1)/p · ‖f‖Mp
η
· ε∞(Φ) (42)

SCη,p(f, fΦ) ≤ 2(p−1)/p · ‖f‖Mp,∞ · εη,p(Φ), (43)

and

SCη,p(f, fΦ) ≤ ‖f‖L1 · εη,1(Φ)1/p. (44)

Remark 6. For two functions f and g, the same upper bounds hold trivially for |SCη,p(f, g)− SCη,p(fΦ, g)|. That
is, the theorem bounds the difference between the distances when an input function is replaced by a deformation.

Remark 7. Because f = (fΦ)Φ−1 and ε(Φ, u) = ε(Φ−1, u), one can switch the roles of f and fΦ, and thereby replace
the term ‖f‖Mp

η
by min{‖f‖Mp

η
, ‖fΦ‖Mp

η
}, and replace ‖f‖Mp,∞

η
by min{‖f‖Mp,∞

η
, ‖fΦ‖Mp,∞

η
}, for a sharper bound.

Theorem 3.1 is easily extended to comparing tomographic projections of a function and its deformation. This
is of interest when measuring the distance between two 2D projections of a 3D volume, such as in the analysis of
images in cryo-electron microscopy.

Corollary 3.2. Let 1 ≤ p ≤ ∞. Let A and B be non-empty, bounded, open sets in RD, f be in Lp(A), Φ : B → A be
a C1 bijection, and fΦ(x) = f(Φ(x))|det(∇Φ(x))| on B, and 0 elsewhere. For d ≤ D, let Q denote the tomographic
projection operator onto a d-dimensional subspace of RD. Then for any probability measure η over Sd−1,

SCη,p(Qf,QfΦ) ≤ 2(p−1)/p · ‖Q(|f |)‖Mp
η
· ε∞(Φ), (45)

and

SCη,p(Qf,QfΦ) ≤ ‖f‖L1 · ε∞(Φ)1/p. (46)

Proof of Corollary 3.2. Without loss of generality, suppose Q projects onto the first d coordinates, that is,

(Qf)(x) =

ˆ
RD−d

f(x, y)dy. (47)

Let u be a unit vector in Rd, and let u(2), . . . , u(d) denote any orthonormal vectors completing the basis, so that
for h on Rd,

(Puh)(t) =

ˆ
Rd−1

h(tu+ s2u
(2) + · · ·+ sdu

(d)) ds, (48)
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and so

(Pu(Qh))(t) =

ˆ
Rd−1

(Qh)(tu+ s2u
(2) + · · ·+ sdu

(d)) ds

=

ˆ
Rd−1

ˆ
RD−d

h(tu+ s2u
(2) + · · ·+ sdu

(d), y) dy ds

= (P(u,0)h)(t), (49)

which is the tomographic projection of h onto the span of (u, 0) ∈ Rd × RD−d.
Denote by η̃ the distribution over the unit sphere SD−1, supported on S̃d−1 ≡ {(u, 0) ∈ Rd×RD−d : |u| = 1} and

defined by dη̃((u, 0)) = dη(u) for u ∈ Rd. We have

SCη̃,p(f, fΦ)p =

ˆ
SD−1

Cp(Pvf,PvfΦ)p dη̃(v)

=

ˆ
Sd−1

Cp(P(u,0)f,P(u,0)fΦ)p dη(u)

=

ˆ
Sd−1

Cp(PuQf,PuQfΦ)p dη(u)

= SCη,p(Qf,QfΦ)p. (50)

Furthermore,

‖f‖p
Mp
η̃

=

ˆ
SD−1

‖Pv(|f |)‖pLp dη̃(v)

=

ˆ
Sd−1

‖P(u,0)(|f |)‖pLp dη(u)

=

ˆ
Sd−1

‖PuQ(|f |)‖pLp dη(u)

= ‖Q(|f |)‖p
Mp
η
. (51)

The inequality (45) then follows by applying (42) in Theorem 3.1 with the measure η̃. The bound (46) follows from
(44) and the fact that εη̃,1(Φ) ≤ ε∞(Φ).

The proof of Theorem 3.1 is immediate from the following lemma:

Lemma 3.3. Let 1 ≤ p ≤ ∞. Let A and B be non-empty, bounded, open sets in Rd, f be in Lp(A), Φ : B → A be
a C1 bijection and fΦ(x) = f(Φ(x))|det(∇Φ(x))| on B, and 0 elsewhere. Then for any u ∈ Sd−1,

Cp(Puf,PufΦ) ≤ min
{

2(p−1)/p · ‖Pu(|f |)‖Lp · ε(Φ, u), ‖f‖L1 · ε(Φ, u)1/p
}
. (52)

Theorem 3.1 follows easily from averaging each side over u.

Proof of Lemma 3.3. Without loss of generality, suppose u = e1 = (1, 0, . . . , 0); then

ε(Ψ, u) = max
(x,y)∈R×Rd−1

|x− ψ1(x, y)|. (53)

For brevity, if h : Rd → R is a function of d variables, let Ph = Pe1h. That is,

(Ph)(x) =

ˆ
Rd−1

h(x, y)dy. (54)

For (x, y) ∈ R×Rd−1, let I(x,y) be the interval [x, ψ1(x, y)] when x ≤ ψ1(x, y), and [ψ1(x, y), x] when x > ψ1(x, y);
and let χ(x, y, t) be 1 if t ∈ I(x,y), and 0 otherwise; that is, χ(x, y, t) = 1 if either x ≤ t ≤ ψ1(x, y) or ψ1(x, y) ≤ t ≤ x.
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Step 1. We will show that for all (x, y) ∈ R× Rd−1,

ˆ
χ(x, y, t) dt ≤ ε(Ψ, u), (55)

and for all t,

ˆ
sup
y
χ(x, y, t) dx ≤ 2ε(Ψ, u). (56)

For the first inequality, for fixed (x, y), suppose without loss of generality that x ≤ ψ1(x, y). Then χ(x, y, t) = 1
if and only if x ≤ t ≤ ψ1(x, y), and so

ˆ
χ(x, y, t) dt = |ψ1(x, y)− x| ≤ ε(Ψ, u), (57)

which is (55).
For the second inequality: for any x and t, supy χ(x, y, t) = 1 if and only if there exists a vector y such that either

x ≤ t ≤ ψ1(x, y) or ψ1(x, y) ≤ t ≤ x. In this case, since |x− ψ1(x, y)| ≤ ε(Ψ, u), we must also have |x− t| ≤ ε(Ψ, u),
and so x lies in the interval [t− ε(Ψ, u), t+ ε(Ψ, u)] of length 2ε(Ψ, u); hence

ˆ
sup
y
χ(x, y, t) dx ≤ 2ε(Ψ, u), (58)

which is (56).

Step 2. We will prove that

Cp(Puf,PufΦ) ≤ 2(p−1)/p · ‖Pu(|f |)‖Lp · ε(Φ, u). (59)

Let G ∈ A0, with derivative g = G′ satisfying ‖g‖Lq ≤ 1. Performing the change of variables w = Φ(x, y) gives

ˆ
R
G(x)(PfΦ)(x) dx =

ˆ
R
G(x)

ˆ
y:(x,y)∈B

f(Φ(x, y))|det(∇Φ(x, y))| dy dx

=

ˆ
B

G(x)f(Φ(x, y))|det(∇Φ(x, y))| dy dx

=

ˆ
A

G(ψ1(w))f(w) dw

=

ˆ
R

ˆ
y:(x,y)∈A

G(ψ1(x, y))f(x, y) dy dx (60)

and similarly,

ˆ
R
G(x)(Pf)(x) dx =

ˆ
R

ˆ
y:(x,y)∈A

G(x)f(x, y) dy dx. (61)

Combining (60) and (61), and applying Hölder’s inequality,

ˆ
R
G(x)((Pf)(x)− (PfΦ)(x)) dx =

ˆ ˆ
[G(x)−G(ψ1(x, y))]f(x, y) dy dx

≤
ˆ (

sup
y
|G(x)−G(ψ1(x, y))|

)(ˆ
Rd−1

|f(x, y)| dy
)
dx

=

ˆ (
sup
y
|G(x)−G(ψ1(x, y))|

)
P(|f |)(x)dx

≤ ‖P(|f |)‖Lp ·
∥∥∥∥sup

y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
Lq(dx)

, (62)
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where 1/p+ 1/q = 1.
We will show that ∥∥∥∥sup

y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
Lq(dx)

≤ 2(p−1)/p ε(Ψ, u), (63)

which yields (59) by applying Proposition 2.6. We have

|G(x)−G(ψ1(x, y))| =

∣∣∣∣∣
ˆ ψ1(x,y)

x

g(t)dt

∣∣∣∣∣ =

∣∣∣∣ˆ g(t)χ(x, y, t)dt

∣∣∣∣ . (64)

Suppose temporarily that 1 < p, q <∞. Applying Hölder’s inequality and using (55) and (56), we get

ˆ (
sup
y
|G(x)−G(ψ1(x, y))|

)q
dx =

ˆ
sup
y
|G(x)−G(ψ1(x, y))|qdx

=

ˆ
sup
y

∣∣∣∣ˆ g(t)χ(x, y, t)dt

∣∣∣∣q dx
≤
ˆ

sup
y

(ˆ
|g(t)|qχ(x, y, t)dt

)(ˆ
χ(x, y, t) dt

)q/p
dx

≤ ε(Ψ, u)q/p
ˆ

sup
y

ˆ
|g(t)|qχ(x, y, t) dt dx

≤ ε(Ψ, u)q/p
ˆ ˆ

|g(t)|q sup
y
χ(x, y, t) dt dx

= ε(Ψ, u)q/p
ˆ
|g(t)|q

ˆ
sup
y
χ(x, y, t) dx dt

≤ 2ε(Ψ, u)q/p+1

ˆ
|g(t)|q dt, (65)

and so taking the q-th root we get the bound∥∥∥∥sup
y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
Lq(dx)

≤ 21/qε(Ψ, u)1/p+1/q‖g‖Lq ≤ 2(p−1)/pε(Ψ, u). (66)

Now suppose p = 1 and q =∞. Then from (55),∥∥∥∥sup
y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
L∞(dx)

= sup
x,y
|G(x)−G(ψ1(x, y))|

= sup
x,y

∣∣∣∣ˆ g(t)χ(x, y, t)dt

∣∣∣∣
≤ ‖g‖L∞ sup

x,y

ˆ
χ(x, y, t) dt

≤ ‖g‖L∞ε(Ψ, u)

≤ ε(Ψ, u). (67)
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Finally, suppose p =∞ and q = 1. Then from (56),∥∥∥∥sup
y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
L1(dx)

=

ˆ
sup
y
|G(x)−G(ψ1(x, y))| dx

=

ˆ
sup
y

∣∣∣∣ˆ g(t)χ(x, y, t)dt

∣∣∣∣ dx
≤
ˆ ˆ

|g(t)| sup
y
χ(x, y, t) dt dx

=

ˆ
|g(t)|

ˆ
sup
y
χ(x, y, t) dx dt

≤ ‖g‖L1 sup
t

ˆ
sup
y
χ(x, y, t) dx

≤ ‖g‖L12ε(Ψ, u)

= 2ε(Ψ, u). (68)

This completes the proof of (63), and hence proves (59).

Step 3. To conclude the proof, we will prove the inequality

Cp(Puf,PufΦ) ≤ ‖f‖L1 · ε(Ψ, u)1/p. (69)

Let G ∈ A0, with derivative g = G′ satisfying ‖g‖Lq ≤ 1. From (62), taking p = 1 and q =∞,

ˆ
R
G(x)((Pf)(x)− (PfΦ)(x)) dx ≤ ‖f‖L1 sup

x,y
|G(x)−G(ψ1(x, y))|, (70)

and so by using Proposition 2.6, it is enough to show that for all (x, y),

|G(x)−G(ψ1(x, y))| ≤ ε(Ψ, u)1/p. (71)

Hölder’s inequality yields

|G(x)−G(ψ1(x, y))| =
∣∣∣∣ˆ g(t)χ(x, y, t)dt

∣∣∣∣
≤ ‖g‖Lq

(ˆ
χ(x, y, t)p dt

)1/p

≤
(ˆ

χ(x, y, t) dt

)1/p

≤ ε(Ψ, u)1/p, (72)

where the last inequality follows from (55). This completes the proof.

