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Abstract

This paper introduces a fast and numerically stable algorithm for the solution of
fourth-order linear boundary value problems on an interval. This type of equation
arises in a variety of settings in physics and signal processing. However, current
methods of solution involve discretizing the differential equation directly by finite
elements or finite differences, and consequently suffer from the poor conditioning
introduced by such schemes. Our new method instead reformulates the equation
as a collection of second-kind integral equations defined on local subdomains. Each
such equation can be stably discretized. The boundary values of these local solutions
are matched by solving a banded linear system. The method of deferred corrections
is then used to increase the accuracy of the scheme. Deferred corrections requires
applying the integral operator to a function on the entire domain, for which we
provide an algorithm with linear cost. We illustrate the performance of our method
on several numerical examples.

1 Introduction

This paper describes the numerical solution to differential equations of the form

4∑
j=0

aj(x)
djφ

dxj
(x) = f(x) (1)

for x in an interval [a, b], with specified boundary conditions

φ(a) = αl,0 (2)

φ(b) = αr,0 (3)

φ′(a) = αl,1 (4)

φ′(b) = αr,1 (5)

and given coefficients aj(x) and right hand side f(x).
Fourth-order equations of this kind arise in a variety of physical problems. In the

small-bending regime, the shape of a beam under an external force is described as the
solution to an equation of the form

d2

dx2

(
c(x)

d2φ

dx2
(x)

)
= f(x) (6)
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where c(x) is the stiffness of the beam, and f(x) is an external force applied to the
beam [8]. One-dimensional equations also arise from separation-of-variables for higher-
dimensional problems, such as vibration of plates [5]. A notable fourth-order operator
on the unbounded domain [0,∞) is defined by:

− d2

dx2

(
x2
d2φ

dx2
(x)

)
+ (a2 + b2)

d

dx

(
x2
dφ

dx
(x)

)
− (a2b2x2 − 2a2)φ(x). (7)

This operator arises in many applications because it commutes with the truncated
Laplace transform composed with its adjoint [2, 3]. It is useful when working with
the family of decaying exponential functions, and has been the subject of recent inves-
tigation [17, 18, 19].

Existing methods for solving fourth-order boundary value problems of the form (1)–
(5) employ finite difference or finite element schemes. To obtain the solution on m nodes,
these methods involve solving an O(m)-by-O(m) banded system of linear equations.
While the solution can be obtained with asymptotic cost O(m), the discretizations used
introduce a condition number of size O(m4) [23]. The resulting loss of accuracy in
the solution is entirely due to the choice of discretization, and is not a result of the
conditioning inherent to the problem (1)–(5).

This paper proposes an algorithm for the solution of (1)–(5) that maintains the O(m)
running time of finite element and finite difference schemes, but is as accurate as the
problem allows. Our method centers on expressing the solution φ in the form

φ(x) =

∫ b

a
G0(x, t)σ(t)dt+ ψα(x), (8)

where G0(x, t) is the Green’s function for the biharmonic equation φ(4) = f with zero
boundary values; ψα is a third degree polynomial with the desired boundary values; and
σ = φ(4) is the new function to be solved for.

The key observation is that the function σ can be expressed as the solution to a
second-kind integral equation. While direct discretizations of the differential equation
(1)–(5) are ill-conditioned, second-kind integral equations can be stably discretized.
More precisely, the values of σ on a grid of points is expressible as the solution to a
linear system whose condition number does not markedly exceed the condition number
of the original continuous problem.

The challenge with using second-kind integral equations is that while their discretized
linear systems are well-conditioned, they are dense; consequently, a naive solver will have
cubic cost O(m3). It has been observed that for many physical problems, these dense
linear systems can nevertheless be solved in linear or nearly linear time. This is the
observation underpinning a variety of methods devised for the solution of second-order
two-point boundary value problems [22, 13, 20].

This paper employs a more direct approach to solving for σ. Briefly, our method
contains three steps. First, we use the integral equation form of the problem to produce
m local solutions of the equation (1) with homogeneous boundary values. Next, we
solve a banded linear system to match the boundary values of the local solutions. While
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this step introduces extraneous loss of accuracy similar to a finite element scheme, it
is corrected by the method of deferred corrections, in which we recursively solve for
the residual solutions on the entire interval [a, b]. Computing the right hand side of
the residual equation requires applying the integral operators defined by the biharmonic
Green’s function and its derivatives to an arbitrary function on the entire interval [a, b],
for which we provide a linear time algorithm. This linear time algorithm is modeled
after the fast multipole method [12] for applying certain dense matrices to vectors.

The asymptotic CPU time of our algorithm is O(mn3 log(1/ε)), where ε is machine
precision, n is a user-selected integer (the number of points for each local solution),
and m is the number of local solutions, or discretization nodes. The complexity of the
algorithm is linear in the number of discretization nodes, but nevertheless achieves full
machine accuracy. In this sense, our algorithm realizes the advantages of finite element
methods’ small CPU time while maintaining the numerical accuracy afforded by second-
kind integral equations.

The rest of the paper is structured as follows. In Section 2, we review the mathemat-
ical and numerical tools we will be using in our algorithm. In Section 3, we describe in
detail the algorithm for solving (1)–(5). In Section 4, we provide the results of numerical
experiments.

2 Mathematical and numerical preliminaries

In this section, we review the mathematical and numerical tools that we will be using
throughout the paper. In particular, we will show how to express the function φ which
solves (1)–(5) in terms of the solution to a second-kind integral equation; review the
properties of Gaussian quadrature, which we will use to discretize this integral equation;
and review the method of deferred corrections.

