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Abstract

We analyze the Laplacian pyramids algorithm of Rabin and Coifman for extending and denoising a function sampled
on a discrete set of points. We provide mild conditions under which the algorithm converges, and prove stability bounds
on the extended function. We also consider the iterative application of truncated Laplacian pyramids kernels for denoising
signals by non-local means.

1 Introduction

This paper analyzes the Laplacian pyramids (LP) algorithm for extending a function sampled on a discrete set of points
to outside values. This method was introduced in the context of machine learning by Rabin and Coifman in [20], and
is modeled after the classical Laplacian pyramids algorithm of Burt and Adelson [10], which is a standard technique in
image processing. The LP extension algorithm has been considered in a variety of applications [14, 11, 24, 1, 18, 12, 2],
and several variants have been proposed [15, 21, 22].

The LP algorithm constructs a multiscale decomposition of the estimated function, consisting of averaged differences
at successive levels. At each level, the residuals from the previous approximation are averaged and extended to the entire
domain. The level 0 approximation is just a weighted average of the observed values. At each sampled point, the residual
is then computed, and the average residual is added to form the level 1 approximation. The residuals are computed again,
and the average residuals are again added back. This process is repeated, constructing a sequence of approximations at
each successive level.

A key observation driving the extension method is that to compute the average residuals, we may use a kernel that
is defined on points outside the samples. That is, while the residuals necessarily make use of the observed values, the
averaged residuals are well-defined everywhere, because the averaging kernel may be computed out-of-sample. Furthermore,
a different averaging kernel may be used at each level. The sequence of bandwidths defining the extent of each kernel is
typically chosen to be decreasing, with a large initial bandwidth to permit wide extrapolation.

In this paper, we prove certain properties about the LP extension method. First, we show that the scheme does in
fact interpolate the observed values (to arbitrarily high precision), and show how the rate of convergence, i.e. the number
of levels used in the extension scheme, is controlled by the choice of bandwidths. In particular, we show that the scheme
may converge even when the kernel bandwidths do not shrink to 0, or equivalently, when the averaging kernels do not
converge to the identity matrix on the sampled points. This permits avoiding the use of small-bandwidth kernels which
can introduce spurious artifacts into the extension.

Second, we show that for certain sequences of bandwidths the algorithm is stable, in the sense that the output function
is bounded in terms of the maximum value of the input data. The stability bounds we derive are analogous to the stability
bound from [13] for classical kernel interpolation methods that involve a single kernel at one scale. Our bound increases
with the ratio of the maximum bandwidth to the minimum distance between the sample points, raised to a power that
scales inversely to the rate of bandwidth decay.

Third, we consider the use of iterated truncated LP kernels for signal denoising by non-local means (NL means). The
two-level version of a truncated LP kernel was employed in this fashion in [23], and was shown to have advantages over a
traditional NL means kernel. We consider the advantages of iterating higher-step kernels as well.

Our results are mainly derived from a simple formula for the residual terms of LP at each iteration. This formula
expresses the residual operator at each level as a product of differencing operators from the previous scales. Similar
decompositions have previously been observed for certain examples of boosting [7, 17, 13, 8, 5, 9, 6, 16], though the
applicability to the LP extension algorithm appears to be new.

The rest of the paper is organized as follows. In the remainder of Section 1, we review the LP extension algorithm,
and compare it to other kernel-based methods for function extension. In Section 2, we state and prove the main analytical
results, namely the factorization of the residual operators, convergence, and stability. In Section 3, we illustrate the use of
truncated LP kernels for denoising by non-local means. In Section 4 we provide a brief conclusion.

1.1 The Laplacian pyramids algorithm

In this section, we first review the method for Laplacian pyramids extension, as described in [20]. We are given n samples
X ={z1,...,z,} from RP. For any point € R”, we are given a family of kernels Py(z, z;), P1(z,z;), P2(z,z;) ..., defined
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on R? x X, which capture the affinity between points © € R? to the sampled points x; € X'. In this paper we will define
the affinities by a radial kernel ®(r); that is, we first define:

Ge(w) = @(||lw||/oe), (1)
for some bandwidth o, > 0, and then define the kernel P, by
Ge(x — z5)

Pi(z,x;) = == .
(#:25) §'=1 Gu(z —xj)

(2)

For instance, the function ®(r) may be taken to be a Gaussian, ®(r) = e (as suggested in [20], and frequently used in
applications). In [20] and most applications we have seen, the sequence of bandwidths o, are taken to be geometrically

decreasing; that is,
agzoo/pé, £>0, (3)

for some value & > 1; p = 2 is a typical choice.
We are given the values y; = f(z;) of a function f at the points x;. Given a new point € RP, the LP scheme extends
f to z by defining a sequence of approximations as follows. The first approximation to f(z) is defined as

so(z) = Z Po(z, ;) f(z5). (4)

If P, is row-stochastic over the x;’s then so(z) is a weighted average of the observed values f(z;). We will also denote this
by fo(z) = so(x).