Next, we will consider special cases for which quantitatively tighter bounds can be shown.

3.2 Sharper bounds in special cases

In this section, we consider specific classes of deformations, and prove sharper bounds than (42) and (43) from
Theorem 3.1.
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3.2.1 Rotations in 2D

We consider the case where A = B = D ⊂ R2, the open unit disc centered at (0, 0). If Φ is a rotation around the
origin by angle θ, then the corresponding maximum displacement is ε(Φ) = 2 sin(θ/2), and so the bound (42) in
Theorem 3.1 is

SCη,p(f, fΦ) ≤ 2(p−1)/p · ‖f‖Mp
η
· 2 sin(θ/2). (73)

(We do not consider the bound (43), as for this choice of Φ it is never stronger than (42).)
We can prove a sharper estimate:

Theorem 3.4. Let 1 ≤ p ≤ ∞, and f : R2 → R be in Lp(D). Suppose 0 ≤ θ < π, and define fθ by

fθ(x, y) = f(x cos(θ) + y sin(θ), y cos(θ)− x sin(θ)). (74)

Then for any probability distribution η over Sd−1,

SCη,p(f, fθ) ≤ ‖f‖Mp
η
·∆p(θ), (75)

where

∆p(θ) =

{
2 sin(θ/2) · (2 cos(θ/2))(p−1)/p, if 0 ≤ θ < π/2

2 sin(θ/2)1/p, if π/2 ≤ θ < π
. (76)

The result follows from the following lemma:

Lemma 3.5. Using the notation from the statement of Theorem 3.4, if u is any unit vector in R2, then

Cp(Puf,Pufθ) ≤ ‖Pu(|f |)‖Lp ·∆p(θ). (77)

Theorem 3.4 follows immediately by taking the p-th power and averaging over all u.

Proof of Lemma 3.5. Without loss of generality, suppose u = (1, 0). An identical proof to that of Lemma 3.3 may
be applied by replacing the bound supt

´
supy χ(x, y, t)dx ≤ 2ε(Φ) from (56) with the bound

ˆ
sup
y
χ(x, y, t)dx ≤

{
2 sin(θ), if 0 ≤ θ < π/2

2, if π/2 ≤ θ < π
(78)

for all |t| < 1. Indeed, when 0 ≤ θ < π/2, we can then replace (63) with the upper bound∥∥∥∥sup
y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
Lq(dx)

≤ (2 sin(θ/2))1/p · (2 sin(θ))1/q

= (2 sin(θ/2))1/p · (4 sin(θ/2) cos(θ/2))1/q

= 2 sin(θ/2) · (2 cos(θ/2))1/q

= 2 sin(θ/2) · (2 cos(θ/2))(p−1)/p (79)

whereas when π/2 ≤ θ < π the bound becomes∥∥∥∥sup
y
|G(x)−G(ψ1(x, y))|

∥∥∥∥
Lq(dx)

≤ (2 sin(θ/2))1/p · 21/q = 2 sin(θ/2)1/p. (80)

The bound
´

supy χ(x, y, t)dx ≤ 2 is immediate, since the integrand is bounded by 1 and the integral is over
|x| ≤ 1. Hence it remains to show that

ˆ
sup
y
χ(x, y, t)dx ≤ 2 sin(θ) (81)

whenever 0 ≤ θ < π/2.
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Let c = cos(θ) and s = sin(θ). Note that in this case, c ≥ 0 and s ≥ 0; and the rotation Φ(x, y) = (cx+sy, cy−sx),
with inverse Ψ(x, y) = (cx− sy, cy + sx).

Take |t| < 1, and suppose, without loss of generality, that 0 ≤ t ≤ 1. It is enough to show

ˆ
sup
y
χ(x, y, t) dx ≤

{
2s
√

1− t2, if 0 ≤ t < c

1− ct+ s
√

1− t2, if c ≤ t ≤ 1
. (82)

Indeed, the right side of (82) is decreasing in t and so is maximized when t = 0, which yields the desired bound (81).
We now show (82). For 0 ≤ t ≤ 1, let St denote the set of all x, |x| ≤ 1, satisfying supy χ(x, y, t) = 1. Then´

supy χ(x, y, t) dx = |St|.

Lemma 3.6. Let 0 ≤ t ≤ 1.

1. Suppose t ≤ x. Then x ∈ St if and only if cx− s
√

1− x2 ≤ t.

2. Suppose x ≤ t. Then x ∈ St if and only if t ≤ cx+ s
√

1− x2.

Proof. First suppose that t ≤ x. If x ∈ St, then there exists y with χ(x, y, t) = 1, that is, for which (x, y) ∈ D and
ψ1(x, y) = cx − sy ≤ t ≤ x. Since cx − sy only gets smaller as y grows, we can always take y =

√
1− x2. The

converse is immediate.
Next suppose that x ≤ t. If x ∈ St, then there exists y for which (x, y) ∈ D and x ≤ t ≤ cx− sy. Since cx− sy

only gets bigger as y shrinks, we can always take y = −
√

1− x2. Again, the converse is immediate.

Lemma 3.7. Let 0 ≤ t ≤ 1. Then for all x ∈ St, x ≥ ct− s
√

1− t2.

Proof. We will break this into two cases, depending on whether x ≤ t or x > t.
Case 1. x ≤ t. By Lemma 3.6, cx + s

√
1− x2 ≥ t. Therefore, s

√
1− x2 ≥ t − cx and since we assume x ≤ t,

t− cx ≥ 0; therefore, squaring each side gives

s2 − s2x2 ≥ t2 + c2x2 − 2ctx, (83)

and hence

x2 − 2ctx+ t2 − s2 ≤ 0, (84)

and since the roots of the polynomial are x = ct± s
√

1− t2, in particular it follows that x ≥ ct− s
√

1− t2.
Case 2. x > t. In this case, the result follows immediately from the inequality ct− s

√
1− t2 ≤ ct ≤ t < x.

Lemma 3.8. Suppose that 0 ≤ t ≤ c. Then all x ∈ St satisfy x ≤ ct+ s
√

1− t2.

Proof. First, note that the assumption 0 ≤ t ≤ c implies that t ≤ ct + s
√

1− t2. Indeed, the latter inequality is
equivalent to t(1 − c) ≤ s

√
1− t2, and which is equivalent to t2 + t2c2 − 2ct2 ≤ s2 − t2s2, which is equivalent to

2t2(1− c) ≤ s2 = 1− c2 = (1− c)(1 + c), which is equivalent to 2t2 ≤ 1 + c, which is immediate from 0 ≤ t ≤ c ≤ 1.
Now, let x ∈ St. If x ≤ t, then x ≤ ct+ s

√
1− t2 as well, by what we have just shown. Therefore, we can suppose

instead that x > t. By Lemma 3.6, cx − s
√

1− x2 ≤ t. Note that cx − s
√

1− x2 is an increasing function of x.
Hence, if x > t satisfies

cx− s
√

1− x2 = t, (85)

then for all x′ > x, we have x′ > t and cx′ − s
√

1− (x′)2 > t, and hence by Lemma 3.6 x′ /∈ St. For x > t satisfying
(85), we have

cx− t = s
√

1− x2

=⇒ c2x2 + t2 − 2ctx = s2 − s2x2

=⇒ x2 − 2ctx+ t2 − s2 = 0

=⇒ x = ct± s
√

1− t2

=⇒ x = ct+ s
√

1− t2, (86)
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where the last implication is because x > t. This completes the proof.

From Lemmas 3.7 and 3.8, when 0 ≤ t < c, all x ∈ St lie between ct − s
√

1− t2 and ct + s
√

1− t2; hence
|St| ≤ 2s

√
1− t2. On the other hand, when t ≥ c, by Lemma 3.7 all x ∈ St must lie between ct − s

√
1− t2 and 1;

hence |St| ≤ 1− ct+ s
√

1− t2. This concludes the proof of (82), and hence of Lemma 3.5.

3.2.2 Monotonically increasing deformations in 1D

When d = 1, the bounds (42) and (43) in Theorem 3.1 become

Cp(f, fΦ) ≤ 2(p−1)/p · ‖f‖Lp · ε(Φ). (87)

Now we show that the factor of 2(p−1)/p can be removed when the deformation Φ is monotonically increasing.

Theorem 3.9. Let 1 ≤ p ≤ ∞. Let I and J be non-empty, bounded, open intervals in R, f be in Lp(I), Φ : J → I
be a C1 bijection with inverse Ψ and Φ′(x) > 0 on J , and fΦ(x) = f(Φ(x))Φ′(x)) on J , and 0 elsewhere. Then

Cp(f, fΦ) ≤ ‖f‖Lp · ε(Φ). (88)

Remark 8. To see that the monotonocity of Φ is required for this sharper bound, consider the following example.
Fix η > δ > 0, and let f be defined by

f(x) =


1, if − η ≤ x < 0,

−1, if 0 ≤ x ≤ η,
0, otherwise.

(89)

Let Φ : [−δ, δ]→ [−η, η] be defined by Φ(x) = −(η/δ)x. Then

fΦ(x) =


−η/δ, if − δ ≤ x < 0,

η/δ, if 0 ≤ x ≤ δ,
0, otherwise.

(90)

Then it is straightforward to verify that ε(Φ) = η + δ, ‖f‖L∞ = 1, and C∞(f, fΦ) = 2η. By taking δ → 0, we see
that the bound C∞(f, fΦ) ≤ 2‖f‖L∞ε(Φ) is tight.

Proof of Theorem 3.9. Let Ix be the interval [x,Ψ(x)] if x ≤ Ψ(x), and [Ψ(x), x] if Ψ(x) ≤ x. Let χ(x, t) be 1 if
t ∈ Ix, and 0 otherwise. Then an identical proof to that of Lemma 3.3 may be applied if we show that

sup
t

ˆ
χ(x, t)dx ≤ ε(Φ), (91)

in place of the bound (56).
Take any t ∈ I, and suppose that there is some x ≤ t with t ∈ Ix; note that for such x, Ix = [x,Ψ(x)], and so

x ≤ Ψ(x). Let x∗ be the smallest such x. Then x∗ ≤ t ≤ Ψ(x∗). We claim that for all x > t, t /∈ Ix. Indeed, since
Ψ is increasing and x > t ≥ x∗, we have Ψ(x) > Ψ(x∗) ≥ t. Since both x > t and Ψ(x) > t, t does not lie in Ix, as
claimed.

Consequently, all x for which t lies in Ix are contained inside the interval [x∗, t]. Since x∗ ≤ t ≤ Ψ(x∗) and
|x∗ − Ψ(x∗)| ≤ ε(Φ), it follows that |t − x∗| ≤ ε(Φ) too. Furthermore, if x > t, then χ(x, t) = 0 since t /∈ Ix; and
since x∗ is the smallest x for which t ∈ Ix, if x < x∗ then t /∈ Ix, hence χ(x, t) = 0. Therefore,

ˆ
χ(x, t)dx ≤

ˆ t

x∗
1dx = |t− x∗| ≤ ε(Φ). (92)

Analogous reasoning yields the same bound in the case that there exists x ≥ t with t ∈ Ix. This completes the
proof.

17



3.2.3 Translations

We consider the case where Φ(x) = x+ v, where v is a fixed vector. For simplicity, we only describe the case where
η is the uniform measure, though the results easily generalize. In this case, the bounds (42) and (43) from Theorem
3.1 are, respectively,

SCp(f, fΦ) ≤ 2(p−1)/p · ‖f‖Mp · |v| (93)

and

SCp(f, fΦ) ≤ 2(p−1)/p ·Kp · ‖f‖Mp,∞ · |v|, (94)

where

Kp =

(ˆ
Sd−1

|u1|p du
)1/p

. (95)

We show that the factor 2(p−1)/p can be removed:

Theorem 3.10. Let 1 ≤ p ≤ ∞. Let A be a non-empty, bounded, open set in Rd, and f be in Lp(A). For a fixed
vector v, let fv(x) = f(x+ v). Then

SCp(f, fv) ≤ ‖f‖Mp · |v| (96)

and

SCp(f, fv) ≤ Kp · ‖f‖Mp,∞ · |v|, (97)

where Kp is defined in (95).

