
Fast PokeEMU: Scaling Generated Instruction Tests
Using Aggregation and State Chaining

Qiuchen Yan
University of Minnesota
yanxx297@umn.edu

Stephen McCamant
University of Minnesota
mccamant@cs.umn.edu

Abstract
Software that emulates a CPU has many applications, but
is difficult to implement correctly and requires extensive
testing. Since a large number of test cases are required for
full coverage, it is important that the tests execute efficiently.
We explore techniques for combining many instruction tests
into one program to amortize overheads such as booting an
emulator. To ensure the results of each test are reflected in
a final result, we use the outputs of one instruction test as
an input to the next, and adopt the “Feistel network” con-
struction from cryptography so that each step is invertible.
We evaluate this approach by applying it to PokeEMU, a tool
that generates emulator tests using symbolic execution. The
combined tests run much faster, but still reveal most of the
same behavior differences as when run individually.

CCS Concepts • Software and its engineering → Soft-
ware testing and debugging;

Keywords Symbolic binary execution, CPU emulators, cross-
validation
ACM Reference Format:
Qiuchen Yan and Stephen McCamant. 2018. Fast PokeEMU: Scaling
Generated Instruction Tests Using Aggregation and State Chaining.
In VEE ’18: 14th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, March 25, 2018, Williamsburg, VA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3186411.3186417

1 Introduction
Emulators are widely used in a variety of systems as an ap-
proach to provide transparency between different operating
systems or processor architectures. For instance, developers
of mobile applications use emulators to develop software for
the ARM CPU architecture on more powerful x86 worksta-
tions. Malware analysis uses emulation to execute untrusted

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
VEE ’18, March 25, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5579-7/18/03. . . $15.00
https://doi.org/10.1145/3186411.3186417

software in an isolated and controlled environment and to
support features like whole-system taint analysis [10, 21].
Software emulation supplements hardware virtualization for
certain instructions [1], or to provided flexible nesting [8].

While high-quality CPU emulators have many uses, devel-
oping one is a difficult undertaking. For compatibility with
the software that runs on it, an emulator must match the full
behavior of a real system. Processors like modern x86 CPUs
have complex specifications that run to thousands of pages
of documentation, with many instructions and backwards-
compatibility features. Developing an accurate software re-
implementation of this behavior is a large task. Another
major source of complexity is optimization techniques: to
achieve the most efficient execution, emulators deploy tech-
niques like just-in-time compilation and compiler-style inter-
mediate representations. Optimizations can add even more
special cases that must be handled correctly. Thus it is still
common to find bugs even in widely used emulators, espe-
cially in aspects of CPU behavior that are less frequently
exercised.

In the abstract, testing an emulator is straightforward: one
creates tests that cover the relevant aspects of CPU behavior,
executes those tests on both an emulator and a real hardware
platform, and checks whether the results are the same. Since
the large number of tests required would be costly to create
by hand, several previous research projects have explored
automated test generation and execution techniques for emu-
lators or other virtual machines. However several limitations
of these systems stand in the way of their widespread use.
Some systems can be used only with user-space instruc-
tions [15], or require substantial manual effort in specifying
interesting test cases [17]. Among highly-automated, whole-
system approaches like KEmuFuzzer [14] and PokeEMU [13],
a key limitation is the speed with which the generated tests
can be executed. Typically the test suite for an emulator will
only need to be re-generated occasionally, but we would like
to execute the generated test suite efficiently. When tests run
faster, developers can run tests more frequently and/or run
more comprehensive test suites, allowing bugs to be found
sooner. When bugs are found and fixed sooner, the cost of
doing so is less because the code is fresher on developers’
minds and less other code will need to be reworked.
A sweet spot for a system such as the open-source emu-

lator QEMU is to rerun a comprehensive relevant test suite

https://doi.org/10.1145/3186411.3186417
https://doi.org/10.1145/3186411.3186417
https://doi.org/10.1145/3186411.3186417