2.1 Rescaling the problem domain

It will be convenient to rescale the problem (1)–(5) to convert the interval [a, b] into
[−1, 1]. Define:

φ̃(y) = φ

(
(b− a)(y + 1)

2
+ a

)
(9)

ãj(y) =

(
2

b− a

)j
aj

(
(b− a)(y + 1)

2
+ a

)
(10)

f̃(y) = f

(
(b− a)(y + 1)

2
+ a

)
. (11)

The equations (1)–(5) for φ are then equivalent to the equation

4∑
i=0

ãj(y)
djφ̃

dyj
(y) = f̃(y) (12)
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with modified boundary values

φ̃(−1) = αl,0 (13)

φ̃(1) = αr,0 (14)

φ̃′(−1) =

(
b− a

2

)
αl,1 (15)

φ̃′(1) =

(
b− a

2

)
αr,1. (16)

After solving for φ̃ and its derivatives, we can perform the inverse change of variables to
arrive at the solution φ and its derivatives, as follows:

φ(j)(x) =

(
2

b− a

)j
φ̃(j)

(
2(x− a)

b− a
− 1

)
. (17)

2.2 The biharmonic Green’s function on [−1, 1]

We will make central use of the Green’s function G0(x, t) for the biharmonic equation
φ(4) = f with homogeneous boundary conditions (αl,0 = αr,0 = αl,1 = αr,1 = 0 in (2)–
(5)), on the interval [−1, 1]. The biharmonic Green’s function is given by the formula:

G0(x, t) =

{
(1− t)2(1 + x)2(1 + 2t− 2x− tx)/24, if t > x

(1− x)2(1 + t)2(1 + 2x− 2t− tx)/24, if t < x
(18)

It can be checked by direct calculation that G0(x, t) satisfies the defining properties of
the Green’s function (see [5]). Specifically, the following properties hold:

∂4G

∂x4
(x, t) = 0, t ∈ [−1, 1], (19)

G0(−1, t) = G0(1, t) =
∂G0

∂x
(−1, t) =

∂G0

∂x
(1, t) = 0, t ∈ [−1, 1], (20)

lim
t→x+

∂jG

∂xj
(x, t) = lim

t→x−
∂jG

∂xj
(x, t), x ∈ [−1, 1], 0 ≤ j ≤ 2, (21)

and

lim
h→0

[
∂3G

∂x3
(x+ h, t)− ∂3G

∂x3
(x− h, t)

]
= −1, t ∈ [−1, 1]. (22)

We will use the notation Gj to denote the jth partial derivative of the Green’s func-
tion, 0 ≤ j ≤ 3; that is, we define:

Gj(x, t) =
∂jG0

∂xj
(x, t). (23)
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We will use the boldface letter Gj to denote the corresponding integral operator. In this
notation, for a function f on [−1, 1] we will write:

(Gjf)(x) =

∫ 1

−1
Gj(x, t)f(t)dt =

∫ 1

−1

∂jG0

∂tj
(x, t)f(t)dt. (24)

The significance of the Green’s function and its derivatives is that the solution to
the equation φ(4) = f with zero boundary conditions is the function φ = G0f , with
derivatives φ(j) = Gjf , 1 ≤ j ≤ 3. In Section 2.3, we will use the biharmonic Green’s
function to reformulate the problem (1)–(5) as a second-kind integral equation.

2.3 Integral form of the boundary value problem (1)–(5)

In this section, we will use the biharmonic Green’s function to reformulate the differential
equation (1)–(5) as a second-kind integral equation. For comprehensive background on
second-kind integrals equations, see [21, 5, 4]. We let L denote the differential operator
on the left side of (1); that is,

(Lφ)(x) =

4∑
j=0

aj(x)
djφ

dxj
(x) (25)

The equation (1) can then be written in the more compact form Lφ = f.
Any four-times differentiable function with vanishing values and first derivatives on

[−1, 1] can be written in the form G0σ, for some function σ. Consequently, we can
express the solution φ to (1)–(5) as being of the form φ = G0σ + ψα, where σ = φ(4),

and where ψα is a function satisfying the boundary conditions (2)–(5) and ψ
(4)
α = 0 on

[−1, 1].
It can be directly checked that the unique function ψα on [−1, 1] satisfying ψ(4) = 0

and the boundary conditions (2)–(5) (with a = −1 and b = 1) is given by the following
formula:

ψα(x) = αl,0ψl,0(x) + αr,0ψr(x) + αl,1ψl,1(x) + αr,1ψr,1(x) (26)

where the functions ψl,0, ψr,0, ψl,1 and ψr,1 are defined by the formulas:

ψl,0(x) = (1− x)2(2 + x)/4 (27)

ψr,0(x) = (1 + x)2(2− x)/4 (28)

ψl,1(x) = (1− x)2(x+ 1)/4 (29)

ψr,1(x) = (1 + x)2(x− 1)/4. (30)

The function σ = φ(4) is expressible as the solution to a second-kind integral equation,
as we now show. The equation L(G0σ + ψα) = f can be written equivalently as

LG0σ = f − Lψα. (31)
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Because ∂4G
∂x4

(x, t) = δ(x− t), the operator LG0 is of the form

(LG0σ)(x) = a4(x)σ(x) +

3∑
j=0

aj(x)

∫ 1

−1
Gj(x, t)σ(t)dt. (32)

After solving (31) for σ, the solution φ to (1)–(5) and its derivatives are given by

φ(j) = Gjσ + ψ
(j)
α , for 0 ≤ j ≤ 3, and φ(4) = σ. The reformulation of the differential

equation as a second-kind integral equation is beneficial, as the latter can be stably
discretized.

Remark 1. The integral equation formulation of (1)–(5) makes use of the biharmonic
Green’s function G0. However, in principle this can be replaced by the Green’s function
G0 for any equation L0φ = f with a fourth-order differential operator L0. In this general
setting, G0 is known as the background Green’s function [13, 20]. We choose to work
with the biharmonic equation because it is so analytically tractable. We also suspect
that the numerical performance of our method will not depend substantially on the
choice of background Green’s function, as was observed for second-order equations in
the numerical experiments of [13].

2.4 Legendre polynomials and Gaussian quadrature

The nth Legendre polynomial Pn is defined for x ∈ [−1, 1] by

P0(x) = 1; Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n ≥ 1. (33)

As is well known [1], the n roots y1, . . . , yn of Pn lie in [−1, 1]. Together with a suitable
choice of weights wi > 0, they can be used to evaluate the integral on [−1, 1] of any
polynomial f of degree less than or equal to 2n+ 1 via the formula∫ 1

−1
f(x)dx =

n∑
i=1

f(yi)wi. (34)

By rescaling the interval [−1, 1] to [a, b], we obtain the quadrature∫ b

a
f(x)dx =

n∑
i=1

f

(
b− a

2
(yi + 1) + a

)
b− a

2
wi. (35)

The rescaled nodes b−a
2 (yi + 1) +a are the roots of the polynomials Pn(2(x−a)/(b−

a)− 1) on [a, b], which form an orthogonal basis for L2([a, b]). The nodes yi and weights
wi on [−1, 1] can be computed at cost O(n) [9].
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For an arbitrary (2n + 2)-times continuously differentiable function f on [a, b] (not
necessarily a degree 2n+ 1 polynomial), the same quadrature formula (35) has error∣∣∣∣ ∫ b

a
f(x)dx−

n∑
i=1

f

(
b− a

2
(yi + 1) + a

)
b− a

2
wi

∣∣∣∣
≤ |f

(2n+2)(ξ)|
(2n+ 2)!

