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Abstract

Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and

NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In

a cryo-EM experiment, the microscope produces images called micrographs. Projections of the

molecule of interest are embedded in the micrographs at unknown locations, and under unknown

viewing directions. Standard imaging techniques �rst locate these projections (detection) and then

reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When

reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially

for small molecules. In this paper, we pursue a radically di�erent approach: we contend that the

structure could, in principle, be reconstructed directly from the micrographs, without intermediate

detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design

an autocorrelation analysis technique that allows to go directly from the micrographs to the sought

structures. This involves only one pass over the micrographs, allowing online, streaming processing

for large experiments. We show numerical results and discuss challenges that lay ahead to turn this

proof-of-concept into a complementary approach to state-of-the-art algorithms.

1 Introduction

Cryo-electron microscopy (cryo-EM) is an imaging technique in structural biology used for single particle
reconstruction of macromolecules. In a cryo-EM experiment, biological samples are rapidly frozen in a
thin layer of vitreous ice. The microscope produces a 2-D tomographic image of the samples embedded
in the ice, called a micrograph. Each micrograph contains tomographic projections of the samples
at unknown locations and under unknown viewing directions. Figure 1 presents three experimental
micrographs. The goal is to construct 3-D models of the molecular structure from the micrographs [19,
9, 56].

The signal-to-noise ratio (SNR) of the tomographic projections in the micrographs is a function of
two dominating factors. On the one hand, the SNR is a function of the electron dose. To keep radiation
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(a) EMPIAR 10028 (b) EMPIAR 10061 (c) EMPIAR 10249

Figure 1: Excerpts from three data sets from the EMPIAR repository [29]: EMPIAR 10028 (Plasmod-
ium Falciparum 80S ribosome) [64], EMPIAR 10061 (β-Galactosidase) [8], and EMPIAR 10249 (Alcohol
Dehydrogenase) [28]. Detecting particles in the EMPIAR 10028 data set (left panel) is rather easy as the
particles in the micrograph, corresponding to a large ribosome with a molecular weight of 4 MDa, are
clearly visible. Doing so in the EMPIAR 10061 data set (middle panel) is harder, as the β-Galactosidase
is a smaller protein with a molecular weight of 465 kDa, but some particles can still be identi�ed visu-
ally. The particles in the EMPIAR 10249 data set (right panel) are tomographic projections of a small
molecule that weighs 82 kDa, yielding low SNR. We note that the di�erences in particle contrast are
also attributed to the fact that the EMPIAR 10249 data set was obtained with a microscope operating at
200 keV, whereas the EMPIAR 10028 and EMPIAR 10061 data sets were taken at 300 keV. In this work,
we propose a method that aims to recover molecular structures when the SNR is very low, even below
the SNR of the EMPIAR 10249 data set.

damage within acceptable bounds, the dose must be kept low, which leads to high noise levels. On the
other hand, the SNR is a function of the molecule size. The smaller the molecules, the fewer detected
electrons carry information about them.

All methods currently in use split the reconstruction procedure into two main stages. The �rst stage
consists in extracting the various particle projections from the micrographs. This stage is called particle
picking [50, 24, 14, 17]. The second stage aims to construct a 3-D model of the molecular structure
from these projections. The quality of the reconstruction eventually hinges on the quality of the particle
picking stage. Figure 1a shows an example of a data set of a large ribosome with a molecular weight of
4MDa, where the particles in the micrograph are clearly visible, and thus particle picking is rather easy.
The particles in Figure 1b correspond to a smaller protein with a molecular weight of 465 kDa, but
some particles can still be identi�ed visually. The particles in Figure 1c are tomographic projections of
a small molecule that weighs 82 kDa, yielding low SNR.

Crucially, it can be shown that reliable detection of individual particles is impossible below a certain
critical SNR. This fact has been recognized early on by the cryo-EM community. In particular, in an
in�uential paper from 1995, Nobel laureate Richard Henderson [26] investigates the following questions:

For the purposes of this review, I would like to ask the question: what is the smallest size of
free-standing molecule whose structure can in principle be determined by phase-contrast electron
microscopy? Given what has already been demonstrated in published work, this reduces to the
question: what is the smallest size of molecule for which it is possible to determine from im-
ages of unstained molecules the �ve parameters needed to de�ne accurately its orientation (three
parameters) and position (two parameters) so that averaging can be performed?

In that paper and in others that followed (e.g., [22]), it was established that particle picking is impossible
for molecules below a certain weight (below ∼40kDa). Joachim Frank voices a similar observation in
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his 2017 Nobel Prize lecture: �Using the ribosome as an example, it became clear from the formula
we obtained that the single-particle approach to structure research was indeed feasible for molecules of
su�cient size: Particle Size > 3/[Contrast2 × Resolution (as length) × Critical Electron Dose] � [20].
As these two leaders of the cryo-EM �eld point out, it is impossible to reconstruct small molecules by
any of the existing computational pipelines for single particle analysis in cryo-EM, because the particles
themselves cannot be picked from the micrographs. Given the fact that the vast majority of the proteins
that make up the mammalian proteome weigh less than 100 kDa, whereas the molecular weights of
almost all biological macromolecules whose structures have been determined using cryo-EM is greater
than 100 kDa, new methodologies targeting macromolecules in this size are of pivotal importance [40].
In addition, recovering small structures is crucial for structure-guided drug design [49].

Recovering smaller molecular structures using cryo-EM is an active research e�ort [66, 65, 5], mostly
focused on sample preparation techniques and hardware developments, such as Volta phase plates [31,
42], laser phase plates [51], and sca�olding cages [43], as well as steady improvements in the data
processing pipeline. Despite this progress, detecting small molecules in the micrographs remains a
challenge (see Figure 1c). We note that nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography are well suited to reconstruct small molecules. Yet, cryo-EM has a lot to o�er even
for molecules with already known structures obtained via NMR spectroscopy or X-ray crystallography,
because these methods have limited ability to distinguish conformational variability [58].

In this paper, we argue that there is a gap between the two questions in Henderson's quoted excerpt
above, and that one may be able to exploit it to design better reconstruction algorithms. Speci�cally,
the impossibility of particle picking does not necessarily imply impossibility of particle reconstruction.
Indeed, the aim is only to reconstruct the molecule: estimating the locations of the particles in the
micrograph is merely a helpful intermediate stage when it can be done. Our main message is that, while
a molecule's size may limit our ability to pick particles, that does not necessarily translate into a limit
on our ability to reconstruct the molecule.

In order to recover the 3-D structure, we use autocorrelation analysis that relates the autocorrelations
of the micrographs to the parameters describing the 3-D model. For any noise level, the autocorrelations
of the micrographs can be estimated to any desired accuracy, provided we observe su�ciently many mi-
crographs. The autocorrelations of the micrographs are straightforward to compute and require only
one pass over the data. To estimate the 3-D structure itself from the estimated autocorrelations, we
formulate and solve a nonlinear inverse problem. In particular, we show that the �rst order autocorrela-
tion is just the average pixel value, the second-order autocorrelation is e�ectively a 1-D radial function,
and the third-order is a 3-D function. We may therefore hope (but not guarantee) to recover the 3-
D volume from the third-order autocorrelation, as it provides su�ciently many equations to solve for
the parameters. Importantly, there is no need to detect individual projection images. We show a few
numerical examples and outline the future developments required to make this method applicable to
experimental data.

