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This paper develops a theory of harmonic analysis on spaces with tree metrics, 
extending previous work in this direction by Gavish, Nadler and Coifman (2010) 
[30] and Gavish and Coifman (2011, 2012) [28,29]. We show how a natural system of 
martingales and martingale differences induced by a partition tree leads to simple 
and effective characterizations of the Lipschitz norm and its dual for functions on a 
single tree metric space. The restrictions we place on the tree metrics are far more 
general than those considered in previous work. As the dual norm is equal to the 
Earth Mover’s Distance (EMD) between two probability distributions, we recover 
a simple formula for EMD with respect to tree distances presented by Charikar 
(2002) [36].
We also consider the situation where an arbitrary metric is approximated by the 
average of a family of dominating tree metrics. We show that the Lipschitz norm 
and its dual for the tree metrics can be combined to yield an approximation to the 
corresponding norms for the underlying metric.
The main contributions of this paper, however, are the generalizations of the 
aforementioned results to the setting of the product of two or more tree metric 
spaces. For functions on a product space, the notion of regularity we consider is not 
the Lipschitz condition, but rather the mixed Lipschitz condition that controls the 
size of a function’s mixed difference quotient. This condition is extremely natural for 
datasets that can be described as a product of metric spaces, such as word-document 
databases. We develop effective formulas for norms equivalent to the mixed Lipschitz 
norm and its dual, and extend our results on combining pairs of trees.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper develops a theory of harmonic analysis on spaces endowed with tree metrics, which are 
distances that arise naturally throughout pure and applied mathematics. We are concerned primarily with 
spaces of Lipschitz and mixed Lipschitz functions and their duals, and in particular, simple and computable 
characterizations of the norms on these spaces.
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1.1. The Lipschitz space, the dual space and Earth Mover’s Distance

Given a metric space (X, d), a natural way of measuring the variation of a function f defined on X is its 
Lipschitz norm, defined by

sup
x�=y

f(x) − f(y)
d(x, y) . (1)

Oftentimes, it is convenient to define the Lipschitz norm to be the sum or maximum of (1) and ‖f‖∞; we 
will consider both versions in this paper, though for the purposes of this introductory section we will restrict 
our attention to (1). If f is a differentiable function on R, the Lipschitz norm (1) is equal to ‖f ′‖∞, the 
supremum of f ’s derivative. Expression (1), however, is defined for non-differentiable functions and makes 
sense in the abstract setting of any metric space.

The space of Lipschitz functions defined on a metric space arises naturally in many areas of machine 
learning and statistics. For example, standard models in non-parametric statistics posit that unknown signals 
lie in a Hölder space (where the underlying metric space is R and the distance is defined as d(x, y) = |x −y|α
for some 0 < α < 1) or a more general regularity class [1,2]. Extrapolating a function value to new points, 
or inferring its values from noisy samples, can only be achieved if some kind of regularity on the function is 
assumed, the Lipschitz condition being a natural kind of regularity.

In the Euclidean setting of classical analysis, where we consider the space R equipped with the distance 
d(x, y) = |x − y|α for some 0 < α < 1, (1) (which is then referred to as the Hölder norm of f) can be 
shown to be equivalent in size to a number of other expressions that look at differences of averages of f over 
different scales. For example, if we take a sufficiently nice wavelet basis {ψj,k} of Rn (where j ∈ Z indexes 
the dyadic scale 2j and k ∈ Z the location), then the expression

sup
j,k

2−j(α+1/2)|〈f, ψj,k〉| (2)

is equivalent in size to (1), which is to say that the ratio of the two quantities is bounded above and below 
by finite constants not depending on f [3]. The wavelet coefficients 〈f, ψj,k〉 can be thought of as measuring 
f ’s variation across scales.

In a discrete setting, where we only have f sampled on a grid of k points in Rn, computing the Lipschitz 
norm (1) directly would require O(k2) operations, as all pairs of points need to be accounted for. However, 
using the fast wavelet transform (see, for instance, [4]), the expression (2) can be computed with only O(k)
operations. In addition to their computational tractability, the simple characterization of the Hölder norm 
of a function via its wavelet coefficients gives rise to efficient statistical procedures for signal recovery in the 
nonparametric setting; see [5].

Also of interest is the space dual to Lipschitz. Given any normed space (X , ‖·‖), one defines its dual space 
as the collection of linear functionals on X , equipped with the norm

‖T‖∗ = sup
f∈X :‖f‖≤1

〈f, T 〉. (3)

When X is the space of Lipschitz functions over a metric space (X, d), the dual norm (3) has another 
interpretation, described by the Kantorovich–Rubinstein Theorem [6,7]. If μ and ν are two probability 
measures over X, we define their Earth Mover’s Distance (EMD) to be

EMD(μ, ν) = inf
π

∫
Ω×Ω

d(x, y)dπ(x, y). (4)
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where the infimum is over measures π on X × X satisfying the following equality-of-marginals condition 
with respect to μ and ν:

π(X,E) = μ(E)

π(E,X) = ν(E)
(5)

for all (measurable) sets E ⊂ X.
The Earth Mover’s Distance between μ and ν has the following interpretation. We view each measure 

π satisfying the equality-of-marginals condition (5) with respect to μ and ν as a transport between the 
measures μ and ν; that is, for any two measurable sets A, B ⊂ X, π(A, B) is interpreted as the amount 
of mass moved from set A to set B. The equality-of-marginals condition (5) guarantees that the transport 
rearranges the mass distribution described by ν to end up with the distribution described by μ. If the 
distance d(x, y) is the cost-per-mass of moving mass from location x to location y, then EMD(μ, ν) is the 
minimal cost over all transports; in other words, it is the cheapest way of rearranging mass distributed like ν
to get mass distributed like μ.

The Kantorovich–Rubinstein Theorem states that EMD(μ, ν) is equal to ‖μ − ν‖∗, the norm of μ − ν in 
the space dual to Lipschitz functions. Due to the way it exploits the geometry of the metric space on which 
the two probability distributions are defined, EMD has many desirable properties that make it a natural 
choice of metric for many problems in machine learning [8–11].

Part of the reason why the dual distance (in the form of EMD) is a popular metric in these applications 
is that it provides a robust way of comparing two measures on a dataset that is insensitive to perturbations, 
a desirable property for many tasks. This property is formalized in the following result, whose proof can be 
found in [12]:

Theorem 1. Suppose F is an L1 function on a measure space X equipped with metric d(x, y), and h : X → X

is a perturbation of the identity, by which we mean h is an absolutely continuous bijection and d(x, h(x)) ≤ ε

for all x ∈ X, where 0 < ε < 1. Define

G(x) = F (h(x))dh
dx

(x) (6)

where dhdx denotes the Radon–Nikodym derivative of h. Then ‖F −G‖∗ ≤ ε‖F‖1.

1.2. The mixed Lipschitz space and its dual

The Lipschitz space and its dual are defined with respect to a single metric space. Many datasets, however, 
are not modeled well by one metric space, but rather the product of several metric spaces. Such datasets 
arise naturally in a variety of applications. For example, in the theory of transposable arrays [13,14], both 
the rows and columns of a dataset are studied. Similarly, methods of co-clustering [15,16] search for a 
clustering of both the row and column sets of a data matrix, and so fits into the same framework.

For ease of exposition, we restrict attention to the product of two spaces, say (X, dX) and (Y, dY ). The 
notion of regularity we consider for a function f defined on X × Y is the mixed Lipschitz condition, which 
requires f to have bounded mixed difference quotients; that is,

sup
x�=x′,y �=y′

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)
dX(x, x′)dY (y, y′) (7)

must be finite. We give a more formal definition of the mixed Lipschitz space in Section 4. The expression 
(7) for smooth functions on R2 is equivalent in size to ‖∂2

x,yf‖∞.
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If f is defined on, say, [0, 1] × [0, 1] and has bounded mixed difference quotients, many desirable properties 
follow. For instance, such functions can be reconstructed to precision ε using only O((1/ε) log(1/ε)) samples; 
these samples form what is known as a “sparse grid” [17,18]. This compares favorably with the Ω(1/ε2) points 
that would be needed if f were only known to be Lipschitz. Similarly, only O((1/ε) log(1/ε)) coefficients from 
a suitable wavelet basis are needed to reconstruct such a function f to precision ε [19]. Relatedly, statistical 
estimators of such an f from noisy samples achieve higher minimax rates than estimators of functions that 
are merely assumed to be Lipschitz [20,21].