nightly or after each commit (these frequencies are similar;
in the past 5 years, the software x86 emulator of QEMU was
updated on average 231 times per year). Of course latency
can also be improved by running tests in parallel, but in a par-
allel setting more efficient execution allows the same latency
with fewer CPU resources. And if latency and CPU resources
are both held constant, more efficient test execution allows
us to run more test cases and so achieve higher coverage.
Allowing tests to take up less space can help them run faster,
as well as easing other tasks such as the management of old
test results. Therefore, the key challenge we address in this
paper is how to generate a test suite that can exercise CPU
instructions with millions of controlled test inputs, but that
can still run and be checked for correct results using little
time and space.

We build on PokeEMU [13], an existing tool for testing x86
emulators that generates test cases using symbolic execution.
Formerly PokeEMU booted an emulated virtual machine
for each instruction test. Instead we explore techniques for
combining many instruction tests into a single program that
runs in one virtual-machine session, but with the property
that the failure of any individual test can still be detected in
the final test results. The result of our Fast PokeEMU system
is tests that retain the coverage properties of PokeEMU’s
tests, but which produce their results much more quickly.
We can also supplement PokeEMU’s targeted tests with a
large number of random tests, to further improve coverage.
PokeEMU embeds each instruction test into a bootable

virtual floppy disk image, which executes the test whenever
booted in a x86-compatible virtual machine. This design
makes the approach easily portable for testing different emu-
lators, but we observe that most of the time in testing is spent
booting the virtual machine before the test and collecting an
image of its memory state after the test (used for results com-
parison). Our overall approach is to keep this same structure
of a testing session, but to execute many more instruction
tests in between the boot and the final state collection, to
amortize the cost of the non-instruction parts of test execu-
tion. The first step, which we refer to as “simple aggregation,”
is to take the code for several instruction tests as generated
by PokeEMU and combine them into a single program. To
achieve this, each test has to clean up its side-effects to the
machine state after executing (returning most registers and
memory to what we call a “baseline state”), and save the
instruction outputs in an otherwise-unused area of memory.
The tests that PokeEMU generates with symbolic execu-

tion give high coverage, by construction, of the emulator
from which they were generated: PokeEMU generates a test
to cover each feasible execution path through a high quality
implementation. However this property does not fully trans-
fer when the same tests are used on another emulator: for
instance if the original emulator is missing a check, the tests
may not exercise it. For this reason we also supplement the

symbolic-execution-based tests with tests that randomize
the instruction inputs. Random tests also have the advantage
of running quickly because they only need one copy of the
test, a loop, and a way to generate (pseudo-)random inputs.
However, especially when we combine aggregation and

repeated random tests, the amount of space used by all of the
test results becomes a limiting factor. Our current implemen-
tation stores the test results in the limited-sized RAM of a
virtual machine, but increasing this memory size or sending
the results over a virtual I/O device would still involve trans-
fer costs and storing the results somewhere. The common
case is tests that pass, so we would like to combine the results
of many instruction tests into a small area of memory, which
will have the same contents when the tests run correctly,
and with high probability will be different if one or more
tests produce the wrong results.
In order to combine the results of all the tests, but make

cancellation unlikely, we chain our instructions together in
an more complex way based on the Feistel network con-
struction from cryptography, which produces an invertible
transformation out of arbitrary functions. This ensures that
the effect of any single instruction failure is visible in the
final test output, and that multiple changes are detected with
high probability, without the output size needing to grow
as more tests are aggregated. The Feistel network can also
serve as the random number generator for random testing,
and it produces a final output that is only twice the size of
any individual test output.
To evaluate the benefits of our approach, we reproduce

and extend a previous experiment using PokeEMU to com-
pare the behavior of the QEMU emulator against real Intel
x86 hardware with KVM hardware virtualization. Compar-
ing the results of PokeEMU-style individual tests with Fast
PokeEMU’s Feistel-aggregated versions of the same tests,
Fast PokeEMU’s test suite ran much faster but revealed most
of the same behavior differences.