Another interesting feature of the described approach pertains to model bias, whose importance in
cryo-EM was stressed by a number of authors [54, 61, 27, 60]. In the classical �Einstein from noise�
experiment, multiple realizations of pure noise are aligned to a picture of Einstein using template
matching and then averaged. In [54], it was shown that the averaged noise rapidly becomes remarkably
similar to the Einstein template. In the context of cryo-EM, this experiment exempli�es how prior
assumptions about the particles may in�uence the reconstructed structure. This model bias is common
to all particle picking methods based on template matching. In our approach, we do not attempt to
match a template to noisy data. Instead, we use an optimization algorithm to try to solve the inverse
problem relating autocorrelations to the sought volume. This nonconvex problem may have spurious
local minima, hence the algorithm's initialization (a form of template) may a�ect the outcome. However,
we �nd empirically that this poses a lesser risk because we are able to obtain meaningful reconstructions
from random initializations.
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The rest of the paper is organized as follows. Section 2 shows that it is impossible to detect the parti-
cle images in the micrograph in extremely low SNR regimes. In Section 3, which is the main contribution
of this paper, we develop an autocorrelation analysis framework to recover molecular structures directly
from the micrograph, circumventing particle picking. Section 4 shows a few numerical experiments, and
Section 5 concludes the paper and delineates challenges that lay ahead to turn this proof-of-concept
into a complementary approach to state-of-the-art algorithms.

2 The detection limit

In the low SNR regime�even if the 3-D structure is known�one cannot reliably detect the projection
images in the micrograph. To support this claim, we consider a strictly simpler problem: suppose an
oracle identi�es for us one patch in the micrograph that either contains a full signal occurrence (plus
noise), or contains just noise. Our task is to determine which one it is. The oracle further provides the
true signal x, the noise variance σ2, and the probability q that we observe signal-plus-noise as opposed
to pure noise.

This decision problem can be abstracted as follows: We have two known vectors θ0 = x and θ1 = 0
in RL. There is a random variable η taking values 0 or 1 with probabilities q and 1− q, respectively. We
observe a random vector X ∈ RL (akin to an extract of the micrograph) with the following distribution:
if η = 0, then X ∼ N (θ0, σ

2IL) and if η = 1, then X ∼ N (θ1, σ
2IL).

We observe a realization of X, and our task is to estimate η. How reliably can this be done? If
q ≥ 1/2, the constant estimator η̂ = 0 is correct with probability q; likewise, if q ≤ 1/2, the constant
estimator η̂ = 1 is correct with probability 1− q. The question is, can we do better than this? We prove
that, as σ → ∞, the answer is no. The result is proved in Appendix A.

Proposition 2.1. For any deterministic estimator η̂ of η,

lim
σ→∞

Prob[η̂ = η] ≤ max(q, 1− q); (2.1)

that is, as the SNR deteriorates, the probability of success is no better than random chance.

Proposition 2.1 implies that, at low SNR, particle picking is impossible: in order to estimate the 3-D
structure, we must consider methods that aim to estimate the structure directly, without estimating the
nuisance locations of the projection images as an intermediate step. In the next section, we develop an
autocorrelation analysis technique for that purpose.

3 Autocorrelation analysis for cryo-EM

3.1 Autocorrelation analysis

For a random signal z ∈ RN×N , the autocorrelation of order p is given by

apz[ℓ1, . . . , ℓp−1] = Ez

{
1

N2

∑
i

z[i]z[i+ ℓ1] · · · z[i+ ℓp−1]

}
, (3.1)

where the expectation is taken with respect to the distribution of z, the summation is for i ranging over
the N2 pixels of the signal, and ℓ1, . . . , ℓq−1 are two-dimensional integer shifts. Indexing out of bounds
is zero-padded, that is, z[i] = 0 for i out of the range [0, N − 1]× [0, N − 1]. In our case, z will represent
the micrographs, whose distribution is parameterized by the sought 3-D structure. In the next sections,
we show that as N → ∞, the �rst three autocorrelations of the micrograph (i.e., p = 1, 2, 3) converge
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to explicit polynomial functions of the parameters describing the sought volume. Then, we wish to
estimate the volume by �nding a set of parameters which are consistent with the autocorrelations; this
entails solving a non-convex optimization problem.

We mention that autocorrelation analysis for cryo-EM images was �rst proposed in 1980 by Zvi
Kam [30]. However, Kam's method, as well as some of its recent extensions [41, 53], assumes picked
particles. To break this fundamental barrier, we suggest computing the autocorrelations of the micro-
graphs directly, completely bypassing particle picking.

3.2 Model and autocorrelation functions

Let ϕ : R3 → R be the Coulomb potential representing the molecule we aim to recover. We assume
that the molecule is smooth. Speci�cally, in spherical coordinates, its 3-D Fourier transform ϕ̂ admits
a �nite expansion of the form

ϕ̂(ck, θ, φ) =
Lmax∑
ℓ=0

ℓ∑
m=−ℓ

S(ℓ)∑
s=1

xℓ,m,sY
m
ℓ (θ, φ)jℓ,s(k), k ≤ 1, (3.2)

where 0 < c ≤ 0.5 is the bandlimit in Fourier space (a standard assumption in cryo-EM) {S(ℓ)} are
determined using the Nyquist criterion as described in [15, 33], jℓ,s is the normalized spherical Bessel
functions given by

jℓ,s(k) =
4

|jℓ+1(uℓ,s)|
jℓ(uℓ,sk),

jℓ is the spherical Bessel function of order ℓ and uℓ,s is the sth positive zero of jℓ. We use the complex
spherical harmonics Y m

ℓ de�ned by

Y m
ℓ (θ, φ) :=

√
2ℓ+ 1

4π
· (ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eιmφ,

where Pm
ℓ are the associated Legendre polynomials with the Condon-Shortley phase. Representing the

molecule using a spherical harmonics expansion, akin to (3.2), is a ubiquitous practice in the cryo-EM
literature, see for example [7]. Sampling at the Nyquist rate dictates c = 1/2 [41]. Because ϕ is real-
valued, ϕ̂ is conjugate-symmetric and thus the expansion coe�cients satisfy xℓ,−m,s = (−1)ℓ+mxℓ,m,s.
Therefore, we only need to recover coe�cients xℓ,m,s with m ≥ 0 in order to recover the molecular
structure.

Let Iω denote the tomographic projection obtained from viewing direction ω ∈ SO(3). The Fourier
slice theorem states that the 2-D Fourier transform of a tomographic projection is equal to a 2-D slice
of the volume's 3-D Fourier transform [45]. Speci�cally,

Îω(ck, φ) =
∑

ℓ,m,m′,s

xℓ,m,sD
ℓ
m′,m(ω)Y

m′

ℓ

(π
2
, φ
)
jℓ,s(k), (3.3)

where Dℓ
m′,m(ω) is a Wigner-D matrix. This implies that the projections are also c-bandlimited. In

practice, the projections are further a�ected by additional factors, such as the microscope's point spread
function, which are neglected in this paper.

