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Abstract

We study a family of distances between functions of a single variable. These distances are examples of
integral probability metrics, and have been used previously for comparing probability measures. Special
cases include the Earth Mover’s Distance and the Kolmogorov Metric. We examine their properties for
general signals, proving that they are robust to a broad class of perturbations and that the distance
between one-dimensional tomographic projections of a two-dimensional function is bounded by the size
of the difference in projection angles. We also establish error bounds for approximating the metric from
finite samples, and prove that these approximations are robust to additive Gaussian noise. The results
are illustrated in numerical experiments.

1 Introduction

Many tasks in statistics and machine learning require specification of a metric to measure the distance
between two data vectors. For example, typical methods for clustering will attempt to group points together
that are close and separate points that are far, where “close” and “far” are determined by a certain metric
or similarity measure [48, 56, 2]. The specification of the metric can alter the effectiveness of such methods.
A good metric will be robust to noise and to irrelevant perturbations of the input data, so that only the
“meaningful” characteristics of each data vector inform the distance.

A popular class of metrics, typically used for comparing two probability measures, are called integral
probability metrics, also known as maximum mean discrepancies [26, 14, 5, 41, 38, 3, 54]; if g and h are
defined on a measure space X , these distances are given by

dF (g, h) = sup
F∈F

ˆ
X
F (x)(g(x)− h(x))dx, (1)

where F is a specified class of test functions. (Of course, this may also be well-defined if g and h are not
probability measures, which is the perspective we will take in this paper.)

One of the most widely-used examples of a metric of the form (1) is the Earth Mover’s Distance (EMD)
for comparing probability distributions g and h, applicable when X is a metric space. Informally, the EMD
between g and h is equal to the minimal cost of transforming g into h by rearranging the mass, where the
cost is determined by the metric on X [57, 58]. EMD and other related distances, such as the p-Wasserstein
distance, are popular metrics in machine learning and statistical applications [44, 50, 13, 45, 49, 34, 10, 47,
40, 15, 39]. It is a consequence of the Kantorovich-Rubinstein Theorem [27, 18, 36, 37, 20] that the EMD
between g and h is equal to the distance (1) when F is the set of 1-Lipschitz functions.

Despite their applicability to a wide range of problems, many fundamental properties of these metrics
are not well understood. The present work is an attempt to further elucidate their properties. We are most
directly inspired by two results that are known to hold for Wasserstein distances. The first result, which is
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proven in [33], states that if there is a smooth bijection ϕ : X → X and

g(x) = h(ϕ(x))
dϕ

dx
(x), (2)

(where dϕ
dx (x) is the Radon-Nikodym derivative of ϕ), then

W1(g, h) ≤ sup
x∈X

dX (x, ϕ(x)), (3)

where W1 denotes the EMD, or 1-Wasserstein distance. Informally, (3) tells us that the EMD is robust to
“small” perturbations of the data, where the “size” of a perturbation is the maximum distance that any
point in the domain may be moved.

A result in the recent paper [46] suggests that the p-Wasserstein distance Wp is natural to use for
clustering tomographic projection images that arise from cryo-electron microscopy (cryo-EM), a technique
for molecular reconstruction that is increasingly used in structural biology [52, 7, 17]. Suppose g and h are
functions of two variables that are each projections of a common three-dimensional volume f ; that is,

g(x, y) =

ˆ
R
f(Rg(x, y, z))dz, (4)

where Rg is an orthogonal transformation; and similarly for h. Then [46] proves that

min
R∈SO(2)

Wp(g, h ◦R) ≤ θ(Rg, Rh), (5)

where θ(Rg, Rh) is the angle between the projection directions of Rg and Rh.
These results raise two natural sets of questions, which motivate the content of this paper. First, are the

stability properties (3) and (5) unique to Wasserstein distances, or are there other families of metrics that
exhibit similar properties?

Second, are there additional stability properties that have not yet been identified? There are two partic-
ularly interesting questions that arise in the context of cryo-EM. The first of these is robustness to hetero-
geneity. Cryo-EM datasets may contain projection images from multiple 3D volumes, either from different
molecules or a single molecule in different conformations [60, 22, 35, 4, 31, 51, 55, 32]. When comparing
two such projection images, it would be desirable for the distance metric to be bounded by the size of the
distortion between the volumes.

Another potentially desirable property is robustness to additive noise. Again, this is of particular signifi-
cance in the tomographic applications described in [46], since images from cryo-EM are typically very noisy.
To even make sense of the question of noise, however, one must move away from comparing only probability
measures, and allow for signals with unequal mass and negative values.

In this paper, we provide precise answers to these questions, in the simple setting of functions of a single
variable. We study a certain family of metrics between single-variable functions on an interval. These metrics
are induced by norms, denoted by ‖f‖V p , which are the p-norms of the Volterra operator (i.e. the indefinite
integral operator) applied to f . As is known, these metrics may be written in the form (1) by taking F
to be the space of functions whose derivative is in Lp/(p−1); see Proposition 3.1 below. We call the norm
‖ · ‖V p the Volterra p-norm, and its induced metric the Volterra p-distance. The Volterra distances have
been used previously for comparing probability measures on the real line [41, 38]. We also consider a discrete
approximation ‖f‖νp for vectors f of samples of f on an equispaced grid.

We show that the Volterra p-distances exhibit robustness properties analogous to (3) and (5), while also
being robust to 2D perturbations and additive noise. We remark that, while our results on distances between
projections are applicable to 2D tomography, they may still give insights into 3D tomography, analogous to
those gleaned from the study of multi-reference alignment [9, 8, 6, 43, 1].

The main results of the paper are summarized as follows:

• Robustness to 1D perturbations. The Volterra distances are robust to integral-preserving changes
of variable. That is, the distance ‖f − f̃‖V p between a function f and a perturbation f̃ of f is bounded
by a certain measure of the size of the perturbation.
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• Robustness to changes in projection angle. The Volterra distance between two one-dimensional
projections of a two-dimensional function is bounded by the size of the difference in projection angles.

• Robustness to 2D perturbations. The Volterra distance between two one-dimensional projections
of a two-dimensional function and its perturbation is bounded by the size of the perturbation.

• Convergence of the discrete norm. For a broad class of functions f , the discrete norm ‖f‖νp of a
vector f of samples of f taken on an equispaced grid converges to ‖f‖V p .

• Robustness to noise. The discrete norm ‖Z‖νp of a noise vector Z vanishes as n→∞, whereas the
discrete norm of a signal vector converges to the corresponding continuous norm. In particular, the
discrete norm of a noisy, sampled function converges to the norm of the noiseless function.

The remainder of the paper is structured as follows. In Section 2, we review basic terminology and
notation. In Section 3, we formally define the Volterra p-norms and prove a general stability result that
will be useful in the proofs of the main results. In Section 4, we study the robustness of the Volterra
norms. More specifically, in Section 4.1, we prove robustness to one variable perturbations; in Section 4.2 we
prove robustness to changes in tomographic projection direction; in Section 4.3, we prove robustness to two
variable perturbations; in Section 4.4, we analyze the approximation error of the approximate norms based
on function samples; in Section 4.5, we analyze the behavior of the discrete norm in the presence of additive
noise. In Section 5, we present the results of numerical experiments. Section 6 contains detailed proofs of
the main results. Section 7 provides a brief summary and conclusion.

2 Preliminaries

This section introduces the basic definitions and notation that will be used in the rest of the paper. Proofs
of most of the results stated here may be found in, for example, [21]. Familiarity with basic concepts of
measure and integration will be assumed. Throughout, a < b will denote arbitrary real numbers.

2.1 The Lebesgue p-norms

Let f : [a, b]→ R be any measurable function. For any value p ∈ [1,∞), the p-norm is defined as follows:

‖f‖Lp([a,b]) =

(ˆ b

a

|f(x)|pdx
)1/p

. (6)

For p =∞, we define

‖f‖L∞([a,b]) = ess sup
a≤x≤b

|f(x)|. (7)

When a and b are clear from the context, we will just write ‖f‖Lp for brevity. We denote by Lp = Lp([a, b]) the
set of all functions f on [a, b] with ‖f‖Lp([a,b]) <∞. As is well-known, ‖f‖Lp([a,b]) ≤ ‖f‖Lq([a,b])(b−a)1/p−1/q

if p ≤ q; in particular, Lp([a, b]) ⊂ Lq([a, b]) for p ≤ q.
We define the inner product between two real-valued functions on [a, b] as follows:

〈f, g〉 =

ˆ b

a

f(x)g(x)dx. (8)

We also define the p-norm ‖x‖`p for vectors x in Rn. When p <∞,

‖x‖`p =

 1

n

n∑
j=1

|xj |p
1/p

, (9)

and when p =∞,

‖x‖`∞ = max
1≤k≤n

|xk|. (10)

Note the normalization by n when p <∞. With this convention, ‖x‖`p ≤ ‖x‖`q whenever p ≤ q.
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2.2 Absolute continuity

A function G on [a, b] is said to be absolutely continuous if it can be written as

G(x) = G(a) +

ˆ x

a

g(t) dt (11)

for a function g in L1([a, b]). If G is absolutely continuous, then it is differentiable almost everywhere, and
G′ = g where the derivative exists. We denote by A0 the set of absolutely continuous functions G satisfying
G(b) = 0; these functions may be written as

G(x) = −
ˆ b

x

g(t) dt (12)

where g = G′ almost everywhere. For brevity, whenever G is in A0, G′ will denote any function such that

G(x) = −
´ b
x
G′(t) dt.

The following result is standard (e.g., see Section 3.5 of [21]):

Theorem 2.1 (Integration-by-parts). If F and G are absolutely continuous functions on [a, b], then

ˆ b

a

(F ′(x)G(x) + F (x)G′(x))dx = F (b)G(b)− F (a)G(a). (13)

2.3 The Volterra operator

The Volterra operator V is defined on L1([a, b]) by

(Vf)(x) =

ˆ x

a

f(t)dt. (14)

We note that this is only the simplest of a large family of operators that have been widely studied [25]. Note
that if f is in L1([a, b]), Vf is in L∞, with ‖Vf‖L∞ ≤ ‖f‖L1 ; furthermore, Vf is, by definition, absolutely
continuous when f is in L1([a, b]).

The adjoint transform V∗ is given by

(V∗f)(x) =

ˆ b

x

f(t)dt. (15)

This operator satisfies

〈Vf, g〉 = 〈f,V∗g〉 (16)

where f and g are two functions in L1([a, b]).

3 The Volterra p-norms

3.1 The continuous Volterra norm

Let f be in L1([a, b]). For any value p ∈ [1,∞], we define the following norm, which we will refer to as the
Volterra p-norm:

‖f‖V p = ‖Vf‖Lp . (17)

Concretely, when p <∞,

‖f‖V p =

(ˆ b

a

∣∣∣∣ˆ x

a

f(t)dt

∣∣∣∣p dx
)1/p

, (18)
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and when p =∞,

‖f‖V∞ = ess sup
a≤x≤b

∣∣∣∣ˆ x

a

f(t)dt

∣∣∣∣ . (19)

Note that, because Vf is in Lp([a, b]), the Volterra p-norm of f is finite for any function f in L1([a, b]). If f
and g are two functions in L1([a, b]), we will refer to ‖f − g‖V p as the Volterra p-distance between f and g.

Remark 1. When p = ∞ and f and g are two probability densities, the Volterra ∞-distance is known as
the Kolmogorov Metric between f and g [24]: KM(f, g) = ‖f − g‖V∞ . The KM arises in the context of
goodness-of-fit testing in statistics [23].

Remark 2. When p = 1 and f and g are two probability densities, the Volterra 1-distance is known as the
Earth Mover’s Distance between f and g [57, 58]: EMD(f, g) = ‖f − g‖V 1 . The metric EMD(f, g) may be
defined equivalently as the solution to a transportation problem:

EMD(f, g) = min
Π∈M(f,g)

ˆ b

a

ˆ b

a

|x− y|Π(x, y)dxdy (20)

where M(f, g) denotes the space of all probability measures on [a, b]× [a, b] with marginals equal to f and
g, respectively. That is, Π ∈M(f, g) if for all x,

ˆ b

a

Π(x, y)dy = f(x), (21)

and for all y,

ˆ b

a

Π(x, y)dx = g(y). (22)

The p-Wasserstein distance Wp(f, g) is defined as

Wp(f, g) = min
Π∈M(f,g)

(ˆ b

a

ˆ b

a

|x− y|pΠ(x, y)dxdy

)1/p

. (23)

It is known [50] that Wp(f, g) may be written as follows:

Wp(f, g) = ‖(Vf)−1 − (Vg)−1‖Lp (24)

where (Vf)−1 and (Vg)−1 denote the functional inverses of Vf and Vg, respectively. When p = 1, it is also
true that W1(f, g) = ‖Vf − Vg‖L1 = ‖f − g‖V 1 ; when p > 1, however, the p-Wasserstein distance Wp(f, g)
is generally not equal to the Volterra p-distance ‖Vf − Vg‖V p .

