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Abstract

We study a family of norms defined for functions on an interval. These norms are obtained by taking
the p-norm of the Volterra operator applied to the function. The corresponding distances have been
previously studied in the context of comparing probability measures, and special cases include the Earth
Mover’s Distance and Kolmogorov Metric. We study their properties for general signals, and show that
they are robust to additive noise. We also show that the norm-induced distance between a function and its
perturbation is bounded by the size of the perturbation, and that the distance between one-dimensional
projections of a two-dimensional function is bounded by the size of the difference in projection directions.
The results are illustrated in numerical experiments.

1 Introduction

We study a certain family of norms for single-variable functions on an interval. These norms, denoted ‖f‖∗p,
are the p-norms of the Volterra operator (i.e. the indefinite integral operator) applied to f . We also consider
a discrete norm ‖x‖∗p for vectors x in Rn, which is the p-norm of the discrete Volterra operator applied to
x. For this reason, we call the norm ‖ · ‖∗p the Volterra p-norm. We prove two robustness properties of the
Volterra norms, neither of which hold for the ordinary p-norms:

• Robustness to perturbations. The norm-induced distance is robust to changes of variables/rescalings.
That is, the distance ‖f − f̃‖∗p between a function f and a perturbation f̃ of f is bounded by a certain
measure of the size of the perturbation.

• Robustness to projections. The norm-induced distance between two one-dimensional projections
of a fixed two-dimensional function is bounded by the size of the difference in projection directions.

• Robustness to noise. The discrete norm ‖z‖∗p of a noise vector z in Rn vanishes as n→∞, whereas
the discrete norm of a signal vector converges to the corresponding continuous norm. In particular,
the discrete norm of a noisy, sampled function converges to the norm of the noiseless function.

When applied to the difference f = P − Q of two probability densities P and Q, the Volterra p-norm
‖P − Q‖∗p is equal to a distance between random variables introduced in [8]. Two special cases are of
particular significance. When p = ∞, ‖P − Q‖∗∞ is the Kolmogorov Metric (KM), which is the maximum
absolute difference between the cumulative distribution functions [4]. The KM has been widely employed in
goodness-of-fit testing, in what is called the Kolmogorov-Smirnov test [3]. When p = 1, ‖P−Q‖∗1 is the Earth
Mover’s Distance (EMD) between P and Q, also known as the 1-Wasserstein distance; it is characterized as
the minimal cost of transforming one density into the other [13, 14]. EMD is a popular metric in machine
learning and statistical applications [10, 12].

The theory we develop in this work is not restricted to measuring distances between random variables.
Rather, our results are applicable to comparing two noisy, sampled signals; the values attained by each signal
need not be nonnegative, and their integrals need not be equal.

The specific motivation for this work is the recent papers [11], [6], and [15], which use approximations
to EMD to compare and cluster noisy images and volumes. While these works both show that EMD-type
metrics perform well in the presence of additive noise, no theoretical justification is provided. The present
work grew out of an attempt to address this question, albeit in the simpler one-dimensional setting. At the
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same time, we explore additional robustness properties of EMD, and show that these properties hold for the
larger class of distances induced from Volterra p-norms. In particular, the robustness to projections (in the
three-dimensional setting) is proven in [11] to hold for Wasserstein distances; we prove in this work that the
same property holds for the metrics induced from the Volterra p-norms, which includes 1-Wasserstein as a
special case.

The remainder of the paper is structured as follows. In Section 2, we review basic terminology and
notation. In Section 3, we formally define the Volterra p-norms and prove a general stability result. In
Section 4, we prove that distances between perturbed functions are small. In Section 5, we prove robustness
to projections. In Section 6, we analyze the behavior of the discrete norm. In Section 7, we present the
results of numerical experiments. Section 8 contains detailed proofs of the main results. Section 9 provides
a brief summary and conclusion.

2 Preliminaries

This section introduces the basic definitions and notation that will be used in the rest of the paper. Proofs
of most of the results stated here may be found in, for example, [2].

2.1 The p-norms

Let f : [0, 1]→ R be any measurable function. For any value p ∈ [1,∞), the p-norm is defined as follows:

‖f‖p =

(∫ 1

0

|f(x)|pdx
)1/p

. (1)

For p =∞, we define

‖f‖∞ = ess sup
0≤x≤1

|f(x)|. (2)

As is well-known, ‖f‖p ≤ ‖f‖q if p ≤ q. We denote by Lp the set of all functions f on [0, 1] with ‖f‖p <∞.
We define the inner product between two real-valued functions on [0, 1] as follows:

〈f, g〉 =

∫ 1

0

f(x)g(x)dx. (3)

We also define the p-norm ‖x‖p for vectors x in Rn. When p <∞,

‖x‖p =

 1

n

n∑
j=1

|xj |p
1/p

, (4)

and when p =∞,

‖x‖∞ = max
1≤k≤n

|xk|. (5)

Note the normalization by n when p <∞. With this convention, ‖x‖p ≤ ‖x‖q whenever p ≤ q.

2.2 Absolute continuity

A function G on [0, 1] is said to be absolutely continuous if it can be written as

G(x) = G(0) +

∫ x

0

g(t)dt (6)
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for an integrable function g. If G is absolutely continuous, then it is differentiable almost everywhere, and
G′ = g. We denote by A0 the set of absolutely continuous functions G satisfying G(1) = 0; these functions
may be written as

G(x) = −
∫ 1

x

g(t)dt (7)

where g = G′ almost everywhere.