Let I ∈ RN×N denote a micrograph. We assume it consists of shifted copies of projections contami-
nated by additive white Gaussian noise:

I =
M∑
t=1

Iωt ∗ δst + ε, ε ∼ N (0, σ2I), (3.4)
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where ∗ denotes convolution, and the viewing directions ωt are assumed to be drawn from the uniform
distribution over SO(3). We assume the projections are discretized on a Cartesian grid of size P×P and
st ∈ [P,N − P ]2 denotes the location of the upper-left corner of the t-th projection in the micrograph.
We impose a separation condition so that any two projections are separated by at least 2P − 1

pixels between their upper-left corners, in each direction. Thus, their end points (in each direction) are
necessarily separated by at least P − 1 signal-free entries in the micrograph.

We stress that the assumptions of the generative model (3.4) are unrealistic for experimental cryo-EM
data. For example, in practice, the particles are not likely to satisfy the separation condition (but they
do not overlap and thus are separated by at least P−1 pixels in each direction), and the distribution over
SO(3) is typically non-uniform; these assumptions were made to ease the analysis. Section 5 discusses
how our autocorrelation analysis technique can be extended to include these important aspects that are
essential to reach high-resolution reconstructions.

De�ne the pth (empirical) autocorrelation of I as

apI [ℓ1, . . . , ℓp−1] :=
1

N2

∑
i

I[i]I[i+ ℓ1] · · · I[i+ ℓp−1], (3.5)

where the summation is for i ranging over the N2 pixels of the micrograph, using zero padding when
indices exceed the micrograph's edge. Computing the autocorrelations of the micrograph is straightfor-
ward. Let I1, . . . , IK denote a set ofK micrographs. Under the speci�ed conditions, we show in the next
section that the �rst three autocorrelations of the micrographs are related to those of the projections
by

lim
K→∞

1

K

K∑
i=1

apIi [ℓ1, . . . , ℓp−1] = γ
〈
apIω [ℓ1, . . . , ℓp−1]

〉
ω
+ bp[ℓ1, . . . , ℓp−1], (3.6)

p = 1, 2, 3, ℓ1, . . . , ℓp−1 ∈ [−(P − 1), P − 1]2,

where ⟨·⟩ω denotes averaging over all possible viewing directions ω with respect to the uniform measure,
γ = MP 2

N2 ∈ (0, 1) is a scalar that encodes the density of the particle projections in the data, and bp
is a bias term. Speci�cally, b1 = 0 and therefore the mean is unbiased. The bias term of the second-
order autocorrelation b2 depends only on σ2, the variance of the noise. Hence, if the noise level can be
accurately estimated from the micrographs, this bias can be removed. Finally, the bias term of the third-
order autocorrelation b3 depends on the mean of the micrograph and σ2. Therefore, given su�ciently
many projections, we can accurately estimate the quantities γ⟨apIω⟩ω directly from the micrographs.
These quantities are functions of the unknown coe�cients xl,m,s and we could proceed to invert their
relation.

In practice, we want to leverage one more feature of the 3-D reconstruction problem. Since all
in-plane rotations of the micrographs are equally likely observations, it is desirable in (3.6) to average
over all in-plane rotations as well. This can be done e�ciently using Prolate Spheroidal Wave Functions
(PSWFs), which have been used before for cryo-EM data processing [38, 39, 53, 25]. In particular, as
we show next, averaging over all in-plane rotations using the PSWFs reduces the dimensionality of the
problem, without any loss of information. We use autocorrelations up to and including the third order.
Indeed, second-order autocorrelations are not enough, as was observed already in [30] for a simpler
problem where the input is not micrographs but rather picked, perfectly centered particles.

3.3 Autocorrelation derivation

In this section, we prove relation (3.6). We note that mathematically taking in�nitely many micrographs
is equivalent to taking one in�nitely large micrograph with �xed density γ. Hence, we consider the
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moments of one micrograph I in the limit N → ∞ and γ = limN→∞
MP 2

N2 ∈ (0, 1). The separation
condition guarantees that if i = (i, j) is in the support of some projection, then i + ℓ for ℓ ∈ [−(P −
1), P − 1]2 is either in the support of the same projection or outside the support of any projection.

We begin by calculating the relation between the pth autocorrelation of the clean micrograph and
the averaged autocorrelation of the projections. Let us denote the clean micrograph by Ĩ = I − ε,
where I and ε are given in (3.4). Denote by St the support of the projection of the t-th particle in the
micrograph. Then, we have

ap
Ĩ
[ℓ1, . . . , ℓp−1] =

1

N2

∑
i

Ĩ[i]Ĩ[i+ ℓ1] · · · Ĩ[i+ ℓp−1]

=
1

N2

M∑
t=1

∑
i∈St

Ĩ[i]Ĩ[i+ ℓ1] · · · Ĩ[i+ ℓp−1]

=
MP 2

N2
· 1

M

M∑
t=1

1

P 2

P−1∑
i,j=0

Iωt [i]Iωt [i+ ℓ1] · · · Iωt [i+ ℓp−1]

=
MP 2

N2

1

M

M∑
t=1

apIωt
[ℓ1, . . . , ℓp−1]

→ γ⟨apIω [ℓ1, . . . , ℓp−1]⟩ω, (3.7)

where the average is taken over ω with respect to the distribution of viewing directions. Here, we assume
it to be uniform.

In the presence of noise, we get additional bias terms denoted by bp in (3.6). The mean (p = 1) is
unbiased, since the noise is assumed to have zero mean. For the second-order autocorrelation (p = 2),
we have

a2I [ℓ] =
1

N2

∑
i

I[i]I[i+ ℓ]

=
1

N2

∑
i

Ĩ[i]Ĩ[i+ ℓ] +
1

N2

∑
i

Ĩ[i]ε[i+ ℓ] +
1

N2

∑
i

ε[i]Ĩ[i+ ℓ] +
1

N2

∑
i

ε[i]ε[i+ ℓ].

The �rst term is given by (3.7) for p = 2. The cross terms have expected value 0, and therefore almost
surely vanish in the limit due to the law of large numbers. The fourth term is zero unless ℓ = 0, in
which case it converges to σ2. Thus, we conclude

a2I [ℓ] → γ⟨a2Iω [ℓ]⟩ω + σ2δ[ℓ], (3.8)

where the bias term b2[ℓ] = σ2δ[ℓ] depends only on the variance of the noise σ2.
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For the third moments, we get 8 terms:

a3I [ℓ1, ℓ2] =
1

N2

∑
i

Ĩ[i]Ĩ[i+ ℓ1]Ĩ[i+ ℓ2]︸ ︷︷ ︸
(1)

+
1

N2

∑
i

ε[i]ε[i+ ℓ1]ε[i+ ℓ2]︸ ︷︷ ︸
(2)

+
1

N2

∑
i

Ĩ[i]ε[i+ ℓ1]Ĩ[i+ ℓ2]︸ ︷︷ ︸
(3)

+
1

N2

∑
i

Ĩ[i]Ĩ[i+ ℓ1]ε[i+ ℓ2]︸ ︷︷ ︸
(4)

+
1

N2

∑
i

ε[i]Ĩ[i+ ℓ1]Ĩ[i+ ℓ2]︸ ︷︷ ︸
(5)

+
1

N2

∑
i

Ĩ[i]ε[i+ ℓ1]ε[i+ ℓ2]︸ ︷︷ ︸
(6)

+
1

N2

∑
i

ε[i]ε[i+ ℓ1]Ĩ[i+ ℓ2]︸ ︷︷ ︸
(7)

+
1

N2

∑
i

ε[i]Ĩ[i+ ℓ1]ε[i+ ℓ2]︸ ︷︷ ︸
(8)

.