Remark 9. When p = 1, SC1(f, fv) = SW1(f, fv), and so the bound (97) when p = 1 and d = 2 matches the p = 1
case of Theorem 2 of [61].

Proof of Theorem 3.10. By a straightforward calculation, for any u ∈ Sd−1, (Pufv)(t) = (Puf)(t + 〈v, u〉). Conse-
quently, by Theorem 3.9,

Cp(Puf,Pufv) ≤ ‖Puf‖Lp · |〈v, u〉|. (98)

Then

SCp(f, fv)
p ≤
ˆ
Sd−1

‖Puf‖pLp · |〈v, u〉|
p du ≤ |v|p ·

ˆ
Sd−1

‖Puf‖pLp du ≤ ‖f‖Mp · |v|p, (99)

which is (96); and

SCp(f, fv)
p ≤ sup

u∈Sd−1

‖Puf‖pLp ·
ˆ
Sd−1

|〈v, u〉|p du ≤ Kp · ‖f‖pMp,∞ · |v|p, (100)

proving (97).

3.2.4 Dilations

Suppose B ⊂ Rd is the open unit ball in Rd centered at 0. Let Φ(w) = αw, where α > 1. Then ε(Φ) = α− 1, and so
bound (42) Theorem 3.1 is

SCη,p(f, fΦ) ≤ 2(p−1)/p · ‖f‖Mp
η
· (α− 1). (101)

(We do not consider the bound (43), as for this choice of Φ it is never stronger than (42).)
We can prove a sharper estimate:
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Theorem 3.11. Let 1 ≤ p ≤ ∞, and let f be in Lp(B). Suppose α > 1, and define fα by fα(w) = αf(αw). Then
for any probability distribution η over Sd−1,

SCη,p(f, fα) ≤ ‖f‖Mp
η
· α− 1

α(p−1)/p
. (102)

The result follows from the following lemma:

Lemma 3.12. Using the notation from the statement of Theorem 3.11,

Cp(Puf,Pufα) ≤ ‖Pu(|f |)‖Lp ·
α− 1

α(p−1)/p
. (103)

Theorem 3.4 follows immediately by taking the p-th power and averaging over all u.

Proof of Lemma 3.12. Without loss of generality, suppose u = (1, 0, . . . , 0). It is enough to show that for all |t| < 1,

ˆ
sup

y∈Rd−1

χ(x, y, t) dx ≤ α− 1

α
; (104)

this estimate can then be used in place of (56) in the proof of Lemma 3.3.
Without loss of generality, suppose 0 ≤ t < 1. Let St denote the set of all x, |x| < 1, satisfying supy∈Rd−1 χ(x, y, t) =

1. If x ∈ St, then x < t < αx; since t ≥ 0, this restricts x ≥ 0 as well, and St = (t/α, t), so |St| = t(1− 1/α), which
is maximized at t = 1; thus

ˆ
sup

y∈Rd−1

χ(x, y, t) dx ≤ 1− 1/α =
α− 1

α
, (105)

as claimed. Using this estimate in place of the bound
´

supy∈Rd−1 χ(x, y, t) dx ≤ 2ε(Φ) gives the final bound

C(Puf,PufΦ) ≤ ‖Pu(|f |)‖Lp(α− 1)1/p

(
α− 1

α

)1/q

= ‖Pu(|f |)‖Lp ·
(α− 1)

α(p−1)/p
, (106)

completing the proof.

3.3 Sliced Cramér distances and convolutions

In this section, we remark on the behavior of the sliced Cramér distance after convolution of its input functions.
This situation occurs commonly in signal and image processing, where one typically observes signals that have been
convolved with a function induced from the measurement apparatus. The bound we provide is analogous to Theorem
2.4 and Corollary 2.5 for Wasserstein and sliced Wasserstein distances, respectively. It essentially appears already in
[74]; however, because this work states the result in terms of the distance between random variables (or equivalently,
between probability distributions) we find it valuable to explicitly state and prove the generalization to arbitrary
functions.

Theorem 3.13. Let 1 ≤ p ≤ ∞. Suppose f, g, w : Rd → R are compactly supported and in Lp, and let η be a
probability measure over Sd−1. Then

SCη,p(f ∗ w, g ∗ w) ≤ ‖w‖M1,p
η
· SCη,p(f, g). (107)

Remark 10. An immediate corollary to Theorem 3.13 is the bound SCη,p(f ∗ w, g ∗ w) ≤ ‖w‖L1 · SCη,p(f, g). This
essentially appears as Theorem 5 of [74] (though it is stated in terms of the distance between random variables).
The special case where d = 1 is shown in [6], Theorem 2. Theorem 3.13 is a straightforward generalization of these
results.

Proof of Theorem 3.13. We first show the result for d = 1, that is, for when f , g and w are functions on R. We will
show that

Cp(f ∗ w, g ∗ w) ≤ ‖w‖L1 · Cp(f, g). (108)
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Let H be in A0, with ‖H ′‖Lq = 1. For any s, ‖H ′(u+ s)‖Lq(du) = 1 too. Then using Proposition 2.6,

〈f ∗ w − g ∗ w,H〉 =

ˆ
((f − g) ∗ w)(t)H(t) dt

=

ˆ ˆ
(f − g)(t− s)w(s) dsH(t) dt

=

ˆ
w(s)

ˆ
(f − g)(t− s)H(t) dt ds

=

ˆ
w(s)

ˆ
(f − g)(u)H(u+ s) du ds

≤ ‖w‖L1 sup
s

∣∣∣∣ˆ (f − g)(u)H(u+ s) du

∣∣∣∣
≤ ‖w‖L1Cp(f, g), (109)

and (108) now follows by taking the supremum over all such H and invoking Proposition 2.6.
We now turn to general d ≥ 1. First, observe that Pu(w ∗ h) = (Puw) ∗ (Puh): indeed, by the Fourier slice

theorem,

(Pu(w ∗ h))̂(ξ) = ̂(w ∗ h)(ξu)

= ŵ(ξu)ĥ(ξu)

= (̂Puw)(ξ)(̂Puh)(ξ)

= [(Puw) ∗ (Puh)]̂(ξ), (110)

and so, taking inverse Fourier transforms, Pu(w ∗ h) = (Puw) ∗ (Puh).
From the 1D bound, we then have

Cp(Pu(w ∗ f),Pu(w ∗ g)) = Cp((Puw) ∗ (Puf), (Puw) ∗ (Pug))

≤ ‖Puw‖L1Cp(Puf,Pug). (111)

Taking p-th powers and integrating over u gives the result.

4 Discretizations and robustness to noise

In this section, we will describe Fourier-based discretizations of the Cramér distance and the 2D sliced Cramér
distance, with respect to the uniform measure over S1, between functions with equal integrals, and analyze their
robustness to additive Gaussian noise. More precisely, we will show that, given vectors of noisy samples from two
smooth functions, the discrete distance approximates the distances between the smooth functions only, removing the
effect of the noise as the number of samples grows.

While they may be useful, these results are not especially surprising; indeed, the Cramér distance itself involves
applying a smoothing filter to each input, which, by averaging the samples, naturally has a denoising effect. The
denoising property is also of interest in contrasting with Wasserstein and sliced Wasserstein distances, which, because
they are defined between probability measures, do not naturally induce distances between vectors sampled from a
signal-plus-noise model.

We remark that in this section, we assume that the noiseless functions are C∞. This assumption is made
to simplify the analysis and statements of the theorems; the same results would hold under significantly weaker
smoothness assumptions.

4.1 Robustness to noise in 1D

We define a discrete approximation to the 1D Volterra norm, which then yields an approximation to the Cramér
distance. Let a < b and let L = b− a be the interval length. Let n a positive integer; we will assume for simplicity
that n is even. Let x ∈ Rn; the reader should think of x as having entries x[j] = f(tj), j = 0, . . . , n− 1, where f is a
function supported on [a, b], and where tj = a+ jL/n.
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Define the values α[k] (the normalized discrete Fourier coefficients of x) by

α[k] =
L

n

n−1∑
j=0

x[j]e−2πiktj/L, (112)

for all integers k. Then for −n/2 ≤ k ≤ n/2− 1, f̂(k/L) ≈ α[k].
When 0 < |k| < n/2, define

β[k] =
α[k]

2πik/L
, (113)

and when k = 0, define

β[0] = −
∑

0<|k|<n/2

β[k]e2πika/L. (114)

Then the β[k] approximate the Fourier coefficients of Vf : (̂Vf)(k/L) ≈ β[k].
Define the function νx(t) by

νx(t) =
1

L

n/2−1∑
k=−n/2+1

β[k]e2πitk/L. (115)

(Note that we do not define β[±n/2], because the terms they would contribute to νx(t) would either be purely
imaginary or 0, depending on the convention.) Then for all t, νx(t) ≈ (Vf)(t).

We then define the discrete Volterra p-norm of the vector x as follows:

Vp(x) =

L
n

n−1∑
j=0

|νx(tj)|p
1/p

(116)

when 1 ≤ p <∞, and

V∞(x) = max
0≤j≤n−1

|νx(tj)| (117)

when p =∞. Given two vectors x and y in Rn, we then define their discrete Cramér distance as

Ĉp(x, y) = Vp(x− y). (118)

Remark 11. Using the Fast Fourier Transform (FFT) and the inverse FFT (IFFT) to evaluate the α[k] and νx(tj),
respectively, the entire computation described here can be performed at cost O(n log n).

We can now state the main result from this section, which says that the discrete Cramér distance is robust to
additive heteroscedastic Gaussian noise:

Theorem 4.1. Suppose f and g are C∞ functions on R that are supported on [a, b], and satisfy
´ b
a
f =

´ b
a
g. Let

Z[0], Z[1], . . . , Z[n − 1], Z̃[0], . . . , Z̃[n − 1] be independent Gaussians, where each Z[j] has mean 0 and variance σ2
j ,

and each Z̃[j] has mean 0 and variance σ̃2
j ; and suppose σ satisfies

1

n

n−1∑
j=0

σ2
j +

1

n

n−1∑
j=0

σ̃2
j ≤ σ2, (119)

for all n. Let Xn and Yn be vectors in Rn with entries Xn[j] = f(tj) + Z[j] and Yn[j] = g(tj) + Z̃[j]. Then:

1. Expected error: There are values A,B > 0 such that for all σ ≥ 0, n ≥ 2, and 1 ≤ p ≤ ∞,

E
[∣∣∣Ĉp(Xn, Yn)− Cp(f, g)

∣∣∣] ≤ Aσ log(n)m(p)

√
n

+
B

n
, (120)

where m(p) = max{1/2− 1/p, 0}.
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2. Concentration bound. There are values A,B,C > 0 such that for all σ > 0, t ≥ 0, and n ≥ C/t,

P
(∣∣∣Ĉp(Xn, Yn)− Cp(f, g)

∣∣∣ ≥ t) ≤ A · exp

(
−Bnt

2

σ2

)
(121)

for 1 ≤ p ≤ 2, and

P
(∣∣∣Ĉp(Xn, Yn)− Cp(f, g)

∣∣∣ ≥ t) ≤ A · n · exp

(
−Bnt

2

σ2

)
(122)

for 2 < p ≤ ∞.

3. Almost sure limit. For all 1 ≤ p ≤ ∞, Ĉp(Xn, Yn)→ Cp(f, g) almost surely as n→∞.

Remark 12. It is straightforward to extend the definition of Ĉp(x, y), and the results from Theorem 4.1, to the
setting where x and y contain samples of f and g taken on different grids, by interpolating the estimated Volterra
transforms onto a common grid.

Remark 13. Because νx(t) can be evaluated at any t, not just the initial grid points, one could replace the definition
of Vp(x) from (116) with any scheme for numerically integrating |νx(t)|p over [a, b].