3.2 Variational formulation of ‖f‖V p

The following result is an alternate formulation of the Volterra norm that will be useful for analysis. It
essentially appears as Theorem 1 in [38]; we provide a self-contained proof for the reader’s convenience.

Proposition 3.1. Let p ∈ [1,∞] and let q be the conjugate exponent:

1

p
+

1

q
= 1. (25)

Then for any function f in L1([a, b]),

‖f‖V p = sup
G∈A0:‖G′‖Lq≤1

〈f,G〉. (26)
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Proof of Proposition 3.1. By duality of Lp and Lq, we have:

‖f‖V p = ‖Vf‖Lp = sup
g:‖g‖Lq≤1

ˆ b

a

(Vf)(x)g(x)dx = sup
g:‖g‖Lq≤1

〈Vf, g〉 = sup
g:‖g‖Lq≤1

〈f,V∗g〉. (27)

Any function of the form V∗g is contained in A0, and any function G in A0 is of the form G = V∗g where
g = G′ almost everywhere. Consequently:

‖f‖V p = ‖Vf‖Lp = sup
g:‖g‖Lq≤1

〈f,V∗g〉 = sup
G∈A0:‖G′‖Lq≤1

〈f,G〉, (28)

which completes the proof.

As a corollary, we derive the following general stability result:

Corollary 3.2. Let p ≥ 1. Let I ⊆ [a, b] be a subinterval, and suppose T : L∞([a, b]) → L∞([a, b]) is a
linear transformation that maps L1([a, b]) to L1([a, b]) and satisfies

‖(T ∗(G)−G)χI‖Lq ≤ ε‖G′‖Lq (29)

for all functions G in A0. Then for all functions f in Lp([a, b]) supported on I,

‖T (f)− f‖V p ≤ ε‖f‖Lp . (30)

Proof. Since 〈T (f) − f,G〉 = 〈f, T ∗(G) − G〉 = 〈fχI , T ∗(G) − G〉 = 〈f, (T ∗(G) − G)χI〉, from Hölder’s
inequality we have:

‖T (f)− f‖V p = sup
G∈A0:‖G′‖Lq≤1

〈T (f)− f,G〉

= sup
G∈A0:‖G′‖Lq≤1

〈f, (T ∗(G)−G)χI〉

≤ sup
G∈A0:‖G′‖Lq≤1

‖f‖Lp‖(T ∗(G)−G)χI‖Lq

≤ ε‖f‖Lp , (31)

completing the proof.

3.3 Trapezoidal rule approximation to ‖f‖V p

Suppose f is a function on [a, b], and we are given samples of f on an equispaced grid of points in [a, b], from
which we wish to approximate ‖f‖V p . That is, let a0 < a1 < · · · < an be equispaced points in [a, b] defined
by

ak = a+
k

n
(b− a), 0 ≤ k ≤ n. (32)

Note that a0 = a and an = b. We suppose we are given the values of f(aj), 0 ≤ j ≤ n, or possibly noisy
estimates of these, and wish to approximate ‖f‖V p .

To this end, we introduce some convenient notation. If v is a vector in Rn+1 and 1 ≤ p <∞, we define
the norm

‖v‖τp =

(
b− a
n

n−1∑
k=1

|v[k]|p +
b− a
2n
|v[0]|p +

b− a
2n
|v[n]|p

)1/p

. (33)

When p =∞, we define

‖v‖τ∞ = max
0≤k≤n

|v[k]| . (34)
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If F is a function on [a, b] and v is a vector with entries v[k] = F (ak), 0 ≤ k ≤ n, then ‖v‖τp is the
trapezoidal rule approximation to ‖F‖Lp when 1 ≤ p <∞, and ‖v‖τ∞ is an approximation to ‖F‖L∞ .

It will be convenient to introduce the following notation for working with the trapezoidal rule. If v if a
vector in Rn+1, we define

trap∑
0≤k≤n

v[k] ≡
n−1∑
k=1

v[k] +
1

2
v[0] +

1

2
v[n]. (35)

For instance, when 1 ≤ p <∞, we may write

‖v‖τp =

b− a
n

trap∑
0≤k≤n

|v[k]|p
1/p

. (36)

Suppose n is a positive integer. We define the following discrete Volterra operator V : Rn+1 → Rn+1 on
a vector x by (Vx)[0] = 0, and

(Vx)[k] =
b− a
n

k−1∑
j=1

x[j] +
b− a
2n

x[0] +
b− a
2n

x[k], 1 ≤ k ≤ n. (37)

We then define the discrete Volterra p-norm of x as

‖x‖νp = ‖Vx‖τp . (38)

The interpretation of this quantity may be understood as follows. Suppose f is a function on [a, b], and
a0 < a1 < · · · < an are equispaced points in [a, b], as in (32). Let f be the vector in Rn+1 with entries
f [k] = f(ak), for 0 ≤ k ≤ n. Then (Vf)[k] is the trapezoidal rule approximation to (Vf)(ak), and ‖f‖νp
approximates ‖f‖Vp

. The approximation error will be described in Section 4.4.

4 Properties of the Volterra p-norms

4.1 One-dimensional perturbations

As a consequence of Corollary 3.2, we will show that if f and f̃ are two functions on [a, b] related by a
perturbation, then their distance ‖f − f̃‖V p is bounded by the size of the perturbation. More precisely, we
have the following result:

Theorem 4.1. Suppose f ∈ Lp is supported on an interval I. Let ϕ : J → I be continuously differentiable
and monotonically increasing, with I = ϕ(J). Let fϕ(x) = f(ϕ(x))ϕ′(x) on J , and 0 otherwise. Suppose
I ∪ J ⊂ [a, b]. Then

‖f − fϕ‖V p ≤ min
{
ε · C(f, ϕ, p), ε1/p · ‖f‖L1

}
, (39)

where

ε = max
x∈J
|x− ϕ(x)|, (40)

and

C(f, ϕ, p) = min{‖f‖Lp , ‖fϕ‖Lp}. (41)

The proof of Theorem 4.1 is contained in Section 6.1.

Remark 3. The special case of Theorem 4.1 in which p = 1 follows from Proposition 14 in [33].
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Remark 4. A special case of Theorem refthm:perturbation may be described as follows. Suppose f in
Lp([a, b]) is supported on a subinterval I ⊂ [a, b]. Let ε > 0 and J = {x + ε : x ∈ I} ⊂ [a, b], and let fε be
the shift of f by ε; that is,

fε(x) =

{
f(x− ε), if x ∈ J
0, otherwise

. (42)

Then for all p ∈ [1,∞], ‖f − fε‖V p ≤ min
{
ε · ‖f‖Lp , ε1/p · ‖f‖L1

}
.

Remark 5. Another special case of Theorem 4.1 is as follows. Suppose X is a bounded random variable
with density fX supported in I ⊂ [a, b], and let ϕ : J → I be a continuously differentiable, one-to-one
mapping. Let Y = ϕ−1(X), with density fY (supported on J). Then for all p ∈ [1,∞],

‖fX − fY ‖V p ≤ min
{
ε, ε1/p · C

}
, (43)

where C = min{‖fX‖Lp , ‖fY ‖Lp}; in particular, EMD(fX , fY ) ≤ ε. This follows from the fact that Y has
density fY (y) = fX(ϕ(y))ϕ′(y).

4.2 Changes in projection angle

In this section we let F : R2 → R denote a function of two variables supported on DR ⊂ R2, the disc of
radius R and center (0, 0). For a given angle θ, we define the projection of F as follows:

fθ(x) =

ˆ
R
F (cos(θ)x+ sin(θ)y, cos(θ)y − sin(θ)x)dy (44)

The function fθ : [−R,R] → R is the tomographic projection of F onto the line passing through (0, 0),
making angle θ with the x-axis. Such a transformation is known as the two-dimensional Radon transform
with parallel beam geometry [42], and is a standard transformation in scientific imaging [53, 16]. We claim
the following result:

Theorem 4.2. For all angles θ and ϕ with |θ − ϕ| < π and all p ∈ [1,∞],

‖fθ − fϕ‖V p ≤ (2 sin(|θ − ϕ|/2))1/p · |θ − ϕ|1−1/p · ‖F‖Lp ·R2−1/p

≤ |θ − ϕ| · ‖F‖Lp ·R2−1/p, (45)

where ‖F‖Lp denotes the p-norm of F over D.

If the problem is renormalized so that R = 1 and ‖F‖Lp = 1, the bound may be stated more simply as

‖fθ − fϕ‖V p ≤ (2 sin(|θ − ϕ|/2))1/p · |θ − ϕ|1−1/p ≤ |θ − ϕ|. (46)

The proof of Theorem 4.2 may be found in Section 6.2.

Remark 6. As described in the introduction, a result similar to Theorem 4.2 for p-Wasserstein distances
and the three-dimensional Radon transform was proven in the paper [46]. In that work, the fact that
the Wasserstein distance is insensitive to changes in projection angle allows for robust clustering of images
taken from different viewing directions which are not known a priori, as occurs in cryo-electron microscopy
[52, 7, 17].

4.3 Two-dimensional perturbations

In this section, we consider the distance between the tomographic projection of a function, and the tomo-
graphic projection of a perturbation of the same function. Unlike the setting of Section 4.2, both projections
are taken along the same direction; however, the function F of two variables may change. Of course, when
the perturbation is a rotation, then one may view the setting of Section 4.2 as a special case of this more
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general setting; however, the estimate from Theorem 4.2 is sharper than the more general bound that we
will prove here, in Theorem 4.3 below.

One of the motivations for this model is the problem of heterogeneity in cryo-electron microscopy. This
refers to the setting where the set of projection images come from a molecule in multiple conformations. It
is natural to model each conformation as an L1-preserving perturbation of the type considered here.

Theorem 4.3. Suppose F : R2 → R is in Lp, and is supported on a compact set A. Let Φ : B → A
be a continuously differentiable, one-to-one mapping, and let FΦ(x, y) = F (Φ(x, y))|JΦ(x, y)| on B, and 0
elsewhere, where

JΦ(x, y) = det

[
∂xϕ1(x, y) ∂yϕ1(x, y)
∂xϕ2(x, y) ∂yϕ2(x, y)

]
(47)

is the Jacobian of Φ = (ϕ1, ϕ2) at (x, y). Suppose A ∪ B ⊂ DR, the disc of radius R centered at (0, 0). Let
f and fΦ denote the tomographic projections onto the x-axis of F and FΦ, respectively. Then

‖f − fΦ‖V p ≤ ε · (4R)1−1/p · C(F,Φ, p), (48)

where

ε = max
(x,y)∈B

‖(x, y)− Φ(x, y)‖, (49)

and

C(F,Φ, p) = min{‖F‖Lp , ‖FΦ‖Lp}. (50)

The proof of Theorem 4.3 may be found in Section 6.3.

Remark 7. Let θ ∈ [0, π], c = cos(θ) and s = sin(θ), and Φ(x, y) = (cx − sy, sx + cy). Then Theorem 4.3
gives the same bound as Theorem 4.2 when p = 1, but a weaker bound otherwise. For example, when R = 1,
p =∞, and ‖F‖L∞ = 1, the bound of Theorem 4.2 is θ, whereas the bound from Theorem 4.3 is 8 sin(θ/2).
However, Theorem 4.3 to a vastly larger set of functions Φ.

4.4 Convergence of the discrete norms

In this section, we consider the behavior of the discrete Volterra norms, defined in Section 3.3, for vectors
consisting of samples of a function f on [a, b] from an equispaced grid. Let n be a positive integer, and define
a0 < a1 < · · · < an as in (32), namely

ak = a+
k

n
(b− a), 0 ≤ k ≤ n. (51)

Note that a0 = a and an = b. Let f be the vector in Rn+1 with entries f [k] = f(ak), for 0 ≤ k ≤ n.
Denote the mean of f on [a, b] by

µ(f) =
1

b− a

ˆ b

a

f(t)dt, (52)

and let fcen(x) = f(x)− µ(f).
If w is a vector in Rn+1, let

µ(w) =
1

n

n−1∑
k=1

w[k] +
1

2n
w[0] +

1

2n
w[n] =

1

n

trap∑
0≤k≤n

w[k], (53)

and let wcen in Rn+1 have entries wcen[k] = w[k]− µ(w).
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Theorem 4.4. Suppose a = c0 < c1 < · · · < cr = b, and suppose f is Lipschitz continuous on each interval
(cj , cj+1), 0 ≤ j ≤ r − 1, and continuous from either the right or left at each cj, 0 ≤ j ≤ r. Then for all
1 ≤ p ≤ ∞, and ∣∣‖f‖νp − ‖f‖V p

∣∣ ≤ C

n
, (54)

where C > 0 does not depend on n or p. The same bound holds by replacing f with fcen and f with fcen.