We address these terms one by one:

� Term (1) is treated by (3.7) for p = 3;

� Term (2) is the third-order autocorrelation of pure noise which almost surely vanishes in the limit
by the law of large numbers;

� Terms (3)-(5) depend linearly on the noise and hence vanish in the limit;

� For term (6), if ℓ1 ̸= ℓ2 the term vanishes in the limit. If ℓ1 = ℓ2 then

1

N2

∑
i

Ĩ[i]ε[i+ ℓ]2 =
MP 2

N2
· 1

MP 2

M∑
t=1

∑
i∈St

Iωt [i]ε[i+ ℓ]2 → γσ2⟨a1Iω⟩ω,

where ⟨a1Iω⟩ω is the mean of the volume.

� Terms (7) and (8) contribute δ functions similar to (6).

Thus, we conclude that

a3I [ℓ1, ℓ2] → γ⟨a3Iω [ℓ1, ℓ2]⟩ω + γσ2⟨a1Iω⟩ω
(
δ[ℓ1 − ℓ2] + δ[ℓ1] + δ[ℓ2]

)
, (3.9)

where the second term is the bias b3[ℓ1, ℓ2]. Note that γ⟨a1Iω⟩ω is approximately the mean of the
micrograph since a1I ≈ a1Ĩ ≈ γ⟨a1Iω⟩ω. Therefore, we do not need prior knowledge of γ to e�ectively
debias the third-order autocorrelation.

3.4 Accounting for all in-plane rotations

We represent our autocorrelations using Prolate Spheroidal Wave Functions (PSWFs) [57]. As we
demonstrate below, this makes it easier to account for the fact that all in-plane rotations of the micro-
graphs are equally likely observations. The PSWFs are given in polar coordinates by1

ψk,q(r, φ) =

{ 1√
8π
αk,qRk,q(r)e

ιkφ, r ≤ 1,

0, r > 1,
(3.10)

1A di�erent normalization is used in [38].
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where k, q are integers with q ≥ 0, the range of k, q is determined by Eq. (8) in [38], the Rk,q are
a family of real, one-dimensional functions satisfying Rk,q = R|k|,q, and the αk,q are scaling factors
which will be de�ned in the next section. The PSWFs are orthogonal on the unit disk. Note that
ψ−k,q = ψk,q, hence, we only need to consider PSWFs with k ≥ 0 when expanding real images. As can
be seen from the de�nition of the PSWFs (3.10), the e�ects of rotations and re�ections on expansion
coe�cients of real images are, respectively, phase modulation and conjugation: this is why the PSWF
basis is called steerable [38, 67]. Using the steerability property, we will show that the second-order
autocorrelation, though two-dimensional, e�ectively only provides radial information. Similarly, the
4-D third-order autocorrelation truly only carries information along three dimensions. While there exist
alternative steerable bases, such as Fourier-Bessel [67], we chose to work with the PSWFs since they are
eigenfunctions of the truncated Fourier transform: a fact that we exploit later on.

We start with the second-order autocorrelation. For ℓ ∈ [−(P − 1), P − 1]2, let us de�ne

a2[k, q] =
∑
ℓ

a2I [ℓ]ψk,q[ℓ], (3.11)

where ψk,q[ℓ] := ψk,q(ℓ/(P − 1)) is a discretization of the PSWFs. Knowledge of these coe�cients is
essentially equivalent to knowledge of the second-order correlations owing to the following approximate
identity:

a2I [ℓ] ≈
∑
k,q

a2[k, q]ψk,q[ℓ]. (3.12)

This holds because the continuous PSWFs form an orthonormal basis, and their discretized counterparts
with indices (k, q) appropriately bounded as in [38] are (empirically) almost orthonormal. As a result,
for our purposes, the pair of equations above provides a basis expansion for the autocorrelations.

We now proceed to show that the coe�cients a2[k, q] can be computed from the micrographs directly.
By de�nition,

a2[k, q] =
∑
ℓ

a2I [ℓ]ψk,q[ℓ]

=
1

N2

∑
i

I[i]

(∑
ℓ

I[i+ ℓ]ψk,q[ℓ]

)
=

1

N2

∑
i

I[i]ak,q[i], (3.13)

where we de�ned,

ak,q[i] =
∑
ℓ

I[i+ ℓ]ψk,q[ℓ]. (3.14)

These coe�cients can be computed e�ciently. Indeed, consider a patch of the micrograph I centered
around pixel i and of size (2P−1)×(2P−1). This is exactly the patch indexed in the sum above. Hence,
using the same approximation as we did in (3.12), a direct expansion of that patch in the discretized
PSWFs yields the sought coe�cients:

I[i+ ℓ] ≈
∑
k,q

ak,q[i]ψk,q[ℓ]. (3.15)

Thus, we proceed as follows: for each position i in the micrograph I, we extract the corresponding
patch of size (2P − 1)× (2P − 1), expand it in the discretized PSWFs as in (3.15), and collect the ak,q
as per (3.13) to constitute the second-order autocorrelation of the micrograph.
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Following this formalism, and using the steerability property, it is now straightforward to account for
all in-plane rotations and re�ections of the micrograph. We have the following approximate expansions
for a patch rotated about its center i by an angle α:

Iα,+[i+ ℓ] ≈
∑
k,q

ak,qe
−ιkαψk,q[ℓ],

and the re�ection followed by a rotation by angle α:

Iα,−[i+ ℓ] ≈
∑
k,q

ak,qe
−ιkαψk,q[ℓ].

Averaging over all rotations of the patch I(i+∆i) and its re�ection we get

a2[k, q] =
1

N2

∑
i

I[i]
(

1

4π

∫ 2π

0

(ak,q[i] + ak,q[i]) e
−ιkα dα

)
= δ[k]

1

N2

∑
i

I[i]a0,q[i], (3.16)

where in the last equality we used that a0,q[i] is real since both I and ψ0,q are real valued (more generally,
a−k,q = ak,q). Thus, the second-order autocorrelation, though two-dimensional, e�ectively only provides
radial information.

We now follow a similar approach to estimate the bias term b2. Introduce the coe�cients b2 as:

b2[k, q] = σ2
∑
ℓ

δ[ℓ]ψk,q[ℓ]

= σ2ψk,q[0]

= δ[k]
σ2

√
2π
R0,q(0),

where we used the fact that the functions Rk,q are zero at the origin for k ̸= 0. With this de�nition, we
have the usual approximation:

b2[ℓ] = σ2δ[ℓ] ≈
∑
k,q

b2[k, q]ψk,q[ℓ].

