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Tree metrics are encountered throughout pure and applied mathematics. Their 
simple structure makes them a convenient choice of metric in many applications 
from machine learning and computer science. At the same time, there is an elegant 
theory of harmonic analysis with respect to tree metrics that parallels the classical 
theory.
A basic question in this field, which is of both theoretical and practical interest, is 
how to design efficient algorithms for building trees with good metric properties. In 
particular, given a finite metric space, we seek a random family of dominating tree 
metrics approximating the underlying metric in expectation. For general metrics, 
this problem has been solved: on the one hand, there are finite metric spaces that 
cannot be approximated by trees without incurring a distortion logarithmic in the 
size of the space, while the tree construction of Fakcharoenphol, Rao, and Talwar 
(FRT, 2003) shows how to achieve such a logarithmic error for arbitrary metrics.
Since a distortion that grows even logarithmically with the size of the set may 
be too large for practical use in many settings, one naturally asks if there is a 
more restricted class of metrics where one can do better. The main result of this 
paper is that certain random family of trees already studied in the computer science 
literature, including the FRT trees, can be used to approximate snowflake metrics 
(metrics raised to a power less than 1) with expected distortion bounded by its 
doubling dimension and the degree of snowflaking. We also show that without 
snowflaking, the metric distortion can be bounded by a term logarithmic in the 
distance being approximated and linear in the dimension.
We also present an optimal algorithm for building a single FRT tree, whose running 
time is bounded independently of all problem parameters other than the number 
of points. We conclude by demonstrating our theoretical results on a numerical 
example, and applying them to the approximation of the Earth Mover’s Distance 
between probability distributions.
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1. Introduction

Tree metrics are an especially simple kind of distance function that appear throughout pure and applied 
mathematics. Informally, tree metrics are derived by breaking the metric space into a tree T of nested 
subsets F , called folders, and assigning each folder a diameter w(F ). The distance dT (x, y) between any 
two points x and y is then the diameter of the smallest folder containing both points.

There is an extensive theory of harmonic analysis for tree metrics that parallels the classical Euclidean 
theory. This theory allows us to adapt signal-processing type algorithms to data sets of much more varied 
structure, and has proven useful in a wide array of problems in machine learning [1–3]. Tree metrics’ 
simple structure also yields fast algorithms for metric tasks from computer science, such as nearest neighbor 
searches, the k-server problem, distributed paging, the vehicle routing problem, and many more [4,5].

Unfortunately, it is rarely the case that the “natural” metric for a given problem in machine learning or 
computer science will be a tree metric. A basic goal in metric space theory, therefore, is to approximate 
arbitrary finite metrics by tree metrics. Of course, the extreme simplicity of tree metrics makes it implausible 
that an arbitrary metric could be well-approximated by a single tree metric. We therefore consider a modified 
problem, namely finding a probability distribution over tree metrics so that the expected tree distance yields 
a good approximation, and such that it is computationally feasible to draw a tree from the distribution.

The formal problem, as considered in [6,4,5,7–9] and elsewhere is as follows. Given a finite metric space 
(X, d), we seek a family of trees T and corresponding tree metrics dT that have the following properties:

1. Each tree metric is dominating; that is,

d(x, y) ≤ dT (x, y) (1)

for every T and for all x, y ∈ X.
2. The expected tree distance satisfies

ET [dT (x, y)] ≤ Kd(x, y) (2)

for some constant K ≥ 1.

Bartal’s paper [4] describes such an explicit distribution over trees, where the constant K is of size 
O(log2 n) where n denotes the number of points in X; this result was later improved to K = O(logn log logn)
in [5]. With access to such a distribution over trees, many tasks that depend on the original metric can be 
performed with randomly drawn tree metrics instead, and then combined to produce an approximation to 
that task for the original metric. Bartal [4,5] discusses a number of such problems from computer science, 
while Charikar’s paper [10] shows how this method can produce an approximation to the Earth Mover’s 
Distance, a powerful metric between probability distributions widely used in machine learning [11–14]. We 
will go into more detail on this particular application in Section 5.

The question that naturally arises is: how small (that is, how close to 1) can we make the constant K

from (2)? The paper of Fakcharoenphol, Rao, and Talwar [9] describes a randomized construction of partition 
trees whose constant of distortion K is of size O(log n). As there are metric spaces for which no family of 
trees can achieve a distortion smaller than Ω(logn) [4], this result is optimal in the general case.

If n is large, however, a size O(logn) distortion can be too big for practical applications. Indeed, in a 
statistical or machine learning environment, if X is a data set drawn from a population about which we 
wish to make inferences, it is critical to be able to handle very large values of n, as well-designed statistical 
procedures perform better with increasing sample size.

In this paper we show that a broad class of metrics can in fact be approximated by trees with constant of 
distortion bounded independently of n. These metrics, known as snowflake metrics, are of the form d(x, y)α
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where 0 < α < 1 and d(x, y) is itself a metric [15]. We will prove approximation guarantees for two different 
tree constructions, both of which have appeared previously in the literature, namely in [9] and [16].

More precisely, in Section 3, namely Theorem 1, we prove the following result: for R ≥ 0 and any 
0 < α < 1, the trees defined in [9] and [16] can be used to approximate the snowflake metric d(x, y)α for 
distances exceeding R with expected distortion bounded independently of the number of points. Rather, 
the expected distortion depends on the dimension of X at scale R, a quantity that captures the growth of 
metric balls exceeding radius R (when R is 0, the approximation guarantee holds for all distances).