The proof of Theorem 4.4 may be found in Section 6.4. If instead of being merely piecewise Lipschitz, the
function f is C2 and not too oscillatory, then the discrete Volterra norms give a higher order approximation
to the Volterra norms of f :

Theorem 4.5. Suppose f is a two times continuously differentiable function on [a, b], and has only finitely
many roots. Then for all 1 ≤ p ≤ ∞, ∣∣‖f‖νp − ‖f‖V p

∣∣ ≤ C

n2
, (55)

where C > 0 does not depend on n or p. The same bound holds by replacing f with fcen and f with fcen.

The proof of Theorem 4.5 may be found in Section 6.5.

4.5 Gaussian noise

In this section, we show that the discrete Volterra metrics are robust to additive noise. More precisely, as
the number n of subintervals on which samples are taken grows, the effects of additive Gaussian noise with
finite energy vanish at a predictable rate.

Theorem 4.6. Let σ0, σ2, . . . , σn, . . . be a bounded sequence of positive numbers, and let Z = (Z[0], . . . , Z[n])
where Z[0], Z[1], . . . , Z[n], . . . are independent with Z[j] ∼ N(0, σ2

j ). Suppose too that σ > 0 satisfies

1

n

n∑
j=1

σ2
j ≤ σ2. (56)

Let t > 0. Then for all 1 ≤ p ≤ ∞,

P
{
‖Z‖νp ≥ t

}
≤ Ae−Bt2n/σ2

, (57)

where A > 0 and B > 0 are constants independent of t, n, or p;

lim
n→∞

‖Z‖νp = 0 (58)

almost surely; and

E‖Z‖νp ≤ C
σ√
n
, (59)

where C > 0 is a constant independent of n and p. Furthermore, (57), (58) and (59) hold with Z replaced
by Zcen.

Corollary 4.7. Suppose f satisfies the conditions of Theorem 4.4, Z satisfies the conditions of Theorem
4.6, and Y = f + Z. Let t > 0. Then for all 1 ≤ p ≤ ∞,

P
{∣∣‖Y ‖νp − ‖f‖V p

∣∣ ≥ t} ≤ Ae−Bt2n/σ2

, (60)

where A > 0 and B > 0 are constants independent of t, n, or p;

lim
n→∞

‖Y ‖νp = ‖f‖V p (61)

10
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Figure 1: The first panel shows a realization of the noisy draws when n = 512, with the noiseless curve
graphed in red. The second panel plots log2(errn,p) against log2(n), for p = 1, 2,∞, where the number of
draws is 5000. The slope of each curve is approximately −1/2, consistent with the error rate predicted by
Corollary 4.7.

almost surely; and

E
∣∣‖Y ‖νp − ‖f‖V p

∣∣ ≤ C σ√
n
, (62)

where C is a constant independent of n and p. Furthermore, (60), (61) and (62) hold with f replaced by fcen

and Y replaced by Ycen.

The proofs of Theorem 4.6 and Corollary 4.7 are provided in Section 6.6.

Remark 8. In the setting of Corollary 4.7, both the signal vector f and the noise vector Z have comparable
p-norms; consequently, ‖Y ‖`p does not approach ‖f‖Lp as n → ∞. For example, if σj = σ for all j, then
almost surely

lim
n→∞

‖Y ‖2`2 = ‖f‖2L2 + σ2. (63)

By contrast, (61) states the effect of the additive noise term Z on the Volterra norm is negligible when n is
large.

5 Numerical results

5.1 Norm under noise

To demonstrate the robustness of the Volterra norms under noise described by Corollary 4.7, we run the
following experiment. For different values of n, we take a vector f of n + 1 equispaced samples from the
function f on [−1, 1] defined by

f(x) = xe−x
2/4; (64)

A vector Z of iid Gaussian noise with variance .01 is then added to each sample; let Y = f +Z. A plot of a
realization of Y , when n = 512, is shown in the left panel of Figure 1.

For p = 1, 2,∞, we evaluate the norms ‖Y ‖νp . For each value of n, the experiment is repeated M = 5000
times. Denoting the M random signal-plus-noise vectors by Y1, . . . , YM , we record the average absolute error:

errn,p =
1

M

M∑
k=1

∣∣‖Yk‖νp − ‖f‖V p

∣∣
‖f‖V p

, (65)
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Figure 2: Three translations of the bump function (66) used in the experiment from Section 5.2.

where ‖f‖V p is computed using adaptive numerical integration. The right panel of Figure 1 plots log2(errn,p)
as a function of log2(n). The average error decays like O(1/

√
n) as n increases, consistent with Corollary

4.7.

5.2 Distance under translation

We illustrate Theorem 4.1 on the functions shown in Figure 2; these are translations of the function f on
[−1/2, 1/2] defined by

f(x) = cos(5x/2)e−10x2

. (66)

The top row of Figure 3 plots the estimated Volterra p-distances between the function and its translations as
a function of the translation size for p = 1, 2,∞, based on the trapezoidal rule approximation with n = 500
subintervals. The bottom row of Figure 3 plots the Lebesgue p-distances, p = 1, 2,∞, between the function
and its translations as a function of the translation size, using the same samples.

The Volterra distances exhibit the behavior described by the bound in Theorem 4.1, namely, the distances
grow as concave functions of the translation size (the parameter ε). When p = 1 and p = 2, the distances
continue to grow as ε grows, whereas when p =∞ the distances level off, consistent with the upper bound from
Theorem 4.1. By contrast, all of the Lebesgue distances quickly saturate to a constant value, independent
of ε, as soon as the translation is big enough so that the numerical supports of the translated functions do
not overlap.

5.3 Distance under dilation

We illustrate Theorem 4.1 on the function f defined on [0, 2] by

f(x) = x(2− x)e−10(2−x)2 . (67)

We consider the family of dilations of f parameterized by η ≥ 1; these are the functions fη defined by
fη(x) = f(ηx)η on [0, 1/η], and fη(x) = 0 elsewhere. The size ε of the dilation is

ε = 2

(
1− 1

η

)
. (68)

Figure 4 shows the function f and two of its dilates.
The top row of Figure 5 plots the estimated Volterra p-distances between f and its dilates as a function of

the dilation size for p = 1, 2,∞, based on the trapezoidal rule approximation with n = 5000 subintervals. The

12
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Figure 3: The first row shows the approximated Volterra distances (based on n = 500 subintervals) between
the function (66) and its translates, as a function of the translation size. The second row shows the approx-
imated Lebesgue distances between the function (66) and its translates. The values of p (from left to right)
are p = 1, 2,∞.
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Figure 4: The function (67) is shown on the right, in black, and two of its dilates; these are used in the
experiment from Section 5.3.

bottom row of Figure 5 plots the Lebesgue p-distances, p = 1, 2,∞, between the function and its translations
as a function of the translation size, using the same samples.

The Volterra distances exhibit the behavior described by the bound in Theorem 4.1: the distances grow
as concave functions of the dilation size. Because the transformation preserves the integral of f , the L1

distance levels off when the dilation size is big, since the supports of the function and its dilate are almost
disjoint. By contrast, the L2 and L∞ distances grow rapidly for large dilation sizes (that is, they are convex
functions of the dilation size). This is because the L2 and L∞ norms grow with the dilation size, and hence
these distances reflect the size of the individual functions and not the relationship between the functions.

5.4 Distance between rotated projections

We illustrate the behavior described by Theorem 4.2 on the function F consisting of two Gaussian bumps

F (w) = exp{−‖w − a‖2/σ}+ exp{−‖w − b‖2/σ}, (69)

where a = (0, 2/5) and b = (0,−2/5), and σ = 1/2000. Numerically, this function is supported in the disc D
centered at (0, 0) of radius 1/2. We denote by f the projection of F onto the x-axis, and fθ the projection
of F after rotation by θ radians. Figure 6 shows a heatmap of F on the square [−1/2, 1/2]× [−1/2, 1/2].

Figure 7 plots the estimated Volterra and Lebesgue distances between fθ and f , for p = 1, 2,∞, as
functions of θ between 0 and π/2, which covers the full range of distances due to F ’s symmetry. The
distances are evaluated using n = 5000 subintervals. The Volterra 1 and 2 distances grow monotonically
with θ throughout the entire range of values, where the Volterra ∞ distance and the Lebesgue distances
plateau when θ is big enough so that the numerical supports of the projected bumps are disjoint.

5.5 Shrinking rings

The next experiment illustrates the behavior described by Theorem 4.3 on the function F consisting of
Gaussian bumps

F (w) =

6∑
k=0

hk exp{−‖w − ak‖2/σ}, (70)

where σ = 1/4000, the centers ak are equally spaced along a ring of radius 1/2 and make angle (2k/7+
√

2+√
3 +
√

5)π with the x-axis, and hk = (k + 4)/7. We plot the distance of F to the “shrunken” function

Fs(w) =

6∑
k=0

hk exp{−‖w − (1− s)ak‖2/σ}, (71)
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Figure 5: The first row shows the approximated Volterra distances (based on n = 5000 subintervals) between
the function (66) and its dilates, as a function of the dilation size. The second row shows the approximated
Lebesgue distances between the function (66) and its dilates. The values of p (from left to right) are
p = 1, 2,∞.
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x-axis. These are used in the experiment from Section 5.4.
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Figure 7: The first row shows the approximated Volterra distances (based on n = 5000 subintervals) between
the projection of the two Gaussians at zero radians and at θ radians, as a function of θ. The second row
shows the approximated Lebesgue distances. The values of p (from left to right) are p = 1, 2,∞.

where s is a parameter between 0 and 1. Since the approximate support of F is the union of seven disjoint
discs, the numerical support of Fs is related to that of F by moving of each of these discs towards the origin.
Figure 8 shows F and an example of Fs, and their respective projections onto the x-axis.

Figure 9 plots the estimated Volterra and Lebesgue distances between F and Fs, for p = 1, 2,∞, as
functions of s. The distances are evaluated using n = 5000 subintervals. The Volterra 1 and 2 distances
grow monotonically with s; the Volterra∞ distance exhibits more irregular, though still monotonic behavior;
and the Lebesgue distances are irregular and do not grow monotonically with the shrinkage parameter.

6 Proofs of the main results

6.1 Proof of Theorem 4.1

In this section, we will prove Theorem 4.1. We recall the statement of the theorem:

Theorem 6.1. Suppose f ∈ Lp is supported on an interval I. Let ϕ : J → I be continuously differentiable
and monotonically increasing, with I = ϕ(J). Let fϕ(x) = f(ϕ(x))ϕ′(x) on J , and 0 otherwise. Suppose
I ∪ J ⊂ [a, b]. Then

‖f − fϕ‖V p ≤ min
{
ε · C(f, ϕ, p), ε1/p · ‖f‖L1

}
, (72)

where

ε = max
x∈I
|x− ϕ(x)|, (73)

and

C(f, ϕ, p) = min{‖f‖Lp , ‖fϕ‖Lp}. (74)

We will use the following theorem, which is a special case of Theorem 6.18 in [21]:
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Figure 8: The function F (top left) and a shrunken version (bottom left), with their respective projections
onto the x-axis. These are used in the experiment from Section 5.5.
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Figure 9: The first row shows the approximated Volterra distances (based on n = 5000 subintervals) between
the projection of the function F from (70) and the shrunken function Fs from (71). The second row shows
the approximated Lebesgue distances. The values of p (from left to right) are p = 1, 2,∞.
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Theorem 6.2. Let K = K(x, t) be a non-negative, integrable function on I × [a, b], that satisfies

ˆ
I

K(x, t)dx ≤ C (75)

and

ˆ b

a

K(x, t)dt ≤ C, (76)

where C > 0 is a constant. For a function g in Lq([a, b]), let

(Tg)(x) =

ˆ b

a

K(x, t)g(t)dt. (77)

Then ‖Tg‖Lq(I) ≤ C · ‖g‖Lq([a,b]).

Let Ix be the interval [x, ψ(x)] if x ≤ ψ(x), or [ψ(x), x] if ψ(x) ≤ x. Let χ(x, t) be 1 if and only if t ∈ Ix,
and 0 otherwise. We then have the following lemma:

Lemma 6.3. For all x ∈ I,

ˆ b

a

χ(x, t)dt ≤ ε. (78)

For all t ∈ [a, b],

ˆ
I

χ(x, t)dx ≤ ε. (79)

Proof. For the first inequality

ˆ b

a

χ(x, t)dt =

ˆ
Ix

1dt = |Ix| = |x− ψ(x)| ≤ ε. (80)

For the second inequality, first suppose that there is some x ≤ t with t ∈ Ix; note that for such x,
Ix = [x, ψ(x)], and so x ≤ ψ(x). Let x∗ be the smallest such x. Then x∗ ≤ t ≤ ψ(x∗). We claim that for all
x > t, t /∈ Ix. Indeed, since ψ is increasing and x > t ≥ x∗, we have ψ(x) > ψ(x∗) ≥ t. Since both x > t and
ψ(x) > t, t does not lie in Ix, as claimed.