2.3 The Volterra operator

The Volterra operator V is defined on L1 by

(Vf)(x) =

∫ x

0

f(t)dt. (8)

We note that this is only the simplest of a large family of operators that have been widely-studied [5].
The adjoint transform V∗ is given by

(V∗f)(x) = −
∫ 1

x

f(t)dt. (9)

This operator satisfies

〈Vf, g〉 = 〈f,V∗g〉 (10)

where f and g are any two integrable functions on [0, 1].
If x = (x1, . . . , xn) is a vector in Rn, we define the discrete Volterra operator as follows:

(Vx)k =
1

n

k∑
j=1

xk. (11)

Note that in the normalization we adopt here, the sum is divided by n, not k.

3 The Volterra p-norms

3.1 Continuous norm

For any value p ∈ [1,∞], we introduce the following norm:

‖f‖∗p = ‖Vf‖p. (12)

Concretely, when p <∞,

‖f‖∗p =

(∫ 1

0

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣p dx)1/p

, (13)

and when p =∞,

‖f‖∗∞ = ess sup
0≤x≤1

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ . (14)

We will refer to the Volterra p-norm ‖f − g‖∗p of the difference f − g of two functions as the Volterra
p-distance between f and g.

Remark 1. When p =∞ and P and Q are two probability densities, the Volterra∞-distance is known as the
Kolmogorov Metric between P and Q [4]: KM(P,Q) = ‖P−Q‖∗∞. The KM is used the Kolmogorov-Smirnov
goodness-of-fit test in statistics [3].
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Remark 2. When p = 1 and P and Q are two probability densities, the Volterra 1-distance is known as the
Earth Mover’s Distance between P and Q [13, 14]: EMD(P,Q) = ‖P − Q‖∗1. The metric EMD(P,Q) may
be defined equivalently as the solution to a transportation problem:

EMD(P,Q) = min
Π∈M(P,Q)

∫ 1

0

∫ 1

0

|x− y|Π(x, y)dxdy (15)

whereM(P,Q) denotes the space of all probability measures on [0, 1]× [0, 1] with marginals equal to P and
Q, respectively. That is, Π ∈M(P,Q) if for all x,∫ 1

0

Π(x, y)dy = P (x), (16)

and for all y, ∫ 1

0

Π(x, y)dx = Q(y). (17)

The p-Wasserstein distance Wp(P,Q) is defined as

Wp(P,Q) = min
Π∈M(P,Q)

(∫ 1

0

∫ 1

0

|x− y|pΠ(x, y)dxdy

)1/p

. (18)

It is known [12] that Wp(P,Q) may be written as follows:

Wp(P,Q) = ‖(VP )−1 − (VQ)−1‖p (19)

where (VP )−1 and (VQ)−1 denote the functional inverses of VP and VQ, respectively. When p = 1, it is also
true that W1(P,Q) = ‖VP −VQ‖p = ‖P −Q‖∗1; when p > 1, however, the p-Wasserstein distance Wp(P,Q)
will not necessarily be equal to the Volterra p-distance ‖VP − VQ‖∗p.

3.2 Discrete norm

We define the discrete Volterra norm. If x = (x1, . . . , xn) is a vector in Rn, define:

‖x‖∗p = ‖Vx‖p. (20)

Concretely, when p <∞,

‖w‖∗p

 1

n

n∑
k=1

∣∣∣∣∣∣ 1n
k∑
j=1

wk

∣∣∣∣∣∣
p1/p

. (21)

and when p =∞,

‖w‖∗∞ = max
1≤k≤n

∣∣∣∣∣∣ 1n
k∑
j=1

wk

∣∣∣∣∣∣ . (22)

3.3 Variational formulation of ‖f‖∗p
We show the following:

Proposition 3.1. Let p ∈ [1,∞] and let q be the conjugate exponent:

1

p
+

1

q
= 1. (23)

Then for any bounded, measurable function f ,

‖f‖∗p = sup
G∈A0:‖G′‖q≤1

∫ 1

0

G(x)f(x)dx. (24)
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Remark 3. When f = P −Q is the difference of two probability densities, the right side of (24) is equal to
a distance introduced in [8], and Proposition 3.1 follows immediately from Theorem 1 in [8].

Proof of Proposition 3.1. By duality of Lp and Lq, we have:

‖f‖∗p = ‖Vf‖p = sup
g:‖g‖q≤1

∫ 1

0

(Vf)(x)g(x)dx = sup
g:‖g‖q≤1

〈Vf, g〉 = sup
g:‖g‖q≤1

〈f,V∗g〉. (25)

Any function of the form V∗g is contained in A0, and any function G in A0 is of the form G = V∗g where
g = G′ almost everywhere. Consequently:

‖f‖∗p = ‖Vf‖p = sup
g:‖g‖q≤1

〈f,V∗g〉 = sup
G∈A0:‖G′‖q≤1

〈f,G〉, (26)

which completes the proof.