However, the expression (7) is unnatural in many applications in the Euclidean setting, as it depends 
heavily on the choice of x- and y-axes. In particular, it is not rotationally invariant; for example, consider 
a function of the form f(x, y) = g(x)h(y), for smooth g and h. Then

∂2
xyf(x, y) = g′(x)h′(y) (8)

whereas

∂2
xyf

(
x + y√

2
,
x− y√

2

)
= 1

2g
′′
(
x + y√

2

)
h

(
x− y√

2

)
− 1

2g
(
x + y√

2

)
h′′

(
x− y√

2

)
(9)

and by constructing functions g and h with enormous first derivatives but small second and zeroth deriva-
tives, one easily shows that the size of the quantity (7) depends heavily on the coordinate system, a severe 
limitation in many physical settings where the axes are chosen arbitrarily. Therefore, despite the nice prop-
erties of the space of functions with bounded mixed differences, their applicability is limited in settings 
where the choice of axes is not meaningful.

By contrast, in many data-analysis problems the axes are not arbitrarily chosen but rather intrinsic to 
the problem itself; consider, for example, the word/document axes of a word-document database [22], or the 
time/frequency axes of a spectrogram [20,21]. It is reasonable, therefore, to look at norms, like the mixed 
Lipschitz norm, that depend on the choice of axes; in fact, such norms make the most sense in this context.

We also consider the space dual to mixed Lipschitz functions; the norm on this space is defined by 
(3), where X is now the space of mixed Lipschitz functions. As with Earth Mover’s Distance, discussed in 
Subsection 1.1, the dual norm to the mixed Lipschitz space provides a robust distance between measures on 
the product of metric spaces. In fact, as defined in Section 4 every mixed Lipschitz function is also Lipschitz, 
and so Theorem 1 trivially applies in the mixed Lipschitz setting with two-dimensional perturbations of 
the identity. We are currently exploring the use of this norm as a distance for comparing two-dimensional 
databases as well as its use in certain statistical applications, and plan to report on these results in future 
publications.

1.3. Tree metrics

The discussion in Subsections 1.1 and 1.2 is applicable to any metric space. In this paper we restrict 
our attention to a specific class of metrics, known as tree metrics, which will be rigorously defined in 
Subsection 2.1. A tree metric is derived from a collection of nested subsets of X, referred to as folders, that 
form a tree graph with the elements in X as its leaves. The tree metric is induced from numerical weights 
placed on the edges connecting each folder to its parent.

Due to their simple structure, tree metrics are amenable to computation and show up throughout pure 
and applied mathematics. Tree metrics yield fast algorithms for metric tasks from computer science, such 
as nearest neighbor searches, the k-server problem, distributed paging, and the vehicle routing problem, 
among others [23,24]. Trees also exhibit good metric embedding properties into lp spaces [25,26], and are 
also used in the construction of embeddings of more general metric spaces [27].

The launching point for the present work can be found in [28–30], where a certain restricted family of tree 
metrics is studied with an eye toward their application in machine learning problems. In these papers, the 
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diameter of a tree’s folder is given by its volume raised to some power. Furthermore, the volumes of folders 
must decay at a very controlled rate as the folders shrink in size. Under these restrictions, an elegant theory 
of harmonic analysis is developed which parallels the classical theory and permits us to adapt classical signal 
processing techniques – including sparse grids and wavelet decompositions – to more general data analysis 
problems. A cornerstone of the theory are the simple characterizations of the Lipschitz and mixed Lipschitz 
spaces by a wavelet-like basis of functions (the Haar-like basis).

The current paper extends this analysis in several ways. First, we give not only characterizations of the 
Lipschitz and mixed Lipschitz spaces, but also of their duals, which, as we indicated in Subsections 1.1
and 1.2, provide robust distances for comparing distributions on the data. Second, by measuring the local 
variation of f via martingale differences (to be defined in Subsection 2.2) rather than Haar coefficients, 
we are able to remove many of the restrictions found in [28–30]. For the characterizations of the Lipschitz 
and mixed Lipschitz spaces, we do not require folder diameters to be volume-based, nor do we require a 
lower bound on the decay rate of the folder weights, but only an upper bound; that is, the trees must 
be hierarchically well-separated in the sense of [23,24]. For the dual norms, our results apply to arbitrary 
tree metrics, and the constants of equivalence we derive are universal (they do not depend on the tree 
at all).

In addition to the increased generality of our results, we maintain the computational efficiency of the 
equivalent norms we derive. In particular, all norms we derive can be computed at cost proportional to the 
number of points in the space.

1.4. Combining the output from multiple trees

As we indicated in Subsection 1.3, tree metrics have many properties that make them especially easy to 
work with. However, a limitation of tree metrics encountered in applications is that any single tree usually 
arises from breaking a continuous geometry into a discrete one, and artificial discontinuities can result.

A standard way of overcoming this problem is to construct multiple trees on the same data set and 
combine the output from each tree. The hope is that the combination of many trees will “wash away” the 
artificial boundaries that any one tree will create. This idea has shown up in various places where trees and 
similar structures appear. For instance, tree-based regression algorithms in statistics are augmented by the 
use of “random forests” [31], and in wavelet theory, Coifman and Donoho have proposed “spinning” the 
dyadic grid on [0, 1] to smooth out artifacts that would otherwise arise in tasks from signal processing such 
as filtering [32].

More relevant to the present work is the problem of approximating an arbitrary metric by the average of 
dominating tree metrics. More precisely, given an arbitrary finite metric space (X, d), the question is how 
to construct a random family of trees T on X so that the corresponding tree metrics dT (x, y) satisfy

d(x, y) ≤ dT (x, y) (10)

for every tree T , and in expectation we have the reverse inequality

ET dT (x, y) ≤ Kd(x, y) (11)

for some constant K ≥ 1. See [33,23,24].
In Section 6, we will show how to combine the regularity norms (Lipschitz and mixed Lipschitz) and 

their duals for a family of tree metrics to approximate the corresponding norms for a metric approximated 
by these tree metrics in the sense of (10) and (11).
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Fig. 1. Bottom: The folders (as ovals) of a tree on a 7 point set. Top: The same tree, with folders represented as nodes in a graph; 
the original points are the leaves on the bottom level.

2. Preliminaries

In this section we introduce the basic notation and definitions that we will be using throughout this 
paper. X will denote a finite set that is equipped with a partition tree T ; that is, T is a collection of subsets 
of X, which we will refer to as folders, such that for any two folders I and J , either I ⊂ J , J ⊂ I, or I and 
J are disjoint. We will assume that the entire set X is one of the folders in T , as are all the singletons {x}
for x ∈ X.

We can view each folder in the tree, including the singletons, as a point in a graph, where an edge is 
placed between folders I and J if I is a child of J (we will also say J is I’s parent); that is, I ⊂ J and there 
are no folders in between I and J . We will denote by sub(I) the set of all children of a folder I.

In this sense, we can view the set X as being the leaves of a graph-theoretic rooted tree, the folder X being 
the root. Of course, if X is the set of leaves of any rooted tree, we can build a partition tree by assigning to 
each node of the tree the folder of all leaves that branch off from that node; so graph-theoretic trees with 
X as the leaves and partition trees describe the same structure on X. This correspondence between the 
set-theoretic view and the graph-theoretic view of partition trees is illustrated by Fig. 1.

These two different ways of viewing trees give rise to two different notions of a tree metric, one of which 
is a special case of the other. In Subsection 2.1 we define these tree metrics. In Subsection 2.2, we introduce 
the martingale and martingale difference operators on trees, and prove some of their basic properties. In 
Subsection 2.3, we generalize these operators to the product of trees.

Remark 1. We note that the restriction that the spaces X and Y be finite sets is not critical for most if 
not all of the results in this paper to hold. We make this assumption because the application areas we 
have in mind do not require infinite sets, and because doing so allows us to circumvent measure-theoretic 
technicalities encountered in the study of infinite dimensional function spaces that would only distract from 
the results we present. Note that whenever we prove that two norms of functions defined on X or X×Y are 
equivalent, the constants of equivalence do not depend on the number of points in X or Y ; consequently, 
extending our results to infinite spaces is fairly straightforward.