Consequently, all x for which t lies in Ix are contained inside the interval [x∗, t]. Since x∗ ≤ t ≤ ψ(x∗)
and |x∗ − ψ(x∗)| ≤ ε, it follows that |t − x∗| ≤ ε too. Furthermore, if x > t, then χ(x, t) = 0 since t /∈ Ix;
and since x∗ is the smallest x for which t ∈ Ix, if x < x∗ then t /∈ Ix, hence χ(x, t) = 0. Therefore,

ˆ
I

χ(x, t)dx ≤
ˆ t

x∗
1dx = |t− x∗| ≤ ε. (81)

Analogous reasoning yields the same bound in the case that there exists x ≥ t with t ∈ Ix.

Let ψ : I → J be the inverse of ϕ, ψ = ϕ−1. We first remark that (fϕ)ψ = f , and so without loss of
generality we may assume that C(f, ϕ, p) = ‖f‖Lp , since we can then switch the roles of f and fϕ.

Let χI and χJ be the indicator functions of I and J , respectively. Take any function G in A0, with
‖G‖Lq = 1; and let g = G′, so that

G(x) = −
ˆ b

x

g(t)dt. (82)

Then from Proposition 3.1, it is enough to show that

|〈fϕ − f,G〉| ≤ min
{
ε · ‖f‖Lp , ε1/p · ‖f‖L1

}
. (83)

18



To that end, by performing a change of variables we may write

|〈fϕ − f,G〉| =
∣∣∣∣∣
ˆ b

a

(f(ϕ(x))ϕ′(x)− f(x))G(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
ˆ b

a

f(x)(G(ψ(x))−G(x)) dx

∣∣∣∣∣
=

∣∣∣∣ˆ
I

f(x)(G(ψ(x))−G(x)) dx

∣∣∣∣ . (84)

We will first prove ∣∣∣∣ˆ
I

f(x)(G(ψ(x))−G(x)) dx

∣∣∣∣ ≤ ‖f‖Lp · ε, (85)

and then prove ∣∣∣∣ˆ
I

f(x)(G(ψ(x))−G(x)) dx

∣∣∣∣ ≤ ‖f‖L1 · ε1/p. (86)

6.1.1 Proof of (85)

Let q be the conjugate exponent of p, that is, 1/p + 1/q = 1. By Hölder’s inequality, we may bound the
integral as follows: ∣∣∣∣ˆ

I

f(x)(G(ψ(x))−G(x)) dx

∣∣∣∣ ≤ ‖f‖Lp‖(G ◦ ψ −G)χI‖Lq . (87)

We will show that

‖(G ◦ ψ −G)χI‖Lq ≤ ε. (88)

Recall that Ix denotes the interval [x, ψ(x)] if x ≤ ψ(x), or [ψ(x), x] if ψ(x) ≤ x; and χ(x, t) is 1 if and only
if t ∈ Ix, and 0 otherwise. Then:

(ˆ
I

|G(ψ(x))−G(x)|qdx
)1/q

=

(ˆ
I

∣∣∣∣ˆ
Ix

g(t)dt

∣∣∣∣q dx)1/q

=

(ˆ
I

∣∣∣∣∣
ˆ b

a

g(t)χ(x, t)dt

∣∣∣∣∣
q

dx

)1/q

. (89)

We first assume p > 1, i.e. q <∞. From Lemma 6.3 and Theorem 6.2,

(ˆ
I

|G(ψ(x))−G(x)|qdx
)1/q

=

(ˆ
I

∣∣∣∣∣
ˆ b

a

g(t)χ(x, t)dt

∣∣∣∣∣
q

dx

)1/q

≤ ε‖g‖Lq = ε. (90)

which completes the proof of (88) when p > 1. We now handle the case p = 1, showing that:

‖(G ◦ ψ −G)χI‖L∞ ≤ ε. (91)

For all x ∈ I we have, with the same definition of Ix used previously,

|G(ψ(x))−G(x)| =
∣∣∣∣ˆ
Ix

g(t)dt

∣∣∣∣ ≤ |Ix|‖g‖L∞ = |x− ψ(x)| ≤ ε, (92)

completing the proof of (88), and hence of (85), for all p ∈ [1,∞].
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6.1.2 Proof of (86)

We will now prove the bound (86), namely that for any G in A0 with ‖G′‖L1 ≤ 1,ˆ
I

f(x)(G(ψ(x))−G(x))dx ≤ ‖f‖L1 · ε1/p. (93)

We have: ˆ
I

f(x)(G(ψ(x))−G(x))dx ≤ ‖f‖L1‖(G ◦ ψ −G)χI‖L∞ , (94)

and so it is enough to show

‖(G ◦ ψ −G)χI‖L∞ ≤ ε1/p. (95)

As before, let Ix be the interval [x, ψ(x)] if x ≤ ψ(x), or [ψ(x), x] if ψ(x) ≤ x, and let χ(x, t) be 1 if and only

if t ∈ Ix, and 0 otherwise. Using that G(x) = −
´ b
x
g(t)dt, we may write

‖(G ◦ ψ −G)χI‖L∞ = max
x∈I
|G(ψ(x))−G(x)|

= max
x∈I

∣∣∣∣ˆ
Ix

g(t)dt

∣∣∣∣ , (96)

and for all x in I, Hölder’s inequality yields∣∣∣∣ˆ
Ix

g(t)dt

∣∣∣∣ =

∣∣∣∣∣
ˆ b

a

g(t)χ(x, t)dt

∣∣∣∣∣
≤ ‖g‖Lq

(ˆ b

a

χ(x, t)pdt

)1/p

=

(ˆ b

a

χ(x, t)dt

)1/p

≤ ε1/p, (97)

where the last inequality follows from Lemma 6.3. This completes the proof.

6.2 Proof of Theorem 4.2

We recall the statement of Theorem 4.2:

Theorem 6.4. For all angles θ and ϕ with |θ − ϕ| < π and all p ∈ [1,∞],

‖fθ − fϕ‖V p ≤ (2 sin(|θ − ϕ|/2))1/p · |θ − ϕ|1−1/p · ‖F‖Lp ·R2−1/p

≤ |θ − ϕ| · ‖F‖Lp ·R2−1/p, (98)

where ‖F‖Lp denotes the p-norm of F over D.

Without loss of generality, we assume that ϕ = 0, and that c = cos(θ) and s = sin(θ) are both positive.
For brevity, let f = fϕ = f0.

6.2.1 Proof of Theorem 4.2 for general R from R = 1

We will prove the result for any R > 0 assuming that it is true when R = 1. To see how the general result
follows from this case, given F : DR → R define F̃ : D1 → R by F̃ (x, y) = F (Rx,Ry), and f̃θ : [−1, 1] → R
by

f̃θ(x) =

ˆ 1

−1

F̃ (cx+ sy, cy − sx)dy, (99)
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and f̃ = f̃0. Then the result for R = 1 states that

‖f̃ − f̃θ‖V p([−1,1]) ≤ Cθ,p‖F̃‖Lp(D1), (100)

where Cθ,p = (2 sin(θ/2))1/pθ1−1/p. Performing a change of variables u = Ry, we find

f̃θ(x) =

ˆ 1

−1

F̃ (cx+ sy, cy − sx)dy

=
1

R

ˆ R

−R
F̃ (cx+ s(u/R), c(u/R)− sx)du

=
1

R

ˆ R

−R
F̃ ((cRx+ su)/R, (cu− sRx)/R)du

=
1

R

ˆ R

−R
F (Rx+ su, cu− sRx)du

=
1

R
fθ(Rx). (101)

Consequently, by another change of variables u = Rt,

ˆ x

−1

(f̃(t)− f̃θ(t))dt =
1

R

ˆ Rx

−R
(f̃(u/R)− f̃θ(u/R))du

=
1

R2

ˆ Rx

−R
(f(u)− fθ(u))du. (102)

Therefore, for all 1 ≤ p <∞, letting v = Rx,

‖f̃ − f̃θ‖pV p([−1,1]) =

ˆ 1

−1

∣∣∣∣ˆ x

−1

(f̃(t)− f̃θ(t))dt
∣∣∣∣p dx

=

ˆ 1

−1

∣∣∣∣∣ 1

R2

ˆ Rx

−R
(f(u)− fθ(u))du

∣∣∣∣∣
p

dx

=
1

R

ˆ R

−R

∣∣∣∣ 1

R2

ˆ v

−R
(f(u)− fθ(u))du

∣∣∣∣p dv
=

1

R2p+1

ˆ R

−R

∣∣∣∣ˆ v

−R
(f(u)− fθ(u))du

∣∣∣∣p dv
=

1

R2p+1
‖f − fθ‖pV p([−R,R]), (103)

and so

‖f̃ − f̃θ‖V p([−1,1]) =
1

R2+1/p
‖f − fθ‖V p([−R,R]). (104)

On the other hand,

‖F̃‖pLp(D1) =

ˆ
D1

|F̃ (x, y)|pdxdy (105)

=

ˆ
D1

|F (Rx,Ry)|pdxdy (106)

=
1

R2

ˆ
DR

|F (u, v)|pdudv (107)

=
1

R2
‖F‖pLp(DR), (108)
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and so

‖F̃‖Lp(D1) =
1

R2/p
‖F‖Lp(DR). (109)

Combining (100), (104) and (109) gives

1

R2+1/p
‖f − fθ‖V p([−R,R]) ≤ Cθ,p

1

R2/p
‖F‖Lp(DR), (110)

or equivalently,

‖f − fθ‖V p([−R,R]) ≤ (2 sin(θ/2))1/pθ1−1/p‖F‖Lp(DR)R
2−1/p, (111)

as claimed. The proof for p = ∞ can be proved similarly, or by taking the limit as p → ∞ and using that
‖ · ‖L∞ = limp→∞ ‖ · ‖Lp .

6.2.2 Proof of Theorem 4.2 when R = 1

We start with two lemmas. Let Ix,y be the interval [x, cx+sy] when x ≤ cx+sy, and the interval [cx+sy, x]
when cx+ sy ≤ x; and let χ(x, y, t) be 1 if t ∈ Ix,y and 0 otherwise. Let D = D1.

Lemma 6.5. For all (x, y) ∈ D,

ˆ 1

−1

χ(x, y, t)dt ≤ 2 sin(θ/2). (112)

Proof. We apply the Cauchy-Schwarz inequality, the fact that
√
x2 + y2 ≤ 1, and the identity c = cos(θ) =

cos2(θ/2)− sin2(θ/2), to get the following:

ˆ 1

−1

χ(x, y, t)dt = |Ix,y|

= |x− cx− sy|
= |(1− c)x− sy|
≤
√

(1− c)2 + s2

=
√

2
√

1− c

=
√

2

√
1− cos2(θ/2) + sin2(θ/2)

=
√

2

√
2 sin2(θ/2)

= 2 sin(θ/2), (113)

as claimed.

Lemma 6.6. For all t ∈ [−1, 1],

ˆ
D
χ(x, y, t) dx dy ≤ θ. (114)

We defer the proof of Lemma 6.6 to Section 6.2.3. Assuming Lemma 6.6, let us see how to prove the
result. First, suppose p = 1. Take any absolutely continuous function G on [−1, 1] with ‖G′‖L∞ ≤ 1. Then
we must bound the integral

ˆ 1

−1

(f(x)− fθ(x))G(x) dx. (115)
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We have

ˆ 1

−1

fθ(x)G(x) dx =

ˆ 1

−1

ˆ 1

−1

F (cx− sy, cy + sx)G(x) dx dy

=

ˆ
D
F (cx− sy, cy + sx)G(x) dx dy, (116)

since F is supported on D. Applying a change of variables gives:

ˆ 1

−1

fθ(x)G(x) dx =

ˆ
D
F (cx− sy, cy + sx)G(x) dx dy

=

ˆ
D
F (x, y)G(cx+ sy) dx dy. (117)

Consequently,

ˆ 1

−1

(f(x)− fθ(x))G(x) dx =

ˆ
D
F (x, y)(G(x)−G(cx+ sy)) dx dy

≤ ‖F‖L1 sup
(x,y)∈D

|G(x)−G(cx+ sy)|. (118)

Let g = G′; then ‖g‖L∞ ≤ 1, and we have:

sup
(x,y)∈D

|G(x)−G(cx+ sy)| = sup
(x,y)∈D

∣∣∣∣∣
ˆ
Ix,y

g(t) dt

∣∣∣∣∣
= sup

(x,y)∈D

∣∣∣∣ˆ 1

−1

g(t)χ(x, y, t) dt

∣∣∣∣ .
≤ ‖g‖L∞ sup

(x,y)∈D

∣∣∣∣ˆ 1

−1

χ(x, y, t) dt

∣∣∣∣ .
≤ 2 sin(θ/2), (119)

where we have used Lemma 6.5. Consequently,

‖f − fθ‖V 1 ≤ 2 sin(θ/2)‖F‖L1 . (120)

Next, we prove the result when p = ∞. Take any absolutely continuous function G on [−1, 1] with
‖G′‖L1 ≤ 1. Take g = G′, so that ‖g‖L1 ≤ 1. Then, just as before, we have

ˆ 1

−1

(f(x)− fθ(x))G(x) dx =

ˆ
D
F (x, y)(G(x)−G(cx+ sy)) dx dy

≤ ‖F‖L∞
ˆ
D
|G(x)−G(cx+ sy)| dx dy

=

ˆ
D

∣∣∣∣∣
ˆ
Ix,y

g(t)dt

∣∣∣∣∣ dx dy
=

ˆ
D

∣∣∣∣ˆ 1

−1

g(t)χ(x, y, t)dt

∣∣∣∣ dx dy
≤
ˆ 1

−1

|g(t)|
ˆ
D
χ(x, y, t) dx dy dt

≤ ‖g‖L1 sup
|t|≤1

ˆ
D
χ(x, y, t) dx dy

≤ θ, (121)
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where we have used Lemma 6.6. Consequently,

‖f − fθ‖V∞ ≤ θ‖F‖L∞ . (122)

Since the mapping from F to
´ x
−1

(f−fθ) is linear, the Riesz-Thorin Interpolation Theorem (see, e.g. Theorem
6.27 in [21]) then implies that if F is in Lp(D),

‖f − fθ‖V p ≤ (2 sin(θ/2))1/pθ1−1/p‖F‖Lp , (123)

as claimed.
We now turn to the proof of Lemma 6.6.