Theorem 4.1 is an easy corollary of the following two results:

Proposition 4.2. Suppose f is a C∞ function on R that is supported on [a, b] and satisfies
´ b
a
f = 0. Let x ∈ Rn

have entries x[j] = f(tj), 0 ≤ j ≤ n− 1. Then there is a value C > 0 such that

|Vp(x)− ‖f‖V p | ≤
C

n
(123)

for all 1 ≤ p ≤ ∞ and n ≥ 2.

Proposition 4.3. Let Z[0], Z[1], . . . , Z[n], . . . , be independent Gaussians, where each Z[j] has mean 0 and variance
σ2
j ; and suppose σ > 0 satisfies

1

n

n−1∑
j=0

σ2
j ≤ σ2, (124)

for all n. For each n ≥ 1, let Zn = (Z[0], . . . , Z[n− 1]). Then:

1. Expectation bound. There is a value C > 0 such that for all σ ≥ 0, n ≥ 2, and 1 ≤ p ≤ ∞,

E [Vp(Zn)] ≤ Cσ log(n)m(p)

√
n

, (125)

where m(p) = max{1/2− 1/p, 0}.

2. Concentration bound. There are values A,B > 0 such that for all σ > 0, t ≥ 0, and n ≥ 2,

P {Vp(Zn) ≥ t} ≤ A · exp

(
−Bnt

2

σ2

)
(126)

for 1 ≤ p ≤ 2, and

P {Vp(Zn) ≥ t} ≤ A · n · exp

(
−Bnt

2

σ2

)
(127)

for 2 < p ≤ ∞.

3. Almost sure limit. For all 1 ≤ p ≤ ∞, Vp(Zn)→ 0 almost surely as n→∞.

We now show that Theorem 4.1 follows from Propositions 4.2 and 4.3:
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Proof of Theorem 4.1. It is enough to show the analogous results for the Volterra norm of f alone; we can then
replace f by f − g. Let x[j] = f(tj), 0 ≤ j ≤ n− 1, so that Xn = x+ Zn. We have

Vp(Xn)− ‖f‖Vp = Vp(x+ Zn)− ‖f‖Vp ≤ Vp(x)− ‖f‖Vp + Vp(Zn), (128)

and

Vp(Xn)− ‖f‖Vp = Vp(x+ Zn)− ‖f‖Vp ≥ Vp(x)− ‖f‖Vp −Vp(Zn), (129)

and therefore ∣∣Vp(Xn)− ‖f‖Vp
∣∣ ≤ ∣∣Vp(x)− ‖f‖Vp

∣∣+ Vp(Zn). (130)

The expected error bound (120) is then immediate, as is almost sure convergence. To show concentration, since∣∣Vp(x)− ‖f‖Vp
∣∣ ≤ C/n we have, for 1 ≤ p ≤ 2,

P{
∣∣Vp(Xn)− ‖f‖Vp

∣∣ ≥ t} ≤ P{
∣∣Vp(x)− ‖f‖Vp

∣∣+ Vp(Zn) ≥ t}
≤ P{Vp(Zn) ≥ t− C/n}

≤ A exp

(
−Bn

2(t− C/n)2

σ2

)
, (131)

and we then use t− C/n ≥ t/2 when n > 2C/t to show (121). The case 2 < p ≤ ∞ is identical.

We now turn to the proofs of Propositions 4.2 and 4.3.

4.1.1 Proof of Proposition 4.2

Lemma 4.4. Let r > 1. Then there is a constant C > 0 such that for all even n ≥ 2 and |k| < n/2,∣∣∣α[k]− f̂(k/L)
∣∣∣ ≤ C

nr
. (132)

Proof. Write the Fourier series expansion of f :

f(t) =
1

L

∞∑
`=−∞

f̂(`/L)e2πi`t/L. (133)

For |k| < n/2, we have

α[k] =
L

n

n−1∑
j=0

f(tj)e
−2πiktj/L

=
1

n

n−1∑
j=0

∞∑
`=−∞

f̂(`/L)e2πi`tj/Le−2πiktj/L

=
1

n

∞∑
`=−∞

f̂(`/L)

n−1∑
j=0

e2πi(`−k)tj/L

=
1

n

∞∑
`=−∞

f̂(`/L)e2πi(`−k)a/L
n−1∑
j=0

e2πi(`−k)(tj−a)/L

=
1

n

∞∑
`=−∞

f̂(`/L)e2πi(`−k)a/L
n−1∑
j=0

e2πi(`−k)j/n

=

∞∑
`=−∞

f̂(`/L)e2πi(`−k)a/Lδ`=kmodn

=
∑

` : `=kmodn

f̂(`/L)e2πi(`−k)a/L

= f̂(k/L) +
∑

`:` 6=k, `=kmodn

f̂(`/L)e2πi(`−k)a/L. (134)
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Because f is C∞, |f̂(k/L)| = O(|k|−r), and so∣∣∣α[k]− f̂(k/L)
∣∣∣ ≤ ∑

`:` 6=k, `=kmodn

∣∣∣f̂(`/L)
∣∣∣

=
∑

j∈Z\{0}

∣∣∣f̂((k + jn)/L)
∣∣∣

≤ C
∑

j∈Z\{0}

1

|k + jn|r

=
C

nr

∑
j∈Z\{0}

1

|k/n+ j|r

≤ C

nr
, (135)

where the series is bounded by a constant because |k/n| < 1/2, and where C may change from line to line (but never
depends on n). This completes the proof.

Corollary 4.5. For all r > 1, there is a constant C > 0 such that for all |t| < L and even n ≥ 2,

|νx(t)− (Vf)(t)| ≤ C

nr
. (136)

Proof. Take any q > r. Applying Lemma 4.4 with q in place of r, we have:∣∣∣∣∣∣
∑

0<|k|<n/2

β[k]e2πikt/L −
∑

0<|k|<n/2

(̂Vf)(k/L)e2πikt/L

∣∣∣∣∣∣ ≤ C
∑

0<|k|<n/2

∣∣∣α[k]− f̂(k/L)
∣∣∣

|k|
≤ C log(n)

nq
. (137)

Since f is C∞, |f̂(k/L)| = O(|k|−q), and therefore |(̂Vf)(k/L)| = O(|k|−q−1), and so the tail may be bounded∣∣∣∣∣∣
∑
|k|≥n/2

(̂Vf)(k/L)e2πikt/L

∣∣∣∣∣∣ ≤ C
∑
|k|≥n/2

1

|k|q+1
≤ C

nq
. (138)

Therefore, for any s,∣∣∣∣∣∣
∑

0<|k|<n/2

β[k]e2πiks/L −
∑
k 6=0

(̂Vf)(k/L)e2πiks/L

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0<|k|<n/2

(β[k]− (̂Vf)(k/L))e2πiks/L

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
|k|≥n/2

(̂Vf)(k/L)e2πiks/L

∣∣∣∣∣∣
≤

∑
0<|k|<n/2

∣∣∣β[k]− (̂Vf)(k/L))
∣∣∣+

∑
|k|≥n/2

∣∣∣(̂Vf)(k/L)
∣∣∣

≤ C log(n)

nq
. (139)

Taking s = a,

∣∣∣β[0]− (̂Vf)(0)
∣∣∣ =

∣∣∣∣∣∣
∑

0<|k|<n/2

β[k]e2πika/L −
∑
k 6=0

(̂Vf)(k/L)e2πika/L

∣∣∣∣∣∣ ≤ C log(n)

nq
, (140)

and consequently, since log(n)/nq ≤ C/nr,

|νx(t)− (Vf)(t)| ≤
∣∣∣β[0]− (̂Vf)(0)

∣∣∣+

∣∣∣∣∣∣
∑

0<|k|<n/2

β[k]e2πiks/L −
∑
k 6=0

(̂Vf)(k/L)e2πiks/L

∣∣∣∣∣∣ ≤ C

nr
. (141)
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Lemma 4.6. Suppose G has Lipschitz constant bounded by A on [a, b], let L = b− a, and

tk = a+
k

n
L, 0 ≤ k ≤ n. (142)

Then for any 1 ≤ p <∞, ∣∣∣∣∣∣
(
L

n

n−1∑
k=0

|G(tk)|p
)1/p

− ‖G‖Lp

∣∣∣∣∣∣ ≤ L1+1/p

n
A, (143)

and, when p =∞, ∣∣∣∣ max
0≤k≤n

|G(tk)| − ‖G‖L∞
∣∣∣∣ ≤ L

n
A. (144)

Proof. First, suppose 1 ≤ p <∞. For brevity, let

Tn =

(
L

n

n−1∑
k=0

|G(tk)|p
)1/p

. (145)

For each 0 ≤ m ≤ n− 1, let

Sm =

(
L

n

)1/p

|G(tm)| (146)

and

Rm =

(ˆ tm+1

tm

|G(x)|p dx
)1/p

. (147)

Then

Tn =

(
n−1∑
m=0

|Sm|p
)1/p

(148)

and

‖G‖Lp =

(
n−1∑
m=0

|Rm|p
)1/p

. (149)

The Mean Value Theorem ensures that there is some t∗m in the interval [tm, tm+1] satisfying

Rm =

(
L

n

)1/p

|G(t∗m)|. (150)

Since A bounds the Lipschitz constant for G,

|Sm −Rm| =

∣∣∣∣∣Sm −
(
L

n

)1/p

|G(t∗m)|

∣∣∣∣∣
=

(
L

n

)1/p ∣∣|G(tm)| − |G(t∗m)|
∣∣

≤
(
L

n

)1/p

A|tm − t∗m|

≤ A
(
L

n

)1+1/p

. (151)

25



Consequently,

|Tn − ‖G‖Lp | =

∣∣∣∣∣∣
(
n−1∑
m=0

|Sm|p
)1/p

−

(
n−1∑
m=0

|Rm|p
)1/p

∣∣∣∣∣∣
≤

(
n−1∑
m=0

|Sm −Rm|p
)1/p

=
L1+1/p

n
A. (152)

This completes the proof when p is finite. The proof for p = ∞ follows by taking the limit p → ∞ and using the
convergence of the p-norm to the ∞-norm.

We now complete the proof of Proposition 4.2. When 1 ≤ p <∞, from the triangle inequality

∣∣Vp(x)− ‖f‖V p
∣∣ =

∣∣∣∣∣∣∣
L
n

n−1∑
j=0

|νx(tj)|p
1/p

− ‖f‖V p

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
L
n

n−1∑
j=0

|νx(tj)|p
1/p

−

L
n

n−1∑
j=0

|(Vf)(tj)|p
1/p

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
L
n

n−1∑
j=0

|(Vf)(tj)|p
1/p

− ‖f‖V p

∣∣∣∣∣∣∣
≤

L
n

n−1∑
j=0

|νx(tj)− (Vf)(tj)|p
1/p

+

∣∣∣∣∣∣∣
L
n

n−1∑
j=0

|(Vf)(tj)|p
1/p

− ‖Vf‖Lp

∣∣∣∣∣∣∣ . (153)

From Corollary 4.5, the first term is O(1/nr), r > 1; and from Lemma 4.6, the second term is O(1/n). Since the
constant is bounded with p, the case p =∞ is obtained by taking the limit as p→∞.

4.1.2 Proof of Proposition 4.3

First, we note that the third part of the Proposition (almost sure convergence) follows immediately from the second
part (the concentration bound) by using the following well-known corollary of the Borel-Cantelli Lemma (see e.g.
Chapter 2, Section 10 of [63]):

Lemma 4.7. Let R1, R2, . . . be a sequence of random numbers. Suppose that for all ε > 0,

∞∑
n=1

P{Rn > ε} <∞. (154)

Then Rn → 0 almost surely.

Recall that the vectors α and β are defined as follows:

α[k] =
L

n

n−1∑
j=0

Z[j]e−2πiktj/L, −n/2 ≤ k ≤ n/2− 1, (155)

β[k] =
α[k]

2πik/L
, 0 < |k| < n/2, (156)

and when k = 0,

β[0] = −
∑

0<|k|<n/2

β[k]e2πika/L. (157)
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Define the random vector W by W [j] = νZ(tj), that is,

W [j] =
1

L

n/2−1∑
k=−n/2+1

β[k]e2πitjk/L, (158)

for 0 ≤ j ≤ n− 1. Then for 1 ≤ p <∞,

Vp(Zn) =

L
n

n−1∑
j=0

|W [j]|p
1/p

, (159)

and V∞(Zn) = ‖W‖∞.
It will be convenient to define the auxiliary vector X by

X[j] =
∑

0<|k|<n/2

β[k]e2πitjk/L. (160)

Then W [j] = (X[j] + β[0])/L.