2.1. Tree metrics

Throughout the paper, we will be considering two kinds of tree metrics, one of which is a special case of 
the other. The first metric arises by viewing the points X as the leaves of a graph-theoretic tree, where each 
edge of the tree has some positive weight attached to it. If I is a point in the tree, we will denote by eI the 
weight on the edge connecting I to its parent. The distance between any two points in the graph is then 
the geodesic distance, which in the simple case of the tree is just the sum of the edge weights on the unique 
path connecting the two points. In particular, this gives rise to a distance on X.
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Given two points x and y, let Sx,y denote the set of all folders that contain exactly one of x or y. The 
following expression for d(x, y) is immediate from the definitions:

Lemma 1. For any two points x, y in X,

d(x, y) =
∑

I∈Sx,y

eI .

Another kind of tree metric arises by taking weights not on the edges of the tree but rather on the nodes 
of the trees themselves – that is, on the folders in T . We will denote by w(I) the weight on the folder I. 
We think of w(I) as being the diameter of the set I, and in the metric we define this will be the case. We 
therefore require that if I ⊂ J , then w(I) ≤ w(J); and for any x ∈ X, w({x}) = 0. With this, we define the 
distance between any two points x and y to be w(Ix,y), where Ix,y denotes the smallest folder containing 
both x and y.

The following lemma is also straightforward:

Lemma 2. Let T be a partition tree on X, and w(I) be any collection of folders weights satisfying w(I) <
w(J) for I � J , and w({x}) = 0. Then the collection of edge weights eI = 1

2(w(I ′) −w(I)), where I ′ denotes 
the parent folder of I, gives rise to the same metric on X as the folder weights w(I).

In this paper, we will not discuss the important question of how to construct a partition tree T with 
edge weights eI . The choice of tree will depend on the task at hand. For instance, much work has been 
done in constructing tree distances that approximate a given metric on X [23,24,34]; other methods include 
clustering the data at different scales using a family of diffusion operators and taking the weight on a folder 
to be a power of its measure [28–30]. We will have more to say about this subject in Section 6. For the 
remainder of this paper, we will view all trees as given and not concern ourselves with where they come 
from.

2.2. Martingales and martingale differences

In this section, we suppose that X is also equipped with a measure, and that every singleton {x} has 
positive measure. We will let |S| denote the measure of a subset S ⊂ X. All integrals encountered in this 
paper are defined with respect to this same measure on X.

We define the martingale and martingale difference operators with respect to the measure on X, and 
prove some of their basic properties. Given a function f and a folder I, we let mIf denote the function 
whose value on I is the mean value of f , and is zero outside I; that is,

mIf(x) =
(

1
|I|

∫
I

f(y)dy
)
χI(x).

We denote by

mIf(I) = 1
|I|

∫
I

f(y)dy

the unique value that the function mIf achieves on the folder I.
Also define the martingale difference operator ΔIf by

ΔIf(x) =
∑

mJf(x) −mIf(x).

J∈sub(I)



JID:YACHA AID:1150 /FLA [m3L; v1.180; Prn:4/07/2016; 14:37] P.8 (1-27)
8 W. Leeb / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Note that ΔIf is constant on the child folders of I. If J is a child of I, we will denote by ΔIf(J) the unique 
value that ΔIf takes on J .

We prove some basic properties of the operators mI and ΔI that will be useful in Section 5.

Lemma 3. For any function f and any (non-singleton) folder I ∈ T ,

∫
X

ΔIf(x)dx =
∫
I

ΔIf(x)dx = 0.

Proof. By definition, we have
∫
X

ΔIf(x)dx =
∫
X

∑
J∈sub(I)

mJf(x)dx−
∫
X

mIf(x)dx

=
∑

J∈sub(I)

|J |mJf(J) − |I|mIf(I)

=
∑

J∈sub(I)

∫
J

f(x)dx−
∫
I

f(x)dx = 0

=
∫
I

f(x)dx−
∫
I

f(x)dx = 0. �

Corollary 1. For folders I �= J and any functions f, g, we have 〈ΔIf, ΔJg〉 = 0.

Proof. Clearly, if I∩J = ∅, the supports of ΔIf and ΔJg are disjoint, and consequently their inner product 
is 0. Otherwise, suppose without loss of generality that I � J . Then I is contained in (or perhaps equal to) 
a proper subfolder of J , and so ΔJg is constant on the support of ΔIf . Since 

∫
X

ΔIf(x)dx = 0, the result 
follows. �
Lemma 4. The operators mI are self-adjoint; that is,

〈mIf, g〉 = 〈f,mIg〉.

Proof. We have

〈mIf, g〉 =
∫
X

(
1
|I|

∫
I

f(y)dy
)
χI(x)g(x)dx = 1

|I|

∫
X

∫
X

f(y)χI(y)χI(x)g(x)dxdy.

Since the expression on the right is symmetric in f and g, the result follows. �
Corollary 2. The operators ΔI are self-adjoint; that is,

〈ΔIf, g〉 = 〈f,ΔIg〉.

It is also easy to see the following:

Lemma 5. For every folder I ∈ T , m2
If = mIf .

Proof. By definition,
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m2
If(x) =

(
1
|I|

∫
I

mIf(y)dy
)
χI(x) =

(
1
|I|

∫
I

mIf(I)dy
)
χI(x) = mIf(I)χI(x)

=
(

1
|I|

∫
I

f(y)dy
)
χI(x) = mIf(x). �

2.3. Product of trees

The primary concern of this paper is the product of spaces, each of which is equipped with its own 
partition tree. For simplicity, we will consider the case of two spaces, X and Y , with trees TX and TY and 
edge weights eXI and eYJ , respectively.

We define the operators

mX,If(x, y) =
(

1
|I|

∫
I

f(x′, y)dx′
)
χI(x)

and

mY,Jf(x, y) =
(

1
|J |

∫
J

f(x, y′)dy′
)
χJ(y).

We will denote mX,X and mY,Y by mX and mY , respectively. Note that mXf is a function of the y variable 
alone, and mY f is a function of the x variable alone; we will therefore also write mXf(y) = mXf(x, y) and 
mY f(x) = mY f(x, y). We will adopt the language of probability theory and refer to mXf and mY f as the 
marginals of f .

We also define

ΔX,If(x, y) =
∑

I′∈sub(I)

mX,I′f(x, y) −mX,If(x, y)

and

ΔY,Jf(x, y) =
∑

J ′∈sub(J)

mY,J ′f(x, y) −mY,Jf(x, y).

As for a single tree, these martingale and martingale difference operators are self-adjoint. The functions 
ΔX,If and ΔY,Jf are also mean-zero. Furthermore, we have the identities m2

X,I = mX,I and m2
Y,J = mY,J , 

and

〈ΔX,If,ΔX,I′g〉 = 〈ΔY,Jf,ΔY,J ′g〉 = 0

whenever I �= I ′ and J �= J ′. The proofs of these statements are nearly identical to the corresponding results 
for a single tree.

3. The Lipschitz class and its dual

In this section we develop characterizations for the Lipschitz norm and its dual with respect to an 
arbitrary tree metric on X. Let d(x, y) be a tree metric on X, with positive edge weights eI . Define the L∞

variation of a function f on X with respect to the metric d(x, y) by
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‖f‖d = sup
x�=y

f(x) − f(y)
d(x, y)

.

We define the Lipschitz norm of f to be

‖f‖Λ = max{‖f‖d, ‖mXf‖∞}.

Note that ‖mXf‖∞ is nothing more than |mXf(X)|, as mXf is a constant function.
The norm dual to ‖·‖d is given by

‖T‖∗d = sup
‖f‖d≤1,mXf=0

〈f, T 〉,

and the norm dual to ‖·‖Λ is given by

‖T‖Λ∗ = sup
‖f‖Λ≤1

〈f, T 〉.

We have the following simple lemma:

Lemma 6. For every T ,

‖T‖Λ∗ = ‖T‖∗d + ‖mXT‖1.

Note that ‖mXT‖1 is nothing more than |X||mXT (X)|, since mXT is a constant.

Proof. Define f1 = f −mXf and f2 = mXf . Then f = f1 + f2, and

‖f‖Λ = max{‖f1‖d, ‖mXf2‖∞}.

We then have

‖T‖Λ∗ = sup
‖f‖Λ≤1

〈f, T 〉 = sup
‖f1‖d≤1,|mXf2|≤1

{〈f1, T 〉 + 〈f2, T 〉}

= sup
‖f‖d≤1,mXf=0

〈f, T 〉 + sup
|mXf |≤1,f constant

〈f, T 〉

= ‖T‖∗d + ‖mXT‖1

as claimed. �
In this section we derive simple and effectively computable formulas for the dual norms ‖T‖∗d and ‖T‖Λ∗ . 