6.2.3 Proof of Lemma 6.6

First, observe that
ˆ
D
χ(x, y, t)dxdy = 2|St,(1,0),(x,y) ∪ St,(x,y),(1,0)|, (124)

where, for unit vectors v and w, St,v,w is the region defined by

St,v,w = {u ∈ D : 〈u,v〉 ≤ t ≤ 〈u,w〉}. (125)

By rotational symmetry, the following lemma is immediate:

Lemma 6.7. If a and b are any unit vectors with angle θ, then |St,(1,0),(x,y)| = |St,a,b|. Furthermore,
|St,a,b| = |S−t,a,b|, and |St,a,b ∩ S−t,a,b| = 0.

By this lemma, it follows that
ˆ
D
χ(x, y, t)dxdy = 2|St,v,w| = 2 |{u ∈ D : 〈u,v〉 ≤ t ≤ 〈u,w〉}| , (126)

where w = (cos(θ/2), sin(θ/2)) and v = (cos(θ/2),− sin(θ/2)). It will be convenient to refer to Figure 10,
where w corresponds to the point labeled B, and v corresponds to the point labeled E. In the figure, the
line AD is perpendicular to OB, and intersects OB at distance t from the origin; consequently, the set of
all vectors u in D with 〈u,w〉 ≥ t is the circular segment through the points A, B and D. Similarly; the
line CF is perpendicular to OE, and intersects OE at distance t from the origin; consequently, the set of all
vectors u in D with 〈u,v〉 ≤ t is the circular segment through the points C, A and F . The intersection of
these two circular segments is the region bounded by A, C and G.

To evaluate the area of this region, we will first find the area of the full circular segment through A, B
and D, and then subtract off the area of the region bounded by C, G and D.

Lemma 6.8. The area of the circular segment through A, B and D is

arccos(t)− t
√

1− t2, (127)

where arccos takes values in [0, π].

Proof. This is immediate from the well-known formula for the area of a circular segment, and the fact that
the line segment from O to H has length t.

The next lemma is also elementary, and likely known already; however, since we could not find the exact
identity in the literature, we provide a self-contained proof.

Lemma 6.9. When t ≤ cos(θ/2), the intersection between the circular segment bounded by A, B and D and
the circular segment bounded by C, E and F has area

arcsin
(√

1− t2 cos(θ/2)− t sin(θ/2)
)
− t
√

1− t2 + t2 tan(θ/2), (128)

where arcsin takes values in [−π/2, π/2]. When t > cos(θ/2), the two circular segments are disjoint.
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Proof. We begin by showing the second part, namely that when t > cos(θ/2), the circular segments are
disjoint, or equivalently that the point G lies outside of the circle. Indeed, it is straightforward to show
that G is located at the point (t/ cos(θ/2), 0); hence, G is inside the circle so long as t/ cos(θ/2) ≤ 1, or
equivalently, t ≤ cos(θ/2), as desired.

Let us now suppose that t ≤ cos(θ/2), and evaluate the area of the region bounded by C, G, and D. The
line segment from G to D has arc-length parameterization

α(s) = t(cos(θ/2), sin(θ/2)) + s(sin(θ/2),− cos(θ/2)), (129)

and the line segment from C to G has arc-length parameterization

β(s) = t(cos(θ/2),− sin θ/2) + (
√

1− t2 + t · tan(θ/2)− s)(sin(θ/2), cos(θ)/2), (130)

where

t · tan(θ/2) ≤ s ≤
√

1− t2. (131)

The counterclockwise arc from D to C has arc-length parameterization

γ(ϕ) = (cos(ϕ), sin(ϕ)), (132)

where

− arcsin
(√

1− t2 cos(θ/2)− t · sin(θ/2)
)
≤ ϕ ≤ arcsin

(√
1− t2 cos(θ/2)− t · sin(θ/2)

)
. (133)

When t ≤ cos(θ/2), we will evaluate the area using Green’s Theorem, by computing 1
2

¸
(xdy − ydx) over

each curve. For α, we have

1

2

˛
α

xdy =
1

2

ˆ √1−t2

t·tan(θ/2)

[(t · cos(θ/2) + s · sin(θ/2))(− cos(θ/2))] ds

=
t · cos2(θ/2)

2

(
t · tan(θ/2)−

√
1− t2

)
+

sin(θ/2) cos(θ/2)

4

(
t2 · tan2(θ/2)− 1 + t2

)
, (134)

and

1

2

˛
α

ydx =
1

2

ˆ √1−t2

t·tan(θ/2)

[(t · sin(θ/2)− s · cos(θ/2))(sin(θ/2))] ds

=
t · sin2(θ/2)

2

(√
1− t2 − t · tan(θ/2)

)
+

sin(θ/2) cos(θ/2)

4
(t2 · tan2(θ/2)− 1 + t2), (135)

and hence

1

2

˛
α

(xdy − ydx) =
t

2
·
(
t · tan(θ/2)−

√
1− t2

)
. (136)

Similarly,

1

2

˛
β

(xdy − ydx) =
t

2
·
(
t · tan(θ/2)−

√
1− t2

)
. (137)

Finally, it is straightforward to check that

1

2

˛
γ

(xdy − ydx) = arcsin
(√

1− t2 cos(θ/2)− t · sin(θ/2)
)
. (138)

Adding all three integrals together, we find that the area of the region is

1

2

˛
γ

(xdy − ydx) = arcsin
(√

1− t2 cos(θ/2)− t · sin(θ/2)
)
− t
√

1− t2 + t2 tan(θ/2), (139)

as claimed.
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Figure 10: Diagram for the proof of Lemma 6.6. The points labeled B and C are located at
(cos(θ/2), sin(θ/2)) and (cos(θ/2),− sin(θ/2)), respectively. The point labeled O is the origin, (0, 0). The
line segment OB is orthogonal to the line AD, and the line segment OE is orthogonal to the line FC. The
line segments OH and OI each have length t.

From Lemmas 6.8 and 6.9, we find

1

2

ˆ
D
χ(x, y, t)dxdy

=

{
arccos(t)− t

√
1− t2 if t > cos(θ/2);

arccos(t)− arcsin
(√

1− t2 cos(θ/2)− t · sin(θ/2)
)
− t2 tan(θ/2), if t ≤ cos(θ/2).

(140)

To conclude the proof, we must show that this expression is bounded above by θ/2 for all values of t
between 0 and 1. In fact, we will show that (140) is a decreasing function of t, and hence is maximized at
t = 0. It is immediately apparent that the expression is decreasing in t when t > cos(θ/2), since this is the
area of the circular segment with chord at distance t from the origin. When t ≤ cos(θ), we first observe that

d

dt
arcsin

(√
1− t2 cos(θ/2)− t · sin(θ/2)

)
=

d
dt

[√
1− t2 cos(θ/2)− t · sin(θ/2)

]√
1− (

√
1− t2 cos(θ/2)− t · sin(θ/2))2

=
−t(1− t2)−1/2 cos(θ/2)− sin(θ/2)√
1−

(√
1− t2 cos(θ/2)− t · sin(θ/2)

)2 , (141)

and the square of the denominator may be written more simply as

1− (
√

1− t2 cos(θ/2)− t · sin(θ/2))2

= 1− (1− t2) cos2(θ/2)− t2 sin2(θ/2) + 2t
√

1− t2 cos(θ/2) sin(θ/2)

= 1− cos2(θ/2) + t2 cos2(θ/2)− t2 sin2(θ/2) + 2t
√

1− t2 cos(θ/2) sin(θ/2)

= sin2(θ/2) + t2 cos2(θ/2)− t2 sin2(θ/2) + 2t
√

1− t2 cos(θ/2) sin(θ/2)

= t2 cos2(θ/2) + (1− t2) sin2(θ/2) + 2t
√

1− t2 cos(θ/2) sin(θ/2)

=
(
t · cos(θ/2) +

√
1− t2 sin(θ/2)

)2

; (142)
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consequently, because t · cos(θ/2) +
√

1− t2 sin(θ/2) > 0,

d

dt
arcsin

(√
1− t2 cos(θ/2)− t · sin(θ/2)

)
=
−t(1− t2)−1/2 cos(θ/2)− sin(θ/2)

t · cos(θ/2) +
√

1− t2 sin(θ/2)

=
−t(1− t2)−1/2 cos(θ/2)− sin(θ/2)

t · cos(θ/2) +
√

1− t2 sin(θ/2)

=
−t√

1− t2
. (143)

Therefore,

d

dt

[
arccos(t)− arcsin

(√
1− t2 cos(θ/2)− t · sin(θ/2)

)
− t2 tan(θ/2)

]
=

−1√
1− t2

+
1√

1− t2
− 2t tan(θ/2)

= − 2t tan(θ/2), (144)

which is negative. Therefore, the maximum value of
´
D χ(x, y, t)dxdy occurs when t = 0, where the value is

2 arccos(0)− 2 arcsin (cos(θ/2)) = π − 2 arcsin (sin(π/2 + θ/2))

= π − 2 arcsin (sin(π/2− θ/2))

= π − 2

(
π

2
− θ

2

)
= θ; (145)

note that arcsin takes values in [−π/2, π/2], and π/2− θ/2 lies between 0 and π/2 since θ is between 0 and
π. This completes the proof.

6.3 Proof of Theorem 4.3

We recall the statement of the theorem:

Theorem 6.10. Suppose F : R2 → R is in Lp, and is supported on a compact set A. Let Φ : B → A
be a continuously differentiable, one-to-one mapping, and let FΦ(x, y) = F (Φ(x, y))|JΦ(x, y)| on B, and 0
elsewhere, where

JΦ(x, y) = det

[
∂xϕ1(x, y) ∂yϕ1(x, y)
∂xϕ2(x, y) ∂yϕ2(x, y)

]
(146)

is the Jacobian of Φ = (ϕ1, ϕ2) at (x, y). Suppose A ∪ B ⊂ DR, the disc of radius R centered at (0, 0). Let
f and fΦ denote the tomographic projections onto the x-axis of F and FΦ, respectively. Then

‖f − fΦ‖V p ≤ ε · (4R)1−1/p · C(F,Φ, p), (147)

where

ε = max
(x,y)∈B

‖(x, y)− Φ(x, y)‖, (148)

and

C(F,Φ, p) = min{‖F‖Lp , ‖FΦ‖Lp}. (149)
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6.3.1 Proof of Theorem 4.3 for general R from R = 1

We will first prove the result for any R > 0, assuming that it is true when R = 1. Given F : DR → R, define
F̃ : D1 → R by F̃ (x, y) = F (Rx,Ry), and f̃ : [−1, 1]→ R by

f̃(x) =

ˆ 1

−1

F̃ (x, y) dy, (150)

and similarly define f̃Φ by

f̃Φ(x) =

ˆ 1

−1

F̃Φ(x, y) dy. (151)

Let Ã = {(x/R, y/R) : (x, y) ∈ A}, B̃ = {(x/R, y/R) : (x, y) ∈ B}, and define Φ̃ : B̃ → Ã by

Φ̃(x, y) = Φ(Rx,Ry)/R and Ψ̃ : Ã→ B̃ by Ψ̃ = Φ̃−1.