We now turn our attention to the third-order autocorrelation. Following the same lines, we de�ne
the coe�cients:

a3[k1, q1; k2, q2] =
∑
ℓ1,ℓ2

a3I [ℓ1, ℓ2]ψk1,q1 [ℓ1]ψk2,q2 [ℓ2]

=
1

N2

∑
i

I[i]

(∑
ℓ1

I[i+ ℓ1]ψk1,q1 [ℓ1]

)(∑
ℓ2

I[i+ ℓ2]ψk2,q2 [ℓ2]

)

=
1

N2

∑
i

I[i]ak1,q1 [i]ak2,q2 [i],

where the patch expansion coe�cients ak,q are as de�ned in (3.14). The coe�cients a3[k1, q1; k2, q2] are
related to the third-order autocorrelation via the approximate identity:

a3I [ℓ1, ℓ2] ≈
∑
k1,q1
k2,q2

a3[k1, q1; k2, q2]ψk1,q1 [ℓ1]ψk2,q2 [ℓ2].
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Averaging over all rotations of I and its re�ection, we obtain

a3[k1, q1; k2, q2] =
1

N2

∑
i

I[i] 1
4π

∫ 2π

0

(
ak1,q1 [i]ak2,q2 [i] + ak1,q1 [i]ak2,q2 [i]

)
e−ι(k1−k2)αdα

= δ[k1 − k2]
1

N2

∑
i

I[i]ℜ{ak1,q1 [i]ak2,q2 [i]}. (3.17)

Thus, similarly to the second-order autocorrelation, averaging over all in-plane rotations reveals that
the 4-D third-order autocorrelation truly only carries information along three dimensions.

Finally, we treat the bias terms:

b3[k1, q1; k2, q2] = γσ2⟨a1Iω⟩ωδ[k1 − k2]

[
δ[q1 − q2] + δ[k1]

1

2π
(α0,q1 + α0,q2)R0,q1(0)R0,q2(0)

]
.

Thus,

b3[ℓ1, ℓ2] = γσ2⟨a1Iω⟩ω
(
δ[ℓ1 − ℓ2] + δ[ℓ1] + δ[ℓ2]

)
≈
∑
k1,q1
k2,q2

b3[k1, q1; k2, q2]ψk1,q1 [ℓ1]ψk2,q2 [ℓ2].

3.5 Connection to volume

Until now, we have established simple relations between the autocorrelations of the micrographs and
the autocorrelations of the projection images of the 3-D structure, and explained how to compute the
former. Now, we complete the picture by relating the latter to the 3-D structure itself.

Using the 2-D PSWFs and the Fourier slice theorem, we can express each projection (3.3) as

Îω(ck, θ) =
∑
N,n

bN,n(ω)ψN,n(k, θ),

where

bN,n(ω) =
4√

2π|αN,n|2

∫ 2π

0

∫ 1

0

Îω(ck, θ)RN,n(k)e
−ιNθk dk dθ,

=
∑

ℓ,m,m′,s

xℓ,m,s

[√
8π

αN,n

Y m′

ℓ (π/2, 0)

]
Dℓ

m′,m(ω)

(∫ 1

0

jℓ,s(k)RN,n(k)k dk

)(
1

2π

∫ 2π

0

eι(m
′−N)θ dθ

)
=
∑
|N |≤ℓ

∑
m,s

xℓ,m,sD
ℓ
N,m(ω)βℓ,s;N,n,

and the coe�cients

βℓ,s;N,n :=

{ √
8π

αN,n
Y N
ℓ (π/2, 0)

∫ 1

0
jℓ,s(k)RN,n(k)k dk, ℓ ≥ |N |

0, ℓ < |N |
, (3.18)

can be precomputed. The PSWFs are eigenfunctions of the truncated Fourier transform [38] and hence
satisfy

αN,nψN,n(k) =

∫
||r||2≤1

ψN,n(r)e
ιc(r·k)dr. (3.19)
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We can now express the projection in real space as

Iω(r, φ) =
∑
N,n

α̂N,nbN,n(ω)ψN,n(r, φ) (3.20)

=
Lmax∑
ℓ=0

ℓ∑
N,m=−ℓ

nmax(N)∑
n=0

S(ℓ)∑
s=1

xℓ,m,sβ̂ℓ,s;N,nD
ℓ
N,m(ω)ψN,n(r, φ),

where nmax(N) is chosen according to Eq. (8) in [38], αN,n is the eigenvalue corresponding to the (N, n)th
PSWF, α̂N,n = (c/2π)2αN,n, and β̂ℓ,s;N,n = α̂N,nβℓ,s;N,n.

3.5.1 First-order autocorrelation (the mean)

Since jℓ,s(0) = 0 unless ℓ = 0, and since Y0,0(θ, φ) = 1√
4π
, we conclude from (3.2) that

a1x = ⟨a1Iω⟩ω = ϕ̂(0) =
1√
4π

∑
s

x0,0,sj0,s(0). (3.21)

3.5.2 Second-order autocorrelation

The second-order autocorrelation is easier to derive directly in Fourier space, to avoid integration of
shifted PSWFs against centered ones. The relation between the second-order autocorrelation of the
micrographs and projection images of the volume is given in (3.8) and (3.16). The connection with
the expansion coe�cients of the volume can be derived in Fourier space directly from Kam's original
formula [30, Eq. (11)] by setting k1 = k2 to obtain,

〈
a2
Îω
(k, θ)

〉
ω
=

1

4π

∑
ℓ,m

∣∣∣∣∣∑
s

xℓ,m,sjℓ,s(k)

∣∣∣∣∣
2

=
1

4π

∑
ℓ,m
s1,s2

xℓ,m,s1xℓ,m,s2jℓ,s1(k)jℓ,s2(k),

where we used the fact that the normalized spherical Bessel functions jℓ,s are real.
As before, we want to derive the relation with respect to the PSWF coe�cients of the autocorrelation.

Hence, we expand the above in 2-D PSWFs by〈
a2
Îω
(k, θ)

〉
ω
=
∑
q

a2x(q)ψ0,q(k),

and conclude that

a2x[q] =
1√
8π

∑
ℓ,m
s1,s2

xℓ,m,s1xℓ,m,s2

∫ 1

0

jℓ,s1(k)jℓ,s2(k)R0,q(k)k dk. (3.22)

The integral on k is precomputed.