Contribution In summary, this paper makes the following
contributions:

• We demonstrate that aggregating many instruction
tests into a single program allows other testing costs
to be significantly amortized.

• We introduce the use of a Feistel network to aggregate
test cases, which allows many tests to be combined
within limited space, without sacrificing coverage.

• We implement our techniques in an enhanced Fast
PokeEMU system which generates tests for x86 emu-
lators such as QEMU.

• We evaluate the performance and results of Fast Po-
keEMU on a comprehensive x86-32 instruction test
suite executed on QEMU (software emulation) as com-
pared with KVM (hardware).

i n t t e s t 0 (s h o r t a , s h o r t b)
{

r e t u r n (a + b) ;
}

i n t t e s t 1 (s h o r t a , s h o r t b)
{

r e t u r n (a << b) ;
}

. . .

i n t t e s t 9 9 (s h o r t a , s h o r t b)
{

r e t u r n (a ∗ b) ;
}

Listing 1. Single test case

vo id (∗ t e s t _ p t r [1 0 0]) = { t e s t 0 , t e s t 1 , . . . t e s t 9 9 } ;

l ong long aggreg (s h o r t a , s h o r t b)
{

i n t i ;
i n t r = a + (b << 1 6) ;
i n t l = 0 ;

/ / F e i s t e l c o n s t r u c t i o n
f o r (i = 0 ; i < 1 0 0 ; i ++) {

s h o r t x = r ;
s h o r t y = r >> 1 6 ;
i n t ou tpu t = (∗ t e s t _ p t r [i]) (x , y) ;
i n t r2 = l ^ ou tpu t ;
i n t l 2 = r ;
r = r2 ;
l = l 2 ;

}

r e t u r n (r + (l << 3 2))
}

Listing 2. Aggregated test cases

2 Approach Overview
In this section, we walk through an example to explain our
main idea before involving details about emulator testing.

Suppose we want to test a list of 100 arithmetic functions,
as shown in Listing 1. One simple approach would be to
compile each function into its own binary, and check that
each program gives the correct answer. However this would
be inefficient, because there is significant additional overhead
in running each program.
Instead of compiling each test function into a separate

binary and testing each of them, more efficient is to create
one big binary containing all 100 functions to test them all
together. But to keep from requiring space proportional to
the number of tests, our approach is to chain instruction tests
together. Rather than each test having a separate input and

a separate output location, we connect the output of one test
to be an input of a subsequent test. A naive approach to such
chaining could cause instruction failures to be missed. For
instance, consider a test with two instructions, where the first
should generate the output 20, and the second instruction
is a right shift by two bits. The expected result of the chain
of these two instructions would be 5, but the result would
also be 5 if the first instruction incorrectly produced 21,
because 21 >> 2 is also 5. This problem would not occur
if the second instruction were an invertible operation like
increment, but of course we would like to be able to test all
machine instructions, not just those that are invertible.

Another simple approach would be to XOR the results of
all the tests together in the same output location. Because
XORing implements a bijection, any change in the output
of a single test would produce a change in the final output.
But this approach has the problem that for instance if the
same bit difference appeared in an even number of tests, they
would cancel out and the final result would be the same.

The idea of our Feistel aggregation technique is shown
via source code analogy in Listing 2. We execute each test
function, but instead of using separate inputs and outputs,
the inputs of each test function are derived from the outputs
of the previous test, mixed together with previous state using
a combination of swapping and XOR called a Feistel network
(we give more details about the Feistel construction in 4.3.1.)
The mixing means that no test output is overwritten: they
all have some effect on the final result. In particular each
step of the loop is an invertible transformation on the state,
so if there is a difference in the output of a single test it is
guaranteed to be reflected in a change in the final output.
In this way, we aggregate 100 tests into one large test, and
can tell whether all the tests have passed by comparing one
8-byte value instead of 100 4-byte values.