As a corollary, we derive the following general stability result:

Corollary 3.2. Let I ⊆ [0, 1] be a subinterval, and let f ∈ L∞ be supported on I. If T : L∞ → L∞ is a
linear transformation satisfying

‖(T ∗(G)−G)χI‖q ≤ ε‖G′‖q (27)

for all functions G in A0, then

‖T (f)− f‖∗p ≤ ε‖f‖p. (28)

Proof. Since 〈T (f) − f,G〉 = 〈f, T ∗(G) − G〉 = 〈fχI , T ∗(G) − G〉 = 〈f, (T ∗(G) − G)χI〉, from Hölder’s
inequality we have:

‖T (f)− f‖∗p = sup
G∈A0:‖G′‖q≤1

〈T (f)− f,G〉

= sup
G∈A0:‖G′‖q≤1

〈f, (T ∗(G)−G)χI〉

≤ sup
G∈A0:‖G′‖q≤1

‖f‖p‖(T ∗(G)−G)χI‖q

≤ ε‖f‖p, (29)

completing the proof.

4 Distance between perturbations

As a consequence of Corollary 3.2, we will show that if f and f̃ are two functions on [0, 1] related by a
perturbation, then their distance ‖f − f̃‖∗p is bounded by the size of the perturbation. More precisely, we
have the following result:

Theorem 4.1. Let f ∈ L∞ be supported on an interval I ⊆ [0, 1]. Suppose ψ : I → [0, 1] is a continuously
differentiable, monotonically increasing mapping, and ρ : ψ(I) → R is a bounded, measurable function. Let
fψ,ρ be equal to fψ,ρ(x) = f(ψ−1(x))ρ(x) on ψ(I), and 0 otherwise. Then

‖f − fψ,ρ‖∗p ≤ ε‖f‖p, (30)

where

ε = max
x∈I
|x− ψ(x)|+ max

x∈I
|1− ρ(ψ(x))ψ′(x)|. (31)
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Remark 4. The function ψ perturbs the domain of f , whereas ρ perturbs the range of f . The value ε
defined by (31) is a natural measure of the “size” of the joint perturbation linking f to fψ,ρ. The term
maxx∈I |x−ψ(x)| controls the amount by which the change of variables ψ can move any point in the domain
of f ; it will be small if ψ does not move any value x very far. The term maxx∈I |1 − ρ(ψ(x))ψ′(x)| will be
small if both ψ′ and the rescaling function ρ are close to 1.

Remark 5. The case where ρ = (ψ−1)′ follows from Proposition 14 in [7]. In this setting, the integrals of

f and fψ,ρ are identical,
∫ 1

0
f =

∫ 1

0
fψ,ρ.

We note two special cases of Theorem 4.1.

Corollary 4.2. Suppose f : [0, 1]→ R is a bounded, measurable function supported in a subinterval I ⊂ [0, 1].
Suppose that ε > 0 and J = {x+ ε : x ∈ I} ⊂ [0, 1], and let fε be the shift of f by ε; that is,

fε(x) =

{
f(x− ε), if x ∈ J
0, otherwise

. (32)

Then for all p ∈ [1,∞], ‖f − fε‖∗p ≤ ε‖f‖p.

Corollary 4.3. Suppose X is a random variable with values in [0, 1] and density P , and let ψ : [0, 1] →
[0, 1] be a continuously differentiable, monotonically increasing mapping with ψ(0) = 0 and ψ(1) = 1. Let
Y = ψ(X), with density Q. Then for all p ∈ [1,∞],

‖P −Q‖∗p ≤ max
0≤x≤1

|x− ψ(x)| ≡ ε. (33)

In particular, EMD(P,Q) ≤ ε and KM(P,Q) ≤ ε.

Corollary 4.2 follows immediately from Theorem 4.1. Corollary 4.3 follows from the observation that Y
has density Q(y) = P (ψ−1(y))(ψ−1)′(y).

5 Distance between projections

In this section we let F : R2 → R denote a function of two variables that is supported on D ⊂ R2, the disc
of radius 1/2 and center (0, 0). For a given angle θ, we define the projection of F as follows:

fθ(x) =

∫ 1/2

−1/2

F (cos(θ)x+ sin(θ)y, cos(θ)y − sin(θ)x)dy (34)

The function fθ : [−1/2, 1/2] → R is the projection of F onto the line passing through (0, 0), making angle
θ with the x-axis. Such a transformation is known as the two-dimensional Radon transform with parallel
beam geometry [9], and is a standard transformation in scientific imaging. We claim the following result:

Theorem 5.1. For all angles θ and ϕ with |θ − ϕ| ≤ π/4 and all p ∈ [1,∞],

‖fθ − fϕ‖∗p ≤ ‖F‖p

√
1− cos(θ − ϕ)

2
, (35)

where ‖F‖p denotes the p-norm of F over D.

Note that the term
√

1− cos(θ − ϕ) may be bounded above by |θ − ϕ|. Consequently, Theorem 5.1
states that the Volterra p-distance between two projections fθ and fϕ of F may be bounded by the size of
the difference in projection directions. The bound only depends on the underlying function F through its
p-norm.

Remark 6. A result similar to Theorem 5.1 for p-Wasserstein distances and the three-dimensional Radon
transform was proven in the paper [11]. In that work, the fact that the Wasserstein distance is insensitive to
rotations of projections allows for robust clustering of images taken from different viewing directions which
are not known a priori, as occurs in cryoelectron microscopy.
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6 Asymptotic behavior of the discrete norm

In this section, we quantify the robustness of the discrete Volterra p-norms to additive noise. We first
consider the noiseless case, where the norm is applied to a vector of samples from a function.