At the sample points z;, fo(x;) is an average over all the points z1, ..., Zn, and so generally will not be equal to f(z;).
At each sample point x;, we compute the residual term defined by
di(z;) = f(x;) = fo(w;). (5)

By definition, f(z;) = so(z;) + d1(z;); so our next task is to extend d; to the out-of-sample point z. To extend d;, we use
the next kernel P;, defining

si(x) = Pi(w,x;)di(;). (6)
j=1
We now can define the level 1 approximation to f(z) as the sum of so(z) and s1(z), namely

fi(@) = so(z) + s1(2). (7)

The entire procedure may now be repeated again, at every level. We construct a sequence of estimators fo(z) =
so(x) + -+ + se(x), where

so(x) = Y Polw,z;)de(x;), (8)

Jj=1

and

de(zj) = f(x5) = fe—1(x5) = f(x5) — (s0(x5) + ... s0-1(x5))- 9)

In other words, starting with the level £—1 approximation, fr—1(z), we find its residuals d¢(z;) at the known points, and
define s, by approximately extrapolating these residuals everywhere using kernel P, and then form our refined estimate
fe by adding the estimated residual s; to fr—1.

1.2 Other kernel-based methods

The LP algorithm is similar to other kernel-based methods for extending functions sampled on discrete points. We mention
two approaches in particular. Kernel interpolation takes a fixed radial function G(w), and seeks to approximate f by writing

f(z) = Z @Gz — ;). (10)

Because this expression is linear in the coeffcients a;, they may be fit by least-squares, to ensure that f(z;) = y; on the
sampled points z;.

One drawback of this class of methods is that they may suffer from numerical instabilities due to the fitting procedure.
This is especially true if the kernel G is chosen to have a large bandwidth, since in this case the functions G(z — x;) may
be nearly linearly dependent if the x; are too close, and the resulting linear system for the «; is ill-conditioned.



An alternative approach that is used primarily in the statistics community is known as the Nadaraya-Watson (NW)

estimator [26, 19]. This takes a kernel G, and writes the estimated function f as the weighted average of observed values:

i1 Glr — i)y

f@) = =515 :

Zi:1 (x — i)

A modification of NW is proposed in [16] using the method of Ly boosting [7]. The residuals at each level are fit using

the same kernel GG, and the process is then iterated several times. This method can be seen as a special case of LP, where

the same bandwidth o/ is used at every scale, although there is no extra work in introducing variable bandwidths. In this
sense, LP and NW with L2 boosting are essentially identical methods.

(11)

1.3 Notation

We will denote by Py the n-by-n matrix with (i, )" entry Py(z;, ;). The matrix P}, is the discretization of the kernel
Py on the n sampled points x1, ..., z,.
Similarly, for any function g defined on all of R”, we will denote by g the vector of samples:

g=(9(x1),....g(zn))" (12)

We will also define the following matrices. Let A, be the £ level LP operator, mapping the vector f of observed values
to the %" level approximation f¢; that is, fo = Asf. Following our previous notation, denote by A, the n-by-n matrix
whose rows are restricted to x1, ..., Tn; in this notation, f, = A,f.

Define S¢ to be the operator mapping f to s¢, defined by (8); that is, s, = S¢f. Again, we will let S be the n-by-n
matrix whose rows are restricted to x1,...,Zn.

Finally, we let D, denote the the differencing operator I — Ay_1, so that d¢ = f — f,_; = (I — A¢—1)f = D.f. Note
that the differencing operators are only defined on the in-sample points z;, which is why we do not use extra notation in
this case.

2 Analysis of LP: convergence and stability

In this section we will address several basic questions about the LP extension algorithm. First, it is not obvious under
what conditions the scheme will converge to the observed values y; on the in-sample points z;. At level ¢ the residual
vectors dy are averaged using the kernel Py, and these averaged residuals are added to the approximation. To guarantee
convergence of fe(z;) to y;, one might suppose that at high levels the residuals d¢ must be approximated arbitrarily well
— that is, that the matrices P, should approach the identity matrix, or equivalently that the bandwidths o, approach 0.