∫ b

a

n∏
i=0

(x− xi)2dx (36)

for some ξ ∈ [a, b]; for a proof, see Theorem 7.4.5 in [6]. It follows immediately that the
error can be bounded above by

(b− a)2n+3

(2n+ 2)!
sup
x∈[a,b]

|f (2n+2)(x)|. (37)

We also note that the Legendre polynomials Pn satisfy the three-term recurrence
[6, 11]

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x), n ≥ 1 (38)

Using this recurrence, for any value of x ∈ [−1, 1] all values P0(x), . . . , Pn(x) can be
computed in O(n) floating-point operations.

There is a one-to-one correspondence between the values of f on the n nodes y1, . . . yn
and the first n Legendre coefficients of f . More precisely, given the values of f on n
Gaussian nodes yi of [−1, 1], the first n coefficients of the Legendre expansion of f
can be computed at cost O(n2), by applying the matrix [Pi(yj)wj ]1≤i,j≤n to the vector
(f(y1), . . . , f(yn))>. Conversely, from the first n Legendre coefficients of f we can com-
pute the values of f on the n Gaussian nodes at cost O(n2), by applying the inverse
matrix to the vector of coefficients.

2.5 Deferred corrections

In this section, we review the technique of deferred corrections for improving the accuracy
of the solution to a linear system Aφ = f . Informally, the method proceeds by solving a
sequence of equations for the residuals of the previous solution. The setting where this
method may be applied is when there already exists an inaccurate method for inverting
A but a highly accurate method for applying A to an arbitrary vector. The algorithm
is as follows:

1. Produce an initial solution φ̂.

2. Apply A to φ̂ and compute the residual right hand side ∆ = f −Aφ̂.

3. Compute a vector r̂ that solves the residual system Ar = ∆ for the residual
r = φ− φ̂. Update the solution: φ̂← φ̂+ r̂.
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4. Repeat steps 2 and 3 until convergence.

Algorithms based on this method have been employed for discretized second-kind
integral operators A in, for example, [7, 10, 16]. Its convergence properties for certain
differential equations have been studied [14]. When employed for general linear systems,
the method also goes by the name “iterative refinement”, where its numerical properites
have been well-studied [15, 24].

At each step of the algorithm, the current solution φ̂ has a residual vector r = φ− φ̂
that satisfies the residual linear system:

Ar = Aφ−Aφ̂ = f −Aφ̂. (39)

Since Aφ̂ can be computed accurately, the right hand side f −Aφ̂ can be computed
accurately as well (though see Remark 2 below). Consequently, the residual can be
obtained to some relative accuracy ε, or in other words, we can produce a vector r̂ with
‖r̂ − r‖ ≤ ε‖r‖. Then the updated solution φ̂+ r̂ satisfies:

‖(φ̂+ r̂)− φ‖ = ‖r̂ − (φ− φ̂)‖ = ‖r̂ − r‖ ≤ ε‖r‖ = ε‖φ− φ̂‖. (40)

In other words, the error of φ̂+ r̂ is smaller than the error of φ̂ by a factor of ε. If this
factor is gained after every iteration, then only dlog(ε∗)/ log(ε)e iterations are required
to achieve machine precision ε∗.

Remark 2. We explain one subtlety with the method of deferred corrections. In order
to solve for the residual r to relative error ε, the right hand side ∆ = f −Aφ̂ must be
computed to relative error at most ε. Even if Aφ̂ is computed to full machine precision,
if φ ≈ φ then f ≈ Aφ̂, and the difference f −Aφ̂ may have large relative error. More
precisely, when φ̂ is close enough to φ so that ‖f−Aφ̂‖ ≤ δ‖f‖, then the difference f−Aφ̂
will be computed to relative error ε∗ /δ, due to loss of digits. So long as ε∗ /δ ≤ ε, the
next iteration of the algorithm will decrease the error by a factor of ε. However, when
φ̂ is close enough to φ that δ < ε∗ / ε, the next iteration will only increase the accuracy
by a factor of ε∗ /δ.

3 The algorithm for solving (1)–(5)

In this section, we provide a detailed description of the algorithm for solving (1)–(5). The
algorithm has three main components. First, the interval [a, b] is broken into m equal-
length subintervals [xi, xi+1], 1 ≤ i ≤ m, where xi = −1 + 2(i − 1)/m. A solution with
zero boundary values is produced on each subinterval, employing the second-kind integral
equation described in Section 2.3. In addition, four linearly independent solutions to the
homogeneous equation are also produced on each subinterval.

Second, we form a linear combination of the solutions on each subinterval. The coef-
ficients of this linear combination are chosen so that the resulting functions on adjacent
intervals have matching boundary values. Solving for these coefficients is inexpensive
but ill-conditioned, resulting in a solution that does not achieve machine precision.
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Third, we remedy the ill-conditioning introduced in the second step by deferred
corrections. To do so we must accurately apply the second-kind integral operator LG0

to the right hand side of the equation; concretely, this entails integrating the right hand
side against the functions Gj . We describe an algorithm for doing so with asymptotic
cost O(m). This step is then iterated until full machine accuracy is achieved.

The algorithm can be summarized as follows:

1. Solve the problem with zero boundary conditions on each subinterval [xi, xi+1].

2. Adjust the boundary values on each subinterval [xi, xi+1] so that the solutions
match at the endpoints.

3. Compute the residual right hand side on the full domain [a, b] and apply deferred
corrections.

Steps 1–3 will produce the solution φ sampled at n Gaussian nodes of each subinterval
[xi, xi+1]. These n nodes can be converted into the first n Legendre coefficients of the
solution φ on each subinterval [xi, xi+1]. The solution can then be evaluated at any point
in [a, b] by evaluating this expansion on the subinterval [xi, xi+1] containing that point,
as described in Section 2.4.

Finally, we note that by applying the rescaling described in Section 2.1, we may
assume that the problem domain is the interval [−1, 1]. After producing the solution,
we can apply the inverse rescaling (17) to return to the original domain [a, b].