3 Background
This section provides background on some technologies used
in PokeEMU and Fast PokeEMU. First we briefly introduce
symbolic execution, and the binary-level symbolic execution
tool FuzzBALL, which are used for test case generation by
PokeEMU and Fast PokeEMU. Then, we discuss the operation
of vanilla (i.e., non-Fast) PokeEMU in more detail.

3.1 Symbolic Execution
Symbolic execution is a technique that is widely used in soft-
ware testing. Instead of concrete inputs, a symbolic execution
tool executes the tested program with symbols (also called
symbolic variables). Symbolic execution gives the outputs of
the program as expressions over symbols and concrete val-
ues, called symbolic expressions. These symbolic expressions
precisely summarize the behavior of the tested program.

void emul_SUBT(struct regs *cpu) {
 if (cpu->eax < cpu->ecx)
 cpu->nf = 1;
 else
 cpu->nf = 0;

 cpu->eax = cpu->eax - cpu->ecx;

 if (cpu->eax == 0)
 cpu->zf = 1;
 else
 cpu->zf = 0;

 cpu->eip++;
}

cpu->eax =
cpu->ecx =

a

c

a ≥ c

a - c ≠ 0

∧

Path condition:

a = 5

c = 3

Assignment:

Figure 1. Symbolic execution’s satisfying assignment is a
test case that exercises a chosen execution path.

Symbolic execution is made more complicated when code
has branches that depend on the symbolic input. For each
branch, the program checks a formula called a branch condi-
tion to decide which side to jump to. By making a decision
at each branch, we say the program takes an execution path.
For any particular execution, symbolic execution collects a
list of possibly-negated branch conditions, collectively called
a path condition. The path condition is a formula over the
symbolic inputs, which holds for inputs that would cause the
program to take that same path. This means, for instance,
that any solution to the formula gives a test case for that
path. Figure 1 illustrates how symbolic execution (shown
here for C) creates a test case by determining which values
of the symbolic inputs to an emulated instruction (a and
c , representing the initial values of eax and ecx) cause a
particular execution path to be taken.

3.2 FuzzBALL
The FuzzBALL1 system for binary symbolic execution is
at its core an interpreter for machine code (x86-32, x86-64,
ARM) in which any value stored in a register or memory
can be a symbolic expression. FuzzBALL operates by dy-
namically translating each machine code instruction into the
BitBlaze [19] Vine intermediate language, and then interprets
that representation to perform the instruction’s behavior.

FuzzBALL explores one execution path at a time. It main-
tains a decision tree, a binary tree that records all the previ-
ously explored paths, to avoid exploring any path more than
once. Each decision tree node represents one occurrence of a
branch, and the node can have a “true” child, a “false” child,
or both, depending on which directions of the branch are
feasible in that context. The “true” child is the next symbolic
branch that will be encountered if the branch condition is
true, and similarly for the false child. Each route from the
root node to a leaf corresponds to a path of the explored
1https://github.com/bitblaze-fuzzball/fuzzball

program, and a collection of all the branch conditions along
this route is the path condition of this path. FuzzBALL only
explores a node if it still has unexplored descendants. There-
fore, it is guaranteed that FuzzBALL will only explore each
feasible path once.
FuzzBALL checks the feasibility of each branch condi-

tion and its negation to prune infeasible paths. Each time
FuzzBALL reaches a new branch, it will compute the feasi-
bility of both the true side and the false side of this branch.
If both sides are feasible, FuzzBALL will randomly pick one
side to explore, mark the other side as “feasible,” and leave
the other direction for future exploration. If there is only one
feasible child, FuzzBALL will tag the other side as infeasible
and never explore it again.
FuzzBALL uses an SMT (satisfiability modulo theories)