The proof of Theorem 1 is very simple; it consists of observing that a divergent series of distances 
multiplied by probabilities becomes convergent when those distances are raised to a power less than 1. 
Similar observations are important ingredients in proofs of Assouad theorems on embedding snowflake 
metrics into Euclidean space [15,17,18]. However, for certain applications, such as the approximation of 
Earth Mover’s Distance between probability distributions, it is more natural to work with embeddings into 
trees than into Euclidean space. We will discuss such applications in more detail in Section 5.

In Section 4 we give an algorithm for constructing the trees from [9] whose cost is O(n2), where the 
constants are universal. In particular, the cost can be bounded independently of other problem parameters, 
such as the distances d(x, y). The existence of an O(n2) algorithm is stated in [9], though we have not seen 
it described anywhere in the literature, and it is unclear whether the algorithm referred to in [9] has cost 
independent of the metric itself.

In Section 5, we illustrate the results of the paper on numerical examples. As mentioned, we also explore 
how to apply tree approximations to the approximation of the Earth Mover’s Distance between probability 
distributions.

2. Preliminaries

In this section, we discuss the general notions from metric space theory that we will be using throughout 
this paper, and state a result (Proposition 1 below) about one of the notions of metric dimension we study 
in this paper.

2.1. Doubling dimension of a metric space

One natural way of extending the definition of “dimension” to an abstract metric space is to measure 
the rate of growth of metric balls as the radius doubles. More precisely, if (X, d) is a metric space, μ is a 
measure on X, and R ≥ 0 is a non-negative number, we define the doubling dimension of X with respect to 
μ at scale R to be

dimμ,R(X) = sup
x∈X,r>R

log2

(
μ(B(x, 2r))
μ(B(x, r))

)
(3)

where B(x, r) denotes the closed ball of radius r around the point x ∈ X.
When X is finite and μ is just counting measure, (3) is almost identical to the Karger–Ruhl (KR) 

dimension found in [19]; the only difference is that with KR dimension, the supremum is taken over balls 
with a minimum volume rather than a minimum radius. Metrics with finite KR dimension are known as 
growth restricted metrics. The KR dimension is often used to quantify the performance of certain algorithms 
in computer science, such as nearest neighbor searches and metric embeddings. More generally, (3) is also 
similar to that used in the theory of spaces of homogeneous type [20], as a defining property of these spaces 
is that dimμ,0(X) < ∞.

Another definition of dimension is the doubling dimension [15]. This is defined as the base 2 logarithm of 
the number of balls of radius r/2 required to cover a ball of radius r; it therefore captures the rate-of-growth 
of the space without explicitly referring to the measure.
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In this paper, we will consider the doubling dimension at scale R, denoted λR(X), which only looks at 
balls with radius r > R. More formally, for any x ∈ X and r > R, let

N(x, r) = min
{
N ∈ N+ : ∃x1, . . . xN s.t. B(x, r) ⊂

N⋃
i=1

B(xi, r/2)
}

(4)

and define λR(X) by

λR(X) = sup
x∈X,r>R

log2(N(x, r)). (5)

It is a well-known result of metric space theory that a space has finite doubling dimension if and only if 
it has a doubling measure, and the two dimensions are equivalent (their ratio is bounded above and below 
by universal constants) [15]. The same is not true for arbitrary measures, such as counting measure. For 
instance, any space with finite KR dimension has finite doubling dimension, but the converse is false [21]. 
Both KR dimension and doubling dimension (especially the latter) are widely used to quantify performance 
guarantees of algorithms in computer science, such as nearest neighbor searches, metric embeddings, network 
routing, and others; see, for instance, [22–24,19,25–27] for a sampling of such applications.

A nice property of doubling dimension is that it is hereditary: subsets of a metric space can only have 
smaller doubling dimension than the large space. Unfortunately, there is no corresponding result in general 
for dimμ,R(X). In [19], however, it is shown that if a finite metric space X is formed by randomly sampling 
from a larger finite space with KR dimension d, say, then X has KR dimension d + 1 with high probability. 
In the same spirit, we show the following result (the proof is in Appendix A):

Proposition 1. Suppose R ≥ 0 and let M be any metric/measure space with total measure 1 and dimension 
d at scale R/2; that is, for all x ∈ M and r > R/2,

μ(B(x, 2r))
μ(B(x, r)) ≤ 2d (6)

where μ is the measure on M . Suppose too that

η ≡ inf
x∈M,r≥R

μ(B(x, r)) > 0. (7)

Let X be a finite set formed by uniformly sampling n points from M ; that is, the probability that a point 
appears in a subset S ⊂ M is equal to the measure μ(S). Equip X with counting measure ν. Then we can 
bound the probability that dimν,R(X) ≤ d + 1 as follows:

Pr[dimν,R(X) ≤ d + 1] ≥ 1 − n2εn−1 (8)

for some number ε ∈ (0, 1) depending on d and η. In particular, this probability converges to 1 as n → ∞.

In many applications in machine learning, it is assumed that the dataset in question has been sampled 
from a compact Riemannian manifold (which satisfies the assumptions of Proposition 1); for instance, see 
[28,29]. Proposition 1 tells us that when the sampling is uniform, such datasets are likely to have small KR 
dimension when the dimension of the underlying manifold is small as well, and that the probability of the 
data having small KR dimension increases with the number of samples.
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2.2. Snowflake metrics

Another basic definition we need is of a snowflake metric [15]. A snowflake metric ρ(x, y) satisfies the 
property that ρ(x, y)p is also a metric for some p > 1. Put another way, if we start with any metric d(x, y), 
the new metric ρ(x, y) = d(x, y)α is a snowflake metric whenever 0 < α < 1. We will refer to d(x, y)α as the 
α-snowflake of d(x, y), or, if α is clear from the context, just the snowflake of d(x, y).