3.5.3 Third-order autocorrelation

In (3.9) and (3.17) we have shown how the third-order autocorrelations of the micrographs and the
projection images of the volume are related, and how we can represent them in PSWFs. Now, we relate
these expressions to the expansion coe�cients of the volume itself.
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The third-order autocorrelation of the volume can be expressed in terms of (3.20):

⟨a3Iω [ℓ1, ℓ2]⟩ω =
1

L2

∑
i

⟨Iω[i]Iω[i+ ℓ1]Iω([i+ ℓ2])⟩ω, (3.23)

≈ 1

L2

∑
N1,n1
N2,n2
N3,n3

⟨bN1,n1(ω)bN2,n2(ω)bN3,n3(ω)⟩ω
∑
i

ψN1,n1 [i]ψN2,n2 [i+ ℓ1]ψN3,n3([i+ ℓ2]),

where the approximation is due to discretization. Now,

⟨bN1,n1(ω)bN2,n2(ω)bN3,n3(ω)⟩ω =
∑

ℓ1,m1,s1
ℓ2,m2,s2
ℓ3,m3,s3

xℓ1,m1,s1xℓ2,m2,s2xℓ3,m3,s3

× ⟨Dℓ1
N1,m1

(ω)Dℓ2
N2,m2

(ω)Dℓ3
N3,m3

(ω)⟩ωβ̂ℓ1,s1;N1,n1 β̂ℓ2,s2;N2,n2 β̂ℓ3,s3;N3,n3 ,

where the latter coe�cients are given explicitly in (3.18). Using standard properties of Wigner-D
functions, we obtain〈

Dℓ1
N1,m1

(ω)Dℓ2
N2,m2

(ω)Dℓ3
N3,m3

(ω)
〉
ω
= (−1)N3+m3

(
ℓ1 ℓ2 ℓ3
N1 N2 −N3

)(
ℓ1 ℓ2 ℓ3
m1 m2 −m3

)
,

where
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)
are called Wigner 3-j symbols. Notably, these terms are zero unless m1+m2+

m3 = 0 and |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2. Thus, we conclude that

⟨bN1,n1(ω)bN2,n2(ω)bN3,n3(ω)⟩ω = δN3,N1+N2

∑
ℓ1,m1,s1
ℓ2,m2,s2

s3

min(L,ℓ1+ℓ2)∑
ℓ3=|ℓ1−ℓ2|

xℓ1,m1,s1xℓ2,m2,s2xℓ3,m1+m2,s3 (3.24)

× (−1)N1+N2+m1+m2

(
ℓ1 ℓ2 ℓ3
N1 N2 −N1 −N2

)
×
(

ℓ1 ℓ2 ℓ3
m1 m2 −m1 −m2

)
β̂ℓ1,s1;N1,n1 β̂ℓ2,s2;N2,n2 β̂ℓ3,s3;N1+N2,n3 .

Combining (3.24) with (3.23) provides the explicit relation between the third-order autocorrelation and
the volume.

Recall that we obtain the autocorrelations of the volume in PSWFs coe�cients; see (3.17). Hence,
to conclude the derivation we expand

⟨a3Iω [ℓ1, ℓ2]⟩ω =
∑
k,q1,q2

a3x[k, q1, q2]ψk,q1 [ℓ1]ψk,q2 [ℓ2],

where we only include the block-diagonal terms in the expansion; the rest are equal to zero. Let,

Ψℓ,N,s[ℓ] :=

nmax(N)∑
n=0

β̂ℓ,s;N,nψN,n[ℓ],

ρ
(k,q)
ℓ,N,s :=

∫
ℓ

Ψℓ,N,s([i+ ℓ])ψk,q(ℓ).
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Then, the �nal formula reads

a3x[k, q1, q2] =
∑

ℓ1,m1,s1
ℓ2,m2,s2

s3

min(L,ℓ1+ℓ2)∑
ℓ3=|ℓ1−ℓ2|

xℓ1,m1,s1xℓ2,m2,s2xℓ3,m1+m2,s3

× (−1)m1+m2

(
ℓ1 ℓ2 ℓ3
m1 m2 −m1 −m2

)
(3.25)

×
ℓ1∑

N1=−ℓ1

ℓ2∑
N2=−ℓ2

(−1)N1+N2

(
ℓ1 ℓ2 ℓ3
N1 N2 −N1 −N2

)
× 1

L2

∑
i

Ψℓ1,N1,s1 [i]ρ
(k,q1)
ℓ2,N2,s2

[i]ρ
(k,q2)
ℓ3,N1+N2,s3

[i].

In practice, the last two lines of the above expression for a3x[k, q1, q2] are precomputed, and both the
integration over i and over ℓ are performed on the grid of the images in the data set, to match the
integration performed on the actual images.

3.6 Recovering the volume from the autocorrelations of the micrographs

To estimate the coe�cients of the volume itself, we solve the least squares problem

min
x̃,γ̃

w1|a1x − γ̂a1x̃|2 + w2∥a2x − γ̃a2x̃∥22 + w3∥a3x − γ̃a3x̃∥2F, (3.26)

where the explicit expressions of a1x, a
2
x and a3x are given in (3.21), (3.22) and (3.25), respectively. In the

experiments, we set w1 = w2 = w3 = 1. We solve the least squares problem using Matlab's lsqnonlin
solver for nonlinear least squares problems with the trust-regions algorithm. The algorithm is initialized
by sampling the coe�cients from i.i.d. random Gaussians.

3.7 Complexity analysis

The computational complexity for the computation of the moments from the micrograph is O(KN2P 6),
since we have N2 patches that we extract from each of K micrographs. For each patch, we perform
an expansion in PSWFs with complexity O(P 3) [38], and then compute the autocorrelations dominated
by computation of the third-order autocorrelation as in (3.17) costing O(P 6). We note that computing
autocorrelations can be executed e�ciently on CPUs and GPUs, and in parallel across micrographs. It
can even be done in a streaming mode, as only one pass through each micrograph is necessary. The
complexity of evaluating the third-order autocorrelation using (3.25) after the precomputation takes
O(BP 6), where B is the number of entries in the third-order autocorrelation. Since B = O(P 3), the
total complexity for evaluating the third-order autocorrelation is O(P 9). That is because, if the number
of volume expansion coe�cients is V = O(P 3), the dominant step can be written as a matrix-vector
multiplication with a matrix of size BV × V and a vector V × 1, so the cost is BV 2 = O(P 9). The
complexity of solving the least squares problem (3.26) is O(TP 9), where T is the number of iterations
required for the optimizer to converge, since the third-order autocorrelation evaluation dominates the
cost of each iteration. The optimizer terminates when the norm of the gradient of the cost function
in (3.26) decreases below 10−6 or the number of iterations exceeds 104.
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4 Numerical experiments

The technique we advocate allows recovery of a 3-D structure from its tomographic projections hidden
in noisy micrographs without detecting their locations. To illustrate the underlying principles of the
method, we present several simple proof-of-concept results for simulated cryo-EM data.2 We �rst present
numerical results, and then provide additional technical details.

Numerical results. Figure 2 shows recoveries of the 3-D volumes from the clean autocorrelations and
from 300 noisy micrographs of size 74202. The experiments were conducted on the Bovine Pancreatic
Trypsin Inhibitor (BPTI) and the TRPV1 molecules (see technical details at the end of this section). In
the experiments, we de�ne SNR as SNR = var(I)

σ2 , where var(I) is the variance of our stack of micrographs
and σ2 is the variance of noise. The noise level in Figure 3 was SNR = 1/16 for the TRPV1 micrographs
and SNR = 1/64 for the BPTI micrographs. We present excerpts from noisy micrographs side-by-side
with the corresponding clean ones in Figure 3. Figure 4 presents the Fourier shell correlation curves.