Theorem 6.1. Let f : [0, 1]→ R be a Lipschitz function, and suppose |f(x)| ≤ L and |f(x)−f(y)| ≤ L|x−y|
for all x and y in [0, 1]. Let xn = (x1, . . . , xn) have entries xj = f(j/n), 1 ≤ j ≤ n. Then

∣∣‖xn‖∗p − ‖f‖∗p∣∣ ≤ CLn , (36)

where C does not depend on p, f , or n.

Theorem 6.1 applies when the input vector xn is sampled from an underlying Lipschitz function. The
next result applies to input vectors of pure noise:

Theorem 6.2. Let σ1, σ2, . . . , σn, . . . be a sequence of positive numbers, and let

σn =

√√√√ 1

n

n∑
j=1

σ2
j . (37)

Suppose zn = (z1, . . . , zn), where the zj are independent and zj ∼ N(0, σ2
j ). Then for all p ∈ [1,∞],

lim
n→∞

‖zn‖∗p = 0 (38)

holds almost surely, and

E‖zn‖∗p ≤ C
σn√
n
, (39)

where C is a constant independent of n and p.

From Theorems 6.1 and 6.2, we immediately derive the following:

Corollary 6.3. Let xn and zn be as in Theorems 6.1 and 6.2, respectively, and let yn = xn + zn. Then

lim
n→∞

‖yn‖∗p = ‖f‖∗p (40)

holds almost surely, and

E
∣∣‖yn‖∗p − ‖f‖∗p∣∣ ≤ C σn√

n
, (41)

where C is a constant independent of n and p.

Remark 7. In the setting of Corollary 6.3, both the signal vector xn and the noise vector zn have comparable
p-norms; consequently, ‖yn‖p does not approach ‖f‖p as n → ∞. For example, when p = 2, the squared
2-norm of yn converges to

lim
n→∞

‖yn‖22 = ‖f‖22 + σ2 (42)

where σ = limn→∞ σn (assuming this limit is well-defined). By contrast, the additive noise term zn has a
negligible effect on the Volterra norm when n is large.
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7 Numerical results

7.1 Norm under noise

To demonstrate the robustness of the Volterra norms under noise described by Corollary 6.3, we run the
following experiment. We take n equispaced samples of the function f shown in the third panel of Figure 1;
f is the difference of the two triangle functions shown in the upper left and upper right panels of Figure 1.
Denote the vector of samples by xn.

We then add a vector zn of iid Gaussian noise of variance 2 to xn, to form the vector yn = xn + zn. An
example of yn, with n = 1000, is shown in the bottom right panel of Figure 1, with the noiseless xn plotted
in red for reference. For p = 1, 2,∞, we evaluate the norms ‖yn‖∗p. For each value of n, the experiment is

repeated M = 100, 000 times. Denoting the M random signal-plus-noise vectors by y
(1)
n , . . . ,y

(M)
n , we record

the average absolute error:

errn,p =
1

M

M∑
k=1

∣∣∣‖y(k)
n ‖∗p − ‖f‖∗p

∣∣∣
‖f‖∗p

. (43)

Table 1 displays the values of errn,p for each value of p and n. Figure 2 plots log2(errn,p) as a function of
log2(n). From both the table and the figure, we see that the average error does indeed decay like O(1/

√
n)

as n increases, consistent with Corollary 6.3.

7.2 Distance under translation

7.2.1 Triangle function

We first illustrate Theorem 4.1, and more specifically Corollary 4.2, on the triangle functions shown in the
first two panels of Figure 1. Denoting this function by f , we denote by fε the translation of f by ε. Figure
3, left panel, plots the normalized Volterra p-distances ‖f − fε‖∗p/‖f‖p as functions of ε, for p = 1, 2, 10,∞.
Figure 3, right panel, plots the normalized p-norms ‖f − fε‖p/‖f‖p as functions of ε.

From the left panel, we see that for each ε,

‖f − fε‖∗p
‖f‖p

≤ ε. (44)

This is predicted from Corollary 4.2. Furthermore, when p = 1 the inequality is an equality, but for p > 1
the inequality is strict.

Because the length of f ’s support is 0.4, when ε > 0.4 the relative differences ‖f −fε‖p/‖f‖p plateau and
do not continue to increase with ε. By contrast, when p < ∞, ‖f − fε‖∗p/‖f‖p grows with ε. Furthermore,
for each value of p, the distance ‖f − fε‖∗p distinguishes a much larger range of ε than does the distance
‖f − fε‖p.

7.2.2 Spiked function

Next, we consider the spiked function f shown in Figure 4. Again, we denote by fε the translation of f
by ε. Figure 5, left panel, plots the normalized Volterra p-distances ‖f − fε‖∗p/‖f‖p as functions of ε, for
p = 1, 2, 10,∞. Figure 5, right panel, plots the normalized p-norms ‖f − fε‖p/‖f‖p as functions of ε.

In this example, the differences between the behaviors of the Volterra distances and the p-norm distances
are even more extreme. Whereas the Volterra distances are all increasing functions of ε, the p-norm distances
are not; their behavior depend strongly on the contours of the function f itself. Similar behavior was observed
in the paper [15], which compared an approximation of EMD to Euclidean distance between a volume and
its rotation; see Figure 3 and the corresponding text in [15].