3.1 The solution on n nodes in a single subinterval

In this section, we describe how to obtain a solution φ on n Gaussian nodes of a subin-
terval [xi, xi+1]. We will rescale the subinterval [xi, xi+1] to be [−1, 1], as described in
Section 2.1; when the algorithm is completed, we will rescale back to the original domain
[xi, xi+1], as in equation (17). We explain how to produce the solution φ, with specified
boundary values, to the equation Lφ = f on n Gaussian nodes y1, . . . , yn in [−1, 1].
We will also assume that we have divided the entire equation (1) by the leading coeffi-
cient a4(x), so that without any loss in generality we assume that the leading coefficient
a4(x) = 1.

As described in Section 2.3, we can write the solution φ as φ = G0σ+ψα, where ψα
is defined by formulas (26)–(30), and the function σ satisfies the following second-kind
integral equation:

σ(x) +

∫ 1

−1

3∑
j=0

aj(x)Gj(x, t)σ(t)dt = f − Lψα ≡ fα. (41)

We discretize the equation (41) by sampling the coefficients aj(x), the right hand side
fα(x), and the functions Gj(x, t) in each variable on the n Gaussian nodes y1, . . . , yn.
We will produce the solution σ evaluated on the same nodes. We will write the integrals
in (41) using the quadrature formula for Gaussian nodes and weights wk described in
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Section 2.4. The discrete system of equations resulting from discretizing (41) is given
by:

σ(yi) +
n∑
k=1

 3∑
j=0

aj(yi)Gj(yi, yk)

σ(yk)wk = fα(yi), 1 ≤ i ≤ n. (42)

We can compactly write this as a linear systemAσ̂ = f̂α, where f̂α = (fα(y1), . . . , fα(yn))>,
σ̂ = (σ(y1), . . . , σ(yn))> and A is the n-by-n matrix with entries

A(i, k) = δi,k +

3∑
j=0

aj(yi)Gj(yi, yk)wk. (43)

We invert the n-by-n matrix A using the QR factorization at a cost of O(n3) floating
point operations [6]; other algorithms for solving linear systems may be used as well.

The solution φ to (1)–(5) and its first three derivatives on the n nodes y1, . . . , yn are
now given by:

φ(j)(yi) =

n∑
k=1

Gj(yi, yk)σ̂kwk + ψ(j)
α (yi), 0 ≤ j ≤ 3 (44)

and φ(4)(yi) = σ̂i. We then perform the inverse rescaling in equation (17) to complete
the computation of the solution on the subinterval [xi, xi+1]. Since the cost of solving
(42) on each of the m subintervals [xi, xi+1] is O(n3), the total cost is O(mn3).

3.2 Matching the boundary values

In Section 3.1 we detailed how to obtain a solution to (1)–(5) on n Gaussian nodes in
each subinterval [xi, xi+1] with specified boundary values at xi and xi+1. We will denote
by φ̃i the solution on [xi, xi+1]. In this section we explain how to adjust the boundary
values of these functions so that the resulting functions φi and φi+1 have matching values
and three derivatives at the interface xi+1, and so that φ1 satisfies (2) and (4) at −1,
and φm satisfies (3) and (5) at 1. We will assume that the φ̃i were chosen to have zero
boundary values at xi and xi+1.

In addition to constructing φ̃i, on each subinterval [xi, xi+1], we use the method of
Section 3.1 to solve the equation Lg = 0 four times to obtain functions gi,j , 1 ≤ j ≤ 4,
with a single non-zero boundary value; concretely, gi,1(xi) = 1, gi,2(xi+1) = 1, g′i,3(xi) =
1, and g′i,4(xi+1) = 1, and the other values and first derivatives at xi and xi+1 are zero.
We will find coefficients βi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ 4, such that the functions

φi(x) = φ̃i(x) +
4∑
j=1

βi,jgi,j(x) (45)
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have matching boundary values, and the desired values at ±1 given by (2)–(5). The
derivatives of φi are found by adding the same linear combination of the derivatives of
the gi,j , namely:

φ
(k)
i (x) = φ̃

(k)
i (x) +

4∑
j=1

βi,jg
(k)
i,j (x), 1 ≤ k ≤ 4. (46)

The function φ(k)(x), 0 ≤ k ≤ 4, is then defined by φ
(k)
i (x) when x ∈ [xi, xi+1]. In

particular, σ = φ(4) solves the integral equation (41) on the entire interval [−1, 1].
The coefficients βi,j can be found as the solution to a banded linear system of size

4m-by-4m. For every pair of adjacent intervals [xi, xi+1] and [xi+1, xi+2], we require that

φ̃i(xi+1) + βi,2 = φ̃i+1(xi+1) + βi,1 (47)

φ̃′i(xi+1) + βi,4 = φ̃′i+1(xi+1) + βi,3 (48)

φ̃′′i (xi+1) +

4∑
j=1

βi,jg
′′
i,j(xi+1) = φ̃′′i+1(xi+1) +

4∑
j=1

βi+1,jg
′′
i+1,j(xi+1) (49)

φ̃
(3)
i (xi+1) +

4∑
j=1

βi,jg
(3)
i,j (xi+1) = φ̃

(3)
i+1(xi+1) +

4∑
j=1

βi+1,jg
(3)
i+1,j(xi+1) (50)

These conditions ensure that the functions φi have four matching derivatives at the
interfaces xi+1, 1 ≤ i ≤ m − 1. To ensure the boundary conditions (2)–(5) on [a, b], we
also require the following equations:

φ̃1(−1) + β1,1 = αl,0 (51)

φ̃′1(−1) + β1,3 = αl,1 (52)

φ̃m(1) + βm,2 = αr,0 (53)

φ̃′m(1) + βm,4 = αr,1. (54)

Ordering the variables β1,1, β1,2, β1,3, β1,4, . . . . . . , βm,1, βm,2, βm,3, βm,4, and ordering the
equations as above and by the intervals they involve, the linear system described by
equations (47)–(54) is 9-diagonal and so can be solved in O(m) floating-point operations.
In Figure 1, we plot this matrix for m = 8 subintervals. After solving for the coefficients
βi,j , the solutions φi on each subinterval can then be obtained by equations (45) and
(46), at an additional cost of O(nm).

Remark 3. Because the initial local solutions φ̃i on each subinterval [xi, xi+1] are ob-
tained via the second-kind integral formulation described in Section 2.3, they can be
computed with high accuracy. However, the method we have described in this section
for matching their boundary values departs from this integral equation formulation. In
practice, we have observed that the banded linear system defined by equations (48)–(54)
behaves like the matrices encountered in finite element or finite difference schemes, in
that it has a condition number of size O(m4). To achieve greater accuracy, in Section
3.3 we show how to apply deferred corrections to this problem.