It is a subject of considerable interest in mathematics to determine the effects of replacing a metric d(x, y)
with its snowflake d(x, y)α. For example, the resulting spaces do not have rectifiable curves, and have larger 
Hausdorff dimension than the original space [30].

In certain other respects, however, the snowflake metric d(x, y)α can be better-behaved than the original 
metric d(x, y). For example, Assouad’s Theorem states that any snowflake metric space with finite doubling 
dimension can be embedded into a finite-dimensional Euclidean space [17,30,15,18]. Such embeddings do 
not exist for arbitrary metric spaces; the Heisenberg group is a counterexample [31]. Another feature of 
snowflake metrics is found in classical harmonic analysis. Letting |x − y| denote the Euclidean distance, 
spaces of functions that are Lipschitz with respect to the snowflake metric |x − y|α – the Hölder functions – 
and their dual spaces can be easily characterized by wavelet norms when 0 < α < 1, but not when α = 1
[32].

2.3. Tree metrics

We introduce the definition of tree metric we will be using in this paper. A partition tree T on a set X
is a collection of subsets F ⊂ X, which we will call folders, with the following properties:

1. The set X itself is in T ;
2. For any two folders F and F ′ in T , either F ⊂ F ′, F ′ ⊂ F , or F and F ′ are disjoint.

To have the partition tree T induce a metric on X, on each folder F ∈ T we place a weight w(F ). We 
require that if F � F ′, then w(F ) < w(F ′); and that every singleton folder has weight zero, or w({x}) = 0
for all x ∈ X. We then define the tree distance dT (x, y) between distinct points x and y to be the weight 
of the smallest folder containing both x and y. It is easy to see that this is a distance; in fact, it is an 
ultrametric, meaning

dT (x, z) ≤ max{dT (x, y), dT (y, z)}. (9)

For all the tree metrics we consider in this paper, there will be a constant 0 < A < 1 such that whenever 
F � F ′,

w(F ) ≤ Aw(F ′). (10)

That is, the folder weights decay geometrically.
As we discussed in the introduction, trees and tree metrics are of considerable interest throughout applied 

mathematics. Metric tasks in computer science tend to be very easy when the underlying metric is a tree 
metric; many of these are explained in [4,5,10]. Furthermore, there is a theory of harmonic analysis with 
respect to tree metrics that adapts classical signal-processing algorithms to problems in machine learning; 
see [1–3] for work in this direction.
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3. Tree approximations of snowflake metrics

In this section, we consider two randomized constructions of trees on a finite metric space (X, d) that 
have appeared previously in the literature, and assess the approximation guarantees for the metric d(x, y)α.

It is not hard to see that for any tree approximation, the maximum ratio for the α-snowflakes can never 
be worse than the αth power of the maximum ratio for approximating the original metric. This observation 
follows immediately from Jensen’s inequality, as

ET [diamT (S)α]
diam(S)α = ET

[(
diamT (S)
diam(S)

)α]
≤

(
ET [diamT (S)]

diam(S)

)α

, (11)

where we denote the diameter of a set S ⊂ X under the distance dT (x, y) induced by the tree T and the 
weights w(F ) as diamT (S), and denote the diameter of S under the original metric d(x, y) as diam(S).

In the remainder of the paper, we will always assume without loss of generality that the diameter of X
(that is, the maximum distance between any two points) is 1.

3.1. Partitions at a single scale

This section examines two related methods of constructing trees and tree metrics. Both follow the same 
basic structure, which we outline here.

For every integer l ≥ 0, we construct an initial partition Pl of X; every set in Pl has diameter less than 
or equal to 2−l+2. These partitions will not necessarily be nested (that is, Pl+1 need not be a refinement 
of Pl). However, we convert these partitions into a partition tree by the following method. The topmost 
folder (level 0) consists of the single folder X itself. We form the lth level of the tree as follows. Given a 
folder F at level l − 1, the child folders of F are formed by grouping together those points in F that are 
assigned to the same folder in Pl.

We state two key results about the initial, unrefined partitions Pl that follow from results previously 
published in the literature. Fix R ≥ 0, a subset Y ⊂ X, and suppose that every point in X is within 
Δ ≥ 4R of Y . For instance, Y could be all of X, or a maximal Δ-net in X. Suppose μ is a probability 
measure on Y that assigns every point positive mass, and we permute Y according to μ. Assign every point 
in X to the first point in Y it is within β of, where β ∼ Uniform(Δ, 2Δ). Since β ≥ Δ, every point in X
gets assigned somewhere.

Proposition 2. Suppose Y = X. Then if S ⊂ X is any subset, the probability that S gets split (i.e. that two 
points in S are assigned to different points in X) is no more than

Pr[S split] ≤ C
diam(S)

Δ dimμ,R(X) (12)

where C is a universal constant.

Proof. Since S ⊂ B(x, diam(S)), where x ∈ S is arbitrary, the result then follows immediately from the 
proof of Theorem 3.17 in [33]. More precisely, it is shown that

Pr[B(x, t) is cut] ≤ C
t

Δ log
(
μ(B(x, 2Δ))
μ(B(x,Δ))

)
. (13)

Taking t = diam(S) and noting that S ⊂ B(x, t) yields the desired result. �
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Proposition 3. Suppose Y is a Δ-net of X, and the measure μ is counting measure; that is, the permutation 
on Y is drawn uniformly at random. Then if S ⊂ X is any subset, the probability that S gets split (i.e. that 
two points in S are assigned to different points in Y ) is no more than

Pr[S split] ≤ C
diam(S)

Δ λR(X), (14)

where C is a universal constant.