Numerical evidence suggests that autocorrelations up to order three, together, uniquely determine
the 3-D volume (see also [6, 18] for statistical analysis of closely-related models). Unfortunately, the map-
ping between the autocorrelations and volume seems to be ill-conditioned, preventing high-resolution
recovery from noisy data. For the TRPV1 reconstruction, the optimizer converged to an estimator with
relative ℓ2 error of 10−6 in the �rst three autocorrelations and an error of 10−1 in the expansion coe�-
cients of the volume. For the BPTI reconstruction, the errors in the autocorrelations were 10−6, 10−7

and 10−8 for the third, second and �rst autocorrelations, respectively, while the error in the expansion
coe�cients of the volume was 5 × 10−2. This illustrates the ill-conditioning of the map between the
volume and its �rst three autocorrelations that prevents us from obtaining high-resolution results from
noisy data. In the next section, we outline how we suggest overcoming the ill-conditioning in future
work.

While we cannot provide a high-resolution 3-D reconstruction from noisy data with the current
algorithm, our method can be easily applied to the problem of deciding whether a micrograph contains
projections or merely pure noise�a problem considered in classical works in statistics [16] and cryo-
EM [27]. This task can be performed by considering solely the recovered γ (the fraction of pixels occupied
by projections in the micrograph), estimated as part of the recovery algorithm. Speci�cally, for this
experiment, we used 25 micrographs of size 74202, and the LS problem (3.26) was solved assuming the
spherical harmonic cuto� for the volume is Lmax = 0, which is su�cient to recover a signi�cant γ̂ in the
presence of projections in the micrograph.

Figure 5 presents excerpts of two noisy micrographs, only one of which contains projections. The
noise level corresponds to SNR = 1/1024. In the presence of projections, the estimated γ was 0.12,
corresponding to approximately 6784 projections. On the other hand, the estimated γ drops to 10−5

for the pure noise micrograph, corresponding to less than one projection.

More technical details. The true volume used in the experiments in Figures 5 and 2b was the Bovine
Pancreatic Trypsin Inhibitor (BPTI) mutant with altered binding loop sequence, whose atomic model
is available in the Protein Data Bank (PDB) as 1QLQ.3 We generated an EM map from this atomic
model in UCSF Chimera [47] at a resolution of 5 Å, and cropped it to remove zeros at the boundary
to obtain a volume of size 313. For the experiment in Figure 2b, the volume was downsampled to size
203. For the experiment in Figure 2a, we used the TRPV1 in complex with DkTx and RTX, whose
EM map is available in the Electron Microscopy Data Bank (EMDB) as EMD-8117.4 The original map

2The code to generate all �gures is publicly available in https://github.com/PrincetonUniversity/

BreakingDetectionLimit.
3https://www.rcsb.org
4http://www.ebi.ac.uk/pdbe/emdb
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has size 1923, and was downsampled to size 203. To generate the ground truth for our reconstructions,
we expanded both volumes as in (3.2) with cuto� Lmax = 5 for TRPV1 and Lmax = 2 for BPTI. Each
volume is described by

∑Lmax

ℓ=0 (2ℓ+ 1)S(ℓ) coe�cients using the expansion (3.2), where the cuto�s S(ℓ)
are determined using the Nyquist criterion as in [15].

The micrographs for the experiments were generated as follows. We sample rotation matrices from
SO(3) uniformly at random using the QR-based algorithm described in [59], and generate the projection
of the volume corresponding to that rotation matrix using ASPIRE [1]. The projections for the experi-
ments were obtained from the smoothed volumes, not the original ones, to ensure that the only sources
of error are the noise and our ability to invert the moments via (3.26). We keep track of the indices at
which the upper left corner of a projection can be placed without violating the separation condition,
so all projections are separated by at least P − 1 pixels in each dimension, where the projections are
contained in a box of size P ×P . The location of the upper left corner of each new projection is picked
uniformly at random from the set of available indices. We continue adding projections to the micrograph
until no more projections can be added without violating the separation condition.

The experiments were performed on a machine with 40 cores of Intel Xeon E5-2698 v4 @ 2.20GHz
with 100 GB of RAM, and took 2 hours per reconstruction. The computation of the moments from
each micrograph was performed on a machine with 4 nVidia P100 GPUs with 16 GB of memory each
and with 100 GB of RAM. It took 3 minutes per micrograph of size 74202 to compute the �rst three
autocorrelations.

(a) TPRV1 with cuto� Lmax = 5 (b) BPTI with cuto� Lmax = 2

Figure 2: Reconstructions from the �rst, second and third order autocorrelations. The ground truth
volumes were expanded according to (3.2) with cuto� Lmax. The original molecules are shown in purple
and the (smoothed) ground truths in blue to illustrate the smoothing e�ect of our downsampling and
truncation of the spherical harmonics expansion. The reconstructions from clean autocorrelations are
shown in yellow, and recoveries from autocorrelations estimated from noisy data in gray. For the noisy
experiments, we used 300 micrographs with SNRs of 1/16 for TRPV1 and 1/64 for BPTI. We present
excerpts from noisy micrographs side-by-side with the corresponding clean ones in Figure 3.

5 Discussion

In this paper, we showed that, in principle, it is possible to estimate a 3-D structure from micrographs,
without detecting its projections. Our strategy is to compute autocorrelations of the micrographs and
to relate these statistics to the unknown volume's parameters. Recovering the parameters from the
statistics reduces to solving a set of polynomial equations. Crucially, the outlined approach involves
no particle picking, hence it might be possible to reconstruct small molecules, particularly, molecules
that are too small to be detected in micrographs. In pursuing this research direction, our goal is to
signi�cantly increase the range of molecules to which cryo-EM can be successfully applied. Concerns
for model bias are also greatly reduced since no template matching is involved. We recognize that
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(a) (b) (c) (d)

Figure 3: Excerpts of size 250×250 from the noisy micrographs used for the reconstructions in Figure 2
and the corresponding clean excerpts. (a) Excerpt of the clean TRPV1 micrograph; (b) Excerpt of the
noisy TRPV1 micrograph with SNR = 1/16; (c) Excerpt from the clean BPTI micrograph; (d) Excerpt
from the noisy BPTI micrograph with SNR = 1/64.
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Figure 4: Fourier Shell Correlations (FSCs) for the noisy reconstructions presented in Figure 2. The
FSC measures the normalized cross-correlation between the recovered 3-D structure and the (smoothed)
ground truth 3-D structure over corresponding shells in Fourier space (i.e., as a function of spatial
frequency). The resolution is determined as the frequency where the FSC curve drops below 0.5. This
is the standard resolution measure in the cryo-EM literature. (a) FSC for the TRPV1 reconstruction,
giving resolution of 24Å; (b) FSC for the BPTI reconstruction, giving resolution of 13Å.

signi�cant challenges lay ahead for the implementation of the proposed approach to high-resolution 3-D
reconstruction directly from the micrographs. We discuss a few now.

The numerical experiments we have performed reveal that the third-order autocorrelation may not
be enough for 3-D reconstruction in practice, due to high sensitivity. One possible remedy might be
adding priors to the least squares problem (3.26). For example, one can use data-driven or sparsity
aware priors [32, 52, 62, 13, 11], or priors based on the statistical properties of typical proteins [55, 21].
Alternatively, this suggests that fourth-order autocorrelation may be necessary. This in turn would
imply that the procedure might require a large amount of data. Recent trends in high-throughput
cryo-EM technology give hope that this may be a lesser concern in the long term. Still, large amounts
of data also require large amounts of computation.