As we will show, it turns out that this is not necessary. The LP scheme will interpolate the given points so long as the
P, are sufficiently close to the identity; however, they do not need to approach the identity. In particular, the sequence
of bandwidths may plateau at a sufficiently small value instead of approaching 0 and the scheme will still converge.
(The convergence rate, however, will depend on the decay of the bandwidths.) We will also demonstrate on a numerical
example that there can be advantages to not using arbitrarily small bandwidths, as small-bandwidth kernels may introduce
high-frequency artifacts into the extension.

We will also show that under the same conditions on the bandwidths, the LP algorithm is stable. More precisely,
the infinity norm of the exended function cannot exceed a constant times the infinity norm of the input values. Phrased
differently, treating LP as an operator that maps the input vector ¥ = (y1,...,%n)" to the extended function fr, we show
that LP is a bounded operator from £., to L. The bound on the operator norm we derive exhibits a similar scaling as
bounds for classical kernel interpolation methods shown in [13].

2.1 Factorization of the residual operators D,

This section derives a factorization of the residual operators Dy, which will be used repeatedly throughout the rest of
paper. A similar formula has been shown for certain boosting methods in statistics; see [7, 17, 13, 8]. For completeness we
provide a self-contained statement and derivation here.

Proposition 2.1. The operators Dy may be factored as follows:
Dy=(I—P¢)---(I—Po), (13)
for each £ > 1.

Proof. By definition, Ag = Fy, and so D1 = [ —Ap =I- Py, proving the claim when £ = 1. We now proceed by induction.
Suppose we have shown that Dy = (I — P¢—1)--- (I — Pg) for some £ > 1. Because A¢_1 = I — D, and S; = Py D, we have:

A=A 1 +Si=T—-D¢+PDy=1—I—-P))De=1—-(1—P)(I—=Ps_1)---(I = Po) (14)
and consequently
Depv=1—A;=I—=P))(I—-Py_y)---(I— Po), (15)

proving the factorization formula for all £. (I



2.2 Convergence of LP

The factorization (13) of D, from Proposition 2.1 has a trivial corollary, which implies convergence of the LP scheme (and
bounds on its error) for a broad range of operators F;.

Proposition 2.2. The relative error of the £ level LP approzimation on the x;’s is bounded by:

-1
fo— f -5
=iy ) T A (16)
£l k=0
Here, || - || denotes any norm on RP when applied to a vector, and the corresponding induced matriz norm when applied to
a matriz.
Corollary 2.3. If for some 0 < ¢ <1 and L > 1 we have |I — Py|| < ¢ for £ > L, then f, — f as £ — co. In fact,
[fers = FIl < ellfe = FIIs (17)
forall £ > L.

In particular, Corollary 2.3 shows that the P, do not need to converge to the identity in order for LP to extend f. It
is enough that P, be sufficiently close to I in some norm.

We next show that when the bandwidth oy is sufficiently small, the infinity norm of I — Py is indeed less than 1, allowing
us to invoke Corollary 2.3 to show convergence. We define § = §(X') to be the minimum Euclidean distance separating any
two distinct points in X:

0= min lz; — ;. (18)

We will assume that the radial kernel ®(r) is decreasing as a function of r > 0, and satisfies the following decay
condition:

d(r)y<Cr ?, r>0, (19)

for some parameter ¢ > p and constant C' > 0. This family includes the Gaussian kernels (for any value of q).
We then have the following result:
Proposition 2.4. Assume ®(0) = 1, ®(r) decreases as a function of r > 0, and ® satisfies condition (19). Then for
0 < € <1 there is a constant ¢ = c(p, €) such that
I = Prlloo < € (20)

if the bandwidth of P satisfies oo < cd. In particular, if oo < cd for all £ > L, then f, will converge to f as £ — co; in
fact \[fopr = fIl < €llfo = fII for £> L.