Proof. As in the proof of Proposition 2, using the fact that S ⊂ B(x, diam(S)) for x ∈ S, the result is then 
immediate from the proof of Theorem 3.2 in [16]. �
3.2. μ-FRT trees

We first consider the random trees of [9], with the modification described in [33]. There are two random 
objects that define each tree: a random permutation π of the points in X, and a random number β ∼
Uniform(1, 2). We require that π and β be drawn independently of each other. The permutation π is drawn 
according to a pre-specified measure μ on X.

For l ≥ 0, we define

βl = 2−lβ. (15)

We define a tree on X by specifying the initial, unrefined partitions Pl, and then applying the general 
procedure described in Section 3.1 for converting these partitions into a partition tree. Pl is defined as follows: 
for each x ∈ X, let x∗

l be the first point in X (according to the permutation π) such that d(x, x∗
l ) ≤ βl. 

Then Pl partitions X into points all assigned to the same x∗
l .

Let T be the tree induced by these partitions, as described in Section 3.1. That is, the only level 0 folder 
in the tree is the entire set X, and its center is the first point on the list (since the diameter of X is 1, and 
β0 ≥ 1). For each folder F at level l, the subfolders of F (at level l + 1) are formed by grouping together 
the points in F that were assigned to the same point at level l + 1.

The weight we place on a folder at level l is

w(F ) = 2−l+2. (16)

Note that w(F ) is an upper bound on the diameter of F .
We will refer to the trees defined in this matter as μ-FRT trees, since the construction is found in [9]

(the use of a general measure μ in place of counting measure appears in [33], however).

3.3. R-nets trees

There is another natural means of forming the partitions Pl. Namely, at scale l we suppose that we are 
given a maximal 2−l-net Yl of X; that is, Yl is a collection of points that are at distance 2−l from each other, 
and every point in X is within 2−l of some point in Yl. We then draw a permutation πl of Yl uniformly at 
random, and independently draw a number β ∼ Uniform(1, 2). Again, for l ≥ 0 we define

βl = 2−lβ. (17)

We define a tree on X by specifying the initial, unrefined partitions Pl, and then applying the general 
procedure described in Section 3.1 to convert the Pl into a partition tree. Pl is defined as follows: for each 
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x ∈ X, let x∗
l be the first point in Yl (according to the permutation πl) such that d(x, x∗

l ) ≤ βl. Then Pl

partitions X into points all assigned to the same x∗
l .

We will consider a generalization of this procedure, which only makes use of those partitions Pl with 
2−l ≥ R. Once again, the weight we place on a folder at level l is

w(F ) = 2−l+2. (18)

Note that w(F ) is an upper bound on the diameter of F . We will refer to the trees so constructed as R-nets 
trees.

3.4. Approximation guarantees

We prove bounds on the expected distortion of the tree metric raised to the power α, 0 < α ≤ 1, for both 
FRT trees and nets trees. It is immediate that diamT (S) ≥ diam(S), and consequently the same inequality 
holds for the snowflake metrics: diamT (S)α ≥ diam(S)α.

We will prove that in expectation, the reverse inequality is true, up to a certain distortion which we 
bound. Specifically, we have the following theorem:

Theorem 1. Let

D(X,R) =
{

dimμ,R(X) if μ-FRT trees are used
λR(X) if R-nets trees are used

(19)

Both the μ-FRT and the R-nets tree constructions produce family of trees T with the following properties 
(C denotes a universal constant):

1. For any 0 < α < 1, any 0 ≤ R ≤ 1 and any subset S ⊂ X with diameter diam(S) ≥ R,

ET [diamT (S)α] ≤ C
D(X,R)

1 − α
diam(S)α (20)

and

ET [diamT (S)] ≤ C

[
1 + D(X,R) log2

(
1

diam(S)

)]
diam(S). (21)

2. For any 0 < α < 1, any 0 ≤ R ≤ 1 and any subset S ⊂ X with diameter diam(S) < R,

ET [diamT (S)α] ≤ C

(
D(X,R)

1 − α
+ 1

α

)
Rα (22)

and

ET [diamT (S)] ≤ C

[
1 + D(X,R) log2

(
1
R

)]
R. (23)

Proof. Define the integer l∗ ≥ 0 by

2−l∗−1 < diam(S) ≤ 2−l∗ (24)

and the integer m∗ ≥ 0 by

2−m∗−1 < R ≤ 2−m∗
. (25)
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Observe that if all points in S are in the same folder at level l, the diameter of S must be less than the 
diameter of their shared folder, which implies that diam(S) ≤ 2−l+2. Therefore,

l ≤ l∗ + 2. (26)

Let Gl be the event that all points in S are assigned to the same point at level l. Then we have shown

ET [diamT (S)α] ≤
∞∑
l=0

2−(l−2)αPr[Gl \Gl+1]

≤
l∗+2∑
l=0

2−(l−2)αPr[Gc
l+1]. (27)

Propositions 2 and 3 provide upper bounds on Pr[Gc
l+1] that will give us the desired result. Suppose 

l ≤ min{l∗,m∗} − 2. Then

Pr[Gc
l+1] ≤ C2ldiam(S)(1 + D(X,R)). (28)

To prove (20) and (21), suppose diam(S) ≥ R. Then l∗ ≤ m∗, so (28) is applicable when l ≤ l∗−2. When 
α < 1, we therefore have

ET [diamT (S)α] ≤
l∗+2∑
l=0

2−(l−2)αPr[Gc
l+1] =

{ l∗−2∑
l=0

+
l∗+2∑

l=l∗−1

}
2−(l−2)αPr[Gc

l+1]