Expectation of Vp(Zn), 1 ≤ p ≤ 2. The following result may be found (in more general form) in Chapter V of
[80]:

Lemma 4.8. There is a constant C > 0 such that for any positive integer m and real number A,∣∣∣∣∣
m∑
k=1

sin(kA)

k

∣∣∣∣∣ ≤ C. (161)

We use Lemma 4.8 to bound the variance of each entry of X. For a fixed 0 ≤ ` ≤ n− 1,

X[`] =
∑

0<|k|<n/2

β[k]e2πit`k/L

=
L

2πi

∑
0<|k|<n/2

α[k]

k
e2πit`k/L

=
L

2πi

∑
0<|k|<n/2

1

k

L
n

n−1∑
j=0

Z[j]e−2πiktj/L

 e2πit`k/L

=
L2

2πin

n−1∑
j=0

Z[j]
∑

0<|k|<n/2

e2πik(`−j)/n

k

=
L2

2πin

n−1∑
j=0

Z[j]

n/2−1∑
k=1

sin(2π(`− j)k/n)

k
. (162)

By Lemma 4.8, and the independence of the Z[j],

E
[
|X[`]|2

]
= C

L4

n2

n−1∑
j=0

σ2
j

n/2−1∑
k=1

sin(2π(`− j)k/n)

k

2

≤ CL4σ
2

n
. (163)

Similarly, we have

β[0] = − L

2πi

∑
0<|k|<n/2

α[k]

k
e2πika/L = − L2

2πin

n−1∑
j=0

Z[j]

n/2−1∑
k=1

sin(2πjk/n)

k
, (164)
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and again using Lemma 4.8,

E
[
|β[0]|2

]
= C

L4

n2

n−1∑
j=0

σ2
j

n/2−1∑
k=1

sin(2πjk/n)

k

2

≤ CL4σ
2

n
. (165)

Since W [j] = (X[j] + β[0])/L, it follows that

E[W [j]2] ≤ CL2σ
2

n
. (166)

Consequently,

E[V2(Zn)2] =
L

n

n−1∑
j=0

E[W [j]2] ≤ CL3σ
2

n
, (167)

and therefore, using Jensen’s inequality,

E[V2(Zn)] ≤
√
E[V2(Zn)2] ≤ CL3/2 σ√

n
. (168)

Since Vp(Zn) ≤ L1/p−1/2V2(Zn) for 1 ≤ p ≤ 2, we then have

E[Vp(Zn)] ≤ CL1+1/p σ√
n
. (169)

Expectation of Vp(Zn), 2 < p ≤ ∞. We start with a simple bound on the moment generating function of the
absolute value of a Gaussian random variable, whose proof is provided for the reader’s convenience:

Lemma 4.9. Suppose Y is a mean zero mean Gaussian with variance τ . Then E
[
es|Y |

]
≤ 2eτs

2/2 for all s.

Proof. Since the moment generating function of Y itself is E[esY ] = eτs
2/2, we have the bound

E
[
es|Y |

]
=

1√
2πτ

ˆ ∞
−∞

e−y
2/2τes|y| dy

= 2
1√
2πτ

ˆ ∞
0

e−y
2/2τesy dy

≤ 2
1√
2πτ

ˆ ∞
−∞

e−y
2/2τesy dy

= 2eτs
2/2. (170)

From (163), the variance of X[`] is bounded above by CL4σ2/n. Therefore, for any s > 0, using Jensen’s
inequality, we have

eE[s‖X‖∞] ≤ E
[
es‖X‖∞

]
= E

[
max
`
es|X[`]|

]
≤ E

[
n−1∑
`=0

es|X[`]|

]

=

n−1∑
`=0

E
[
es|X[`]|

]
≤ n max

0≤`≤n−1
E
[
es|X[`]|

]
≤ 2n max

0≤`≤n−1
es

2Var(X[`])/2

≤ 2neCs
2L4σ2/n (171)
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and so, taking the logarithm of each side,

E [‖X‖∞] ≤ C
(

log(n)

s
+
sL4σ2

n

)
, (172)

and taking s = σ−1L−2
√
n log(n) then gives the bound

E [‖X‖∞] ≤ CL2σ

√
log(n)

n
. (173)

It is straightforward to show the same bound for β[0], and since W [`] = (X[`] + β[0])/L and V∞(Zn) = ‖W‖∞, it
follows that

E [V∞(Zn)] ≤ CLσ
√

log(n)

n
. (174)

Now, for any 2 < p <∞,

Vp(Zn) =

L
n

n−1∑
j=0

|W [j]|p
1/p

≤ ‖W‖1−2/p
∞

L
n

n−1∑
j=0

|W [j]|2
1/p

= V2(Zn)2/p ·V∞(Zn)1−2/p, (175)

and so with r = p/2 and s = (1− 2/p)−1, by Hölder’s inequality

E [Vp(Zn)] ≤ E
[
V2(Zn)2/p ·V∞(Zn)1−2/p

]
≤
(
E
[
V2(Zn)2r/p

])1/r

·
(
E
[
V∞(Zn)s(1−2/p)

])1/s

= (E [V2(Zn)])
2/p · (E [V∞(Zn)])

1−2/p

= CL1+1/pσ log(n)1/2−1/p

√
n

. (176)

Concentration of Vp(Zn), 1 ≤ p ≤ 2. First, observe that for each k 6= 0,

|α[k]|2 =
L2

n2

∑
i,j

Z[i]Z[j]e−2πikti/Le2πiktj/L

=
L2

n2

n−1∑
i=0

Z[i]2 +
L2

n2

∑
i 6=j

Z[i]Z[j]e−2πikti/Le2πiktj/L, (177)

and taking expectations then gives

E
[
|α[k]|2

]
=
L2

n2

n−1∑
i=0

σ2
j ≤ L2σ

2

n
. (178)

Therefore, for k 6= 0,

E
[
|β[k]|2

]
≤ CL4 σ

2

nk2
. (179)

Let ϕ[k] = Re(β[k]) and ψ[k] = Im(β[k]), 0 < k < n/2. Also let ck[j] = cos(2πktj/L) and sk[j] = sin(2πktj/L),

1 ≤ k ≤ n/2− 1. All n− 2 vectors ck and sk are pairwise orthogonal with ‖ck‖2 = ‖sk‖2 =
√
n/2. Then

X[j] = 2
∑

0<k<n/2

[
ϕ[k]ck[j]− ψ[k]sk[j]

]
, (180)
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and so ‖X‖22 = 2n(‖ϕ‖22 + ‖ψ‖22), and therefore

V2(Zn)2 = (L/n)‖W‖22
= (L/n)‖X/L‖22 + (L/n)|β[0]/L|2

= ‖X‖22/(nL) + |β[0]|2/(nL)

= (2/L)‖ϕ‖22 + (2/L)‖ψ‖22 + |β[0]|2/(nL). (181)

The n− 2 variables ϕ[k] and ψ[k] are independent Gaussians with zero mean, and respective variances

τϕ[k] ≡ E
[
ϕ[k]2

]
≤ CL4 σ

2

nk2
(182)

and

τψ[k] ≡ E
[
ψ[k]2

]
≤ CL4 σ

2

nk2
, (183)

where the bounds follow from (179). Let τ = (τϕ, τψ). Then

‖τ‖∞ ≤ CL4σ
2

n
(184)

and

‖τ‖22 = ‖τϕ‖22 + ‖τψ‖22 ≤ CL8σ
4

n2

n/2−1∑
k=1

1

k4
≤ CL8σ

4

n2
. (185)

Furthermore,

E
[
‖ϕ‖22 + ‖ψ‖22

]
=

n/2−1∑
k=0

τϕ[k] +

n/2−1∑
k=0

τψ[k] ≤
n/2−1∑
k=0

CL4 σ
2

nk2
≤ CL4σ

2

n
. (186)

Let ∆ = ‖ϕ‖22 + ‖ψ‖22. From Lemma 1 in [33], for any t > 0

P
{

∆− E[∆] ≥ 2‖τ‖2
√
t+ 2‖τ‖∞t

}
≤ exp(−t), (187)

which easily implies the one-sided subexponential tail bound, namely that for any s > 0,

P {∆− E[∆] ≥ s} ≤ exp

(
−C min

{
s2

‖τ‖22
,

s

‖τ‖∞

})
≤ exp

(
−C min

{
n2s2

L8σ4
,
ns

L4σ2

})
, (188)

where C is a universal constant. Since E[∆] ≤ CL4σ2/n, it then follows that for any s > 0,

P
{

(2/L)‖ϕ‖22 + (2/L)‖ψ‖22 ≥ s
}
≤ exp

(
−C min

{
n2s2

L6σ4
,
ns

L3σ2

})
(189)

for all n ≥ L3σ2/s. It is straightforward to prove the same bound for (1/nL)β[0]2; and so by (181),

P
{

V2(Zn)2 ≥ s
}
≤ 2 exp

(
−C min

{
n2s2

L6σ4
,
ns

L3σ2

})
, (190)

and consequently, for all t > 0

P {V2(Zn) ≥ t} ≤ 2 exp

(
−C min

{
n2t4

L6σ4
,
nt2

L3σ2

})
≤ 2 exp

(
−C nt2

L3σ2

)
(191)

for all n ≥ L3σ2/t2. When n < L3σ2/t2, then the right side of (191) is bounded below by a postive constant, and so
for sufficiently large A > 0 the bound

P {Vp(Zn) ≥ t} ≤ A exp

(
−C nt2

L3σ2

)
(192)

is valid for all t ≥ 0 and n ≥ 2.
Since Vp(Zn) ≤ L1/p−1/2V2(Zn) for all 1 ≤ p ≤ 2, it follows that

P {Vp(Zn) ≥ t} ≤ A exp

(
−C nt2

L2+2/pσ2

)
(193)

for all t ≥ 0 and n ≥ 2.
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Concentration of Vp(Zn), 2 < p ≤ ∞. Since each W [j] is Gaussian with variance bounded by CL2σ2/n (by
(166)), standard Gaussian tails bounds imply

P (|W [j]| ≥ t) ≤ 2 exp

(
−C nt2

L2σ2

)
(194)

(e.g. see Chapter 2 in [72]). Since V∞(Zn) = ‖W‖∞, by the union bound, therefore,

P (V∞(Zn) ≥ t) ≤ n max
0≤j≤n−1

P (|W [j]| ≥ t) ≤ 2n exp

(
−C nt2

L2σ2

)
. (195)

Furthermore, for all 2 < p <∞, since Vp(Zn) ≤ L1/pV∞(Zn) we have the bound

P (Vp(Zn) ≥ t) ≤ 2n exp

(
−C nt2

L2+2/pσ2

)
, (196)

as desired.

4.2 Robustness to noise in 2D

We turn now to the discrete approximation of the sliced Cramér distance in 2D, with respect to the uniform measure
over S1. We follow the discretization described in [61], which uses a non-uniform discrete Fourier transform to
compute the Radon transform of the input functions. Let R > 0 and L = 2R. Let n a positive integer; throughout
this discussion, we will assume for simplicity that n is even. Let x ∈ Rn2

= Rn×Rn; the reader should think of x as
having entries x[i, j] = f(ti, tj), i, j = 0, . . . , n− 1, where f : R2 → R is a function supported on the disc of radius R
centered at the origin and where tj = −R+ 2Rj/n.