We will do this by use of the following formula for the Lipschitz norm ‖f‖d.

Theorem 2. For any function f on X, let Af denote the set of all sequences of coefficients {aI}I∈T such 
that

f(x) =
∑
I∈T

aIχI(x).

We then have the following expression for ‖f‖d:

‖f‖d = inf
{aI}∈Af

sup
I �=X

|aI |
eI

.



JID:YACHA AID:1150 /FLA [m3L; v1.180; Prn:4/07/2016; 14:37] P.11 (1-27)
W. Leeb / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 11
Proof. Let Cf = inf{aI}∈Af
supI �=X

|aI |
eI

. Suppose first that we have written f =
∑

I aIχI . Take any two 
points x and y in X, and denote by Ix,y the smallest folder containing both points. Then χI(x) = χI(y) if 
either I ⊃ Ix,y or I is disjoint from Ix,y; consequently,

f(x) − f(y) =
∑

I�Ix,y ;x∈I

aI −
∑

I�Ix,y ;y∈I

aI

≤ Cf

{ ∑
I�Ix,y ;x∈I

eI +
∑

I�Ix,y ;y∈I

eI

}
= Cfd(x, y)

where we have used Lemma 1 in the last equality. This shows that ‖f‖d ≤ Cf .
For the other direction, let f̄(I) = supx∈X(f(x) −‖f‖dd(x, I)), where d(x, I) denotes the distance between 

the point x and the folder I in the tree (the sum of the weights on the edges connecting them). It is shown 
in [35] that f̄ extends f (that is, f̄(x) = f(x) whenever x ∈ X; this is obvious, since d(y, x) is minimized 
when y = x) and that f̄ has the same variation as f ; in other words, ‖f̄‖d = ‖f‖d, where

‖f̄‖d = sup
I �=J

f̄(I) − f̄(J)
d(I, J)

the supremum being over all distinct folders I and J in the tree. This follows immediately from the fact 
that f̄ extends f , and the inequality

f̄(I) − f̄(J) ≤ sup
x∈X

(f(x) − ‖f‖dd(x, I) − f(x) + ‖f‖dd(x, J)) ≤ ‖f‖dd(I, J).

Now, if we let I ′ denote the parent of the folder I, we can write f as the telescopic sum

f =
∑
I �=X

(f̄(I) − f̄(I ′))χI + f̄(X) ≡
∑
I �=X

aIχI + f̄(X).

Since ‖f̄‖d = ‖f‖d, |aI | = |f̄(I) − f̄(I ′)| ≤ ‖f‖deI for all I �= X, which shows Cf ≤ ‖f‖d and completes the 
proof. �
Corollary 3. We have the following upper and lower bounds for ‖f‖d:

sup
I

‖ΔIf‖∞
diam(I) ≤ ‖f‖d ≤ sup

I �=X

|ΔI′f(I)|
eI

(12)

where the supremum on the left is over all non-singleton folders I.

Proof. Take any folder I and let I ′ denote its parent; then for any x, y ∈ I ′, we have |f(x) − f(y)| ≤
‖f‖d diam(I ′). Therefore

|mI(f) −mI′(f)| =
∣∣∣∣ 1
|I|

∫
I

f(x)dx− 1
|I ′|

∫
I′

f(y)dy
∣∣∣∣

=
∣∣∣∣ 1
|I ′|

∫
I′

1
|I|

∫
I

f(x)dxdy − 1
|I|

∫
I

1
|I ′|

∫
I′

f(y)dydx
∣∣∣∣

=
∣∣∣∣ 1
|I ′|

∫ 1
|I|

∫
(f(x) − f(y))dxdy

∣∣∣∣

I′ I
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≤ 1
|I ′|

1
|I|

∫
I′

∫
I

‖f‖d diam(I ′)dxdy = ‖f‖d diam(I ′).

Dividing each side by diam(I ′) and taking the supremum over all I gives the leftmost inequality of (12).
For the other side, we make use of Theorem 2. For each folder I �= X, let I ′ denote its parent, and define 

aI = ΔI′f(I). We have the telescopic sum

f −mXf =
∑
I �=X

aIχI

and consequently Theorem 2 yields

‖f‖d ≤ sup
I �=X

|aI |
eI

≤ sup
I �=X

|ΔI′f(I)|
eI

completing the proof. �
We can use the expression for ‖f‖d from Theorem 2 to derive a very simple formula for ‖T‖∗d.

Theorem 3. For every T ,

‖T‖∗d =
∑
I �=X

eI |〈χI , T 〉|. (13)

Note that |〈χI , T 〉| = |I||(mIT )(I)|.

Proof. Take any function f with ‖f‖d ≤ 1 and mXf = 0. By Theorem 2, we can write

f =
∑
I∈T

aIχI

where 1 ≥ ‖f‖d = supI �=X |aI |/eI . Since f has mean zero, we can assume without loss of generality that T
has total integral zero when taking the inner product. Therefore, we have

|〈f, T 〉| =
∣∣∣∣
∑
I �=X

aI〈χI , T 〉
∣∣∣∣ ≤

∑
I �=X

|aI |
eI

eI |〈χI , T 〉| ≤
∑
I �=X

eI |〈χI , T 〉|

and taking the supremum over all f yields ‖T‖∗d ≤
∑

I �=X eI |〈χI , T 〉|.
For the other inequality, define the function f̃ by

f̃ =
∑
I �=X

eI sgn(〈χI , T 〉)χI + K

where K ensures that f̃ has mean zero. Theorem 2 shows that ‖f̃‖d = 1. Again, since f̃ has mean zero, we 
can assume T also has total integral zero as well when taking the inner product. Therefore,

‖T‖∗d ≥ 〈f̃ , T 〉 =
∑
I �=X

eI sgn(〈χI , T 〉)〈χI , T 〉 =
∑
I �=X

eI |〈χI , T 〉|

which completes the proof. �
Combining Theorem 3 and Lemma 6, we get:
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Corollary 4. For every T , its dual Lipschitz norm ‖T‖Λ∗ is equal to

‖T‖Λ∗ =
∑
I �=X

eI |〈χI , T 〉| + ‖mXT‖1.

Remark 2. Theorem 3 can be easily derived from the formula for Earth Mover’s Distance given in [36], 
using the fact that when T is the difference of two probability measures, ‖T‖∗d is equal to the Earth Mover’s 
Distance between them; this is the content of the Kantorovich–Rubinstein Theorem [6,7], discussed in the 
introduction. However, Theorem 2 is new, as is the proof we give of Theorem 3 that uses the formula for 
‖f‖d from Theorem 2. Furthermore, this proof will generalize to the setting of product spaces, as we will 
see in Section 4. In Section 5 we will make further use of Theorem 2 to derive equivalent formulas for the 
Lipschitz and mixed Lipschitz norms on a special class of trees.

The formula (13) for ‖T‖∗d from Theorem 3 can be computed in cost proportional to the size of X. In 
fact, we have the following algorithm:

Algorithm 1 (Computation of ‖T‖∗d).

I. Compute all terms 〈χI , T 〉:
1. Evaluate T at all singleton folders {x}.
2. For every non-singleton folder I ∈ T whose child integrals have already been computed, recursively 

compute 〈χI , T 〉 using the formula

〈χI , T 〉 =
∑

I′∈sub(I)

〈χI′ , T 〉 (14)

II. Multiply each 〈χI , T 〉 by eI and add them together.

If we let M denote the number of points in X, the number of folders in T cannot exceed 2M − 1. Step I1 
requires M operations, while Step I2 for a folder I whose child integrals have already been computed requires 
| sub(I)| operations. Since

∑
non-singleton I

| sub(I)| = O(|T |) = O(M) (15)

the total operation count for Step I is O(M). Step II clearly requires only O(M) additional operations, 
bringing the total operation count to O(M).

4. The mixed Lipschitz space and its dual for general trees

The characterizations of the Lipschitz space and its dual can be extended to characterizations of the 
space of mixed Lipschitz functions and its dual, which we define presently. Our setting here is the product 
of two spaces, X and Y , each equipped with its own partition tree TX and TY with weights eXI , eYJ and 
corresponding metrics dX(x, x′), dY (y, y′), respectively.

The mixed variation ‖f‖dX ,dY
of a function f on X × Y is defined by

‖f‖dX ,dY
= sup

x�=x′,y �=y′

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)
dX(x, x′)dY (y, y′) .