Note that, if Φ̃ = (ϕ̃1, ϕ̃2), so that ϕ̃j(x, y) = ϕj(Rx,Ry)/R, j = 1, 2, then

JΦ̃(x, y) = ∂xϕ̃1(x, y)∂yϕ̃2(x, y)− ∂yϕ̃1(x, y)∂xϕ̃2(x, y)

=
1

R2
[∂xϕ1(Rx,Ry)∂yϕ2(Rx,Ry)− ∂yϕ1(Rx,Ry)∂xϕ2(Rx,Ry)]

=
1

R2
[R(∂xϕ1)(Rx,Ry) ·R(∂yϕ2)(Rx,Ry)−R(∂yϕ1)(Rx,Ry) ·R(∂xϕ2)(Rx,Ry)]

= [(∂xϕ1)(Rx,Ry) · (∂yϕ2)(Rx,Ry)− (∂yϕ1)(Rx,Ry) · (∂xϕ2)(Rx,Ry)]

= JΦ(Rx,Ry). (152)

Consequently,

F̃Φ(x, y) = FΦ(Rx,Ry)

= F (Φ(Rx,Ry))|JΦ(Rx,Ry)|
= F (RΦ(Rx,Ry)/R)|JΦ̃(x, y)|
= F (RΦ̃(x, y))|JΦ̃(x, y)|
= F̃ (Φ̃(x, y))|JΦ̃(x, y)|. (153)

Also, let

ε̃ = max
(x,y)∈B̃

‖(x, y)− Φ̃(x, y)‖

= max
(x,y)∈B̃

‖(Rx,Ry)/R− Φ(Rx,Ry)/R‖

=
1

R
max

(x,y)∈B
‖(x, y)/R− Φ(x, y)‖

=
ε

R
. (154)

Then the result for R = 1 states that

‖f̃ − f̃Φ‖V p([−1,1]) ≤ ε̃ · 41−1/p · C(F̃ , Φ̃, p), (155)

where

C(F̃ , Φ̃, p) = min{‖F̃‖Lp , ‖F̃Φ‖Lp}. (156)
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Performing a change of variables u = Ry, we find

f̃Φ(x) =

ˆ 1

−1

F̃Φ(x, y) dy

=
1

R

ˆ R

−R
F̃Φ(x, u/R) du

=
1

R

ˆ R

−R
F̃Φ((Rx, u)/R) du

=
1

R

ˆ R

−R
FΦ(Rx, u) du

=
1

R
fΦ(Rx), (157)

and similarly, f̃(x) = f(Rx)/R. Consequently, by another change of variables u = Rt,

ˆ x

−1

(f̃(t)− f̃Φ(t)) dt =
1

R

ˆ Rx

−R
(f̃(u/R)− f̃Φ(u/R)) du

=
1

R2

ˆ Rx

−R
(f(u)− fΦ(u)) du. (158)

Therefore, for all 1 ≤ p <∞, letting v = Rx,

‖f̃ − f̃Φ‖pV p([−1,1]) =

ˆ 1

−1

∣∣∣∣ˆ x

−1

(f̃(t)− f̃Φ(t)) dt

∣∣∣∣p dx
=

ˆ 1

−1

∣∣∣∣∣ 1

R2

ˆ Rx

−R
(f(u)− fΦ(u)) du

∣∣∣∣∣
p

dx

=
1

R

ˆ R

−R

∣∣∣∣ 1

R2

ˆ v

−R
(f(u)− fΦ(u)) du

∣∣∣∣p dv
=

1

R2p+1

ˆ R

−R

∣∣∣∣ˆ v

−R
(f(u)− fΦ(u)) du

∣∣∣∣p dv
=

1

R2p+1
‖f − fΦ‖pV p([−R,R]), (159)

and so

‖f̃ − f̃Φ‖V p([−1,1]) =
1

R2+1/p
‖f − fΦ‖V p([−R,R]). (160)

On the other hand,

‖F̃‖pLp(D1) =

ˆ
D1

|F̃ (x, y)|p dx dy

=

ˆ
D1

|F (Rx,Ry)|p dx dy

=
1

R2

ˆ
DR

|F (u, v)|p du dv

=
1

R2
‖F‖pLp(DR), (161)

and so

‖F̃‖Lp(D1) =
1

R2/p
‖F‖Lp(DR). (162)
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Similarly,

‖F̃Φ‖Lp(D1) =
1

R2/p
‖FΦ‖Lp(DR). (163)

From (162) and (163), we see that

C(F̃ , Φ̃, p) =
1

R2/p
C(F,Φ, p). (164)

Combining (154), (155), (160), and (164) gives

1

R2+1/p
‖f − fΦ‖V p([−R,R]) ≤ ε̃ · 41−1/p · 1

R2/p
· C(F,Φ, p) = ε · 1

R2/p+1
· 41−1/p · C(F,Φ, p), (165)

or equivalently,

‖f − fΦ‖V p([−R,R]) ≤ ε · (4R)1−1/p · C(F,Φ, p), (166)

as claimed. The proof for p = ∞ can be proved similarly, or by taking the limit as p → ∞ and using that
‖ · ‖L∞ = limp→∞ ‖ · ‖Lp .

6.3.2 Proof of Theorem 4.3 for R = 1

First, suppose p = 1. Let D = D1. Let Ψ = Φ−1 with Ψ(u, v) = (ψ1(u, v), ψ2(u, v)). By definition,

f(x) =

ˆ
R
F (x, y) dy, (167)

and

fΦ(x) =

ˆ
R
FΦ(x, y) dy

=

ˆ
y:(x,y)∈B

F (Φ(x, y))|JΦ(x, y)| dy. (168)

Let G on [−1, 1] be absolutely continuous, whose derivative g = G′ has ‖g‖L∞ ≤ 1.
Performing a change of variables gives

ˆ 1

−1

G(x)fΦ(x) dx =

ˆ 1

−1

G(x)

ˆ
y:(x,y)∈B

F (Φ(x, y))|JΦ(x, y)| dy dx

=

ˆ
B

G(x)F (Φ(x, y))|JΦ(x, y)| dy dx

=

ˆ
A

G(ψ(u, v))F (u, v) du dv, (169)

where we have let ψ = ψ1. Similarly,

ˆ 1

−1

G(x)f(x) dx =

ˆ
A

G(x)F (x, y) dx dy. (170)

We then have
ˆ 1

−1

G(x)(f(x)− fΦ(x)) dx =

ˆ
A

G(x)F (x, y) dx dy −
ˆ
A

G(ψ(x, y))F (x, y) dx dy

=

ˆ
A

(G(x)−G(ψ(x, y)))F (x, y) dx dy

≤ ‖F‖L1 max
(x,y)∈A

|G(x)−G(ψ(x, y))|. (171)
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Now, because g = G′ satisfies ‖g‖L∞ ≤ 1, we have

|G(x)−G(ψ(x, y))| =
∣∣∣∣∣
ˆ ψ(x,y)

x

g(t) dt

∣∣∣∣∣
≤ ‖g‖L∞ |x− ψ(x, y)|
≤ ‖(x, y)− (ψ1(x, y), ψ2(x, y))‖
≤ ε, (172)

and therefore, taking the supremum over all such G and using Proposition 3.1 shows that

‖f − fΦ‖V 1 ≤ ε · ‖F‖L1 . (173)

We now prove the result for p =∞, again assuming that R = 1. Let Ix,y be the interval [x, ψ(x, y)] when
x ≤ ψ(x, y), and [ψ(x, y), x] when x > ψ(x, y); and let χ(x, y, t) be 1 if t ∈ Ix,y, and 0 otherwise. We begin
with the following lemma:

Lemma 6.11. For all |t| ≤ 1,

ˆ
A

χ(x, y, t) dx dy ≤ 4ε. (174)

Proof. Let S1 = {(x, y) ∈ A : x ≤ t ≤ ψ(x, y)}, and let S2 = {(x, y) ∈ A : ψ(x, y) ≤ t ≤ x}. Then

ˆ
A

χ(x, y, t) dx dy = |S1 ∪ S2|. (175)

To bound the area of S1, observe first that any (x, y) contained in S1 must satisfy t− ε ≤ x ≤ t. Indeed,
since, by assumption, ψ(x, y)− x ≤ ε, we have

x ≥ ψ(x, y)− ε ≥ t− ε, (176)

as claimed. Consequently, since A ⊂ D and the radius of D is 1,

|S1| ≤ |{(x, y) ∈ D : t− ε ≤ x ≤ t}| ≤ 2ε. (177)

Similarly, |S2| ≤ 2ε, and hence

ˆ
A

χ(x, y, t) dx dy = |S1 ∪ S2| ≤ 4ε, (178)

as claimed.

Now, take an absolutely continuous G on [−1, 1] whose derivative g = G′ satisfies ‖g‖L1 = 1. Using (169)
and (170) as before, we have

ˆ 1

−1

G(x)(f(x)− fΦ(x)) dx =

ˆ 1

−1

G(x)

ˆ
R
F (x, y) dy dx−

ˆ 1

−1

G(x)fΦ(x) dx

=

ˆ
A

(G(x)−G(ψ(x, y)))F (x, y) dx dy

≤ ‖F‖L∞
ˆ
A

|G(x)−G(ψ(x, y))| dx dy. (179)
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Then, using g = G′, we have

ˆ
A

|G(x)−G(ψ(x, y))| dx dy =

ˆ
A

∣∣∣∣∣
ˆ
Ix,y

g(t)dt

∣∣∣∣∣ dx dy
=

ˆ
A

∣∣∣∣ˆ −1

−1

g(t)χ(x, y, t) dt

∣∣∣∣ dx dy
≤
ˆ
A

ˆ 1

−1

|g(t)|χ(x, y, t) dt dx dy

=

ˆ 1

−1

|g(t)|
ˆ
A

χ(x, y, t) dx dy dt

≤ ‖g‖L1 sup
|t|≤1

ˆ
A

χ(x, y, t) dx dy.

= sup
|t|≤1

ˆ
A

χ(x, y, t) dx dy. (180)

Invoking Lemma 6.11 and Proposition 3.1 then shows

‖f − fΦ‖V∞ ≤ 4 · ε · ‖F‖L∞ . (181)

Since the mapping F 7→
´ x
−1

(f − fΦ) is linear, we may now combine the bounds (173) and (181) using
the Riesz-Thorin Interpolation Theorem (see, e.g. Theorem 6.27 in [21]) to complete the proof.

6.4 Proof of Theorem 4.4

We recall the statement of the theorem:

Theorem 6.12. Suppose a = c0 < c1 < · · · < cr = b, and suppose f is Lipschitz continuous on each interval
(cj , cj+1), 0 ≤ j ≤ r − 1, and continuous from either the right or left at each cj, 0 ≤ j ≤ r. Then for all
1 ≤ p ≤ ∞, and ∣∣‖f‖νp − ‖f‖V p

∣∣ ≤ C

n
, (182)

where C > 0 does not depend on n or p. The same bound holds by replacing f with fcen and f with fcen.

For simplicity, we will suppose that f is continuous from the left. Take a constant L so that f has
Lipschitz constant not exceeding L on each interval (ck, ck+1], 0 ≤ k ≤ r − 1, such that |f(t)| ≤ L for all
t ∈ [a, b]. To begin, suppose 1 ≤ p <∞.

The following lemmas are standard bounds on the error of the trapezoidal approximation to an integral;
their proofs are included for completeness.

Lemma 6.13. Fix an integer m, 1 ≤ m ≤ n, and suppose that ckm−1 ≤ am < ckm . Then∣∣∣∣∣∣b− an
trap∑

0≤j≤m
f(aj)−

ˆ am

a

f(t)dt

∣∣∣∣∣∣ ≤ mL(b− a)2

2n2
+

2km(b− a)

n
. (183)

Proof. Fix 0 ≤ j ≤ m. Because f is bounded by L,∣∣∣∣∣b− a2n
(f(aj) + f(aj+1))−

ˆ aj+1

aj

f(t)dt

∣∣∣∣∣ ≤ 2L(b− a)

n
. (184)
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On the other hand, if there are no c` between aj and aj+1, then f is L-Lipschitz on (aj , aj+1], and so∣∣∣∣∣b− a2n
(f(aj) + f(aj+1))−

ˆ aj+1

aj

f(t)dt

∣∣∣∣∣ =
1

2

∣∣∣∣∣
ˆ aj+1

aj

(f(aj)− f(t)) + (f(aj+1)− f(t))dt

∣∣∣∣∣
≤
ˆ aj+1

aj

L(b− a)

2n
dt

=
L(b− a)2

2n2
. (185)

Since there are at most km intervals (aj , aj+1] containing a value from among c0, . . . , ckm−1, and at most
m subintervals not containing any such value, we have∣∣∣∣∣∣b− an

trap∑
0≤j≤m

f(aj)−
ˆ am

a

f(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣b− a2n

m−1∑
j=0

(f(aj) + f(aj+1))−
ˆ am

a

f(t)dt

∣∣∣∣∣∣
≤
m−1∑
j=0

∣∣∣∣∣b− a2n
(f(aj) + f(aj+1))−

ˆ aj+1

aj

f(t)dt

∣∣∣∣∣
≤ mL(b− a)2

2n2
+

2km(b− a)

n
, (186)

as claimed.

Lemma 6.14. Suppose G is a function on [a, b] that is Lipschitz continuous, with Lipschitz constant bounded
above by A. Then ∣∣∣∣∣∣b− an

trap∑
0≤j≤m

G(aj)−
ˆ am

a

G(t)dt

∣∣∣∣∣∣ ≤ mA(b− a)2

2n2
. (187)

Proof. Apply (185) to G, and conclude as in (186).

The next lemma bounds the Lipschitz norm of |Vf(x)|p:

Lemma 6.15. The function |Vf(x)|p is continuous on [a, b], with Lipschitz constant bounded above by
pLp(b− a)p−1.