7.3 Distance between projections

We illustrate the behavior described by Theorem 5.1 on the function F consisting of two Gaussian bumps

F (w) = exp{−‖w − a‖2/σ}+ exp{−‖w − b‖2/σ}, (45)
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where a = (0, 1/2) and b = (0,−1/2), and σ = 1/1000. Numerically, this function is supported in the disc D
centered at (0, 0) of radius 1/2. We denote by f the projection of F onto the x-axis, and fθ the projection
of F after rotation by θ radians. Figure 6 shows a heatmap of F on the square [−1/2, 1/2] × [−1/2, 1/2],
along with f , fπ/16, and fπ/8.

Figure 7 plots the distances ‖f − fθ‖∗p and ‖f − fθ‖p for p = 1, 2, 10,∞, for θ between 0 and π/2, which
covers the full range of distances due to the function F ’s symmetry. The distances ‖f−fθ‖∗p continue to grow
with θ throughout the entire range of values, whereas ‖f − fθ‖p plateau. Analogously to the comparison of
distances between a function and its shifts, for each value of p the distance ‖f − fθ‖∗p distinguishes a much
larger range of θ than does the distance ‖f − fθ‖p.

8 Proofs

8.1 Proof of Theorem 4.1

Write ε = ε1 + ε2, where

ε1 = max
x∈I
|x− ψ(x)|, (46)

and

ε2 = max
x∈I
|1− ρ(ψ(x))ψ′(x)|. (47)

Let χI and χJ be the indicator functions of I and J , respectively. Define the linear transformation T : L∞ →
L∞ by T (h)(x) = h(ψ−1(x))ρ(x). Then the adjoint operator of T is T ∗(G)(x) = G(ψ(x))ρ(ψ(x))ψ′(x).

To apply Corollary 3.2, we will show that for all G ∈ A0,

‖(T ∗(G)−G)χI‖q ≤ ε‖G′‖q. (48)

Since G ∈ A0 , we may write

G(x) = −
∫ 1

x

g(t)dt (49)

where g = G′ is integrable. If ‖g‖q is infinite, the necessary bound is vacuous. We may therefore assume,
without loss of generality, that ‖g‖q = 1.

We have

‖(T ∗(G)−G)χI‖q ≤ ‖(G ◦ ψ −G)χI‖q + ‖(T ∗(G)−G ◦ ψ)χI‖q. (50)

We will first show that

‖(G ◦ ψ −G)χI‖q ≤ ε1. (51)

We first assume p > 1, i.e. q < ∞. Let Ix be the interval [x, ψ(x)] if x ≤ ψ(x), or [ψ(x), x] if ψ(x) ≤ x.
Let χ(x, t) be 1 if and only if t ∈ Ix, and 0 otherwise. Then:∫

I

|G(ψ(x))−G(x)|qdx =

∫
I

∣∣∣∣∫
Ix

g(t)dt

∣∣∣∣q dx =

∫
I

∣∣∣∣∫ 1

0

g(t)χ(x, t)dt

∣∣∣∣q dx. (52)

Lemma 8.1. For all x ∈ I, ∫ 1

0

χ(x, t)dt ≤ ε1. (53)

For all t ∈ [0, 1], ∫
I

χ(x, t)dx ≤ ε1. (54)
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Proof of Lemma 8.1. For the first inequality∫ 1

0

χ(x, t)dt =

∫
Ix

1dt = |Ix| = |x− ψ(x)| ≤ ε1. (55)

For the second inequality, first suppose that there is some x ≤ t with t ∈ Ix; note that for such x,
Ix = [x, ψ(x)], and so x ≤ ψ(x). Let x∗ be the smallest such x. Then x∗ ≤ t ≤ ψ(x∗). We claim that for all
x > t, t /∈ Ix. Indeed, since ψ is increasing and x > t ≥ x∗, we have ψ(x) > ψ(x∗) ≥ t. Since both x > t and
ψ(x) > t, t does not lie in Ix, as claimed.

Consequently, all x for which t lies in Ix are contained inside the interval [x∗, t]. Since x∗ ≤ t ≤ ψ(x∗)
and |x∗ − ψ(x∗)| ≤ ε1, it follows that |t− x∗| ≤ ε1 too. Therefore,∫

I

χ(x, t)dx ≤
∫ t

x∗
1dx = |t− x∗| ≤ ε1. (56)

The same reasoning applies if there is some x ≥ t with t ∈ Ix.