Note that we can add to f any function of the form g(x) + h(y) without changing the value of ‖f‖dX ,dY
.
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We then define the mixed Lipschitz norm of f to be

‖f‖ΛX,Y
= max{‖f‖dX ,dY

, ‖mXf‖dY
, ‖mY f‖dX

, ‖mXmY f‖∞}.

Note that, since mY f is a function on X alone and mXf is a function on Y alone, the notation we use 
(‖mXf‖dY

and ‖mY f‖dX
) is sensible. Note too that ‖mXmY f‖∞ is nothing more than the unique value of 

|mXmY f |, as this is a constant function.
We define the corresponding dual norms. First, we consider the semi-norm dual to functions of bounded 

mixed difference quotients and zero marginals:

‖T‖∗dX ,dY
= sup{〈f, T 〉 : ‖f‖dX ,dY

≤ 1,mY f = 0,mXf = 0}.

Note that we can add to T any function of the form g(x) + h(y) without changing ‖T‖∗dX ,dY
.

The dual norm of T acting on the space of mixed Lipschitz functions is defined as

‖T‖Λ∗
X,Y

= sup
‖f‖ΛX,Y

≤1
〈f, T 〉.

We then have the following lemma:

Lemma 7. For any T on X × Y ,

‖T‖Λ∗
X,Y

= ‖T‖∗dX ,dY
+ ‖mY T‖∗dX

+ ‖mXT‖∗dY
+ ‖mXmY T‖1.

Note that ‖mXmY T‖1 is simply the unique value of |X||Y ||mXmY T |, since this is a constant function.

Proof. For any function f , let f1 = f−mXf−mY f+mXmY f , f2 = (mY −mXmY )f , f3 = (mX−mY mX)f , 
and f4 = mXmY f . It is easy to see that f = f1 + f2 + f3 + f4, and that

‖f‖ΛX,Y
= max{‖f1‖dX ,dY

, ‖f2‖dX
, ‖f3‖dY

, ‖f4‖∞}.

Consequently, we can write

sup
‖f‖ΛX,Y

≤1
〈f, T 〉

= sup
‖f1‖dX,dY

≤1
〈f1, T 〉 + sup

‖f2‖dX
≤1

〈f2, T 〉 + sup
‖f3‖dY

≤1
〈f3, T 〉 + sup

|mXmY f4|≤1
〈f4, T 〉

=‖T‖∗dX ,dY
+ ‖mY T‖∗dX

+ ‖mXT‖∗dY
+ ‖mXmY T‖1

which is the desired equality. �
From Section 3, specifically Theorem 3 and Algorithm 1, ‖mY T‖∗dX

+ ‖mXT‖∗dY
+ ‖mXmY T‖1 can be 

computed at cost proportional to the size of X × Y . We now turn to the computation of ‖T‖∗dX ,dY
. We 

give a formula that approximates ‖T‖∗dX ,dY
and that can be computed in linear time as well, and whose 

distortion is bounded by a universal constant independent of T or the tree. As in our proof of Theorem 3, 
which employed the formula from Theorem 2 for the Lipschitz norm of mean zero functions, our formula for 
approximating ‖T‖∗dX ,dY

is derived from a similar characterization of mixed Lipschitz functions with zero 
marginals given by the following theorem:
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Theorem 4. For any function f on X × Y , let Af denote the collection of the sets of all coefficients aI×J

such that

f(x, y) =
∑
I∈TX

∑
J∈TY

aI×JχI(x)χJ(y).

Then there is a universal constant C, independent of the trees TX and TY and the function f , such that

‖f‖dX ,dY
≤ inf

{aI×J}∈Af

sup
I �=X,J �=Y

|aI×J |
eXI eYJ

≤ C‖f‖dX ,dY
.

Proof. Take any {aI×J} ∈ Af , and any x, x′ ∈ X, y, y′ ∈ Y . Recall that Sx,x′ denotes the set of folders in 
TX that contain exactly one of x or x′; then for all I ∈ Sx,x′ , |χI(x) − χI(x′)| = 1. Similar remarks apply 
to Sy,y′ .

We have:

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)

=
∑
I∈TX

∑
J∈TY

aI×J(χI(x)χJ(y) − χI(x)χJ(y′) − χI(x′)χJ(y) + χI(x′)χJ(y′))

=
∑

I∈Sx,x′

∑
J∈Sy,y′

aI×J(χI(x) − χI(x′))(χJ(y) − χJ(y′))

≤ sup
I �=X,J �=Y

|aI×J |
eXI eYJ

∑
I∈Sx,x′

eXI
∑

J∈Sy,y′

eYJ = sup
I �=X,J �=Y

|aI×J |
eXI eYJ

dX(x, x′)dY (y, y′)

where we have made use of Lemma 1 in the last equality. This proves that ‖f‖dX ,dY
≤

inf{aI×J}∈Af
supI �=X,J �=Y

|aI×J |
eXI eYJ

.
For the other inequality, we will show that we can extend the function f defined on X × Y to a function 

f̄ defined on TX × TY , where the mixed variation of f̄ is no more than C times ‖f‖dX ,dY
. In other words, 

the function f̄ will satisfy

|f̄(I, J) − f̄(I, J ′) − f̄(I ′, J) + f̄(I ′, J ′)| ≤ C‖f‖dX ,dY
eXI eYJ (16)

where I ′ denotes the parent of I, and J ′ the parent of J .
If we had such an extension, we would be finished since we could expand f as

f(x, y) =
∑
I �=X

∑
J �=Y

(f̄(I, J) − f̄(I, J ′) − f̄(I ′, J) + f̄(I ′, J ′))χI(x)χJ(y)

+
∑
I �=X

f̄(I, Y )χI(x) +
∑
J �=Y

f̄(X, J)χJ(y) + f̄(X,Y )

Taking ãI×J = f̄(I, J) − f̄(I, J ′) − f̄(I ′, J) + f̄(I ′, J ′), (16) shows |ãI×J | ≤ C‖f‖dX ,dY
eXI eYJ ; consequently,

inf
{aI×J}∈Af

sup
I �=X,J �=Y

|aI×J |
eXI eYJ

≤ C‖f‖dX ,dY

which is the desired result.
We now show how to prove the existence of such an extension f̄ . First, by fixing y0 ∈ Y and replacing f

with f(x, y) −f(x, y0) we can assume without loss of generality that f(x, y0) = 0 for all x. We now interpret 
the function f as a map not from X × Y into R, but rather from X into the space Lip0(Y ) of Lipschitz 
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functions g on Y that are zero at y0, equipped with the Lipschitz norm ‖g‖dY
. More formally, for any x ∈ X, 

define the function fx(y) = f(x, y) and the map

F : X → Lip0(Y ), x �→ fx.

The key observation is that the mixed Lipschitz norm ‖f‖dX ,dY
of f is an upper bound on the Lipschitz 

norm of F , since by definition

‖F (x) − F (x′)‖dY
= sup

y �=y′

(fx − fx′)(y) − (fx − fx′)(y′)
dY (y, y′)

= sup
y �=y′

(f(x, y) − f(x′, y)) − (f(x, y′) − f(x′, y′))
dY (y, y′)

≤ ‖f‖dX ,dY
dX(x, x′).

We now quote the result from [37] that any function on a subspace of a metric tree to a Banach space 
can be extended to the entire tree without distorting the Lipschitz constant by more than a universal 
constant C1. Let F̄ denote the extension of F to the entire tree TX . Define f̄(I, y) = F̄ (I)(y) (in case the 
reader finds this notation confusing, note that F̄ (I) is a function on Y , and F̄ (I)(y) denotes its value at y). 
Then the mixed Lipschitz constant of f̄ is no more than C1‖f‖dX ,dY

.
This gives us the desired extension of f to TX × Y . Observe that this argument required only that X be 

a subspace of a metric tree; we did not exploit anything about the metric properties of Y . We can therefore 
repeat the same argument, taking Y in place of X and TX in place of Y . This yields an extension f̄ to all 
of TX × TY at the loss of another factor C1. Consequently, we have found the desired extension f̄ , with 
distortion no more than C ≡ C2

1 . �
We will now use the formula from Theorem 4 to derive a semi-norm equivalent to the dual semi-norm 

‖T‖∗dX ,dY
.