Proof. Let G(x) = |Vf(x)|. Since ‖f‖∞ ≤ L, G is Lipschitz continuous with Lipschitz constant L:

G(x)−G(y) =

∣∣∣∣ˆ x

a

f(t)dt

∣∣∣∣− ∣∣∣∣ˆ y

a

f(t)dt

∣∣∣∣ ≤ ∣∣∣∣ˆ y

x

f(t)dt

∣∣∣∣ ≤ L|x− y|. (188)

Furthermore, G is bounded above:

|G(x)| ≤
ˆ b

a

|f(t)|dt ≤ L(b− a). (189)

Since the derivative of y 7→ yp is pyp−1, which is bounded above by pLp−1(b−a)p−1 on [0, L(b−a)], we have

|Vf(y)|p − |Vf(x)|p = G(y)p −G(x)p

≤ pLp−1(b− a)p−1|G(y)−G(x)|
≤ pLp−1(b− a)p−1L|x− y|
= pLp(b− a)p−1|x− y|, (190)

as claimed.
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Now, for 0 ≤ m ≤ n, define E(m,n) by

E(m,n) =
b− a
n

trap∑
0≤j≤m

f(aj)−
ˆ am

a

f(t)dt = (Vf)[m]− (Vf)(am). (191)

Applying Lemma 6.13, since km ≤ r and m ≤ n, we have

|E(m,n)| ≤ mL(b− a)2

2n2
+

2km(b− a)

n
≤ C

n
, (192)

where C is independent of n. Consequently,∣∣∣∣∣∣∣‖f‖νp −
b− a

n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b− a

n

trap∑
0≤m≤n

|(Vf)[m]|p
1/p

−

b− a
n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

∣∣∣∣∣∣∣
≤

b− a
n

trap∑
0≤m≤n

|E(m,n)|p
1/p

≤ C

n
, (193)

where C may have changed, but is still independent of n and p.
By Lemma 6.15, the Lipschitz constant of |Vf(x)|p is pLp(b− a)p−1. Applying Lemma 6.13 then yields∣∣∣∣∣∣b− an

trap∑
0≤m≤n

|(Vf)(am)|p −
ˆ b

a

|(Vf)(x)|p dx

∣∣∣∣∣∣ ≤ n(pLp(b− a)p−1)(b− a)2

2n2
=
pLp(b− a)p+1

2n
. (194)

Since |f(t)| ≤ L for all t in [a, b], it follows that |(Vf)(x)| ≤ L(b− a) too, and consequently:

b− a
n

trap∑
0≤m≤n

|(Vf)(am)|p ≤ Lp(b− a)p+1 (195)

and

ˆ b

a

|(Vf)(x)|p dx ≤ Lp(b− a)p+1. (196)

The function y 7→ y1/p has derivative y1/p−1/p, which on [0, Lp(b− a)p+1] has maximum value

(Lp(b− a)p+1)1/p−1

p
=
L1−p(b− a)1/p−p

p
, (197)

and consequently∣∣∣∣∣∣∣
b− a

n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

−
(ˆ b

a

|(Vf)(x)|p dx
)1/p

∣∣∣∣∣∣∣ ≤
L1−p(b− a)1/p−p

p
· pL

p(b− a)p+1

2n

=
L(b− a)1/p+1

2n

≤ C

n
. (198)

Combining (193) and (198) completes the proof of (182) for p < ∞. The corresponding result for p = ∞
follows by taking the limit p→∞ and using the convergence of the p-norm to the ∞-norm.
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To prove the result for fcen and fcen, suppose first that p <∞. From Lemma 6.13, we have

|µ(f)− µ(f)| =

∣∣∣∣∣∣ 1

b− a

ˆ b

a

f(x)dx− 1

n

trap∑
0≤j≤n

f(aj)

∣∣∣∣∣∣ ≤ C

n
, (199)

where C > 0 is a constant independent of n. Letting f̃ be the vector in Rn+1 with entries f̃ [k] = fcen(ak) =
f(ak)− µ(f), 0 ≤ k ≤ n, applying (182) to fcen gives∣∣∣‖f̃‖νp − ‖fcen‖V p

∣∣∣ ≤ C

n
. (200)

Furthermore, for all 0 ≤ k ≤ n,

fcen[k]− f̃ [k] = µ(f)− µ(f), (201)

and so ∣∣∣‖f̃‖νp − ‖fcen‖νp
∣∣∣ ≤ ‖f̃ − fcen‖νp

= ‖(µ(f)− µ(f))1‖νp

=

b− a
n

n∑
k=0

∣∣∣∣∣∣b− an
n∑
j=0

(µ(f)− µ(f))

∣∣∣∣∣∣
p1/p

≤ C

n
. (202)

The result now follows by combining (200) and (202). As before, the result for p =∞ follows by taking the
limit p→∞ and using the convergence of the p-norm to the ∞-norm.

6.5 Proof of Theorem 4.5

We recall the statement of the theorem:

Theorem 6.16. Suppose f is a two times continuously differentiable function on [a, b], and has only finitely
many roots. The for all 1 ≤ p ≤ ∞, ∣∣‖f‖νp − ‖f‖V p

∣∣ ≤ C

n2
, (203)

where C > 0 does not depend on n or p. The same bound holds by replacing f with fcen and f with fcen.

The proof makes use of the following version of the Euler-Maclaurin formula, which is Theorem 3 in [11]
(see also Theorem 2 in [12], which appears to correct an error in the definition of the parameters tj appearing
in the statement below):

Theorem 6.17 (Euler-Maclaurin formula with jumps). Let a = c0 < c1 < · · · < cr−1 < cr = b, and let
q ≥ 2 be an integer. Suppose that, for every 0 ≤ j ≤ r, H is in Cq−1([cj , cj+1]) and H(q) is absolutely
integrable on (cj , cj+1). Suppose too that H(cj) = (H(cj+) + H(cj−))/2 for all 1 ≤ j ≤ r − 1, and
H(c0) = (H(c0+) +H(cr−))/2. Let n be a positive integer, and δ = (b− a)/n. For 0 ≤ t < 1, define

Î = δ

n−1∑
k=0

H (a+ (k + t)δ) (204)

For integer ` ≥ 1, let P` denote the `-th Bernoulli polynomial on [0, 1), extended 1-periodically to the whole
real line (so that P`(x+ k) = P`(x) for all integers k). Let tj = (a/δ + t− cj/δ)mod 1, 0 ≤ j ≤ r − 1.
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Furthermore, for 0 ≤ j ≤ r − 1, let

γj =

{
0, if tj = 0,

1, if tj 6= 0;
(205)

let

α1 =

r−1∑
j=0

γjP1(tj − a)(H(cj−)−H(cj+)); (206)

and, for 2 ≤ ` ≤ q, let

α` =

r−1∑
j=0

P`(tj − a)

`!
(H(`−1)(cj−)−H(`−1)(cj+)). (207)

Then

Î −
ˆ b

a

H(x)dx = α1δ +

q∑
`=2

α`δ
` − δq

q!

ˆ b

a

H(q)(x)
r−1∑
j=0

Pq(tj − x/δ − a)dx. (208)

The next lemma is standard:

Lemma 6.18. Suppose f is a C2 function on [a, b]. Then∣∣∣∣∣b− a2
(f(a) + f(b))−

ˆ b

a

f(t)dt

∣∣∣∣∣ ≤ C‖f ′′‖L∞(b− a)3, (209)

where C > 0 is a universal constant.

Corollary 6.19. Let 0 ≤ m ≤ n. Then

|(Vf)(am)− (Vf)[m]| ≤ C m

n3
, (210)

where the constant C > 0 does not depend on m or n.

Proof. When m = 0, the left side is 0. When m ≥ 1,

|(Vf)(am)− (Vf)[m]| =
∣∣∣∣ˆ am

a

f(t)dt− (Vf)[m]

∣∣∣∣
=

∣∣∣∣∣∣
m−1∑
j=0

ˆ aj+1

aj

f(t)dt− b− a
2n

m−1∑
j=0

(f(aj) + f(aj+1))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m−1∑
j=0

(ˆ aj+1

aj

f(t)dt− b− a
2n

(f(aj) + f(aj+1))

)∣∣∣∣∣∣
≤ C m

n3
, (211)

as claimed.

Now, for 0 ≤ m ≤ n, define E(m,n) by

E(m,n) = (Vf)(am)− (Vf)[m]. (212)

Applying Lemma 6.19, we have

|E(m,n)| ≤ C m

n3
≤ C

n2
, (213)
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where C is independent of n. Consequently,∣∣∣∣∣∣∣‖f‖νp −
b− a

n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b− a

n

trap∑
0≤m≤n

|(Vf)[m]|p
1/p

−

b− a
n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

∣∣∣∣∣∣∣
≤

b− a
n

trap∑
0≤m≤n

|E(m,n)|p
1/p

≤ C

n2
. (214)

We will show that there are constants A and B, not depending on n or p, such that∣∣∣∣∣∣b− an
trap∑

0≤m≤n
|(Vf)(am)|p −

ˆ b

a

|(Vf)(x)|pdx

∣∣∣∣∣∣ ≤ A · p · B
p

n2
. (215)

Let G(x) = (Vf)(x), and H(x) = |G(x)|p = |(Vf)(x)|p. Since
´ b
a
f = 0, G(a) = G(b) = 0. Furthermore,

because f is C2, G is C3. Let a = c0 < c1 < · · · < cr−1 < cr = b be points such that sign(G(x)) is constant
on each subinterval (cj , cj+1); note that G(cj) = 0 for all 0 ≤ j ≤ r.

Lemma 6.20. There are constants A and B, depending on f but not on n or p, such that, in the notation
of Theorem 6.17, ∣∣∣∣∣∣

ˆ b

a

H ′′(x)

r−1∑
j=0

P2(tj − x/δ − a)dx

∣∣∣∣∣∣ ≤ A · p ·Bp. (216)

Proof. Let us first suppose that p > 1. Fix a value ` such that G(x) > 0 on (c`, c`+1); then H(x) = G(x)p

on (c`, c`+1),

H ′(x) = pG(x)p−1G′(x) = pG(x)p−1f(x), (217)

and

H ′′(x) = p(p− 1)G(x)p−2f(x)2 + pG(x)p−1f ′(x). (218)

Take points c` = b1 < b2 < · · · < bs = c`+1 such that the sign of f is constant on each subinterval (bi, bi+1).
Then using the notation of Theorem 6.17,

r−1∑
j=1

ˆ c`+1

c`

pG(x)p−1f ′(x)P2(tj − x/δ − a)dx ≤ p‖G‖p−1
L∞ ‖f ′‖L∞

r−1∑
j=1

ˆ c`+1

c`

P2(tj − x/δ − a)dx,

≤ pC1C
p
2 , (219)

where C1 and C2 do not depend on n or p. An identical argument works if G(x) < 0 on (c`, c`+1), and the
estimate is trivial if G(x) = 0 on (c`, c`+1).

Next, every 1 ≤ m ≤ s, since f = G′ has constant sign in (bm, bm+1), we can perform the change of
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variables u = G(x) and get

ˆ bm+1

bm

H ′′(x)Pq(tj − x/δ − a)dx = p(p− 1)

ˆ bm+1

bm

G(x)p−2f(x)2P2(tj − x/δ − a)dx

≤ p(p− 1)‖P2‖L∞
ˆ bm+1

bm

G(x)p−2f(x)2dx

≤ p(p− 1)‖P2‖L∞
ˆ bm+1

bm

up−2f(G−1(u))du

≤ p(p− 1)‖P2‖L∞‖f‖L∞
ˆ G(bm+1)

G(bm)

up−2du

= p‖P2‖L∞‖f‖L∞
(
G(bm+1)p−1 −G(bm)p−1

)
≤ pC3C

p
4 , (220)

where C3 and C4 do not depend on n or p. An identical argument works if G(x) < 0 on (c`, c`+1), and
the estimate is trivial if G(x) = 0 on (c`, c`+1). Combining the bounds (219) and (220) completes the proof
when p > 1.

If p = 1, suppose G(x) > 0 on (c`, c`+1); then H(x) = G(x) on (c`, c`+1), and consequently H ′ = G′ and
H ′′ = G′′ = f ′. Therefore,∣∣∣∣∣∣

ˆ b

a

H ′′(x)

r−1∑
j=0

P2(tj − x/δ − a)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ˆ b

a

f ′(x)

r−1∑
j=0

P2(tj − x/δ − a)dx

∣∣∣∣∣∣
≤ ‖f‖L∞

∣∣∣∣∣∣
ˆ b

a

r−1∑
j=0

P2(tj − x/δ − a)dx

∣∣∣∣∣∣ , (221)

which is a constant that does not depend on n. The same argument applies if G(x) < 0 on (c`, c`+1), and
the estimate is trivial if G(x) = 0 on (c`, c`+1).

Lemma 6.21. In the notation of Theorem 6.17, α1 = 0 and |α2| ≤ A · p ·Bp for all p ≥ 1, where A and B
are constants not depending on n or p.