For θ ∈ [0, π), define the values

αθ[k] =
L2

n2

∑
i,j

x[i, j]e−2πik(ti cos(θ)+tj sin(θ))/L. (197)

Then for −n/2 ≤ k ≤ n/2, αθ[k] ≈ f̂((k/L) cos(θ), (k/L) sin(θ)) = (̂Pθf)(k/L).
For 0 < |k| < n/2, let

βθ[k] =
αθ[k]

2πik/L
. (198)

For k = 0, define

βθ[0] = −
∑

0<|k|<n/2

βθ[k]e−2πikR/L = −
∑

0<|k|<n/2

βθ[k](−1)k. (199)

Define νx(t, θ) by

νx(t, θ) =
1

L

n/2−1∑
k=−n/2+1

βθ[k]e2πitk/L. (200)

Let θ` = π`/n, ` = 0, . . . , n− 1. We then define the estimated sliced Volterra norm for 1 ≤ p <∞ to be

SVp(x) =

 1

n

n−1∑
`=0

L

n

n∑
j=0

|νx(tj , θ`)|p
1/p

, (201)

and

SV∞(x) = max
0≤j,`≤n−1

|νx(tj , θ`)|. (202)

Given two vectors x and y, define their sliced Cramér distance to be

ŜCp(x, y) = SVp(x− y). (203)
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Remark 14. Using a non-uniform Fast Fourier Transform (NUFFT) (for example, see [16, 17, 18, 24, 4, 5]) to
evaluate the αθ` [k] and the νx(tj , θ`), the entire computation described here can be performed at cost O(n2 log n).
In our implementation, we use the Flatiron Institute NUFFT (FINUFFT) [4, 5].

We can now state the main result from this section, which says that the discrete sliced Cramér distance in 2D is
robust to additive heteroscedastic Gaussian noise:

Theorem 4.10. Suppose f and g are C∞ functions on R2 that are supported on the disc of radius R > 0 centered
at the origin and satisfy

´
R2 f =

´
R2 g. Let Z[j, k], Z̃[j, k], 0 ≤ j, k ≤ n − 1, be independent Gaussians, where each

Z[j, k] has mean 0 and variance σ2
jk, and each Z̃[j, k] has mean 0 and variance σ̃2

jk; and suppose that for all n, σ > 0
satisfies

1

n2

n−1∑
k=0

n−1∑
j=0

σ2
jk +

1

n2

n−1∑
k=0

n−1∑
j=0

σ̃2
jk ≤ σ2. (204)

Let Xn and Yn be vectors in Rn2

with entries Xn[j, k] = f(tj , tk) + Z[j, k] and Yn[j, k] = g(tj , tk) + Z̃[j, k]. Then:

1. Expected error: There are values A,B > 0 such that for all σ ≥ 0, n ≥ 2, and 1 ≤ p ≤ ∞,

E
[∣∣∣ŜCp(Xn, Yn)− SCp(f, g)

∣∣∣] ≤ Aσ log(n)m(p)

n
+
B

n
, (205)

where m(p) = max{1/2− 1/p, 0}.

2. Concentration bound. There are values A,B,C > 0 such that for all σ > 0, t ≥ 0, and n ≥ C/t,

P
(∣∣∣ŜCp(Xn, Yn)− SCp(f, g)

∣∣∣ ≥ t) ≤ A · exp

(
−Bn

2t2

σ2

)
(206)

for 1 ≤ p ≤ 2, and

P
(∣∣∣ŜCp(Xn, Yn)− SCp(f, g)

∣∣∣ ≥ t) ≤ A · n2 · exp

(
−Bn

2t2

σ2

)
(207)

for 2 < p ≤ ∞.

3. Almost sure limit. For all 1 ≤ p ≤ ∞, ŜCp(Xn, Yn)→ SCp(f, g) almost surely as n→∞.

As in the 1D case, Theorem 4.10 is an easy corollary of the following two results:

Proposition 4.11. Suppose f is a C∞ function on R2 that is supported on the disc of radius R > 0 centered at the
origin, and

´
R2 f = 0. Let 1 ≤ p ≤ ∞, and let x ∈ Rn have entries x[j, k] = f(tj , tk), 0 ≤ j, k ≤ n− 1. Then

|SVp(x)− ‖f‖SV p | ≤
C

n
, (208)

where C > 0 does not depend on n.

Proposition 4.12. Let Z[j, k], j, k ≥ 0, be independent Gaussians, where each Z[j, k] has mean 0 and variance σ2
jk;

and suppose σ > 0 satisfies

1

n2

n−1∑
j=0

n−1∑
k=0

σ2
jk ≤ σ2, (209)

for all n. For each n ≥ 1, let Zn ∈ Rn2

have entries Z[j, k]. Then:

1. Expectation bound. There is a value C > 0 such that for all σ ≥ 0, n ≥ 2, and 1 ≤ p ≤ ∞,

E [SVp(Zn)] ≤ Cσ log(n)m(p)

n
, (210)

where m(p) = max{1/2− 1/p, 0}.
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2. Concentration bound. There are values A,B > 0 such that for all σ > 0, t ≥ 0, and n ≥ 2,

P (SVp(Zn) ≥ t) ≤ A · exp

(
−Bn

2t2

σ2

)
(211)

for all 1 ≤ p ≤ 2, and

P (SVp(Zn) ≥ t) ≤ A · n2 · exp

(
−Bn

2t2

σ2

)
(212)

for all 2 < p ≤ ∞.

3. Almost sure limit. For all 1 ≤ p ≤ ∞, SVp(Zn)→ 0 almost surely as n→∞.

4.2.1 Proof of Proposition 4.11

Lemma 4.13. For all r > 2, there is a C > 0 such that∣∣∣αθ[m]− (̂Pθf)(m/L)
∣∣∣ ≤ C

nr
(213)

for all 0 ≤ θ < π, n ≥ 2, and |m| < n/2.

Proof. We write the Fourier expansion of f :

f(s, t) =
1

L2

∑
k,`

f̂(k/L, `/L)e2πi(sk+t`)/L. (214)

Suppose |ξ| ≤ n/(2L) and |ν| ≤ n/(2L). Let fξ,ν(s, t) = f(s, t)e−2πi(sξ+tν). Then f̂ξ,ν(ϕ,ψ) = f̂(ϕ + ξ, ψ + ν),
and so

f(s, t)e−2πi(sξ+tν) = fξ,ν(s, t)

=
1

L2

∑
k,`

f̂ξ,ν(k/L, `/L)e2πi(sk+t`)/L

=
1

L2

∑
k,`

f̂(k/L+ ξ, `/L+ ν)e2πi(sk+t`)/L, (215)

and consequently

f(s, t) =
1

L2

∑
k,`

f̂(k/L+ ξ, `/L+ ν)e2πi(s(k/L+ξ)+t(`/L+ν)). (216)
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Therefore,

L2

n2

∑
i,j

f(ti, tj)e
−2πi(tiξ+tjν) =

1

n2

∑
i,j

∑
k,`

f̂(k/L+ ξ, `/L+ ν)e2πi(ti(k/L+ξ)+tj(`/L+ν))e−2πi(tiξ+tjν)

=
1

n2

∑
i,j

∑
k,`

f̂(k/L+ ξ, `/L+ ν)e2πi(tik/L+tj`/L)

=
∑
k,`

1

n2

∑
i,j

f̂(k/L+ ξ, `/L+ ν)e2πi((Li/n−R)k/L+(Lj/n−R)`/L)

=
∑
k,`

1

n2

∑
i,j

f̂(k/L+ ξ, `/L+ ν)e2πi(−Rk/L+ki/n−R`/L+`j/n)

=
∑
k,`

f̂(k/L+ ξ, `/L+ ν)(−1)k+` 1

n2

∑
i,j

e2πi(ki+`j)/n

=
∑
k,`

f̂(k/L+ ξ, `/L+ ν)(−1)k+`δk=0 modnδ`=0 modn

=
∑
c,d

f̂(cn/L+ ξ, dn/L+ ν)(−1)(c+d)/n

= f̂(ξ, ν) +
∑

(c,d)∈Z2\{(0,0)}

f̂(cn/L+ ξ, dn/L+ ν)(−1)(c+d)/n. (217)

Since f is C∞, |f̂(ξ)| = O(|ξ|−r), and so the series can be bounded∑
(c,d)∈Z2\{(0,0)}

∣∣∣f̂(cn/L+ ξ, dn/L+ ν)
∣∣∣ ≤ C ∑

(c,d)∈Z2\{(0,0)}

(
1

(cn/L+ ξ)2 + (dn/L+ ν)2

)r/2

= C
Lr

nr

∑
(c,d)∈Z2\{(0,0)}

(
1

(c+ ξL/n)2 + (d+ νL/n)2

)r/2
. (218)

Since |ξ| ≤ n/(2L) and |ν| ≤ n/(2L) and r > 2, the series is bounded by a constant. Taking ξ = (m/L) cos(θ) and
ν = (m/L) sin(θ), and using that m ≤ n/2, completes the proof.

Corollary 4.14. For all r > 2, there is C > 0 such that

|νx(t, θ)− (VPθf)(t)| ≤ C

nr
(219)

for all 0 ≤ θ < π and |t| < L.

Proof. Let q > r. For all t and θ, applying Lemma 4.13 with q in place of r gives∣∣∣∣∣∣ 1L
∑

0<|k|≤n/2−1

βθ[k]e2πitk/L − 1

L

∑
0<|k|≤n/2−1

(̂Pθf)(k/L)

2πık/L
e2πitk/L

∣∣∣∣∣∣ ≤ C

nq

∑
0<|k|≤n/2−1

1

|k|

≤ C log(n)

nq
, (220)

and the tail can be bounded∣∣∣∣∣∣
∑
|k|≥n/2

(̂Pθf)(k/L)

2πık
e2πitk/L

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|k|≥n/2

f̂((k/L) cos(θ), (k/L) sin(θ))

2πık
e2πitk/L

∣∣∣∣∣∣
≤ C

∑
|k|≥n/2

1

kq+1

≤ C 1

nq
. (221)
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Similarly, for all θ,∣∣∣βθ[0]− ̂(VPθf)(0)
∣∣∣ ≤ ∑

0<|k|≤n/2−1

∣∣∣∣∣βθ[k]− (̂Pθf)(k/L)

2πık/L

∣∣∣∣∣+
∑
|k|≥n/2

∣∣∣∣∣ (̂Pθf)(k/L)

2πık/L

∣∣∣∣∣ ≤ C log(n)

nq
. (222)

It then follows that for all t and θ,

|νx(t, θ)− (VPθf)(t)| ≤ C log(n)

nq
≤ C

nr
, (223)

where C does not depend on θ, t or n.

We now complete the proof of Proposition 4.11. For brevity, let G(y, θ) = (VPθf)(y), i.e.