Theorem 5. Let C be the same universal constant from Theorem 4. Then for any T on X × Y ,

1
C
‖T‖∗dX ,dY

≤
∑
I �=X

∑
J �=Y

eXI eYJ |〈χIχJ , T 〉| ≤ ‖T‖∗dX ,dY
. (17)

Proof. Take any function f with ‖f‖dX ,dY
≤ 1 and zero marginals (that is, mXf = mY f = 0). By 

Theorem 4, we can write

f(x, y) =
∑
I∈TX

∑
J∈TY

aI×JχI(x)χJ(y)

where 1 ≥ ‖f‖dX ,dY
≥ 1

C supI �=X,J �=Y |aI×J |/(eXI eYJ ). Since the marginals of f are all zero, replacing T
by T −mY T −mXT + mXmY T does not change the value of ‖T‖∗dX ,dY

, and ensures that 〈χIχJ , T 〉 = 0
whenever I = X or J = Y . Therefore, we have

|〈f, T 〉| =
∣∣∣∣

∑
I �=X,J �=Y

aI×J〈χIχJ , T 〉
∣∣∣∣ ≤

∑
I �=X,J �=Y

|aI×J |
eXI eYJ

eXI eYJ |〈χIχJ , T 〉|

≤ C
∑

I �=X,J �=Y

eXI eYJ |〈χIχJ , T 〉|

and taking the supremum over all f yields ‖T‖∗d ,d ≤ C
∑

eXI eYJ |〈χIχJ , T 〉|.
X Y I �=X,J �=Y
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Fig. 2. The dual norm and its approximation for 1000 random vectors.

For the other inequality, define the function f̃ by

f̃(x, y) =
∑

I �=X,J �=Y

eXI eYJ sgn(〈χIχJ , T 〉)χI(x)χJ(y) + g(x) + h(y)

where the functions g and h are taken to ensure that f̃ has zero marginals. Theorem 4 shows that 
‖f̃‖dX ,dY

≤ 1. Again, since f̃ has zero marginals, we can assume T does too when taking their inner 
product. Therefore,

‖T‖∗dX ,dY
≥ 〈f̃ , T 〉 =

∑
I �=X,J �=Y

eXI eYJ sgn(〈χIχJ , T 〉)〈χIχJ , T 〉

=
∑

I �=X,J �=Y

eXI eYJ |〈χIχJ , T 〉|

which completes the proof. �
Combining Theorem 5 and Lemma 7, we get:

Corollary 5. Let C be the same universal constant from Theorems 4 and 5. Then for any T on X × Y ,

1
C
‖T‖∗ΛX,Y

≤
∑
I �=X

∑
J �=Y

eXI eYJ |〈χIχJ , T 〉| +
∑
I �=X

eXI 〈χI ,mY T 〉

+
∑
J �=Y

eYJ 〈χJ ,mXT 〉 + ‖mXmY T‖1 ≤ ‖T‖∗ΛX,Y
.

Unfortunately, we cannot take the constant C from Theorem 5 to be 1. However, numerical evidence 
suggests that the constant may not be too much bigger than 1. Fig. 2 shows a scatter plot of ‖T‖∗dX ,dY

and the approximation from (17) for 1000 random vectors T on the product of two spaces with 8 points 
each. The trees on each space are binary trees with all edges equal to 1; that is, eXI = eYJ = 1. The largest 
ratio of the true norm over its approximation was about 1.203, and the minimum ratio about 1.044. Other 
experiments have given similar results.
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As with the formula (13) from Theorem 5 for the norm dual to Lipschitz, the formula from (17) that is 
equivalent to ‖T‖∗dX ,dY

can be computed at cost proportional to the size of X × Y . In fact, we have the 
following algorithm:

Algorithm 2 (Computation of approximation to ‖T‖∗dX ,dY
).

I. Compute all terms 〈χIχJ , T 〉:
1. Evaluate T at all singleton product folders {x} × {y}.
2. For every non-singleton product I × J (I ∈ TX , J ∈ TY ) whose child integrals have already been 

computed, recursively compute 〈χIχJ , T 〉 using the formula

〈χIχJ , T 〉 =
∑

I′∈sub(I)

∑
J ′∈sub(J)

〈χI′χJ ′ , T 〉 (18)

II. Multiply each 〈χIχJ , T 〉 by eIeJ and add them together.

If we let M denote the number of points in X, and N the number of points in Y , the number of product 
folders in TX × TY cannot exceed (2M − 1)(2N − 1). Step I1 requires MN operations, while Step I2 for a 
product folder I×J whose child integrals have already been computed requires | sub(I)|| sub(J)| operations. 
Since

∑
I∈TX

∑
J∈TY

| sub(I)|| sub(J)| = O(|TX ||TY |) = O(MN) (19)

the total operation count for Step I is O(MN) (note that in the summations (18) and (19), for singletons 
we define sub({x}) = {x} and sub({y}) = {y}). Step II clearly requires only O(MN) additional operations, 
bringing the total operation count to O(MN).

5. Lipschitz and mixed Lipschitz functions for trees with geometrically decaying folder weights

In Theorems 3 and 5, we derived simple formulas for the norms dual to the Lipschitz and mixed Lipschitz 
spaces. In all cases, the distortion guaranteed by these formulas does not depend on any features of the tree; 
the choice of edge weights can be arbitrary. Furthermore, the formulas can be computed in linear time.

The characterizations we gave of Lipschitz and mixed Lipschitz functions themselves in Theorems 2
and 4, however, are not as directly useful, as they cannot be computed any more rapidly than the original 
definitions via difference quotients. In this section, we address this problem for the special class of tree 
metrics defined by folder weights w(I), rather than edge weights eI , as defined in Subsection 2.1.

We will assume geometric decay of the folder weights. More precisely, we assume that there is a constant 
0 < A < 1 such that for any folders I � J ,

w(I) ≤ Aw(J). (20)

Note that this family of trees includes k-hierarchically well-separated trees [23]. Note too that our assump-
tions are still far less restrictive than those found in [28–30], in which the weights w(I) are taken to be 
a power of the measure of I, and the measure is assumed to satisfy a two-sided decay condition, rather 
than the one-sided condition (20). These papers find norms equivalent to ‖f‖d and ‖f‖dX ,dY

that use the 
coefficients of f in a special orthonormal basis of Haar-like functions. The equivalent norms we give use the 
martingale difference operators in place of the Haar functions, which allows us to prove results for a greater 
variety of trees.
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As in [28–30], and unlike Theorems 3 and 5 for the dual norms, the constants of distortion are not 
universal, but rather depend on the decay constant A from (20).

Proposition 1. Suppose f is any function on X, a set equipped with a tree T . Suppose the distance on X
is defined using folder weights w(I) satisfying the decay condition (20). Then we can approximate ‖f‖d as 
follows:

1 −A

2 ‖f‖d ≤ sup
I

‖ΔIf‖∞
w(I) ≤ ‖f‖d (21)

where the supremum is over all non-singleton folders I.

Proof. Since diam(I) = w(I), the second inequality follows immediately from Corollary 3. For the other 
direction, recall from Lemma 2 that the distance d(x, y) can be defined using the edge weights eI = 1

2 (w(I ′) −
w(I)), where I ′ is the parent of I. Since w(I) ≤ Aw(I ′), we have eI ≥ 1

2 (1 − A)w(I ′), and consequently 
from Corollary 3

‖f‖d ≤ sup
I �=X

|ΔI′f(I)|
eI

≤ 2
1 −A

sup
I

|ΔI′f(I)|
w(I ′) ≤ 2

1 −A
sup
I

‖ΔIf‖∞
w(I) . �

The approximation to ‖f‖d given by Proposition 1 can be computed at cost proportional to the size of 
X, as described in the following algorithm.

Algorithm 3 (Computation of approximation to ‖f‖d).

I. Compute all terms mIf(I):
1. Evaluate f at all singleton folders {x}, and divide by the measure of {x}.
2. For every non-singleton folder I ∈ T whose child averages have already been computed, recursively 

compute mIf(I) using the formula

mIf(I) = 1
|I|

∑
I′∈sub(I)

|I ′|mI′f(I ′) (22)

II. Compute all terms ‖ΔIf(I)‖∞ by the formula

‖ΔIf(I)‖∞ = max
I′∈sub(I)

|mI′f(I ′) −mIf(I)|. (23)

III. Compute the maximum of ‖ΔIf(I)‖∞/w(I).

If we let M denote the number of points in X, the number of folders in T cannot exceed 2M − 1. Step I1 
requires O(M) operations, while Step I2 for a folder I whose child averages have already been computed 
requires O(| sub(I)|) operations. Since

∑
non-singleton I

| sub(I)| = O(|T |) = O(M) (24)

the total operation count for Step I is O(M). Since Step II requires only O(| sub(I)|) additional operations 
for each folder I, its total cost over all folders is also O(M). Finally, Step III clearly only requires an 
additional O(M) operations, bringing the total operation count to O(M).
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Theorem 6. Suppose X and Y are two spaces equipped with trees TX and TY with folder weights wX(I), 
wY (J), respectively, each satisfying the decay condition (20). Let dX and dY be the metrics induced by these 
weights. Then for any function f on X × Y , we can characterize its mixed Lipschitz semi-norm as follows:

(1 −A)2

4 ‖f‖dX ,dY
≤ sup

I∈TX

sup
J∈TY

‖ΔX,IΔY,Jf‖∞
wX(I)wY (J) ≤ ‖f‖dX ,dY

(25)

where the supremums are over non-singleton folders only.