11
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Figure 1: The banded matrix used to match the boundary values, shown here for m = 8
subintervals; non-zero values are marked with dots.

3.3 Applying deferred corrections

The solution we obtain from Sections 3.1 and 3.2 will not be accurate to the precision
permitted by the problem, as explained in Remark 3. To improve the accuracy, we
apply the method of deferred corrections, as described in Section 2.5. If σ̂ is the vector
of length mn with the estimated solution to the integral equation (41) evaluated on the
mn nodes, then to apply deferred corrections we perform the following steps:

1. Apply the operator LG0 to σ̂, evaluated on the mn nodes.

2. Solve the new system LG0r = fα − LG0σ̂, obtaining an estimated residual r̂.

3. Update the solution: σ̂ ← σ̂ + r̂.

Step 2 is performed by following Sections 3.1 and 3.2 at a cost of O(mn3) floating
point operations, and Step 3 requires mn additions. We will now exhibit an algorithm
for performing Step 1 with asymptotic cost O(mn2).

Because a4 ≡ 1, from equation (32) we have

(LG0σ̂)(x) = σ̂(x) +
3∑
j=0

aj(x)

∫ 1

−1
Gj(x, t)σ̂(t)dt. (55)

Therefore, we must integrate σ̂(x) against the functions Gj(x, t). We now explain how

to compute the integrals
∫ 1
−1Gj(x, t)σ̂(t)dt with O(mn2) floating-point operations. The

function Gj(x, t) can be written in the form

Gj(x, t) =

{∑3−j
i=0 x

ipi(t), if x < t∑3−j
i=0 x

iqi(t), if t < x
(56)
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where pi and qi are polynomials of degree 3−j that can be explicitly computed from (18).
(Of course, pi and qi depend on j, though we suppress this for notational simplicity.)
Using (56), we obtain:∫ 1

−1
Gj(x, t)σ̂(t)dt =

3−j∑
i=0

xi
{∫ x

−1
qi(t)σ̂(t)dt+

∫ 1

x
pi(t)σ̂(t)dt

}
(57)

We must compute
∫ 1
−1Gj(x, t)σ̂(t)dt for each of the mn values of x on which we have

discretized the problem – the n Gaussian nodes on each of the m subintervals [xi, xi+1].
For each such x, let us suppose x ∈ [xi∗ , xi∗+1]. We can then write:∫ x

−1
qi(t)σ̂(t)dt =

i∗−1∑
k=1

∫ xk+1

xk

qi(t)σ̂(t)dt+

∫ x

xi∗
qi(t)σ̂(t)dt (58)

and similarly∫ 1

x
pi(t)σ̂(t)dt =

m∑
k=i∗+1

∫ xk+1

xk

pi(t)σ̂(t)dt+

∫ xi∗+1

x
pi(t)σ̂(t)dt. (59)

Each of the 2m integrals
∫ xk+1

xk
qi(t)σ̂(t)dt and

∫ xk+1

xk
pi(t)σ̂(t)dt can be computed

using an n-point Gaussian quadrature, at a total cost of O(mn) floating-point operations.
For each Gaussian node x in the interval [xi∗ , xi∗+1], the integrals

∫ x
xi∗

qi(t)σ̂(t)dt and∫ xi∗+1

x pi(t)σ̂(t)dt can also be computed using an n-point Gaussian quadrature, at a total
cost of O(mn2) floating-point operations.

From (57), the integrals
∫ 1
−1Gj(x, t)σ̂(t)dt, and hence the evaluation of (LG0σ̂)(x),

can be computed at cost O(mn2). Consequently, each iteration of deferred corrections
requires O(mn2) operations. As explained in Section 2.5, the number of iterations is
O(log(1/ ε)), where ε is the machine precision. This brings the asymptotic running time
of the entire algorithm to O(mn3 log(1/ ε)).

4 Numerical results

The algorithm of Section 3 has been implemented in Fortran. In this section, we use
the algorithm to obtain the numerical solution φ to several specific problems of the
form (1)–(5). All experiments were performed on a Dell XPS-L521X laptop computer
with an Intel Core i7-3632QM CPU at 2.20GHz with 15.6 GB RAM, running the 64-bit
Ubuntu 14.04 LTS operating system. In our experiments, the code was compiled with the
gfortran compiler using extended (16-bit) precision; this is called with the compilation
flag -freal-8-real-16.

In the presentation of the CPU times of the experiments, we distinguish between the
preprocessing steps – which depend only on the differential operator L and which we
refer to as “factorizing” L – and the actual solution of (1)–(5) for a specified right side
f and boundary values αl,0, αr,0, αl,1, αr,1. Factorizing L consists of constructing the

13



mn Gaussian nodes and weights on the interval [a, b]; computing the QR factorization
of the discretized operators Gj , 0 ≤ j ≤ 3; and computing the values of the functions
(27)–(30), and their derivatives, on the Gaussian nodes.

Five experiments are presented below, and their results are contained in Tables 1–15.
In each experiment, we solve a specific boundary value problem on a specified interval
[a, b], and measure the relative error of the solution and its first four derivatives on a
grid of N = 10, 000 equispaced points x1, . . . , xN on [a, b], including the endpoints a and
b. If φ̂(j) is the estimated jth derivative, then the relative error is defined as follows:

R(φ(j)) =

√∑N
i=1 |φ̂(j)(xi)− φ(j)(xi)|2∑N

i=1 |φ(j)(xi)|2
(60)

For each experiment, we display three tables. In each table, the first column contains
the number m of subintervals of [a, b] used for that experiment. In the first table, the
remaining five columns display the errors of the solution and its first four derivatives. In
the second table, the remaining three columns show the factorization time, the solution
time, and the total CPU time. In the third table, the remaining columns display the
relative size of the residual norm after each iteration of the algorithm, to demonstrate
the convergence of deferred corrections.

Remark 4. For each example, the relative errors R(φ(j)) decrease by approximately
a fixed number of digits whenever m is doubled. This behavior is expected from the
error of the Gaussian quadrature, as described in Section 2.4, equation (37), since the
quadrature error should scale like m−(2n+2) (the exponent is not −(2n+ 3) because we
multiply by m, the number of subintervals).

Remark 5. For each example, the CPU times – both for the factorization of L and
the solution of the equation – scale approximately linearly with m. This behavior is
expected from the O(m) asymptotic running time of the algorithm.