Proof. The infinity norm of a matrix is the largest £; norm of its rows. Since P is row-stochastic, this implies

i — Pelloo = 2 llél%xn(l — Py(z4,2:)). (21)
This is less than € precisely when
6 p—
> Golws — ;) <5 =1 (22)
J#i

foralli=1,...,n
Fix a value i. Because the z;’s are all at least ¢ from each other, the number of points N, contained in any ball B(z;, )
cannot exceed (2r/d + 1)P. Indeed, since |B(z;,r)| = Cpr? and the balls B(z;,d/2) are disjoint, we have

N,Cp(8/2)P < Cplr +6/2)P. (23)

Consequently, setting Ry, = B(z;,2"7'8) \ B(z:,2%5), we have the bound:

e} oo

D Gelwi—a) =Y Y Gelwi—xz;) <CY (2" +1)P0(2"/ov)
VE k=0z;ERy k=0
<c () Semr-a (%) 2

where C), denotes a constant depending on the dimension p and the kernel ®. The expression on the right of (24) will be
less than 1 whenever

o0 < (n/Cp)"46, (25)

which is the desired result. O



2.3 Stability of LP

In this section, we will show that the LP scheme is stable, in the sense that the extended function fx can be bounded by
the size of the input vectors f. We will consider the same class of radial kernel G¢(z — y) = ®(||z — yl|/o¢) considered in
Section 2.2, where ®(r) is decreasing and satisfies the decay condition (19).

Stability estimates like the ones we will prove have been shown previously for interpolating methods of the form

f(x) :Zaa@(l\x—wjl\), (26)

where ® satisfies a specified decay condition, and the coefficients «; are found by least squares; see, for example, [13].
We note, however, that the condition imposed in [13] does not apply to as broad a family of kernels as we assume here,
specifically Gaussian kernels.

We define § to be the minimum distance between distinct points in X, as in (18). We first prove a general estimate.

Proposition 2.5. Suppose LP is performed with the sequence of bandwidths co,01,.... Take o™ < cd, where ¢ = c(p,1/2)
is the constant from Proposition 2.4, and suppose for some m,

oj <o, j=>m. (27)
Then for all £ > 0 we have the bound

[fellse < C2™ [ flloo (28)

where C is a universal constant.
Taking a geometrically-decaying sequence of bandwidths, we immediately obtain the following corollary:

Corollary 2.6. Suppose oy = Jo/ué, where p > 1. Then for all £ > 0 we have the bound

Flle < G (52) 17l (29)

where C} is a constant depending on the dimension p and the kernel ®, and where t = logﬂ(2). The same estimate also
holds if o = max{oo/u’, 0*}, where o* < cé.

Proof of Proposition 2.5. We write the expansion f, = Zi:o P.Dy f. Since > i1 Pu(z,z5) = 1, it follows that

L m 4
[ felloe <D IDxFlloe =D IDxflloe + D [1Dxfloo- (30)
k=0 k=0 k=m+1
We bound the first term:
D IDkfllee <27 Flloo- (31)
k=0

Indeed, for any vector v € R?, ||(I — P¢)v|co < 2||v]|oo. Consequently, || Dx f|loo < 27|/ ]/oo, and summing a geometric series
we obtain (31). -
Next, for any k > 0, the choice of o and Proposition 2.4 tells us that ||I — Pm+k|lec < 1/2. Consequently, for any
7 > 0 we have:
j—1
D5 Flloe < 1Dm Fllos [T I = Prsillos < 1D flloc27 (32)
k=0
From summing a geometric series we then obtain the bound

4

S DTl < IDmFloe < 27 [Fllo (33)
k=m+1
Combining (30), (31) and (33) yields the result. O

2.4 Example: interpolation on the circle

In this section we demonstrate on a numerical example how LP can result in qualitatively different extensions depending
on the choice of bandwidth sequence. In particular, kernels with small bandwidths are close to the identity on the sampled
points z;, and so can introduce high-frequency components into the extension not present in the original data, even when
they perfectly interpolate the observed values.

To illustrate this phenomenon, we sample n = 16 equispaced points x = k/n from the circle S1 C R? of circumference
1, and evaluate the function f(z) = cos(107wz). In this case, there is enough information from the samples to perfectly
interpolate f on the entire circle. We plot the function f in the left panel of Figure 1, along with the sampled values.
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Figure 1: Left: The function f(x) = cos(107x). Middle: The LP reconstruction with bandwidths o, = max{2~*+1 1/2}.
Right: The LP extension with bandwidths o, = 27!, On all figures the sampled points are highlighted in red.

In the right panel of Figure 1, we plot the LP extension of f using the geometrically-decreasing sequence of bandwidths
o¢ = 271 £ > 0. In the middle panel of Figure 1, we plot the LP extension of f using the sequence of bandwidths
oy = max{27”1, 1/2}, £ > 0; in other words, the bandwidths plateau after the third scale. The relative errors are,
respectively, 2.14 x 107! and 6.14 x 1073, The geometrically-decreasing sequence requires only 6 levels until convergence
to machine precision (approximately 10~ in this case) on the sampled values, whereas the plateaued sequence requires
136 levels until convergence.