≤ Cdiam(S)D(X,R)
l∗−2∑
l=0

2l(1−α) +
l∗+2∑

l=l∗−1

2−lα

≤ C

(
2−l∗D(X,R) 1

21−α − 12(l∗−1)(1−α) + 2−l∗α

)

≤ C

(
1 + D(X,R)

1 − α

)
diam(S)α,

(29)

which is the inequality (20).
For the case when α = 1, we have

ET [diamT (S)] ≤
l∗+2∑
l=0

2−(l−2)Pr[Gc
l+1] =

{ l∗−2∑
l=0

+
l∗+2∑

l=l∗−1

}
2−(l−2)Pr[Gc

l+1]

≤
l∗−2∑
l=0

2−l+22ldiam(S)D(X,R) +
l∗+2∑

l=l∗−1

2−(l−2)

≤ C(diam(S)D(X,R)l∗ + 2−l∗)

≤ Cdiam(S)
[
D(X,R) log2

(
1

diam(S)

)
+ 1

]
.

(30)

This is the inequality (21).
To prove (22) and (23), suppose diam(S) < R. Then m∗ ≤ l∗, so (28) is applicable when l ≤ m∗ − 2. We 

therefore have
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ET [diamT (S)α] ≤
l∗+2∑
l=0

2−(l−2)αPr[Gc
l+1] =

{m∗−2∑
l=0

+
l∗+2∑

l=m∗−1

}
2−(l−2)αPr[Gc

l+1]

≤ Cdiam(S)D(X,R)4α
m∗−2∑
l=0

2l(1−α) +
∞∑

l=m∗−3

2−lα

≤ C2−m∗
D(X,R) 1

21−α − 12(m∗−1)(1−α) + 2−(m∗−3)α

1 − 2−α

≤ C

(
D(X,R)
21−α − 1 + 1

1 − 2−α

)
2−m∗α

≤ C

(
D(X,R)

1 − α
+ 1

α

)
Rα

(31)

which is inequality (22).
Finally, to prove (23) we have

ET [diamT (S)] ≤
l∗+2∑
l=0

2−(l−2)Pr[Gc
l+1] =

{m∗−2∑
l=0

+
l∗+2∑

l=m∗−1

}
2−(l−2)Pr[Gc

l+1]

≤ C

m∗−2∑
l=0

2−l+22ldiam(S)D(X,R) +
∞∑

l=m∗−1

2−(l−2)

≤ C(diam(S)D(X,R)m∗ + 2−m∗
)

≤ C

[
1 + D(X,R) log2

(
1
R

)]
R.

(32)

This completes the proof. �
4. Algorithm for constructing a single μ-FRT tree

In this section we describe an explicit algorithm for constructing a single μ-FRT tree T , given the 
permutation π and the parameter β. We will show that the algorithm has cost O(n2), which is linear in 
the problem size. In [9], the authors state the existence of such an algorithm, though we have not seen it 
described in the literature. Furthermore, the cost of the algorithm we present does not depend on other 
problem parameters, such as the distances themselves.

To elaborate on the last point, a naïve algorithm for constructing a μ-FRT tree may repeat the same 
folder multiple times at different levels. This will occur when all the points in a folder at level l are assigned 
to the same point at level l+1. Of course, the tree distance in this case will only be determined by the copy 
of this folder at the smallest level, so there is no need to include the redundant copies in the tree.

Furthermore, we note that any algorithm whose running time is to be controlled solely in terms of the 
size of X must avoid forming redundant folders. To see this, consider a metric space with three points, 
X = {x, y, z}. Suppose d(x, y) = ε, d(x, z) = 1, and d(y, z) = 1 − ε for some ε < 1/2. Suppose too that 
the permutation π places x first, y second, and z third. Then it is easy to see that if 0 < l < log2(β/ε), 
the level l partition consists of the two folders F1 = {x, y} and F2 = {z}; in particular, there are at least 
log2(β/ε) many levels before the tree splits into singletons and the construction terminates. Consequently, 
if an algorithm performs operations level-wise, the running time on this example will grow like log2(1/ε), 
even though n = 3. Therefore, an algorithm whose cost depends only on n must automatically skip over 
redundant folders.

We list the points in the order given by π as x1, . . . , xn. The following lemma will be useful.
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Lemma 1. Suppose x has been assigned to xk0 at level l0, and to xk1 at level l1. Then if l1 > l0, it must be 
that k1 ≥ k0.

Proof. Suppose k1 < k0, i.e. xk1 occurs before xk0 on the list. Since x is assumed to be assigned to xk1 at 
level l1, therefore d(x, xk1) ≤ βl1 < βl0 . But then, since xk1 precedes xk0 , x would have been assigned to xk1

at level l0; this is a contradiction. �
In other words, we never need to backtrack through the list when looking for the next point to which x

is assigned.
Given any points x and y in X define

l(x, y) = �log2(β) − log2(d(x, y))�. (33)

Lemma 2. Suppose that x has been assigned to xk at level l. Then l ≤ l(x, xk), and x will be assigned to xk

at all levels l′ such that l ≤ l′ ≤ l(x, xk).

Proof. By definition, l(x, xk) is the largest integer such that d(x, xk) ≤ 2−l(x,y)β. Since d(x, xk) ≤ βl = 2−lβ, 
we must have l ≤ l(x, xk). Now suppose that x gets assigned to xj at level l′, l ≤ l′ ≤ l(x, xk). By Lemma 1, 
j ≥ k, i.e. xj does not occur before xk in the list. On the other hand, d(x, xk) ≤ 2−l(x,y)β ≤ 2−l′β = βl′ ; 
so x will not be assigned to any point occurring after xk at level l′. Consequently, x is assigned to xk at 
level l′. �

In other words, if x is ever assigned to a point y, then l(x, y) is the last level at which x is assigned to y.
We introduce some terminology. For every folder F on the tree, we will refer to:

• The center of F . This is the point xk that all points in F were assigned to when they became members 
of F .