Remark 6. For each example and for each value of m, the residual size decreases by an
approximately constant number of digits after approximately two iterations of deferred
corrections. This is likely because two linear systems are solved each step – the local
linear systems on each subinterval, and the global linear system that matches the local
solutions’ boundary values. Up to taking two steps instead of one, this rate of decrease
in the residual size is what we expect from Section 2.5. In particular, very few iterations
of the algorithm are required until convergence is achieved.

4.1 The function φ(x) = sin(5x)

The first example is the following simple, well-conditioned equation:

4∑
j=0

(1 + x4−j)φ(j)(x) =

4∑
j=0

(1 + x4−j)
dj

dxj
sin(5x) (61)
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on the interval [0, 2π], subject to the boundary conditions αl,0 = 0, αr,0 = 0, αl,1 = 5
and αr,1 = 5. The solution is apparently φ(x) = sin(5x). This example is included to
illustrate that for well-conditioned problems, our algorithm obtains the solution to full
machine accuracy. The algorithm was run using n = 10 Gaussian nodes per subinterval.
The results are displayed in Tables 1–3.

4.2 The function φ(x) = sin(150x)

For the second example, we solve the following variation on equation (61):

4∑
j=0

(1 + x4−j)φ(j)(x) =
4∑
j=0

(1 + x4−j)
dj

dxj
sin(150x) (62)

on the interval [0, 2π], subject to the boundary conditions αl,0 = 0, αr,0 = 0, αl,1 = 150
and αr,1 = 150. The solution is apparently φ(x) = sin(150x). However, since the
frequency is much higher, this is a worse-conditioned problem than (61), and so cannot
be solved to full machine precision independent of the choice of algorithm. However,
our algorithm successfully recovers the solution to within the error permitted by the
problem’s condition number. The algorithm was run using n = 15 Gaussian nodes per
subinterval. The results are displayed in Tables 4–6.

4.3 Beam with fixed ends

In this example, we consider the problem of determining the shape of a beam with
non-uniform stiffness subjected to an external force. We parametrize the x-axis by the
interval [0, 1]. We take the stiffness of the beam to be the function c(x) given by:

c(x) = (x− 1/2)2 + 1 (63)

and the external force to be the function f(x) given by:

f(x) = sin(2πx) + 1. (64)

If φ(x) is the shape of the beam, then φ satisfies the following differential equation
[8]:

d2

dx2

(
c(x)

d2φ

dx2

)
= f(x) (65)

or equivalently

((x− 1/2)2 + 1)
d4φ

dx4
(x) + 4(x− 1/2)

d3φ

dx3
(x) + 2

d2φ

dx2
(x) = sin(2πx) + 1. (66)

We impose fixed endpoints on the beam, meaning that αl,0 = 0, αr,0 = 0, αl,1 = 0 and
αr,1 = 0. The algorithm was run using n = 10 Gaussian nodes per subinterval. The
results are displayed in Tables 7–9. The solution is plotted on the left side of Figure 2.
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Figure 2: Left: the beam with fixed ends. Right: the beam with simply-supported ends.

4.4 Beam with simply-supported ends

In this example, we consider the same beam-bending problem (66) as in Section 4.3,
except we require that the ends of the beam are simply-supported, or φ(0) = φ(1) = 0
and φ′′(0) = φ′′(1) = 0. Because the boundary vales involve the second derivatives,
this problem does not immediately fit into the form of (1)–(5), and we include it as an
example for that reason.

To introduce the correct boundary conditions, we let L denote the differential opera-
tor on the left side of (66), and we solve the equation Lφ = f with boundary conditions
αl,0 = αr,0 = αl,1 = αr,1 = 0; we will call this function φ̃. We also produce four linearly
independent solutions to the equation Lφ = 0 by solving it with linearly independent
boundary conditions; we will call these solutions φ1, φ2, φ3 and φ4.

We will find coefficients bi, 1 ≤ i ≤ 4, so that the function

φ(x) = φ̃(x) +
4∑
i=1

biφi(x) (67)

satisfies the sought-after boundary conditions φ(0) = φ(1) = 0 and φ′′(0) = φ′′(1) = 0.
The bi satisfy the linear equations:

0 =
4∑
i=1

biφi(0) (68)

0 =
4∑
i=1

biφi(1) (69)

0 = φ̃′′(0) +

4∑
i=1

biφ
′′
i (0) (70)

0 = φ̃′′(1) +

4∑
i=1

biφ
′′
i (1). (71)
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This system is non-singular because the φi are linearly independent. This permits
us to solve for the bi, and then define the solution φ by (67). The algorithm was run
using n = 10 Gaussian nodes per subinterval. The results are shown in Tables 10–12.
The solution is plotted on the right side of Figure 2.

4.5 The Bessel function J10(x)

In our final example, we solve for the Bessel function J10(x) on the interval [0, 100],
which is plotted in Figure 3. J10 satisfies the second-order equation:

x2
d2

dx2
φ(x) + x

d

dx
φ(x) + (x2 − 100)φ(x) = 0. (72)

We differentiate this equation twice to arrive at the fourth-order equation:(
x2

d4

dx4
+ 5x

d3

dx3
+ (x2 − 96)

d2

dx2
+ 4x

d

dx
+ 2

)
φ(x) = 0. (73)

We solve this equation subject to the boundary values matching the known values of
J10(x) and J ′10(x) at 0 and 100. Because of the singularity at x = 0, we represent the 0
endpoint by the square root of machine zero. We ran the algorithm with n = 20 nodes
per subinterval. We include this example to demonstrate the algorithm’s performance
when the leading coefficients has a root, as does the leading coefficient x2 at the left
endpoint x = 0. Because of this singularity, the solution cannot be obtained to full
machine precision even on the mn Gaussian nodes themselves. Nevertheless, our algo-
rithm obtains the solution up to this necessary loss of accuracy. The results are shown
in Tables 13–15.