The reason for the higher error in the first scheme is that kernels with smaller bandwidth put more weight on the
higher frequencies. In other words, these kernels introduce greater aliasing into the reconstruction. By choosing the
plateaued sequence of bandwidths, we are able to mitigate the aliasing, at the expense of introducing more levels into the
reconstruction.

2.5 Example: extrapolation from an interval

In this example, we illustrate the stability estimate from Proposition 2.5 on an example. We take n = 16 equispaced
points on the interval [0, 1], and assign them alternating values £1, so that yo = 1, y1 = —1, and so forth. We apply the
LP extension procedure for geometrically decreasing bandwidths, o, = oo/ ue. We plot an example of the extrapolated
function, for 4 = 2 and o9 = 1, in Figure 2.

Figure 2: The extrapolated function, displayed at different scales. The observed values are highlighted in red.

We are interested in exploring the size of the extrapolation as functions of the parameters oo and p. Proposition 2.5
predicts that larger values of o9 and smaller values of p will result in larger extrapolated values. In the left panel of Figure
3, we plot the maximum value (to within precision 10~7) of the extrapolated function as a function of 0. Indeed, we see
that as oo grows, the infinity norm of the extrapolation increases.

Similarly, in the right panel of Figure 3 we plot the maximum value (to within precision 1077) of the extrapolated
function as a function of the decay rate p. The infinity norm of the extrapolation increases with decreasing u. Again, this
is the qualitative behavior expected from Proposition 2.5.

3 Laplacian pyramids and denoising

In this section, we consider the problem of denoising the in-sample observations, rather than extending the function to
new values. In [15], it is proposed that when the observed data is noisy, the LP algorithm should be truncated before
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Figure 3: Left: The maximum value of the extrapolation as a function of oy. Right: The maximum value of the extrapolation
as a function of u.

convergence to avoid overfitting; a method that approximates cross-validation is used to determine the stopping level. If
K levels are used, then from Proposition 2.1, the denoised vector is Axy, where y is the observed vector and

A =1—(I-Pg)--(I—Po). (34)

If each P, is row-stochastic, tgen so too isﬁthe denoising kernel Ax. o
In this special case where Px = -+ = Po = Q, the denoising kernel Ax takes on a particularly simple form. Changing
notation to Qg = Ak, we have

Qr=1-(I-Q)". (35)

(Note that @ = Q1.) As we noted in Section 1.2, Qk is the same kernel used when applying L; boosting to kernel
regression, as described in [16]. In this section, we will consider using the kernels Qx in the context of non-local means
denoising [4, 3]. We will first review the basic non-local means algorithm, and then compare the use of the iterated kernels
Qk within the non-local means framework.

3.1 Non-local means

Given a signal s € RM, we suppose that we observe s in the presence of noise:
y=s+e (36)

where the entries of ¢ are noise, e.g. shot noise or Gaussian. NL means (in its simplest incarnation) performs the following
procedure to remove the noise e. First, patches of adjacent samples (or pixels, in the case of an image) are extracted from
the long signal; we call these vectors 1, ..., z,. We will suppose each z; € R™, where m < M.

Second, an affinity between the patches x; is defined. For concreteness, we will use the common choice of a Gaussian
kernel to specify the affinity, writing

Gxi, @) = exp{~|z; — z;]|*/o”} (37)

where o > 0 is a specified parameter.
Third, the affinities G(z;, z;) are normalized to form the row-stochastic matrix Q:

G(zi,x;)
Qzi,)) = = A (38)
! Zj/ G(zi, @)
With this Markov kernel now defined, one iteration of NL means is performed by taking
svL = Q. (39)
In words, each entry of y is replaced by a weighted average of the other entries, where the weights are determined by local

patches.
Of course, this process can be iterated multiple times by repeated application of ). In this way, we obtain a sequence
of denoised images:

s, = Q. (40)

A physical interpretation of this algorithm is provided in [23] . s%)L [7] is equal to the expected value of a random process
that takes ¢ steps along the patches x; starting at patch x;, with transition probabilities specified by @, where the value
of the process at patch z; is y;.