• The level of F . This is the minimum of l(x, xk), x ∈ F , where xk is the center of F . If l′ denotes the 
level of F , then 2−l′+2 is an upper bound for F ’s diameter.

Observe that if a folder has center xk and level l′, then by Lemma 2, l′ + 1 is the first level at which 
the folder F can be split into subfolders. Consequently, when we are splitting F into its children we never 
need to consider any subfolders at levels less than l′, since they will all be equal to F . Also, if x ∈ F and 
l(x, xk) = l′, by Lemma 1 the point xj to which x is assigned at level l′ + 1, is the first point on the list 
xk+1, xk+2, . . . such that l(x, xj) > l′.

These observations yield the following algorithm for constructing the tree. Initialize the tree with the 
single folder X, with center point x1, and compute its level. Recursively build folders as follows. Take any 
folder F whose children have not yet been added to the tree. Let xk be its center and l′ its level. Take those 
points x ∈ F with l(x, xk) > l′, if any exist. These points will remain assigned to xk at level l′ + 1. So one 
of the children of F will consist of all points with l(x, xk) > l′, if there are any.

The points with l(x, xk) = l′ are no longer assigned to xk at level l′ + 1. To find where they go, for each 
such point x search through xk+1, xk+2, . . . until the first xj , j > k, is encountered with l(x, xj) > l(x, xk). 
This xj is the next point to which x is assigned. Therefore, the remaining children of F are formed by 
grouping together those points that have been advanced to the same point in this manner.

Of course, it could happen that the numbers l(x, xk) are equal for all x ∈ F , and that all x ∈ F get 
advanced to the same point xj after xk. In this case, we can keep the identity of F intact, update its center 
to xj , find its new level, and repeat the process.

We give a summary of the algorithm:
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Algorithm for building T

I. Initialize the tree with folder X and center x1

II. Take any non-singleton folder F with center xk and level l′ whose children are not on the tree
1. If possible, form a child F0 of F consisting of points with l(x, xk) > l′

2. Advance each remaining x to the first xj , j > k, with l(x, xj) > l′

3. There are two cases:
i. If F0 = ∅ and all points in F advanced to the same point xj , simply make xj the new center of F

and update F ’s level to be l′ = minx∈F l(x, xj)
ii. Otherwise, break F \ F0 into children of F by grouping the points that advanced to the same xj, 

and let l′ be the level of F
Repeat step II until the children of every folder have been added to the tree.

We now analyze the cost of this algorithm. Observe that every time a folder is processed, the operations 
fall into two categories. First, there is the cost of advancing each point x ∈ F to the next point to which 
it is assigned. However, once a point x is advanced to xk, it is never necessary, when considering x, to look 
at any points preceding xk in the list, by Lemma 1; so the most that all such advances can cost over the 
entire algorithm is O(n2), since each point x sweeps over all the points in X exactly once.

Second, there are those operations whose costs are directly proportional to the number of points in F , 
such as the cost of computing l(x, xk) for each x, where xk is the center of F . We will break these costs 
into two cases. The first is when the folder F ends up being broken apart into subfolders. Since this only 
happens once per folder, the total cost of all such operations can be bounded above by a constant times

∑
F∈T

|F | ≤
∑
F∈T

|X| = O(n2) (34)

since there are at most 2n − 1 folders in the tree.
The second case is when F does not get broken into subfolders. This can only happen when every point 

in F is advanced to the same point (so the center of F changes, but F is not broken apart). This does not 
pose any additional costs, however, since we have already counted these costs when we computed the cost 
of all advances.

The total cost of the algorithm, therefore, is O(n2).

5. Numerical results and EMD

We illustrate the results of this paper on examples. In Section 5.1, we examine the performance of the 
tree approximations on a synthetic low-dimensional dataset of a perturbed grid of points in the plane. In 
particular, we demonstrate the quality of the approximations for varying degrees of snowflaking (different 
values of α) and different numbers of trees. In Section 5.2, we show how to use the trees we build to 
approximate the Earth Mover’s Distance between digits in the USPS dataset.

In the experiments that follow, we measure the distortion of one metric d1(x, y) by another metric d2(x, y)
on a space X as follows:

dist(d1, d2) =
(

sup
x�=y

d1(x, y)
d2(x, y)

)
×

(
inf
x�=y

d1(x, y)
d2(x, y)

)
. (35)

This quantity is symmetric in d1 and d2, and invariant to rescalings of either metric.
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Fig. 1. A perturbed grid.

Fig. 2. Distortion for the perturbed grid, plotted as a function of the number of trees being averaged. Left: nets trees. Right: FRT 
trees. The values of α are 1 (in red, top), .9 (in magenta), .5 (in blue) and .1 (in green, bottom). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

5.1. The perturbed grid

As an example of a low-dimensional metric space we take a 16-by-16 grid of points in the plane, where each 
point has been perturbed by a small Gaussian. A realization of such a space is shown in Fig. 1. The space 
is endowed with the standard Euclidean distance. As the points are almost equispaced, this space is indeed 
low-dimensional. In the experiments that follow, we show average results over five random draws of this grid.

Fig. 2 shows the distortions incurred by approximating the original metric and its α-snowflakes for 
α = .1, .5, and .9, as a function of the number of tree metrics being averaged, ranging from 1 to 200. As 
expected, the distortion becomes smaller as α shrinks.