Proof. Fix any point y ∈ Y and any folder J ∈ TY , and consider the function

x �→ ΔY,Jf(x, y)
wY (J) .

Applying Proposition 1 to this function yields

sup
I∈TX

sup
x∈X

|ΔX,IΔY,Jf(x, y)|
wX(I)wY (J) ≤ sup

x�=x′

ΔY,Jf(x, y) − ΔY,Jf(x′, y)
dX(x, x′)wY (J)

= sup
x�=x′

ΔY,J [f(x, ·) − f(x′, ·)](y)
dX(x, x′)wY (J) .

(26)

Temporarily fix two points x �= x′. We apply Proposition 1 to the function

y �→ f(x, y) − f(x′, y)
dX(x, x′)

to obtain the upper bound

ΔY,J [f(x, ·) − f(x′, ·)](y)
dX(x, x′)wY (J) ≤ sup

y′ �=y′′

f(x, y′) − f(x′, y′) − f(x, y′′) + f(x′, y′′)
dX(x, x′)dY (y, y′) . (27)

Combining (26) and (27) and taking the supremum over all J and y proves the inequality

sup
I∈TX

sup
J∈TY

‖ΔX,IΔY,Jf‖∞
wX(I)wY (J) ≤ ‖f‖dX ,dY

.

To show the other direction, we apply the same method of reducing to Proposition 1, but going in the 
other direction. Fix any two points y �= y′ in Y and apply Proposition 1 to the function

x �→ f(x, y) − f(x, y′)
dY (y, y′) .

This yields the inequality

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′)
dX(x, x′)dY (y, y′) ≤ 2

1 −A
sup
I∈TX

sup
x∈X

|ΔX,I [f(x, y) − f(x, y′)]|
wX(I)dY (y, y′)

= 2
1 −A

sup
I∈TX

sup
x∈X

|ΔX,If(x, y) − ΔX,If(x, y′)|
wX(I)dY (y, y′) .

(28)

Fixing any x ∈ X and any I ∈ TX , we can apply Proposition 1 again to the function

y′′ �→ ΔX,If(x, y′′)

wX(I)
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to get the inequality

|ΔX,If(x, y) − ΔX,If(x, y′)|
wX(I)dY (y, y′) ≤ 2

1 −A
sup
J∈TY

sup
y∈Y

|ΔY,JΔX,If(x, y′′)|
wX(I)wY (J) . (29)

From (28) and (29), it follows immediately that

‖f‖dX ,dY
≤ 4

(1 −A)2 sup
I∈TX

sup
J∈TY

‖ΔX,IΔY,Jf‖∞
wX(I)wY (J)

and the result is proved. �
The approximation to ‖f‖dX ,dY

given by Theorem 6 can be computed at cost proportional to the size of 
X × Y , as described in the following algorithm.

Algorithm 4 (Computation of approximation to ‖f‖dX ,dY
).

I. Compute all terms mIf(I):
1. Evaluate f at all singleton product folders {x} × {y}, and divide by the measure of {x} × {y}.
2. For every product folder I × J (I ∈ TX , J ∈ TY ) whose child averages have already been computed, 

recursively compute mX,ImY,Jf(I, J) using the formula

mX,ImY,Jf(I, J) = 1
|I||J |

∑
I′∈sub(I)

∑
J ′∈sub(J)

|I ′||J ′|mX,I′mY,J ′f(I ′, J ′) (30)

II. Compute all terms ‖ΔX,IΔY,Jf‖∞ by the formula

‖ΔX,IΔY,Jf‖∞ = max
I′∈sub(I),J ′∈sub(J)

|mX,I′mY,J ′f(I ′, J ′) −mX,ImY,J ′f(I, J ′)

−mX,I′mY,Jf(I ′, J) + mX,ImY,Jf(I, J)|. (31)

III. Compute the maximum of ‖ΔX,IΔY,Jf‖∞/(wX(I)wY (J)).

If we let M denote the number of points in X and N the number of points in Y , the number of product 
folders in TX × TY cannot exceed (2M − 1)(2N − 1). Step I1 requires O(MN) operations, while Step I2 
for a product folder I × J whose child averages have already been computed requires O(| sub(I)|| sub(J)|)
operations. Since

∑
I∈TX

∑
J∈TY

| sub(I)|| sub(J)| = O(|TX ||TY |) = O(MN) (32)

the total operation count for Step I is O(MN) (note that in the summations (30) and (32), for singletons 
we define sub({x}) = {x} and sub({y}) = {y}). Since Step II requires only O(| sub(I)|| sub(J)|) additional 
operations for each product folder I × J , its total cost over all folders is also O(MN). Finally, Step III 
clearly only requires an additional O(MN) operations, bringing the total operation count to O(MN).

To illustrate the result of Theorem 6, we ran the following experiment. We took the product of two 
16-point spaces with binary trees. For each choice of weight decay parameter A = i/10, i = 1, . . . , 9
from (20), we compared the true value of ‖f‖dX ,dY

to the approximation from Theorem 6 for 200 random 
functions. Fig. 3 shows the minimum and maximum ratios of the approximation divided by the true value, 
both as functions of A. As predicted by the theorem, the maximum stays more or less constant (its value 
is about .25, which is better than the worst-case value of 1 predicted by the theorem), while the minimum 
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Fig. 3. The maximum ratio (black, backward arrows) and minimum ratio (blue, forward arrows) of the approximate mixed Lipschitz 
norm to the truth for different A. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Fig. 4. The distortion of approximation for the mixed Lipschitz norm for different A.

decays as A gets bigger. In Fig. 4, we plot the ratios of the maximum ratio to the minimum ratio (the 
distortion) as a function of A. As expected, the distortion grows with A.

6. Averaging Lipschitz norms and their duals over trees

Partition trees and tree metrics give rise to fast algorithms and simple formulas for the Lipschitz norm 
and their duals. However, in applications tree metrics are often not the natural distance for a given problem; 
rather they are used only as a proxy for some other intrinsic metric. For example, in [28–30] tree metrics 
arise by clustering points according to their proximity with respect to a certain diffusion distance on the 
data, which is the L2 distance between probability distributions on the data centered at each point [38]; 
higher levels of the tree group together points that are connected at larger scales in the diffusion process. 
However, the resulting tree metric only serves as an approximation to the true diffusion distance, which is 
the real quantity of interest.
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In computer science applications, similar issues arise all the time as well. As discussed in the introduction, 
many metric tasks in computer science such as nearest neighbor searches, the k-server problem, distributed 
paging, the vehicle routing problem, and many more, are quite simple when the metric is a tree metric. If a 
family of tree metrics approximates some intrinsic metric in an appropriate sense then the solution for the 
tree metrics can be combined to yield an approximate solution for the intrinsic metric [23,24].

As stated in the introduction, the formal problem of tree approximations of arbitrary metrics can be 
stated as follows: given an arbitrary finite metric space (X, d), we seek a random family of trees T on X so 
that the corresponding tree metrics dT (x, y) satisfy

d(x, y) ≤ dT (x, y) (33)

for every tree T , and in expectation we have the reverse inequality

ET dT (x, y) ≤ Kd(x, y) (34)

for some constant K ≥ 1.
Bartal’s paper [23] describes such an explicit distribution over trees, where the constant K is of size 

O(log2 M), if X contains M points (this result was sharpened to K = O(logM log logM) in [24]). The 
paper of Fakcharoenphol, Rao, and Talwar [34] describes a randomized construction of partition trees with 
K = O(logM). As there are metric spaces of size M for which no family of trees can achieve a distortion 
smaller than Ω(logM) [23,34], this result is optimal in the general case. In a forthcoming paper [39] we 
show that the trees from [34] can be used to approximate the snowflake metric d(x, y)α, where 0 < α < 1, 
with a constant dependent only on the dimension of (X, d) (a quantity measuring the growth rate of metric 
balls) rather than the number of points in X.