From Lemma 8.1 and Theorem 6.18 in [2],(∫ 1

0

|G(ψ(x))−G(x)|qdx
)1/q

=

(∫ 1

0

∣∣∣∣∫ 1

0

g(t)χ(x, t)dt

∣∣∣∣q dx
)1/q

≤ ε1‖g‖q = ε1. (57)

which completes the proof of (51) when p > 1. We now handle the case p = 1, showing that:

‖(G ◦ ψ −G)χI‖∞ ≤ ε1. (58)

For all x ∈ I. we have, with the same definition of Ix used previously,

|G(ψ(x))−G(x)| =
∣∣∣∣∫
Ix

g(t)dt

∣∣∣∣ ≤ |Ix|‖g‖∞ = |x− ψ(x)| ≤ ε1, (59)

completing the proof of (51) for all p ∈ [1,∞].
Next, we will show that

‖(T ∗(G)−G ◦ ψ)χI‖q ≤ ε2. (60)

When p > 1, i.e. q <∞, we may write

‖(T ∗(G)−G ◦ ψ)χI‖q =

(∫
I

|G(ψ(x))ρ(ψ(x))ψ′(x)−G(ψ(x))|qdx
)1/q

=

(∫
I

|G(ψ(x))|q|ρ(ψ(x))ψ′(x)− 1|qdx
)1/q

≤
(

max
x∈I
|ρ(ψ(x))ψ′(x)− 1|

)(∫ 1

0

|G(ψ(x))|qdx
)1/q

. (61)

From Minkowski’s Integral Inequality,(∫ 1

0

|G(ψ(x))|qdx
)1/q

=

(∫ 1

0

∣∣∣∣∣
∫ ψ(x)

0

g(t)dt

∣∣∣∣∣
q

dx

)1/q

≤
∫ 1

0

(∫ 1

0

|g(t)|qdt
)1/q

dx

= 1. (62)

Finally, we show that ‖(T ∗(G)−G ◦ ψ)χI‖∞ ≤ ε2. For all x ∈ I,

|(T ∗G)(x)−G(ψ(x))| = |G(ψ(x))(ρ(ψ(x)))ψ′(x)− 1)| ≤ ε2‖G‖∞ ≤ ε2‖g‖∞ = ε2, (63)

completing the proof.
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8.2 Proof of Theorem 5.1

Without loss of generality, we assume that ϕ = 0 and c = cos(θ) and s = sin(θ) are both positive. Denote
f = fϕ = f0. Assume first that p > 1, and let q < ∞ denote the conjugate exponent. Take any absolutely
continuous function G on [−1/2, 1/2] with ‖G′‖q ≤ 1. Then we must bound the integral∫ 1/2

−1/2

(f(x)− fθ(x))G(x)dx. (64)

We have ∫ 1/2

−1/2

fθ(x)G(x)dx =

∫ 1/2

−1/2

∫ 1/2

−1/2

F (cx− sy, cy + sx)G(x)dxdy

=

∫
D
F (cx− sy, cy + sx)G(x)dxdy, (65)

since F is supported on D. Applying a change of variables gives:∫ 1/2

−1/2

fθ(x)G(x)dx =

∫
D
F (cx− sy, cy + sx)G(x)dxdy

=

∫
D
F (x, y)G(cx+ sy)dxdy. (66)

Consequently, ∫ 1/2

−1/2

(f(x)− fθ(x))G(x)dx =

∫
D
F (x, y)(G(x)−G(cx+ sy))dxdy

≤ ‖F‖p
(∫

D
|G(x)−G(cx+ sy)|qdxdy

)1/q

. (67)

Write g = G′. Let Ix,y be the interval [x, cx + sy] when x ≤ cx + sy, and the interval [cx + sy, x] when
cx+ sy ≤ x; and let χ(x, y, t) be 1 if t ∈ Ix,y and 0 otherwise. We then have:

(∫
D
|G(x)−G(cx+ sy)|qdxdy

)1/q

=

(∫
D

∣∣∣∣∣
∫
Ix,y

g(t)dt

∣∣∣∣∣
q

dxdy

)1/q

=

(∫
D

∣∣∣∣∣
∫ 1/2

−1/2

g(t)χ(x, y, t)dt

∣∣∣∣∣
q

dxdy

)1/q

. (68)

Lemma 8.2. For all (x, y) ∈ D, ∫ 1/2

−1/2

χ(x, y, t)dt ≤
√

1− c
2

, (69)

and for all t ∈ [−1/2, 1/2], ∫
D
χ(x, y, t)dt ≤

√
1− c

2c
√

1 + c
. (70)

Assuming Lemma 8.2, we can conclude the proof of Theorem using Theorem 6.18 in [2], and the fact
that

1

2 cos(θ)
√

1 + cos(θ)
≤ 1√

2
(71)

whenever |θ| ≤ π/4. We now turn to the proof of Lemma 8.2.
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Proof of Lemma 8.2. For the first inequality, we apply the Cauchy-Schwarz inequality and the fact that√
x2 + y2 ≤ 1/2 to get∫ 1/2

−1/2

χ(x, y, t)dt = |Ix,y| = |x− cx− sy| = |(1− c)x− sy| ≤
1

2

√
(1− c)2 + s2 =

√
1− c

2
. (72)

For the second inequality, we write∫
D
χ(x, y, t)dt ≤

∫ 1/2

−1/2

∫ 1/2

−1/2

χ(x, y, t)dt =

∫
R

χ(x, y, t)dt+

∫
S

χ(x, y, t)dt = |R|+ |S|, (73)

where

R = {(x, y) ∈ [−1/2, 1/2]× [−1/2, 1/2] : x ≤ t ≤ cx+ sy}, (74)

and

S = {(x, y) ∈ [−1/2, 1/2]× [−1/2, 1/2] : cx+ sy ≤ t ≤ x}. (75)

First, we bound
∫
R
χ(x, y, t)dxdy. If (x, y) ∈ R, then x ≤ cx+ sy, and consequently

x ≤ s

1− c
y. (76)