G(y, θ) =

ˆ y

−R

ˆ R

−R
f(s cos(θ) + t sin(θ), t cos(θ)− s sin(θ)) dt ds. (224)

Then from Corollary 4.14,∣∣∣∣∣∣∣SVp(x)−

 1

n

n−1∑
`=0

L

n

n−1∑
j=0

|G(tj , θ`)|p
1/p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
 1

n

n−1∑
`=0

L

n

n−1∑
j=0

|νx(tj , θ`)|p
1/p

−

 1

n

n−1∑
`=0

L

n

n−1∑
j=0

|G(tj , θ`)|p
1/p

∣∣∣∣∣∣∣
≤

 1

n

n−1∑
`=0

L

n

n−1∑
j=0

|νx(tj , θ`)−G(tj , θ`)|p
1/p

≤ C

nr
. (225)

Note that G(y, θ) is uniformly Lipschitz in y. Indeed,

|G(y, θ)−G(z, θ)| ≤

∣∣∣∣∣
ˆ y

z

ˆ R

−R
f(s cos(θ) + t sin(θ), t cos(θ)− s sin(θ)) dt ds

∣∣∣∣∣
≤ ‖f‖∞L|z − y|. (226)

Consequently, ∣∣∣∣∣∣∣
(

1

n

n−1∑
`=0

ˆ R

−R
|G(t, θ`)|p dt

)1/p

−

 1

n

n−1∑
`=0

L

n

n−1∑
j=0

|G(tj , θ`)|p
1/p

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
 1

n

n−1∑
`=0

n−1∑
j=0

ˆ tj+1

tj

|G(t, θ`)|p dt

1/p

−

 1

n

n−1∑
`=0

n−1∑
j=0

ˆ tj+1

tj

|G(tj , θ`)|p dt

1/p
∣∣∣∣∣∣∣

≤

 1

n

n−1∑
`=0

n−1∑
j=0

ˆ tj+1

tj

|G(t, θ`)−G(tj , θ`)|p dt

1/p

≤‖f‖∞L

 1

n

n−1∑
`=0

n−1∑
j=0

ˆ tj+1

tj

|t− tj |p dt

1/p

≤‖f‖∞L2+1/p 1

n
. (227)

Therefore, from (225), ∣∣∣∣∣∣SVp(x)−

(
1

n

n−1∑
`=0

ˆ R

−R
|G(t, θ`)|p dt

)1/p
∣∣∣∣∣∣ ≤ C

n
, (228)
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where C > 0 is independent of p and n.
Next, note that G(y, θ) is uniformly Lipschitz in θ: indeed, because f has bounded derivative, for all (s, t) in the

disc of radius R and for all 0 ≤ θ < π,

|f(s, t)− f(s cos(θ) + t sin(θ), t cos(θ)− s sin(θ))| ≤ ‖|∇f |‖∞L sin(θ/2), (229)

and so for any y between −R and R,

|G(y, 0)−G(y, θ)| ≤
ˆ y

−R

ˆ R

−R
|f(s, t)− f(s cos(θ) + t sin(θ), t cos(θ)− s sin(θ))| dt ds

≤ ‖|∇f |‖∞L3 sin(θ/2). (230)

Let Ip(θ) = ‖VPθf‖Lp = ‖G(·, θ)‖Lp . Then for each ` = 0, . . . , n− 1, with θ` = π`/n, and all 0 ≤ θ < π,∣∣Ip(θ)− Ip(θ`)∣∣ =
∣∣‖G(·, θ)‖Lp − ‖G(·, θ`)‖Lp

∣∣
≤ ‖G(·, θ)−G(·, θ`)‖Lp

=

(ˆ R

−R
|G(t, θ)−G(t, θ`)|pdt

)1/p

≤ ‖|∇f |‖∞L3+1/p sin(π/(2n)).

≤ C‖|∇f |‖∞L3+1/p 1

n
. (231)

We then have ∣∣∣∣∣∣
(

1

π

ˆ π

0

ˆ R

−R
|G(t, θ)|p dt dθ

)1/p

−

(
1

n

n−1∑
`=0

ˆ R

−R
|G(t, θ`)|p dt

)1/p
∣∣∣∣∣∣

=

∣∣∣∣∣∣
(

1

π

n−1∑
`=0

ˆ θ`+1

θ`

ˆ R

−R
|G(t, θ)|p dt dθ

)1/p

−

(
1

π

n−1∑
`=0

ˆ θ`+1

θ`

ˆ R

−R
|G(t, θ`)|p dt dθ

)1/p
∣∣∣∣∣∣

=

∣∣∣∣∣∣
(

1

π

n−1∑
`=0

ˆ θ`+1

θ`

Ip(θ)
p dθ

)1/p

−

(
1

π

n−1∑
`=0

ˆ θ`+1

θ`

Ip(θ`)
p dθ

)1/p
∣∣∣∣∣∣

≤

(
1

π

n−1∑
`=0

ˆ θ`+1

θ`

∣∣Ip(θ)− Ip(θ`)∣∣pdθ)1/p

=C‖|∇f |‖∞L3+1/p 1

n
, (232)

that is, ∣∣∣∣∣∣‖f‖SV p −
(

1

n

n−1∑
`=0

ˆ R

−R
|G(t, θ`)|p dt

)1/p
∣∣∣∣∣∣ ≤ C‖|∇f |‖∞L3+1/p 1

n
. (233)

Combined with (228), we get

|‖f‖SV p − SVp(x)| ≤ C

n
, (234)

where C does not depend on p or n. The result for p =∞ then follows by taking the limit as p→∞.

4.2.2 Proof of Proposition 4.12

First, we note that the third part of the Proposition (almost sure convergence) follows immediately from the second
part (concentration bound) by using Lemma 4.7, as in the 1D case.
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Recall that the vectors αθ and βθ are defined as follows:

αθ[k] =
L2

n2

∑
i,j

Z[i, j]e−2πik(ti cos(θ)+tj sin(θ))/L, −n/2 ≤ k ≤ n/2− 1, (235)

βθ[k] =
αθ[k]

2πik/L
, −n/2 < k < n/2, (236)

and when k = 0,

βθ[0] = −
∑

0<|k|<n/2

βθ[k](−1)k. (237)

Define the random vector W by W [j, `] = νZ(tj , θ`), that is,

W [j, `] =
1

L

n/2−1∑
k=−n/2+1

βθ` [k]e2πitjk/L (238)

for 0 ≤ j ≤ n− 1. Then for each 1 ≤ p <∞,

SVp(Zn) =

 L

n2

n−1∑
`=0

n−1∑
j=0

|W [j, `]|p
1/p

, (239)

and SV∞(Zn) = ‖W‖∞.
We define the auxiliary vector X by

X[j, `] =
∑

0<|k|<n/2

βθ` [k]e2πitjk/L. (240)

Note that W [j, `] = (X[j, `] + βθ` [0])/L.

Expectation of SVp(Zn), 1 ≤ p ≤ 2. For fixed 0 ≤ i, ` ≤ n− 1,

X[i, `] =
∑

0<|k|<n/2

βθ` [k]e2πitik/L

=
L

2πi

∑
0<|k|<n/2

αθ` [k]

k
e2πitik/L

=
L3

2πin2

∑
0<|k|<n/2

∑
j,j′

Z[j, j′]
1

k
e−2πik(tj cos(θ`)+tj′ sin(θ`))/Le2πitik/L

=
L3

2πin2

∑
j,j′

Z[j, j′]

n/2−1∑
k=1

1

k
sin(k2π(tj cos(θ`) + tj′ sin(θ`)− ti)/L). (241)

Therefore, since the Z[j, j′] are independent, and using Lemma 4.8,

E
[
X[i, `]2

]
≤ CL6 1

n4

n−1∑
j=0

σ2
jj′ ≤ CL6σ

2

n2
. (242)

A nearly identical argument shows

E
[
|βθ[0]|2

]
≤ CL6σ

2

n2
(243)
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as well, for any θ. Since W [j, `] = (X[j, `] + βθ` [0])/L, it then follows that

E
[
W [j, `]2

]
≤ CL4σ

2

n2
. (244)

Consequently,

E[SV2(Zn)2] =
L

n2

n−1∑
j=0

n−1∑
`=0

E[W [j, `]2] ≤ CL5σ
2

n2
, (245)

and so by Jensen’s inequality,

E[SV2(Zn)] ≤
√
E[SV2(Zn)2] ≤ CL5/2σ

n
. (246)

If 1 ≤ p ≤ 2, then SVp(Zn) ≤ L1/p−1/2SV2(Zn), and so

E[SVp(Zn)] ≤ CL2+1/pσ

n
. (247)

Expectation of SVp(Zn), 2 < p ≤ ∞. Using the bound (242) on the variance of each X[j, `], an identical argument
to (171) shows that for each s > 0,

eE[s‖X‖∞] ≤ 2n2eCs
2L6σ2/n2

(248)

and taking s = σ−1L−3n
√

log(n) gives the bound

E [‖X‖∞] ≤ CL3σ

√
log(n)

n
. (249)

It is straightforward to show the same bound for each βθ` [0], and since W [j, `] = (X[j, `]+βθ` [0])/L and SV∞(Zn) =
‖W‖∞, it then follows that

E [SV∞(Zn)] ≤ CL2σ

√
log(n)

n
. (250)

For any 2 < p <∞, as in (175),

SVp(Zn) ≤ SV2(Zn)2/p · SV∞(Zn)1−2/p, (251)

and so, just as in the 1D case, with r = p/2 and s = (1− 2/p)−1, by Hölder’s inequality we have

E [SVp(Zn)] ≤ E
[
SV2(Zn)2/p · SV∞(Zn)1−2/p

]
≤ E

[
SV2(Zn)2r/p

]1/r
· E
[
SV∞(Zn)s(1−2/p)

]1/s
= E [SV2(Zn)]

2/p · E [SV∞(Zn)]
1−2/p

= CL2+1/pσ log(n)1/2−1/p

√
n

. (252)

Concentration of SVp(Zn), 1 ≤ p ≤ 2. The first lemma is a standard result about the concentration of averages
of subexponential random variables. A proof is included for the reader’s convenience.

Lemma 4.15. Suppose R1, R2, . . . , Rm are (not necessarily independent) subexponential random variables, that is,
there are positive τ1, . . . , τm such that for all t > 0,

P{|Rk| ≥ t} ≤ 2 exp{−t/τk}. (253)

Let R =
∑m
k=1Rk/m. Then R satisfies the tail bound

P{|R| ≥ t} ≤ 2 exp{−Ct/τ}, (254)

where τ =
∑m
k=1 τk/m and C > 0 is a universal constant.
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Proof. By Proposition 2.8.1 in [69], there are universal constants A,B > 0 such that for each k,

Aτk ≤ ‖Rk‖ψ1
≤ Bτk, (255)

where ‖Rk‖ψ1 = inf{K ≥ 0 : E[e|Rk|/K ] ≤ 2} is the subexponential Orlicz norm of Rk. Because ‖ · ‖ψ1 is a norm,
the triangle inequality implies

‖R‖ψ1
≤ 1

m

m∑
k=1

‖Rk‖ψ1
≤ Bτ. (256)

Applying Proposition 2.8.1 from [69] to R gives

P{|R| ≥ t} ≤ 2 exp{−At/‖R‖ψ1
} ≤ 2 exp{−(A/B)t/τ}, (257)

as claimed.

First, observe that for each k 6= 0,

|αθ[k]|2 =

L2

n2

∑
i,i′

Z[i, i′]e−2πi(tik cos(θ)+ti′ sin(θ))/L

L2

n2

∑
j,j′

Z[j, j′]e−2πik(tj cos(θ)+tj′ sin(θ))/L


=
L4

n4

∑
i,i′

Z[i, i′]2 + cross-terms (258)

and taking expectations and using E[cross-terms] = 0 then gives

E
[
|αθ[k]|2

]
=
L4

n4

∑
i,i′

σ2
ii′ ≤ L4σ

2

n2
. (259)

Therefore, for k 6= 0,

E
[
|βθ[k]|2

]
≤ CL6 σ2

n2k2
. (260)

For 0 < k < n/2, let ϕθ[k] = Re(βθ[k]) and ψθ[k] = Im(βθ[k]), and let ck[j] = cos(2πktj/L) and sk[j] =

sin(2πktj/L). Then all n− 2 vectors ck and sk are pairwise orthogonal, and ‖ck‖2 = ‖sk‖2 =
√
n/2. Then

X[j, `] = 2
∑

0<k<n/2

[
ϕθ` [k]ck[j]− ψθ` [k]sk[j]

]
, (261)

and

W [j, `] =
2

L

∑
0<k<n/2

[
ϕθ` [k]ck[j]− ψθ` [k]sk[j]

]
+

1

L
βθ` [0]. (262)

Note that ‖X[·, `]‖22 = 2n(‖ϕθ`‖22 + ‖ψθ`‖22).
Define the random vector V ∈ Rn by

V [`]2 = (2/L)‖ϕθ`‖22 + (2/L)‖ψθ`‖22 + (1/nL)βθ` [0]2. (263)

Then

SV2(Zn)2 =
1

n

n−1∑
`=0

V [`]2. (264)
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Fix ` between 0 and n− 1. The n− 2 variables ϕθ` [k] and ψθ` [k] are pairwise independent Gaussians with zero
mean and, by (260), respective variances

τϕθ` [k] ≡ E
[
ϕθ` [k]2

]
≤ CL6 σ2

n2k2
(265)

and

τψθ` [k] ≡ E
[
ψθ` [k]2

]
≤ CL6 σ2

n2k2
. (266)

Let τ` = (τϕθ` , τψθ` ). Then

‖τ`‖∞ ≤ CL6σ
2

n2
(267)

and

‖τ`‖22 = ‖τϕθ` ‖
2
2 + ‖τψθ`‖

2
2 ≤ CL12σ

4

n4

n/2−1∑
k=1

1

k4
≤ CL12σ

4

n4
. (268)

Furthermore,

E
[
‖ϕθ`‖22 + ‖ψθ`‖22

]
=

n/2−1∑
k=0

τϕθ` [k] +

n/2−1∑
k=0

τψθ` [k] ≤
n/2−1∑
k=0

CL6 σ2

n2k2
≤ CL6σ

2

n2
. (269)

Let ∆` = ‖ϕθ`‖22 + ‖ψθ`‖22. As in the proof of the 1D case, from Lemma 1 in [33], for any s > 0,

P {∆` − E[∆`] ≥ s} ≤ exp

(
−C min

{
s2

‖τ`‖22
,

s

‖τ`‖∞

})
≤ exp

(
−C min

{
n4s2

L12σ4
,
n2s

L6σ2

})
, (270)

where C is a universal constant. Since E[∆`] ≤ CL6σ2/n2, it then follows that for any s > 0,

P
{

(2/L)‖ϕθ`‖22 + (2/L)‖ψθ`‖22 ≥ s
}
≤ exp

(
−C min

{
n4s2

L10σ4
,
n2s

L5σ2

})
, (271)

for n ≥ L5/2σ/
√
s. It is straightforward to prove the same bound for (1/nL)βθ` [0]2; and since V [`]2 = (2/L)‖ϕθ`‖22 +

(2/L)‖ψθ`‖22 + (1/nL)βθ` [0]2,

P
{
V [`]2 ≥ s

}
≤ 2 exp

(
−C min

{
n4s2

L10σ4
,
n2s

L5σ2

})
≤ 2 exp

(
−C n2s

L5σ2

)
(272)

for n ≥ L5/2σ/
√
s.