We will adopt this formalism of tree metric approximations here. For the remainder of this section, 
we assume that we have a metric space (X, d) that is approximated by the average of dominating tree 
metrics. In other words, we have a family of trees T , each with its own metric dT (x, y) satisfying (33), and 
a distribution over these trees so that (34) holds as well.

Proposition 2. For any function f on X,

sup
T

‖f‖dT ≤ ‖f‖d ≤ KE

[
1

‖f‖dT

]−1

.

Proof. Since every tree metric dT (x, y) dominates d(x, y), we have

f(x) − f(y) ≤ ‖f‖dd(x, y) ≤ ‖f‖ddT (x, y)

which implies that ‖f‖dT ≤ ‖f‖d for all trees T ; consequently,

sup
T

‖f‖dT ≤ ‖f‖d.

For the other inequality, for each tree T , we have f(x) − f(y) ≤ ‖f‖dT dT (x, y). Dividing by ‖f‖dT and 
taking expectations yields

(f(x) − f(y))ET

[
1

‖f‖dT

]
≤ ET dT (x, y) ≤ Kd(x, y)

which gives the desired result. �
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Note that by Jensen’s inequality, we also have:

ET

[
1

‖f‖dT

]−1

≤ ET [‖f‖dT ] ≤ sup
T

‖f‖dT .

Proposition 3. For any T on X,

1
K

ET ‖T‖∗dT ≤ ‖T‖∗d ≤ inf
T
‖T‖∗dT .

Proof. Since ‖f‖dT ≤ ‖f‖d, we have

‖T‖∗d = sup
‖f‖d≤1

〈f, T 〉 ≤ sup
‖f‖dT ≤1

〈f, T 〉 = ‖T‖∗dT

which yields the inequality ‖T‖∗d ≤ infT ‖T‖∗dT
.

For the other direction, fix any ε > 0, and for each T , let fT be a mean zero function such that ‖f‖dT ≤ 1
and

‖T‖∗dT ≤ 〈fT , T 〉 + ε.

Since fT (x) − fT (y) ≤ dT (x, y), taking expectations gives

ET fT (x) − ET fT (y) ≤ ET dT (x, y) ≤ Kd(x, y)

or in other words ‖ET fT ‖d ≤ K. Consequently, we have

ET ‖T‖∗dT ≤ ET 〈fT , T 〉 + ε = 〈ET fT , T 〉 + ε ≤ K sup
‖f‖d≤1

〈f, T 〉 + ε = K‖T‖∗d + ε.

Since ε is arbitrary, the result follows. �
Proposition 3 can also be deduced from Charikar’s paper [36], since the semi-norm ‖T‖∗ρ, when T is the 

difference of two probability distributions, is equal to the Earth Mover’s Distance between these two distri-
butions with respect to the ground distance ρ(x, y). However, the proof we have just given, which appears 
to be new, generalizes to the setting of mixed Lipschitz functions and their duals, which we turn to now.

For the next two results, we assume that we have two metric spaces (X, dX) and (Y, dY ), each with a 
family of trees, denoted TX and TY , respectively, and tree metrics dTX

, dTY
, that approximate dX and dY

in the sense of (33) and (34). We assume too that the trees on X and Y are constructed independently.
We first show that we can approximate ‖f‖dX ,dY

by the values of ‖f‖dTX
,dTY

over all pairs of dominating 
trees (TX , TY ). The proof is nearly identical to the proof of Proposition 2.

Proposition 4. For any function f on X × Y , we have

sup
TX ,TY

‖f‖dTX
,dTY

≤ ‖f‖dX ,dY
≤ K2ETX ,TY

[
1

‖f‖dTX
,dTY

]−1

.

Proof. Take any x �= x′ and y �= y′. Then for any pair of trees (TX , TY ), we have

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′) ≤ ‖f‖dX ,dY
dX(x, x′)dY (y, y′)

≤ ‖f‖dX ,dY
dTX

(x, x′)dTY
(y, y′)
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which implies that

sup
TX ,TY

‖f‖dTX
,dTY

≤ ‖f‖dX ,dY
.

For the other inequality, for each pair of trees (TX , TY ), we have

f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′) ≤ ‖f‖dTX
,dTY

dTX
(x, x′)dTY

(y, y′).

Dividing by ‖f‖dTX
,dTY

, taking expectations, and using the independence of the trees yields

(f(x, y) − f(x, y′) − f(x′, y) + f(x′, y′))ET

[
1

‖f‖dTX
,dTY

]
≤ ETX

dTX
(x, x′)ETY

dTY
(y, y′)

≤ K2dX(x, x′)dY (y, y′)

which gives the desired result. �
Again, note that by Jensen’s inequality, we also have:

ETX ,TY

[
1

‖f‖dTX
,dTY

]−1

≤ ETX ,TY
[‖f‖dTX

,dTY
] ≤ sup

TX ,TY

‖f‖dTX
,dTY

.

Proposition 5. For any T on X × Y , we have

1
K2ETX ,TY

‖T‖∗dTX
,dTY

≤ ‖T‖∗dX ,dY
≤ inf

TX ,TY

‖T‖∗dTX
,dTY

.

Proof. We essentially repeat the one-dimensional proof of Proposition 3. Since ‖f‖dTX
,dTY

≤ ‖f‖dX ,dY
, it 

follows that ‖T‖∗dX ,dY
≤ ‖T‖∗dTX

,dTY
, and consequently

‖T‖∗dX ,dY
≤ inf

TX ,TY

‖T‖∗dTX
,dTY

.

For the other inequality, fix any ε > 0. For any pair of trees (TX , TY ), we can find a function fTX ,TY
with 

mXfTX ,TY
= 0, mY fTX ,TY

= 0, and ‖fTX ,TY
‖dX ,dY

≤ 1, such that

‖T‖∗dTX
,dTY

≤ 〈fTX ,TY
, T 〉 + ε.

Then for any x, x′ ∈ X and y, y′ ∈ Y , we have

fTX ,TY
(x, y) − fTX ,TY

(x, y′) − fTX ,TY
(x′, y) + fTX ,TY

(x′, y′) ≤ dTX
(x, x′)dTY

(y, y′).

Taking expectations of each side and using the fact that ETX
dTX

(x, x′) ≤ KdX(x, x′) and ETY
dTY

(y, y′) ≤
KdY (y, y′), we can easily see that

‖ETX ,TY
fTX ,TY

‖dX ,dY
≤ K2.

Consequently,

ETX ,TY
‖T‖∗dTX

,dTY
≤ ETX ,TY

〈fTX ,TY
, T 〉 + ε

= 〈ETX ,TY
fTX ,TY

, T 〉 + ε

≤ K2‖T‖∗dX ,dY
+ ε.

Since ε is arbitrary, we are done. �
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7. Conclusion

In this paper we have developed a theory of harmonic analysis on tree metric spaces, extending the work 
of [28–30] to a more general collection of tree metrics. In particular, we have introduced computationally 
efficient approximations to the Lipschitz norm and its dual on a single tree metric space, and the mixed 
Lipschitz norm and its dual on a product of tree metric spaces. As discussed in the introduction, the mixed 
Lipschitz norm is a natural measure of regularity for functions on a product of spaces with meaningful 
axes. In [29], many desirable properties of mixed Lipschitz functions from the Euclidean setting are pushed 
through to a restricted class of tree metrics; an interesting topic for future research would be investigating 
how to adapt these same properties to the more general trees we have considered in this paper.

The norm dual to mixed Lipschitz provides a distance between measures on a product of spaces that 
is analogous to Earth Mover’s Distance (the dual norm to Lipschitz functions on a single space). As such, 
it exhibits many of the same properties as EMD, such as an insensitivity to perturbations of the data. 
However, since every mixed Lipschitz function is Lipschitz (with respect to the sum of the distances on the 
spaces), but the converse is not true, we expect that the norm dual to mixed Lipschitz should exhibit even 
stronger properties. This line of research, as well as the use of the dual norm as a distance in applications 
with real data, are currently being pursued. Finally, a question for further research is to obtain information 
on the size of the universal constant C from Theorem 5 that bounds the ratio of the norm dual to mixed 
Lipschitz and its approximation.
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