Figure 3: The Bessel function J10 on the interval [0, 100].
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Table 1: Relative errors, for sin(5x)

m R(φ) R(φ′) R(φ′′) R(φ(3)) R(φ(4))
16 0.2722E-09 0.2723E-09 0.2722E-09 0.2723E-09 0.2734E-09
32 0.2697E-12 0.2697E-12 0.2697E-12 0.2697E-12 0.2700E-12
64 0.2640E-15 0.2646E-15 0.2640E-15 0.2646E-15 0.2641E-15
128 0.2581E-18 0.2586E-18 0.2581E-18 0.2586E-18 0.2582E-18
256 0.2521E-21 0.2526E-21 0.2521E-21 0.2526E-21 0.2521E-21
512 0.2462E-24 0.2467E-24 0.2462E-24 0.2467E-24 0.2462E-24
1024 0.2405E-27 0.2409E-27 0.2405E-27 0.2409E-27 0.2405E-27
2048 0.1607E-29 0.4084E-30 0.2694E-30 0.2604E-30 0.2575E-30

Table 2: CPU times, for sin(5x)

m Factorizing Solving Total
16 0.6800E-01 0.3200E-01 0.1000E+00
32 0.9600E-01 0.3600E-01 0.1320E+00
64 0.1840E+00 0.7200E-01 0.2560E+00
128 0.3560E+00 0.1400E+00 0.4960E+00
256 0.6920E+00 0.2200E+00 0.9120E+00
512 0.1356E+01 0.3480E+00 0.1704E+01
1024 0.2712E+01 0.6800E+00 0.3392E+01
2048 0.5348E+01 0.1332E+01 0.6680E+01

Table 3: Relative residual sizes, for sin(5x)

Iteration number
m 1 2 3 4 5 6 7
16 0.9187E-09 0.1162E-10 0.4903E-19 0.1987E-20 0.1204E-28 0.4934E-30 0.6651E-33
32 0.9092E-12 0.1647E-13 0.7903E-25 0.3993E-26 0.4482E-33
64 0.8907E-15 0.1742E-16 0.8514E-31 0.4428E-32 0.5743E-33
128 0.8706E-18 0.1734E-19 0.4401E-33 0.4636E-33 0.8539E-33
256 0.8503E-21 0.1701E-22 0.3492E-33 0.1134E-32
512 0.8302E-24 0.1663E-25 0.1295E-32
1024 0.1037E-26 0.1622E-28 0.1044E-32
2048 0.6554E-25 0.1733E-29 0.1059E-32
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Table 4: Relative errors, for sin(150x)

m R(φ) R(φ′) R(φ′′) R(φ(3)) R(φ(4))
16 0.1000E+01 0.1000E+01 0.1000E+01 0.1005E+01 0.1315E+01
32 0.4264E+00 0.3559E+00 0.3603E+00 0.3704E+00 0.3360E+00
64 0.1348E-03 0.1322E-03 0.1351E-03 0.1351E-03 0.1347E-03
128 0.7434E-08 0.7380E-08 0.7435E-08 0.7394E-08 0.7434E-08
256 0.2604E-12 0.2624E-12 0.2604E-12 0.2628E-12 0.2604E-12
512 0.8366E-17 0.8177E-17 0.8366E-17 0.8183E-17 0.8366E-17
1024 0.2608E-21 0.2485E-21 0.2608E-21 0.2484E-21 0.2608E-21
2048 0.6758E-25 0.7789E-26 0.7803E-26 0.7780E-26 0.7803E-26
4096 0.3132E-25 0.2447E-27 0.1476E-29 0.2507E-30 0.7206E-30

Table 5: CPU times, for sin(150x)

m Factorizing Solving Total
16 0.1640E+00 0.4400E-01 0.2080E+00
32 0.2440E+00 0.7200E-01 0.3160E+00
64 0.4600E+00 0.1200E+00 0.5800E+00
128 0.9080E+00 0.2440E+00 0.1152E+01
256 0.1764E+01 0.4640E+00 0.2228E+01
512 0.3496E+01 0.9160E+00 0.4412E+01
1024 0.6920E+01 0.1800E+01 0.8720E+01
2048 0.1384E+02 0.2984E+01 0.1682E+02
4096 0.2752E+02 0.4752E+01 0.3228E+02

Table 6: Relative residual sizes, for sin(150x)

Iteration number
m 1 2 3 4 5 6 7
16 0.9081E-02 0.1615E-05 0.1599E-20 0.1696E-22 0.2960E-33 0.5246E-33 0.3061E-33
32 0.2990E-01 0.7195E-06 0.2276E-24 0.3397E-27 0.2127E-33 0.2420E-33
64 0.1261E-04 0.3152E-09 0.2517E-32 0.2444E-33 0.1341E-33
128 0.2261E-08 0.9298E-14 0.1571E-33 0.1707E-33 0.2110E-33
256 0.1336E-13 0.1058E-17 0.6158E-33 0.2061E-33 0.1354E-33
512 0.1165E-17 0.2580E-22 0.4351E-33 0.1369E-33 0.1889E-33
1024 0.9517E-22 0.4374E-27 0.2364E-33 0.1809E-33 0.1864E-33
2048 0.6160E-26 0.6838E-32 0.2441E-33 0.1405E-33
4096 0.4036E-30 0.1736E-33 0.1630E-33
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Table 7: Relative errors, for beam with fixed ends

m R(φ) R(φ′) R(φ′′) R(φ(3)) R(φ(4))
2 0.2671E-07 0.7362E-07 0.6648E-07 0.1843E-06 0.1262E-06
4 0.3026E-10 0.5149E-10 0.1417E-09 0.5111E-10 0.6806E-09
8 0.2659E-13 0.7074E-13 0.1093E-12 0.1548E-12 0.4938E-12
16 0.2608E-16 0.6953E-16 0.1071E-15 0.1525E-15 0.4865E-15
32 0.2551E-19 0.6791E-19 0.1048E-18 0.1490E-18 0.4763E-18
64 0.2492E-22 0.6635E-22 0.1023E-21 0.1456E-21 0.4652E-21
128 0.2432E-25 0.6484E-25 0.9986E-25 0.1423E-24 0.4541E-24
256 0.2375E-28 0.6331E-28 0.9750E-28 0.1390E-27 0.4434E-27
512 0.6995E-31 0.1115E-30 0.1439E-30 0.1385E-30 0.4329E-30
1024 0.6634E-31 0.9183E-31 0.1071E-30 0.2835E-31 0.1263E-31

Table 8: CPU times, for beam with fixed ends

m Factorizing Solving Total
2 0.1200E-01 0.4000E-02 0.1600E-01
4 0.2000E-01 0.8000E-02 0.2800E-01
8 0.3200E-01 0.8000E-02 0.4000E-01
16 0.5200E-01 0.2000E-01 0.7200E-01
32 0.9600E-01 0.2000E-01 0.1160E+00
64 0.1840E+00 0.4000E-01 0.2240E+00
128 0.3480E+00 0.8000E-01 0.4280E+00
256 0.6840E+00 0.1600E+00 0.8440E+00
512 0.1340E+01 0.3240E+00 0.1664E+01
1024 0.2680E+01 0.6120E+00 0.3292E+01