Since SV2(Zn)2 = (1/n)
∑n−1
`=0 V [`]2, Lemma 4.15 gives

P
{

SV2(Zn)2 ≥ s
}
≤ 2 exp

(
−C n2s

L5σ2

)
(273)

n ≥ L5/2σ/
√
s, or equivalently, for all t > 0,

P {SV2(Zn) ≥ t} ≤ 2 exp

(
−C n2t2

L5σ2

)
, (274)

for all n ≥ L5/2σ/t. When n < CL5/2σ/t, the right side is bounded below by a positive constant, and so for some
sufficiently large A > 0, the bound

P {SV2(Zn) ≥ t} ≤ A exp

(
−C n2t2

L5σ2

)
(275)

is valid for all t ≥ 0 and n ≥ 2.
Since SVp(Zn) ≤ L1/p−1/2SV2(Zn) for all 1 ≤ p ≤ 2, it also follows that

P {SVp(Zn) ≥ t} ≤ A exp

(
−B n2t2

L4+2/pσ2

)
, (276)

for all t ≥ 0 and n ≥ 2.
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Concentration of SVp(Zn), 2 < p ≤ ∞. Using (244), each W [j, `] is Gaussian with variance bounded by
CL4σ2/n2, and so standard Gaussian tails bounds (e.g. see Chapter 2 in [72]) imply

P (|W [j, `]| ≥ t) ≤ 2 exp

(
−C n2t2

L4σ2

)
. (277)

Since SV∞(Zn) = ‖W‖∞, by the union bound, therefore,

P (SV∞(Zn) ≥ t) ≤ n2 max
0≤j,`≤n−1

P (|W [j, `]| ≥ t) ≤ 2n2 exp

(
−C n2t2

L4σ2

)
. (278)

Furthermore, for all 2 < p <∞, since SVp(Zn) ≤ L1/pSV∞(Zn), we have the bound

P (SVp(Zn) ≥ t) ≤ 2n2 exp

(
−C n2t2

L4+2/pσ2

)
, (279)

as desired.
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Figure 1: Functions used in the experiment described in Section 5. Left: the source function f . Right: the target
function g.
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Figure 2: Examples of the deformations applied to the source function f (left panel of Figure 1) in the experiment
described in Section 5.1. Left: translation. Middle: rotation. Right: dilation.

5 Numerical results

In this section, we report on numerical experiments that examine the robustness of the sliced Cramér, sliced Wasser-
stein, and Lebesgue distances for functions of two variables. We focus on two functions, f and g, shown in Figure 1.
The function f , shown on the left, will be referred to as the “source” function, and the function g, on the right, will
be referred to as the “target” function. Both f and g are convex combinations of isotropic Gaussian functions; f is
a combination of 20 Gaussians, while g is a combination of 12 Gaussians. Although f and g are, strictly speaking,
not compactly supported, they are numerically supported on a wide enough rectangle [−r, r]× [−r, r], where in this
case we take r = 2.5; the width of each Gaussian function comprising f and g is r/500.
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Figure 3: Results of the experiment described in Section 5.1, showing the distances from the translated source
function to the target function as a function of the translation size.

The centers of the Gaussians comprising f are arranged in a 5-by-4 grid, whose centers lie equispaced in the
rectangle [−r/6, r/6]× [−r/6, r/6]. The centers of the Gaussians comprising g are arranged in a 4-by-3 grid, whose
centers also lie equispaced in the rectangle [−r/6, r/6]× [−r/6, r/6].

We assign non-uniform weights to the Gaussians comprising each function to break rotational symmetry. The
weights assigned to the Gaussians in f may be described as follows. Assigning the numbers 1 to 5 to the rows going
from top to bottom, and assigning 1 to 4 to the columns going from left to right, the weight assigned to the Gaussian
in position (i, j) is proportial to

√
i2 + j2. The weights are assigned to the Gaussians in g similarly.

5.1 Robustness to deformations

In our first set of experiments, we examine how the distances between f and g change as f undergoes deformation.
For each metric D, we compute the distances D(fΦδ , g), where Φδ is a deformation depending on a single parameter
δ ≥ 0, such that Φ0(x) = x and the displacement of Φδ grows with δ. The distances D are the sliced p-Cramér, sliced
p-Wasserstein, and p-Lebesgue, for p = 1, 2, 10. We consider three types of deformations: translations, rotations, and
dilations. Examples of these are displayed in Figure 2. In all examples, we evaluate the distances for 25 deformation
parameters, using samples on a 500-by-500 grid.

Figure 3 shows the distances D(fΦδ , g) as a function of the translation size δ, where Φδ(x, y) = (x+ δ, y). Figure
4 shows the distances D(fΦδ , g) as a function of the rotation angle δ, where Φδ(x, y) = (x cos(δ)− y sin(δ), x sin(δ) +
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Figure 4: Results of the experiment described in Section 5.1, showing the distances from the rotated source function
to the target function as a function of the rotation angle.

y cos(δ)). Figure 5 shows the distances D(fΦδ , g) as a function of the dilation parameter δ ≥ 1, where Φδ(x) = δx.
From the plots, it is evident that the sliced p-Cramér and sliced p-Wasserstein distances exhibit similar behavior.

Both metrics also change more smoothly than the Lebesgue distances as the deformation parameter changes, partic-
ularly for translation and rotation. For dilation, the Lebesgue 1-distance quickly becomes large and nearly constant,
likely because the supports of the two functions become nearly disjoint as one is dilated. On the other hand, the
Lebesgue p-distances for p > 1 appear to vary more smoothly with the dilation parameter; this is because the p-norm
of the dilated function grows with the dilation size, and so the distance in this case is due to the growing size of the
single function, rather than providing any meaningful information about the relationship between the two functions.
By contrast, the sliced p-Cramér distance does not grow arbitrarily big as the norm grows; see Remark 7 after the
statement of Theorem 3.1.

5.2 Robustness to noise

Next, we examine the robustness of the sliced Cramér distances to additive noise. We consider the functions f and
g from before, and add Gaussian noise to the samples of g on a grid of size n = 512. We then compute both the
sliced Cramér distances and the Euclidean distances between the rotation of f and the noisy samples of g. The noise
standard deviations are chosen to be σ = 0.5, 1.0, 1.5. The distances are averaged over 10 runs of the experiment.
The resulting plots are shown in Figure 6. It is evident that the sliced Cramér distances are quite robust to noise at
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Figure 5: Results of the experiment described in Section 5.1, showing the distances from the dilated source function
to the target function as a function of the dilation size.

this sample size, in the sense that though the distances between f and the noisy samples of g are inflated, they still
closely track the distances between the noiseless functions (the curve where σ = 0).

For a more quantitative exploration of the effect of noise on the sliced Cramér distances, we show the following
experiment. For increasing values of n, we sample the functions f and g on a grid of size n-by-n, and add Gaussian
noise with standard deviation .01 to the samples of g. For p = 1, 2, 10, we evaluate the sliced p-Cramér distances
between f and the noisy samples of g. For each n, the experiment is repeated M = 1000 times. We estimate the true
distance d between f and g by evaluating them on a grid of size 2048-by-2048, and measure the average absolute
relative error between the noisy distances d̂k and d:

errn,p =
1

M

M∑
k=1

|d− dk|
d

. (280)

These value are plotted against n2 in the right panel of Figure 7 (shown in log scale). We also measure the average
sliced Volterra p-norms of the noise itself, plotted against n2 in the left panel of Figure 7. The average errors decay
approximately like O(1/n) as n increases (that is, the slopes of the plots are close to −1/2), consistent with the error
rate established in Theorem 4.10.
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Figure 6: Results of the experiment described in Section 5.2, showing the distances between the rotated source
function and the noisy target function as the rotation angle increases and for different noise levels.

6 Conclusion

This paper has proven a number of properties of sliced Cramér distances, showing that these metrics are robust to
geometric deformations and noise. Similar geometric robustness properties are shared by Wasserstein distances and
their variants; consequently, our results suggest that sliced Cramér distances may be a useful alternative to such
distances, especially in applications where the functions being compared are not probability measures or when they
are corrupted by noise. In other applications, Wasserstein-type distances may be more appropriate, particularly
when the optimal transport (and not just the minimal cost) is of interest.

Because they both exhibit robustness to deformations, it is natural to explore applications of the sliced Cramér
distances to problems where Wasserstein and sliced Wasserstein distances have been used previously. For example,
one such area is analysis of data from cryo-electron microscopy (cryo-EM), in which one observes two-variable
projections of a three-variable volume (a molecule), at unknown viewing directions, from which the volume is to
be determined [64, 7, 15]. Wasserstein-type metrics have been proposed for clustering images and parameterizing
volumes in cryo-EM [66, 54, 73, 61]. However, the high noise level in cryo-EM images limits the applicability of
Wasserstein distances on real data. Because they share many of the same theoretical advantages, it is therefore
worthwhile to explore whether sliced Cramér distances are a suitable alternative. Sliced Cramér distances may
also be appropriate for heterogeneity analysis in cryo-EM [76, 20, 40, 2, 34, 60, 68, 35], as has been proposed for
Wasserstein distances [54].

At the core of the sliced Cramér distances are, of course, the 1D Cramér distances. These are quite simple
objects, computed by applying a smoothing filter to the input functions and then evaluating their ordinary Lebesgue
distance. It seems likely that one could prove similar robustness results for metrics based on other families of filters.
In fact, a number of metrics that have been proposed in recent years are of this type [45, 44, 37, 36, 62, 43]. In
future work, we will explore whether such metrics exhibit similar robustness properties as the sliced Cramér and
Wasserstein metrics.

Finally, in certain applications one seeks not only robustness to all deformations, but invariance to a specific class
of deformations, such as rotations and/or translations [61, 54, 75]. In principle, any metric can be made invariant
to a specified set of deformations by simply minimizing the distance over the class of deformations. In some cases of
practical interest, such as rigid alignment, this minimization can be done with only small extra computational cost
[61, 53]. In the context of the present work, this raises several interesting questions. First, it is known that in the
presence of noise, alignment accuracy deterioriates [57, 1]; studying how invariant distances behave under noise, or
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Figure 7: Results of the experiment described in Section 5.2, showing the average errors as a function of number of
samples (in log scale). Left: noise-only. Right: signal-plus-noise.

more generally in any setting where alignment cannot be done to high precision, is therefore of interest. Second, a
natural question is how introducing invariance to one class of deformations, such as rotations, impacts robustness to
other deformations. Questions along these lines will be pursued in future work.
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