To reach high-resolution reconstruction, beyond data acquisition and computational challenges, there
are modeling issues to consider. In contrast to the simplifying assumptions we have made above, the
noise might be colored; the viewing directions of the particles may be distributed non-uniformly; there
may be conformational heterogeneity; particles generally do not satisfy our separation condition; and
micrographs undergo a contrast transfer function which we have omitted. We believe that these as-
pects can be handled with the same general strategy: establish a forward model relating the expected
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(a) An excerpt of the pure noise

micrograph

(b) An excerpt of the clean mi-

crograph in the right panel per-

turbed by the noise in the left

panel.

(c) An excerpt of the clean micro-

graph

Figure 5: All micrographs are of size 74202 pixels and the projections are taken from the BPTI
molecule of size 313. The added noise was drawn from i.i.d. Gaussian distribution with zero mean and
standard deviation 25, corresponding to an SNR below 1/1024. The noise realization is identical in
both micrographs.

autocorrelations of the micrographs to the target volume(s) and all parameters necessary to model the
above e�ects. The e�ect of many of these aspects was recently studied in the context of the multi-target
detection problem, which can be interpreted as a simpli�ed model of the problem considered in this
paper [10, 44, 12, 37]. For example, it was shown that the strict separation condition can be replaced by
a parameterized pair-correlation function [36, 34]. Such a function models the distribution of distances
between neighboring projections. The observed autocorrelations depend linearly on these parameters,
which could be estimated as part of the inverse problem. In addition, alternative computational strate-
gies to autocorrelation analysis, such as approximate expectation-maximization [36, 35], GAN-based
techniques [23], and generalized autocorrelation analysis [2, 63], were developed. We believe that these
techniques can be adapted to recovering molecular structures directly from the micrographs, and per-
haps to alleviate some of the computational challenges. We hope to take care of these issues in future
research.

In addition, our technique allows the use of much lower defocus values (a parameter controlled by the
user, and which a�ects the microscope's point spread function). Lower defocus means lower contrast,
but also maintains higher frequency information. Consequently, we may be able to get high resolution
reconstructions from fewer micrographs.

From the information-theoretic perspective, it is essential to understand the sample complexity of the
problem: how many particle projections are required to estimate the 3-D structure to a desired accuracy?
In the closely-related model of multi-reference alignment, it was shown that in the �nite-dimensional,
low SNR regime, the sample complexity is governed by the moments [46, 6, 4, 3]. If the same is true for
our problem, and since we believe that the third-order autocorrelation su�ces to determine uniquely
the 3-D structure, this will imply that N = ω(σ6) is a necessary condition for accurate recovery (for a
�xed γ > 0). If the dimension of the problem is high (many parameters are required to describe the 3-D
structure), the sample complexity of multi-reference alignment is no longer controlled by the moments,
but by the ratio between the dimension and the noise level [48]; we believe a similar phenomenon will
hold true for the problem studied in this paper.
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A Proof of Proposition 2.1

The proof is based on a variant of the Neyman-Pearson Lemma to derive the best (deterministic)
estimator η̂. Take any deterministic estimator η̂ = η̂(X), with values in {0, 1}; then η̂ is characterized
by S, de�ned to be the set of X's where η̂ = 1. We write Probi to mean the probability conditional on
the event η = i; that is, Probi[A] = Prob[A|η = i]. Then, the probability that η̂ fails is:

Prob[η̂ ̸= η] = qProb0[η̂ = 1] + (1− q)Prob1[η̂ = 0]

= qProb0[η̂ = 1] + (1− q)(1− Prob1[η̂ = 1])

= qProb0[η̂ = 1] + (1− q)− (1− q)Prob1[η̂ = 1]

= (1− q) +

∫
S

(qf0(x)− (1− q)f1(x))dx, (A.1)

where fi(x) is the normal density with mean θi and variance σ2. The best estimator of η based on
X minimizes the failure probability; hence, it minimizes the integral in (A.1) through an appropriate
choice of the set S. This is achieved by picking all x's such that the integrand is nonpositive:

S = {x : qf0(x)− (1− q)f1(x) ≤ 0} .
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With Λ(x) = f0(x)/f1(x) and b = (1− q)/q, the corresponding estimator is:

η̂ =

{
1 if Λ(x) ≤ b,

0 if Λ(x) > b.

Taking logarithms, the set S can be rewritten as the set of x's where:

−∥x− θ0∥2 ≤ −∥x− θ1∥2 + 2σ2 log(b),

or equivalently

⟨x, θ1 − θ0⟩ ≥
∥θ1∥2 − ∥θ0∥2

2
− σ2 log(b).

Now let us compute the probability of failure conditional on the event η = 0. In this case, failure occurs
when X ∈ S. Since X|(η = 0) ∼ N(θ0, σ

2), we can write X|(η = 0) = σZ + θ0, where Z ∼ N(0, I). On
that condition,

⟨X, θ1 − θ0⟩ = σ⟨Z, θ1 − θ0⟩+ ⟨θ0, θ1 − θ0⟩
= σ⟨Z, θ1 − θ0⟩+ ⟨θ0, θ1⟩ − ∥θ0∥2,

and failure occurs when

σ⟨Z, θ1 − θ0⟩ ≥
∥θ1∥2 + ∥θ0∥2

2
− ⟨θ0, θ1⟩ − σ2 log(b) =

1

2
∥θ1 − θ0∥2 − σ2 log(b).

De�ne Y = ⟨Z, θ1 − θ0⟩ ∼ N(0, ∥θ1 − θ0∥2) and divide through by σ. The above event is equivalent to:

Y ≥ c

σ
− σ log(b),

where c = ∥θ1 − θ0∥2/2. For simplicity, let us assume ∥θ1 − θ0∥ = 1, so that Y ∼ N(0, 1). Then,

Prob0[η̂ = 1] = Prob
[
Y ≥ c

σ
− σ log(b)

]
, Y ∼ N(0, 1).

Similarly,

Prob1[η̂ = 0] = Prob
[
Y ≥ c

σ
+ σ log(b)

]
, Y ∼ N(0, 1).

Thus, the overall probability of failure is:

Prob[η̂ ̸= η] = qProb
[
Y ≥ c

σ
− σ log(b)

]
+ (1− q)Prob

[
Y ≥ c

σ
+ σ log(b)

]
.

Now, if q = 1/2, then log(b) = 0. Hence the probability of failure is simply:

Prob
[
Y ≥ c

σ

]
−→ 1

2
= q as σ → ∞.

If q > 1/2, then q > 1− q and log(b) < 0. Consequently,

Prob
[
Y ≥ c

σ
− σ log(b)

]
−→ 0,

while

Prob
[
Y ≥ c

σ
+ σ log(b)

]
−→ 1,

as σ → ∞. Hence,

Prob[η̂ ̸= η] −→ 1− q as σ → ∞.

That is, the probability of success converges to q. Finally, if q < 1/2, then log(b) > 0 and a similar
reasoning shows the probability of success converges to 1− q. In all cases, the probability of success of
the best possible deterministic estimator converges to max(q, 1− q).
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