On the other hand, we must also have t ≤ cx+ sy and consequently

t− sy
c
≤ x. (77)

Combining (76) and (77),

s

1− c
y ≥ t− sy

c
(78)

or equivalently

y ≥ 1− c
s

t. (79)

Therefore, ∫
R

χ(x, y, t)dxdy ≤
∫ 1/2

1−c
s t

∫ t

t−sy
c

1dxdy

=

∫ 1/2

1−c
s t

[
t− t− sy

c

]
dy

=
(1− c)2

2cs
t2 − 1

2

(
1− c
c

)
t+

s

8c
. (80)

Next, we bound
∫
S
χ(x, y, t)dxdy. If (x, y) ∈ S, then cx+ sy ≤ x and consequently

x ≥ s

1− c
y. (81)

On the other hand, we must also have t ≥ cx+ sy and consequently

t− sy
c
≥ x. (82)
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Combining (81) and (82),

s

1− c
y ≤ t− sy

c
(83)

or equivalently

y ≤ 1− c
s

t. (84)

Therefore, ∫
S

χ(x, y, t)dxdy ≤
∫ 1−c

s t

−1/2

∫ t−sy
c

t

dxdy

=

∫ 1−c
s t

−1/2

[
t− sy
c
− t
]
dy

=
(1− c)2

2cs
t2 +

1

2

(
1− c
c

)
t+

s

8c
. (85)

Adding the integrals over R and S, and using that |t| ≤ 1/2 and s =
√

1− c2 =
√

(1− c)(1 + c), we
obtain the following bound:∫

D
χ(x, y, t)dt ≤

∫
R

χ(x, y, t)dt+

∫
S

χ(x, y, t)dt

=
(1− c)2

2cs
t2 − 1

2

(
1− c
c

)
t+

s

8c
+

(1− c)2

2cs
t2 +

1

2

(
1− c
c

)
t+

s

8c

=
(1− c)2

cs
t2 +

s

4c

≤ (1− c)2

4cs
+

s

4c

=

√
1− c

2c
√

1 + c
. (86)

This completes the proof for q < ∞. The proof for q = ∞ follows by taking the limit as q → ∞ and using
‖ · ‖∞ = limp→∞ ‖ · ‖p.

8.3 Proof of Theorem 6.1

We begin with an elementary lemma, whose proof is provided for completeness.

Lemma 8.3. Suppose f is function on the interval [0, c] with Lipschitz constant L, and let m ≥ 1 be an
integer. Let xk = ck/m. Then ∣∣∣∣∣ cm

m∑
k=1

f(xk)−
∫ c

0

f(t)dt

∣∣∣∣∣ ≤ cL

m
. (87)

Proof of Lemma 8.3. By the Mean Value Theorem, there is some x∗k ∈ [c(k − 1)/m, ck/m] satisfying

1

m
f(x∗k) =

1

c

∫ ck/m

c(k−1)/m

f(x)dx. (88)
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Since f has Lipschitz constant L, if Ek = f(xk)− f(x∗k), then |Ek| ≤ cL/m. Consequently,

1

m

m∑
k=1

f(xk) =
1

m

m∑
k=1

f(x∗k) +
1

m

m∑
k=1

Ek

=
1

c

m∑
k=1

∫ ck/m

c(k−1)/m

f(x)dx+
1

m

m∑
k=1

Ek

=

∫ c

0

f(x)dx+
1

m

m∑
k=1

Ek, (89)

and so ∣∣∣∣∣ 1

m

m∑
k=1

f(xk)− 1

c

∫ c

0

f(t)dt

∣∣∣∣∣ ≤ 1

m

m∑
k=1

|Ek| ≤
cL

m
. (90)

Multiplying each side by c completes the proof.

Now suppose f has Lipschitz constant L on [0, 1], and let x = xn = (x1, . . . , xn), xj = f(j/n). Let

E(k, n) =
1

n

k∑
j=1

f(j/n)−
∫ k/n

0

f(t)dt = (Vx)k − (Vf)(k/n). (91)

Applying Lemma 8.3 to the interval [0, k/n],

|E(k, n)| ≤ (k/n)2L/k = Lk/n2 ≤ L/n, (92)

We therefore have∣∣∣∣∣∣‖x‖∗p −
(

1

n

n∑
k=1

|(Vf)(k/n)|p
)1/p

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(

1

n

n∑
k=1

|(Vx)k|p
)1/p

−

(
1

n

n∑
k=1

|(Vf)(k/n)|p
)1/p

∣∣∣∣∣∣
≤

(
1

n

n∑
k=1

|E(k, n)|p
)1/p

≤ L

n
. (93)

Next, since |f(x)| ≤ L for all x ∈ [0, 1], the function |(Vf)(x)|p has Lipschitz constant pLp. Consequently,
applying Lemma 8.3 on the interval [0, 1] yields:∣∣∣∣∣ 1n

n∑
k=1

|(Vf)(k/n)|p −
∫ 1

0

|(Vf)(x)|p dx

∣∣∣∣∣ ≤ pLp

n
, (94)

Since |f(x)| ≤ L for all x in [0, 1], it follows that |(Vf)(x)| ≤ L too, and consequently:

1

n

n∑
k=1

|(Vf)(k/n)|p ≤ Lp (95)

and ∫ 1

0

|(Vf)(x)|p dx ≤ Lp. (96)

Applying the Mean Value Theorem to x 7→ x1/p then gives that∣∣∣∣∣∣
(

1

n

n∑
k=1

|(Vf)(k/n)|p
)1/p

−
(∫ 1

0

|(Vf)(x)|p dx
)1/p

∣∣∣∣∣∣ ≤ pLp

n

1

p
(Lp)1/p−1 =

L

n
. (97)

Combining (93) and (97) completes the proof for p < ∞. The corresponding result for p = ∞ follows by
taking the limit p→∞ and using ‖ · ‖∞ = limp→∞ ‖ · ‖p.
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8.4 Proof of Theorem 6.2

The theorem follows from the following lemma:

Lemma 8.4. With the same notation as Theorem 6.2,

P
(
‖zn‖∗p ≥ t

)
≤ 2 exp(−nt2/2σ2

n). (98)

To see that Theorem 6.2 follows from Lemma 8.4, observe that since the right side of (98) is summable
over n, it follows from the Borel-Cantelli Lemma that limn→∞ ‖zn‖∗p = 0 almost surely. Furthermore,

E[‖zn‖∗p] =

∫ ∞
0

P
(
‖zn‖∗p ≥ t

)
dt

≤ 2

∫ ∞
0

exp(−nt2/2σ2
n)dt

=
2σn√
n

∫ ∞
0

exp(−u2/2)du, (99)

completing the proof of Theorem 6.2.
We now turn to the proof of Lemma 8.4.

Proof of Lemma 8.4. Define the sum, for k = 1, . . . , n.

Sk =

k∑
j=1

zj . (100)

Then the sequence S1, . . . , Sn, . . . is a martingale, and so for any value λ > 0,

Xk = exp(λSk) (101)

is a submartingale. By Doob’s Martingale Inequality [1], for any value t,

P
(

max
1≤k≤n

(Vz)k ≥ t
)

= P
(

max
1≤k≤n

1

n
Sk ≥ t

)
= P

(
max

1≤k≤n
Xk ≥ exp(nλt)

)
≤ E[Xn] exp(−nλt)

= enλ
2σ2

n/2−nλt. (102)

Taking λ = t/σ2
n, we get the bound

P
(

max
1≤k≤n

1

n
Sk ≥ t

)
≤ exp(−nt2/2σ2

n). (103)

By symmetry, this immediately yields the two-sided bound

P (‖zn‖∞ ≥ t) = P
(

max
1≤k≤n

1

n
|Sk| ≥ t

)
≤ 2 exp(−nt2/2σ2

n). (104)

Since ‖zn‖p ≤ ‖zn‖∞ for all p, the result follows.

9 Conclusion

We have studied the Volterra p-norms ‖ · ‖∗p in both the discrete and continuous settings. We have shown
that the distance between perturbed functions is bounded by the size of the perturbation, and that the
distance between two one-dimensional projections of a two-dimensional function is bounded by the size of
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the difference in projection directions. We also proved that the effect of additive noise on the discrete norm
become negligible as the sampling rate increases.

The special case of Earth Mover’s Distance, EMD(P,Q) = ‖P −Q‖∗1, is of particular interest. In addition
to the aforementioned papers [11], [6], and [15], EMD is being increasingly used in machine learning and
statistical applications. Our results suggest that many of the favorable properties of EMD may be shared
by a wider class of metrics.
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[10] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends in Machine Learning, 11(5-6):355–607, 2019.

[11] Rohan Rao, Amit Moscovich, and Amit Singer. Wasserstein k-means for clustering tomographic pro-
jections. In NeurIPS 2020, Machine Learning for Structural Biology (MLSB) Workshop, 2020.

[12] Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling. Birkhäuser, 2015.
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Figure 1: First and second panel: the triangle functions. Third panel: the difference of the triangle functions.
Fourth panel: the difference with additive noise of variance 2; the noiseless function is plotted in red.
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Figure 2: Plot of log2(errn,p) against log2(n), for p = 1, 2,∞. The slope of each curve
is approximately 1/2, consistent with the error rate predicted by Corollary 6.3.

n p = 1 p = 2 p =∞
1000 3.492e-01 1.982e-01 1.674e-01
2000 2.419e-01 1.448e-01 1.201e-01
4000 1.707e-01 1.055e-01 8.518e-02
8000 1.204e-01 7.519e-02 5.975e-02
16000 8.517e-02 5.338e-02 4.218e-02
32000 6.050e-02 3.790e-02 2.978e-02

Table 1: Table of errors errp,n. For each value of p, errp,n is approximated halved when
n is quadrupled, consistent with the error rate predicted by Corollary 6.3.
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Figure 3: Shifting the triangle function. Left: Normalized Volterra p-distances. Right:
Normalized p-distances.
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Figure 4: The spiked function.
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Figure 5: Shifting the spiked function. Left: Normalized Volterra p-distances. Right:
Normalized p-distances.
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Figure 6: First panel: heat map of the function of two variables. Second panel: vertical projection. Third
panel: projection at π/16 radians from y-axis. Last panel: projection at π/8 radians from y-axis.
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Figure 7: Distances between projections. Left: Volterra p-distances. Right: p-
distances.
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