Proof. since H is continuous in the interior of [a, b], H(cj−) = H(cj+) when 1 ≤ j ≤ r − 1. Furthermore,
when j = 0, t0 = 0, and hence γ0 = 0; consequently, all terms in the sum (206) are 0, hence α1 = 0.

If p > 1, the parameter α2 defined in (207) may be bounded by

|α2| =

∣∣∣∣∣∣12
r−1∑
j=0

P2(tj − a)(H ′(cj−)−H ′(cj+))

∣∣∣∣∣∣
≤ p

r−1∑
j=0

P2(tj − a)‖G‖p−1
L∞ ‖f‖L∞

≤ Ap‖f‖pL∞
= ApBp, (222)

where A and B are independent of n or p, and where we have used the bound ‖G‖L∞ ≤ L · ‖f‖L∞ . If p = 1,
then H ′ = ±f , and so

|α2| =

∣∣∣∣∣∣12
r−1∑
j=0

P2(tj − a)(H ′(cj−)−H ′(cj+))

∣∣∣∣∣∣ ≤
r−1∑
j=0

P2(tj − a)‖f‖L∞ , (223)

which is bounded independently of n. So the bound |α2| ≤ ApBp is valid for all p ≥ 1, for A and B
independent of n or p.
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Combining Lemma 6.20 and Lemma 6.21, we can apply Theorem 6.17 with t = 0:∣∣∣∣∣∣b− an
trap∑

0≤k≤n
|(Vf)(ak)|p −

ˆ b

a

|(Vf)(x)|pdx

∣∣∣∣∣∣ =

∣∣∣∣∣δ
n−1∑
k=0

H((k + 1/2)δ)−
ˆ b

a

H(x)dx

∣∣∣∣∣
=

∣∣∣∣∣∣α2δ
2 − δ2

2

r−1∑
j=0

ˆ b

a

H ′′(x)P2(tj − x/δ − a)dx

∣∣∣∣∣∣
≤ A · p · B

p

n2
, (224)

where A and B are independent of n or p.
Since |(Vf)(x)| ≤ (b− a) · ‖f‖L∞ ,

b− a
n

trap∑
0≤m≤n

|(Vf)(am)|p ≤ (b− a)p+1‖f‖pL∞ , (225)

and

ˆ b

a

|(Vf)(x)|p dx ≤ (b− a)p+1‖f‖pL∞ ; (226)

consequently, by making A and B larger if necessary, we can assume that both L
n

∑n
m=1 |(Vf)(am)|p and´ b

a
|(Vf)(x)|p dx lie in the interval [0, A ·Bp], where A and B are from (224).

The function y 7→ y1/p has derivative y1/p−1/p, which on [0, A ·Bp] has maximum value

(A ·Bp)1/p−1

p
=
A1/p−1B1−p

p
, (227)

and consequently∣∣∣∣∣∣∣
b− a

n

trap∑
0≤m≤n

|(Vf)(am)|p
1/p

−
(ˆ b

a

|(Vf)(x)|p dx
)1/p

∣∣∣∣∣∣∣ ≤
A1/p−1B1−p

p
·A · p · B

p

n2

=
A1/pB

n2

≤ C

n2
, (228)

where C > 0 does not depend on n or p. Combining (193) and (198) completes the proof for p < ∞. The
corresponding result for p =∞ follows by taking the limit p→∞ and using the convergence of the p-norm
to the ∞-norm.

To prove the result for fcen and fcen, suppose first that p < ∞. From Corollary 6.19 (applied when
m = n), we have

|µ(f)− µ(f)| =

∣∣∣∣∣∣ 1

b− a

ˆ b

a

f(x)dx− 1

n

trap∑
0≤j≤n

f(aj)

∣∣∣∣∣∣ ≤ C

n2
, (229)

where C > 0 is a constant independent of n. Letting f̃ be the vector with entries f̃ [k] = fcen(ak) =
f(ak)− µ(f), the first part of the theorem implies that∣∣∣‖f̃‖νp − ‖fcen‖V p

∣∣∣ ≤ C

n2
. (230)
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Furthermore, for all 0 ≤ k ≤ n,

fcen[k]− f̃ [k] = µ(f)− µ(f), (231)

and so ∣∣∣‖f̃‖νp − ‖fcen‖νp
∣∣∣ ≤ ‖f̃ − fcen‖νp

= ‖(µ(f)− µ(f))1‖νp

=

b− a
n

n∑
k=0

∣∣∣∣∣∣b− an
n∑
j=0

(µ(f)− µ(f))

∣∣∣∣∣∣
p1/p

≤ C

n2
. (232)

The result now follows by combining (230) and (232). As before, the result for p =∞ follows by taking the
limit p→∞ and using the convergence of the p-norm to the ∞-norm.

6.6 Proof of Theorem 4.6 and Corollary 4.7

We recall the statement of the theorem and its corollary:

Theorem 6.22. Let σ0, σ2, . . . , σn, . . . be a bounded sequence of positive numbers, and let Z = (Z[0], . . . , Z[n])
where Z[0], Z[1], . . . , Z[n], . . . are independent with Z[j] ∼ N(0, σ2

j ). Suppose too that σ > 0 satisfies

1

n

n∑
j=1

σ2
j ≤ σ2. (233)

Let t > 0. Then for all 1 ≤ p ≤ ∞,

P
{
‖Z‖νp ≥ t

}
≤ Ae−Bt2n/σ2

, (234)

where A > 0 and B > 0 are constants independent of t, n, or p;

lim
n→∞

‖Z‖νp = 0 (235)

almost surely; and

E‖Z‖νp ≤ C
σ√
n
, (236)

where C > 0 is a constant independent of n and p. Furthermore, (234), (235) and (236) hold with Z replaced
by Zcen.

Corollary 6.23. Suppose f satisfies the conditions of Theorem 4.4, Z satisfies the conditions of Theorem
4.6, and Y = f + Z. Let t > 0. Then for all 1 ≤ p ≤ ∞,

P
{∣∣‖Y ‖νp − ‖f‖V p

∣∣ ≥ t} ≤ Ae−Bt2n/σ2

, (237)

where A > 0 and B > 0 are constants independent of t, n, or p;

lim
n→∞

‖Y ‖νp = ‖f‖V p (238)

almost surely; and

E
∣∣‖Y ‖νp − ‖f‖V p

∣∣ ≤ C σ√
n
, (239)

where C is a constant independent of n and p. Furthermore, (237), (238) and (239) hold with f replaced by
fcen and Y replaced by Ycen.
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First, define S0[0] = S1[0] = 0, and for k = 1, . . . , n, let

S0[k] =
b− a
n

k−1∑
j=0

Z[j], (240)

and

S1[k] =
b− a
n

k∑
j=1

Z[j]. (241)

For 0 ≤ k ≤ n, let

T [k] =
1

2
(S0[k] + S1[k]). (242)

Note that when k ≥ 1,

T [k] =
b− a
n

trap∑
0≤j≤k

Z[j]. (243)

Note too that S0 and S1 are martingales; that is, E[S`[k] |Z[0], . . . , Z[k − 1]] = S`[k − 1], for ` = 0, 1.

Lemma 6.24. For any t > 0,

P
(

max
1≤k≤n

|S`[k]| ≥ t
)
≤ 2 exp(−nt2/2σ2), (244)

for ` = 0, 1.

Proof. Let S = S0. Let λ > 0, and define

X[k] = exp(λS[k]), 0 ≤ k ≤ n. (245)

Then X is a submartingale, i.e. E[X[k] |Z[0], . . . , Z[k − 1]] ≥ X[k − 1]. Observe that S[n] is normally
distributed with mean zero and with variance

σ2 =
(b− a)2

n2

n−1∑
j=0

σ2
j ≤

(b− a)2

n
σ2. (246)

Consequently, using the standard formula for the Gaussian moment generating function,

E[X[n]] = eλ
2σ2/2 ≤ eλ2(b−a)2σ2/2n. (247)

By Doob’s Inequality (e.g. see Theorem 5.4.2 in [19]), for any real number t,

P
(

max
0≤k≤n

S[k] ≥ t
)

= P
(

max
0≤k≤n

X[k] ≥ exp(λt)

)
≤ E[X[n]] exp(−λt)
≤ eλ2(b−a)2σ2/2n−λt. (248)

Taking λ = tn/σ2(b− a)2 yields the bound

P
(

max
0≤k≤n

S[k] ≥ t
)
≤ exp(−nt2/2(b− a)2σ2). (249)

By symmetry and the union bound, and the fact that S = S0, this immediately gives the bound

P
(

max
0≤k≤n

|S0[k]| ≥ t
)
≤ 2 exp(−nt2/2(b− a)2σ2). (250)

An identical argument holds for S1, completing the proof.

41



Since T [k] = (S0[k] + S1[k])/2, and since

‖Z‖ν∞ = max
0≤k≤n

|T [k]|, (251)

the union bound shows

P (‖Z‖ν∞ ≥ t) = P
(

max
0≤k≤n

|T [k]| ≥ t
)
≤ 4 exp(−nt2/2(b− a)2σ2). (252)

This establishes (234) for p =∞; the result then follows for all p ≥ 1 since ‖Z‖νp ≤ ‖Z‖ν∞ .
To see that the rest of the theorem follows from (234), observe that since the right side of (234) is

summable over n, it follows from the Borel-Cantelli Lemma that limn→∞ ‖Z‖νp = 0 almost surely, estab-
lishing (235). Furthermore,

E[‖Z‖νp ] =

ˆ ∞
0

P
(
‖Z‖νp ≥ t

)
dt

≤ 2

ˆ ∞
0

exp(−nt2/2(b− a)2σ2)dt

=
2σ√
n

ˆ ∞
0

exp(−u2/2(b− a)2)du, (253)

which establishes (236) and completes the proof of the theorem for Z. The corresponding results for Zcen

may be deduced from those of Z and the standard concentration bound

P{|µ(Z)| > t} ≤ Ce−Dt2n/σ2

, (254)

where C and D are constants independent of n or t; this follows from the fact that µ(Z) ∼ N(0, σ2/n). This
completes the proof of Theorem 4.6.

To prove (237), recall that Theorem 4.4 gives the bound∣∣‖f‖V p − ‖f‖νp
∣∣ ≤ C

n
, (255)

where C is a constant not depending on p, t or n. From the triangle inequality we have

‖Y ‖νp − ‖f‖V p = ‖f + Z‖νp − ‖f‖V p

≤ ‖f‖νp + ‖Z‖νp − ‖f‖V p

≤ C

n
+ ‖Z‖νp , (256)

and similarly, since ‖f‖νp − ‖Z‖νp ≤ ‖Y ‖νp ,

‖f‖V p − ‖Y ‖νp ≤ ‖f‖V p − ‖f‖νp + ‖Z‖νp
≤ C

n
+ ‖Z‖νp . (257)

Combining (256) and (257) shows ∣∣‖Y ‖νp − ‖f‖V p

∣∣ ≤ C

n
+ ‖Z‖νp , (258)

If t− C/n ≥ t/2, then from Theorem 4.6,

P
{∣∣‖f‖V p − ‖Y ‖νp

∣∣ ≥ t} ≤ P{‖Z‖νp ≥ t− C/n}
≤ P{‖Z‖νp ≥ t/2}
≤ Ae−Bn(t/2)2/σ2

, (259)
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which is a bound of the desired form. On the other hand, if t− C/n < t/2, then t ≤ 2C/n, and so

P
{∣∣‖f‖V p − ‖Y ‖νp

∣∣ ≥ t} ≤ P{‖Z‖νp ≥ t− C/n}
≤ Ae−Bn(t−C/n)2/σ2

= Ae−Bn(t2−2Ct/n+C2/n2)/σ2

= Ae−Bnt
2/σ2

e2BCt/σ2

e−BC
2/nσ2

≤ Ae−Bnt2/σ2

e3BC2/nσ2

, (260)

which is bounded above by an expression of the desired form as well, since e3BC2/nσ2

is bounded. This
completes the proof of (237).

The limit (238) follows immediately from (258) and the fact that ‖Z‖νp → 0 almost surely. To prove
(239), take expectations of each side of (258) and apply (236).

7 Conclusion

This paper has proven a number of robustness properties of the Volterra p-distances for functions of a single
variable. These results extend previous results on Earth Mover’s Distance, an increasingly popular metric in
machine learning and statistical applications. Our results indicate that many of the favorable properties of
EMD are shared by a wider class of metrics, which may be better suited for certain applications; for instance,
it might be preferable in certain contexts to use a metric that is embeddable into `2. Of course, the current
results are limited to functions of one variable and tomographic projections of functions of two variables. It is
natural to consider whether the present results may be used to compare higher dimensional functions by, for
instance, looking at multiple one-dimensional projections; this idea has been used previously in the context
of approximating Wasserstein distances, under the name of “sliced” Wasserstein distances [13, 29, 30]. In
forthcoming work, we consider a class of rapidly computable metrics between functions of two variables that
exhibit a set of properties analogous to those of the Volterra distances reported here.
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