In Fig. 3, we show the distortion incurred by the 1/2-snowflake metric alongside the square root of the 
distortion of the original metric. Inequality (11) guarantees that ET [dT (x, y)α] is closer to d(x, y)α than is 
(ET [dT (x, y)])α, although it does not guarantee that the distortion will be smaller (as measured by (35)). 
Fig. 3 suggests that the average snowflaked tree metric does indeed give a better approximation to d(x, y)α
than the snowflake of the average.

Finally, in Fig. 4, we plot the distortion of approximation of the original metrics at each point against 
the true distance between the points. Theorem 1, in particular (21) and (23), predicts that the distortion of 
approximating the distance d(x, y) will grow like log(1/d(x, y)) as d(x, y) goes to zero; the plot illustrates 
this claim.
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Fig. 3. The distortions of approximation for α = .5 (red, bottom curve) versus the square root of the distortion for α = 1 (blue, top 
curve). Left: nets trees. Right: FRT trees. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 4. The ratio as a function of the distance, using 50 trees. Left: nets trees. Right: FRT trees.

5.2. Earth Mover’s Distance

We apply the tree approximation to the approximation of the Earth Mover’s Distance between probability 
distributions, which we define now. If p and q are probability distributions over a (finite) metric space X
equipped with metric ρ(x, y) then the Earth Mover’s Distance between p and q is defined as:

EMD(p, q) = min
Π

∑
x∈X

∑
y∈X

ρ(x, y)Π(x, y) (36)

where the minimum is taken over all probability measures on X ×X with∑
x∈X

Π(x, y) = p(y), for all y ∈ X (37)

∑
y∈X

Π(x, y) = q(x), for all x ∈ X. (38)
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Fig. 5. Samples from the USPS dataset.

Any probability measure Π satisfying (37) and (38) is called a transport between p and q; that is, if we 
interpret Π(x, y) as the amount of mass we move from location x to location y, (37) and (38) imply that the 
transport rearranges the distribution of mass described by q to obtain the distribution described by p. If 
ρ(x, y) is the cost per unit mass of moving mass from x to y, then EMD(p, q) is the cheapest way of turning 
q into p. The distance ρ(x, y) used to measure the cost of moving mass is referred to as the ground distance.

EMD has many desirable properties, and is used in a variety of applications in machine learning [11–13]. 
However, a major drawback is that solving the linear programming problem described by (36), (37) and (38)
can be costly, typically scaling supercubically in the size of X [34,35]. Consequently, many approximations 
to EMD have been proposed.

In [10], a formula is presented for the computation of EMD when the underlying metric is a tree metric, 
and a proof is given that if a family of dominating tree metrics approximates a given metric with distortion K, 
then the average EMD over trees approximates the true EMD with distortion no more than K. More 
precisely, for a tree T over X, with corresponding tree metric dT (x, y) induced by weights w(F ) on folders 
F ∈ T , we let EMDT (p, q) denote the Earth Mover’s Distance between p and q with respect to the ground 
distance dT (x, y); then

EMDT (p, q) =
∑

F∈T ,F �=X

1
2(w(F ′) − w(F ))|p(F ) − q(F )| (39)

where F ′ denotes the parent folder of the folder F , and p(F ) =
∑

x∈F p(x), and similarly for q(F ). Since 
the sums over folders can be computed recursively, expression (39) can be evaluated in O(n) operations. In 
fact, [10] proves this formula for an even more general class of tree metrics than the ones considered in this 
paper; see also [36] for another proof of this same general result.

It is also shown in [10,36] that for a family of dominating tree metrics dT (x, y) that approximate a 
distance d(x, y) in the sense of (1) and (2), the average EMDT (p, q) approximates EMD(p, q) (using the 
original distance d(x, y) as the ground distance) in the sense that

EMD(p, q) ≤ EMDT (p, q) (40)

for every tree T , and

ET [EMDT (p, q)] ≤ KEMD(p, q) (41)

where K is the same constant of distortion of the ground distance from (2).
We test this result on snowflake ground distances by comparing handwritten digits from the USPS 

dataset. This dataset consists of 11000 digits in total, 1100 from each of the ten classes 0 through 9. Each 
image is 16-by-16 pixels large. Sample images from this dataset are shown in Fig. 5. We normalize each 
image to sum to 1, so we can view them as probability distributions over the 16-by-16 grid, and equip the 
grid with Euclidean ground distance.
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Fig. 6. The distortions of approximation for EMD with ground distance |x − y|α with α = 1 (blue, top curve) and α = .5 (red, 
bottom curve), plotted as a function of the number of trees being averaged. Left: nets trees. Right: FRT trees. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

EMD is a natural metric to use to compare images, or indeed any kind of data with a lot of variability, 
as it is insensitive to perturbations in the data; see, for instance, Proposition 14 in [37]. However, EMD is 
typically not applied on images directly, as we are doing here, but rather on features that are extracted 
from the images, as in [12]. Our purpose in this experiment is only to illustrate the approximation ratios 
for estimating EMD using trees, not to suggest an algorithm for image analysis or digit classification.

In our experiments, we computed the EMD (the solution to the linear program (36), (37) and (38)) 
between 2000 random pairs of images from the database, taking as ground distance either the original 
Euclidean distance |x − y| or the snowflake distance |x − y|1/2. We compute the EMD using the code 
accompanying the paper [35]. We also compute the approximate EMD for each ground distance by building 
both nets and FRT trees on the grid, applying formula (39) for each tree, and taking the average. The 
results we report are averaged over five repetitions of the entire experiment.