3.2 The choice of kernel

The transition probabilities along the patches x; can be specified by any Markov matrix, not just the local diffusion matrix
Q. In particular, [23] proposes the alternative matrix

Q:=2Q-Q*=1-(-Q) (41)

As we have seen, the kernel Q)2 is equal to a two-step truncated LP kernel, or equivalently a two-step Lo boosting kernel
[7, 16]. As has been observed previously in [7, 17, 16], Q2 is also equal to the “twicing” kernel introduced by Tukey [25]. It
is illustrated in [23] on several examples that iteratively applying Q2 may achieve better denoising than iteratively applying
the original kernel Q1 = Q.
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Figure 4: The eigenvalues of QQx as functions of the eigenvalues of Q.

Of course, one may also consider running NL means by iteratively applying the higher-step LP kernels Qx = I— (I fQ)K
as well. Because @ is diagonalizable with eigenvalues contained between 0 and 1, the truncated LP kernels QQk are also
row stochastic, with eigenvalues

1— (1 =X, Xéespec(Q). (42)

In Figure 4, we plot the functions 1 — (1 —\)¥ for several values of K. Larger values of K result in kernels Qx closer to
the identity I. Consequently, the iterations of NL means will converge more slowly to 0, allowing a more refined denoising
procedure.

3.3 Example: step function

We illustrate the behavior of NL means with different kernels for denoising a 1D signal. The signal s, which was considered
in [23], has length M = 100, which assumes two values, —1 and +1, and is observed with additive Gaussian noise of
standard deviation 0.5. The signal is plotted in the left side of Figure 5, and the signal with noise is plotted in the right
side.

25 25 |

-2.5

20 40 60 80 100 20 40 60 80 100

Figure 5: Left: The clean step function. Right: The step function with Gaussian noise with standard deviation 0.5.
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Figure 6: The average errors when denoising by kernels Q¢, @5, and @, as a function of the iteration ¢. Errors are averaged
over 500 runs.

We build the NL means kernel using subintervals of size m = 3. The Gaussian kernel matrix for the step function is
built using the median squared distance between all pairs of points divided by 3. This scaling value is somewhat arbitrary,
and was manually chosen to ensure that the graph defined by @ is not too connected.

In Figure 6, we plot the errors of NL means as a function of the number of iterations, for kernels Qx with parameters
K =1,2,3. That is, we plot:

as a function of the iteration number ¢, where s is the step function. For comparison, we also plot the average errors
err(Qey) = ||Qey — sl|2/||s]|2 of applying the non-iterated LP kernels Q¢, as a function of the level ¢; these are the iterates
we obtain by boosting. We emphasize that the scheme we propose uses a fixed value of K, and iteratively applies Qk; the
resulting denoising kernel is then Q%, where £ is the number of iterates. The curves displayed are averaged over 500 runs
of the experiment, where each experiment is run with a different realization of the noise. The minimal errors of Q5 and Q%
(over £) are both smaller than the minimal error for Qf. The average minimal error for Q¢ is 0.210, while they are 0.171
and 0.168 for Q5 and Q%, respectively.

For any choice of Markov kernel, the iterations of NL means will both average out the noise and the signal. While the
effect of the noise will be reduced, it will also result in smoothing of the signal by shrinking all the values towards the
mean. In other words, increasing the iterations will increase the bias and decrease the variance. In general, given only the
noisy signal y, it may be difficult to estimate the optimal number of iterations that minimizes the overall error.

In light of these considerations, while the minimal errors achieved by Q5 and Q¥ are nearly identical, more interesting
is that, because it takes longer for the spectrum of Q% to decay, there is a much larger range of iterations for which it
does not yet oversmooth the signal, and hence where the error is smaller than the error for Q5. In this sense, the sequence
Q% is less sensitive to the number of iterations ¢ chosen by the user, and hence more rubust to the specification of this
parameter.

4 Conclusion

We have proven several properties of the Laplacian pyramids extension algorithm. Based on the factorization formula
from Proposition 2.1, we showed that the method always converges to an interpolator of the observed data if the kernel
bandwidths drop below a certain threshold. We also proved a stability estimate for the extension, which exhibits similar
qualitative behavior as prior estimates from [13] for classical kernel interpolation methods.

We also considered iterating the truncated LP kernels to denoise signals by non-local means. A scheme of this kind for
a two-step kernel was proposed in [23]. Here, we have shown on numerical examples that using higher-step kernels may be
advantageous, as they are less sensitive to the number of iterations chosen by the user, and may also achieve lower error
overall with an optimal number of iterations. In future work, we plan to further explore the properties and behavior of
these denoising kernels.
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