solver to decide branch feasibility. Given a list of constraints,
an SMT solver tries to figure out whether any solution (“satis-
fying assignment”) exists, and if so it produces one. FuzzBALL
is compatible with STP [9], Z3 [6], or other SMT solvers that
support the SMT-LIB 2 interface format (the experiments
reported here use Z3). FuzzBALL queries those solvers with
symbolic expressions, translated into their appropriate syn-
tax, and then parses the result.
A special case of branches is branching on word-sized

expressions. The branch condition of a two-way branch eval-
uates to either true or false. But some other kinds of control
flow, like a jump table implementing a C switch statement,
correspond to a larger number of choices. FuzzBALL re-
duces to the Boolean case by branching on each bit of the
expression representing the choice, starting with the most
significant. For instance a jump table with 10 entries will
be expanded into a sub-tree of two-way choices within the
decision tree with 10 feasible paths.

3.3 PokeEMU
PokeEMU is an emulator testing framework that generates
high coverage test cases automatically, and compares an
emulator with a real machine by running the test cases on
both of them. It generates test cases by binary-level symbolic
execution of an emulator that is chosen for high fidelity (cur-
rently Bochs2). The generated test cases can be used with
any other x86 emulator. Previous work used PokeEMU’s gen-
erated tests to compare Bochs and QEMU3 to each other and
to a hardware-based virtual machine using KVM in which
most instructions run on the real processor. For simplicity
we will focus just on comparing QEMU (in its “TCG” binary
translation mode) against KVM in our experiments.
Before creating test cases, PokeEMU first automatically

generates a list of instructions to be tested. For this purpose,
it runs Bochs under FuzzBALL with the first three bytes of

2http://bochs.sourceforge.net/
3http://www.qemu.com/

https://github.com/bitblaze-fuzzball/fuzzball
http://bochs.sourceforge.net/
http://www.qemu.com/

an instruction symbolic (enough to cover all opcodes). Of
course information about x86 instructions is also available
from other sources, but this step would be important for an
emulator for an architecture that lacked a machine-readable
instruction set specification.
For each instruction, PokeEMU generates a list of a test

cases that are machine states (contents of registers and mem-
ory) in which to execute that instruction. The goal is that the
test cases should cover as many behaviors of the instruction
as possible. In this step, PokeEMU again symbolically exe-
cutes Bochs, but now the instruction is concrete and parts
of the CPU state are symbolic. For PokeEMU one chooses a
subset of the full CPU state to be symbolic, which typically
includes most of the registers, flags, and memory contents,
but excludes some pointer-like data whose actual value is not
likely to affect behavior. (For instance the tests always have
the top-level page directory at a particular address, since it
is the contents but not the location of the directory which
is significant.) FuzzBALL explores all the paths caused by
branching on those parts of the CPU state, and generates one
test case for each. In more detail, FuzzBALL’s results for each
execution path consists of a testing input set that assigns
values to bytes in memory or registers; any locations not
mentioned stay in their baseline state. As a simple example,
if a testing input set consists of just "in_reg_ESP__4_0=0x9",
we can take the corresponding path if we replace the lowest
byte of %esp with 0x9 and keep the remaining bytes in the
CPU state unmodified.

PokeEMU then converts each test input set into a virtual
floppy disk image that can be used to boot QEMU (or another
emulator) and run the test. The disk image uses the GRUB
bootloader to start a small custom “kernel” that initializes
the machine to the baseline state and then runs the test case.
The test case makes the state changes to turn the baseline
state into the desired test state, and then executes the tested
instruction. After the tested instruction completes normally
or raises an exception, the kernel halts the emulated machine,
and the emulator writes the virtual machine’s memory and
register state as the test result (e.g., for comparison with
other emulators).