In Fig. 6, we show the distortions incurred by the EMD approximations using the snowflake ground 
distance |x − y|α for α = .5 and α = 1, for both nets and FRT trees. In addition to the distortions being 
fairly small, we observe that the value of adding more trees does not increase substantially after the first few; 
in other words, the experiments suggest that the number of trees needed to obtain decent approximations 
is quite small.

In Fig. 7, we simultaneously plot the distortion incurred by the EMD approximations with snowflake 
ground distance |x − y|α, alongside the distortion of the tree approximations to the underlying ground 
distance |x − y|α on all pairs of points, using nets trees. Again, we use the values α = .5 and α = 1. Fig. 8
contains the same plots for FRT trees. We observe that the EMD approximation is considerably better than 
the approximation to the underlying tree distance, indicating that the estimate guaranteed by (41) may be 
somewhat pessimistic in practice. Of course, it cannot be improved upon in the worst case, as p and q may 
be taken to be two diracs.

In Fig. 9, we show scatterplots of the true EMDs against the approximate EMDs using 25 trees, for 
ground distance |x − y|. Fig. 10 contains the same plots, with the snowflaked ground distance |x − y|1/2. 
As the plots lie very close to a straight line, the metrics are close to each other. These plots also provide a 
visual illustration that the distortion for EMD with snowflake ground distance is substantially smaller than 
that with non-snowflaked ground distance.
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Fig. 7. The distortions of approximation for the ground distance |x − y|α plotted alongside the distortions of approximation of 
EMD, using nets trees. Left: α = 1. Right: α = .5.

Fig. 8. The distortions of approximation for the ground distance |x − y|α plotted alongside the distortions of approximation of 
EMD, using FRT trees. Left: α = 1. Right: α = .5.

Fig. 9. True EMD versus approximate EMD, using 25 trees and α = 1. Left: nets trees. Right: FRT trees.
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Fig. 10. True EMD versus approximate EMD, using 25 trees and α = .5. Left: nets trees. Right: FRT trees.
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Appendix A. The proof of Proposition 1

We prove Proposition 1 from Section 2. The proof is based on the proof of Lemma 2 from [19].

Proof of Proposition 1. Let c = 2d. Suppose X consists of the samples x1, . . . , xn ∈ M , chosen uniformly 
and independently at random. For r > 0, let V (xi, r) denote the number of samples that fall within distance 
r of xi. Temporarily fix any 1 ≤ i ≤ n. Let Kr = V (xi, r), for brevity; note that since xi ∈ B(xi, r), Kr ≥ 1. 
We will estimate the probability that K2r/Kr ≤ 2c.

Suppose r ≥ R/2. Fix some k = 1, . . . , n, and let us condition on the event K2r = k. Conditional on this 
event, Kr − 1 ∼ Binomial(p, k − 1), where p = μ(B(x, r))/μ(B(x, 2r)) ≥ 1/c. Consequently, by a standard 
Chernoff bound we have

Pr
[
Kr − 1 ≥ k − 1

2c

∣∣∣∣K2r = k

]
≥ Pr

[
Kr − 1 ≥ p

k − 1
2

∣∣∣∣K2r = k

]

≥ 1 − e−p(k−1)/8 ≥ 1 − e−(k−1)/8c.

(A.1)

Now, observe that the random variable K2r − 1 ∼ Binomial(q, n − 1), where q = μ(B(x, 2r)). Therefore,

Pr
[
K2r

Kr
≤ 2c

]
≥ Pr

[
K2r − 1
Kr − 1 ≤ 2c

]
= Pr

[
Kr − 1 ≥ K2r − 1

2c

]

=
n∑

k=1

Pr
[
Kr − 1 ≥ k − 1

2c

∣∣∣∣K2r = k

]
Pr[K2r = k]

≥ 1 −
n∑

k=1

e−(k−1)/8cPr[K2r = k] = 1 −
n−1∑
k=0

e−k/8cPr[K2r − 1 = k]

= 1 − (1 − q + qe−1/8c)n−1 ≥ 1 − (1 − η + ηe−1/8c)n−1

(A.2)

where we have used the formula for the moment-generating function of a Binomial random variable.
If V (xi, r) denotes the number of samples within radius r of xi, we have shown that for any fixed 

i = 1, . . . , n and any fixed radius r ≥ R,
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Pr
[
V (xi, 2r)
V (xi, r)

≤ 2c
]
≥ 1 − (1 − η + ηe−1/8c)n−1. (A.3)

We will convert this into an estimate of the probability that the dimension of X = {x1, . . . , xn} is bounded by 
log2(2c) = d +1 by using the union bound. Let ri,j be the distance between xi and xj . We observe that for all 
ratios V (xi, 2r)/V (xi, r) to be bounded by 2c for r ≥ R, it is enough for the ratios V (xi, ri,j)/V (xi, ri,j/2) ≤
2c whenever ri,j ≥ 2R. Indeed, under the latter assumption, if we take any r ≥ R, take j so that ri,j is the 
largest ri,j′ that is less than or equal to 2r. Then V (xi, ri,j) = V (xi, 2r), and so

V (xi, 2r)
V (xi, r)

≤ V (xi, ri,j)
V (xi, ri,j/2) ≤ 2c. (A.4)

Now, there are at most 2
(
n
2
)
≤ n2 conditions V (xi, ri,j)/V (xi, ri,j/2) ≤ 2c; consequently, the union bound 

implies that

Pr[dimν,R(X) ≤ d + 1] ≥ 1 − n2(1 − η + ηe−1/8c)n−1 = 1 − n2εn−1 (A.5)

with ε = 1 − η + ηe−1/8c ∈ (0, 1), completing the proof. �
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