Table 9: Relative residual sizes, for beam with fixed ends

Iteration number
m 1 2 3 4 5 6 7
2 0.5076E-07 0.4138E-07 0.6825E-15 0.1913E-15 0.5263E-23 0.8843E-24 0.3413E-31
4 0.8287E-10 0.2094E-10 0.5314E-21 0.6000E-22 0.2523E-32
8 0.1190E-12 0.5092E-14 0.2206E-27 0.5444E-29 0.1133E-33
16 0.1153E-15 0.1512E-17 0.2875E-33 0.9051E-34 0.6140E-34
32 0.1124E-18 0.4163E-20 0.1240E-33
64 0.1097E-21 0.5265E-23 0.1185E-33
128 0.1071E-24 0.5699E-26 0.1167E-33
256 0.6699E-27 0.1489E-28 0.2177E-33
512 0.8823E-26 0.3535E-28 0.2681E-33
1024 0.1172E-25 0.5591E-28 0.2968E-33
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Table 10: Relative errors, for beam with simply-supported ends

m R(φ) R(φ′) R(φ′′) R(φ(3)) R(φ(4))
2 0.2890E-07 0.3157E-07 0.4856E-07 0.1670E-06 0.1163E-06
4 0.2783E-10 0.4309E-10 0.1095E-09 0.1030E-09 0.6114E-09
8 0.2797E-13 0.4355E-13 0.1036E-12 0.1659E-12 0.4446E-12
16 0.2578E-16 0.3880E-16 0.9211E-16 0.1576E-15 0.4378E-15
32 0.2405E-19 0.3548E-19 0.8416E-19 0.1508E-18 0.4284E-18
64 0.2286E-22 0.3340E-22 0.7917E-22 0.1458E-21 0.4184E-21
128 0.2200E-25 0.3199E-25 0.7580E-25 0.1417E-24 0.4083E-24
256 0.2132E-28 0.3091E-28 0.7330E-28 0.1379E-27 0.3987E-27
512 0.1556E-30 0.1089E-30 0.1365E-30 0.1429E-30 0.3896E-30
1024 0.1551E-30 0.1098E-30 0.1018E-30 0.4602E-31 0.1762E-31

Table 11: CPU times, for beam with simply-supported ends

m Factorizing Solving Total
2 0.1200E-01 0.2400E-01 0.3600E-01
4 0.2000E-01 0.2000E-01 0.4000E-01
8 0.2800E-01 0.4400E-01 0.7200E-01
16 0.4800E-01 0.8400E-01 0.1320E+00
32 0.9200E-01 0.9600E-01 0.1880E+00
64 0.1760E+00 0.1920E+00 0.3680E+00
128 0.3440E+00 0.3800E+00 0.7240E+00
256 0.6680E+00 0.7440E+00 0.1412E+01
512 0.1360E+01 0.1476E+01 0.2836E+01
1024 0.2648E+01 0.2884E+01 0.5532E+01

Table 12: Relative residual sizes, for beam with simply-supported ends

Iteration number
m 1 2 3 4 5 6 7
2 0.5076E-07 0.4138E-07 0.6825E-15 0.1913E-15 0.5263E-23 0.8843E-24 0.3413E-31
4 0.8287E-10 0.2094E-10 0.5314E-21 0.6000E-22 0.2523E-32
8 0.1190E-12 0.5092E-14 0.2206E-27 0.5444E-29 0.1133E-33
16 0.1153E-15 0.1512E-17 0.2875E-33 0.9051E-34 0.6140E-34
32 0.1124E-18 0.4163E-20 0.1240E-33
64 0.1097E-21 0.5265E-23 0.1185E-33
128 0.1071E-24 0.5699E-26 0.1167E-33
256 0.6699E-27 0.1489E-28 0.2177E-33
512 0.8823E-26 0.3535E-28 0.2681E-33
1024 0.1172E-25 0.5591E-28 0.2968E-33
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Table 13: Relative errors, for J10(x)

m R(φ) R(φ′) R(φ′′) R(φ(3)) R(φ(4))
16 0.2120E-14 0.1170E-14 0.2791E-14 0.1966E-13 0.8241E-12
32 0.1006E-20 0.2662E-20 0.1455E-20 0.2364E-18 0.1939E-16
64 0.1692E-26 0.8051E-25 0.5482E-24 0.4209E-21 0.6658E-19
128 0.2625E-27 0.1084E-27 0.1538E-26 0.2724E-23 0.8361E-21
256 0.6680E-27 0.3037E-28 0.2437E-28 0.9114E-25 0.5650E-22
512 0.5439E-27 0.2523E-28 0.2072E-28 0.5276E-26 0.6609E-23

Table 14: CPU times, for J10(x)

m Factoring Solving Total
16 0.3080E+00 0.1440E+00 0.4520E+00
32 0.5280E+00 0.1600E+00 0.6880E+00
64 0.1016E+01 0.2880E+00 0.1304E+01
128 0.1912E+01 0.5720E+00 0.2484E+01
256 0.3712E+01 0.1128E+01 0.4840E+01
512 0.7352E+01 0.2220E+01 0.9572E+01

Table 15: Relative residual sizes, for J10(x)

Iteration number
m 1 2 3 4 5 6 7
16 0.3376E-10 0.1154E-11 0.2294E-12 0.4247E-13 0.7863E-14 0.1456E-14 0.2695E-15
32 0.2703E-16 0.7637E-18 0.6004E-19 0.6428E-20 0.6883E-21 0.7370E-22 0.7892E-23
64 0.1360E-19 0.1540E-20 0.1350E-21 0.1193E-22 0.1053E-23 0.9270E-25 0.7836E-26
128 0.2532E-22 0.3730E-23 0.3045E-24 0.2440E-25 0.2089E-26 0.6049E-27
256 0.2122E-24 0.1838E-25 0.1325E-26 0.5645E-27 0.4061E-27
512 0.4847E-25 0.2117E-27

Iteration number
m 8 9 10 11 12 13 14
16 0.4991E-16 0.9240E-17 0.1711E-17 0.3168E-18 0.5865E-19 0.1086E-19 0.2010E-20
32 0.8431E-24 0.9132E-25 0.9707E-26 0.1525E-26 0.6545E-28
64 0.3637E-27 0.5771E-28

Iteration number
m 15 16 17 18 19 20 21
16 0.3722E-21 0.6893E-22 0.1275E-22 0.2372E-23 0.4270E-24 0.8963E-25 0.6186E-26
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