The KVM-based hardware test case execution works simi-
larly, but to keep the KVM-based virtual machine simple it
does not implement I/O hardware: it starts its execution from
a machine state snapshot right before execution of the test
case. KVM uses hardware-based virtualization so that most
instructions run on the host CPU: it is the standard for com-
parison because it is as close to direct hardware execution
as we can easily get with fully automatic execution.

A summary of the PokeEMU architecture is shown in Fig-
ure 2. The dashed box shows the code that executes inside
the virtual-machine abstraction. If the VMM implementa-
tions were perfect, this code would always behave the same;

Figure 2. Architecture overview of (Fast) PokeEMU. We au-
tomatically generate instruction test cases which run inside
a virtual machine supported by an emulator or a hardware
VMM.

differences in behavior are usually caused by bugs in soft-
ware emulation. The shaded boxes indicate the parts of the
system we enhance for Fast PokeEMU.

4 Approach
We describe our approach to efficiently aggregate test cases
in this section. We use the terminology of a testing “session”
to refer to the whole period from starting an emulator for
testing through saving its final machine state. Thus, aggrega-
tion refers to our techniques for combining many instruction
test cases into one test session.

4.1 Simple Aggregation
It is intuitive to try to run multiple test cases within one
session, considering the significant time taken by booting up
and other unproductive parts of a testing session. Aggregat-
ing tests into larger groups gives the most time savings, but
it is also sometimes convenient to rerun just a subset of tests.
Though our approach could support any choice of grouping,
we have found it convenient to rerun all the test cases for a
single instruction, so this is the granularity of aggregation
we generally use.

The key challenge presented by simple aggregation is that
the aggregated tests no long run independently from each
other. In vanilla PokeEMU with one test case per session,
each test case naturally starts from the baseline state. In a
multiple test case session, a test case starts not from the
baseline state but from the state modified as by previous test
cases. This difference can be problematic because a different
machine state may change what a test covers; in the worst
case a test case might disrupt the machine state so severely
that subsequent tests cannot execute.
To solve this problem, we generate code at the end of a

test case to clean up the effect of this test case, restoring
the machine close to the baseline state (Figure 4(b)). The

general work-flow is to run one test case, save its output,
reset changes made by this test case, and then run the next
one. Each instruction output that we wish to check as a
test result is copied from the place the instruction left it
(e.g., a register) to an otherwise-unused area of memory
(selected randomly or sequentially from an area not used by
the kernel or testcase code). After that, we reset everything
overwritten by the tested instruction. We also undo any
CPU state changes that set up for the tested instruction
by generating code to reset those same locations to their
baseline values. For example, if a FuzzBALL testing input set
the lowest byte of eax to 0x2, we both generate code to set
the register byte before running the tested instruction and
code setting this byte back to the baseline value after the
tested instruction. If an instruction would normally modify
control flow, like an indirect jump, we choose its operands
so that control-flow is still under our control, such as by
jumping to another code sequence of our choosing.
Another kind of change to the machine state is raising

a hardware exception such as for a page fault or a divide
by zero. Instead of an exception being the end of a testing
session, we would like to treat whether or not an instruction
raises an exception as another output, and then go on to
test the next instruction. To do this we implement exception
handlers which record information about an exception and
return control to the cleanup phase of the current test case.
We then treat exception information as part of the output
of the test case: exception handlers store it in memory, so
that we can tell whether there is any different behavior on
raising exceptions or the exception type.
Generating appropriate clean up code requires our tool

to know the locations that an instruction will write to. In
our current implementation we use the Intel XED4 library
for this purpose, via a Python interface5. XED is an instruc-
tion encoding and decoding library that produces detailed
information about instruction operands. Our tool uses this
information to determine which written operands need to be
cleaned up. We have encountered very few situations where
an instruction changes part of the machine state not men-
tioned by XED: a rare example is the ltr instruction’s side
effect of setting the busy flag in the task’s segment descriptor.
To extend our implementation to other architectures with-
out comparable libraries, we might collect operand accesses
during symbolic execution of the high-fidelity emulator.
Once we can tell whether an aggregation contains test

cases that reveal inconsistent behaviors, we can pinpoint the
exact test case(s) using binary search. Since each test case
saves its outputs in memory, we can detect inconsistency by
comparing two final memory dumps, one from the tested

4https://software.intel.com/en-us/articles/
xed-x86-encoder-decoder-software-library
5https://github.com/huku-/pyxed

emulator and the other from a real machine. Any difference
between those two memory dumps indicates an inconsis-
tency between the emulator and the real machine. To track
down the exact test case(s) that trigger this inconsistency, we
split this aggregation into two smaller aggregations, each of
which contains half of the test cases involved in the original
one. We then execute those two smaller aggregations, and
track down any of them that reveals inconsistent behaviors
by further splitting it. In this way, we finally can find a single
test case that triggers inconsistent behaviors. Note that this
approach works as long as we can tell whether an aggrega-
tion involves test cases that reveal inconsistency. Therefore,
we can use this approach together with the memory reusing
techniques discussed in the next section.

4.2 Looping and Random Testing
PokeEMU’s symbolic execution produces a fixed number of
test cases, and each test case requires storage for the test
inputs (in our case, in the form of code that sets up the
machine state), so the space needed to store the tests is a
limiting factor. Since the time needed to run a test is small
relative to I/O costs, we could run more tests if we could
get more tests out of a limited amount of code. An obvious
direction is to run code in a loop, but since CPU instructions
are mostly deterministic, repeating the same instruction on
the same inputs would not be productive.
Instead, we use another common testing approach and

execute instructions with inputs chosen (pseudo-) randomly
(Figure 4(c)). The test inputs chosen by vanilla PokeEMU
have high path coverage on Bochs, and so also cover many
code paths in a tested emulator. But they may not cover
other distinctions, such as a corner case that is missing from
Bochs. If we have a larger testing budget (perhaps thanks to
the speed improvement of aggregation), we can spend addi-
tional instruction executions by varying instruction inputs
randomly. Though simple, random or fuzz testing has a long
history of finding bugs [15, 16, 20].

4.3 Reusing Memory Space
For several practical reasons, PokeEMU test cases were de-
signed to be small and run in small virtual machines: the test
case code fits in a floppy-disk-sized image, and the testing
virtual machine has 4MiB of RAM. (The 4GiB 32-bit virtual
address space can be conveniently mapped to 4MiB of RAM
by having all 1024 entries in the top-level “page directory”
point to the same second level “page table.”) With this design,
we can save time creating and comparing memory dumps,
and 4MiB is more than enough for booting our simple kernel
and running a few instruction test cases. However the mem-
ory size becomes a limiting factor if we want to aggregate
many test cases and perform random testing on each of them
for a large number of times using a loop: space is required

https://software.intel.com/en-us/articles/xed-x86-encoder- decoder-software-library
https://software.intel.com/en-us/articles/xed-x86-encoder- decoder-software-library
https://github.com/huku-/pyxed

both for the code to set up inputs and run the instruction,
and to store the instruction outputs.
Increasing the memory size of the VMs would be one

way to get around the size limitation, but it is not a fully
satisfying solution because large amounts of test output data
still take time for I/O, and are unwieldy to store. Though we
have not implemented a variant of PokeEMU that uses large
VM sizes, we can estimate the costs by extrapolating from
our existing experiments. Suppose we want to apply simple
aggregation and random testing to a set of 300,000 instruction
tests, running each test in a loop 10,000 times. The code for
each test case requires about 200 bytes, and each set of test
output takes around 20 bytes. So the total code for the set
suite will about 60MB, which is relatively manageable, but
the total size of the output will be about 60GB, large enough
that it would become inconvenient to send a full set of results
over the network, or to store a month’s worth of nightly
results on a workstation. The (virtual) I/O of large amounts
of data also has a time cost. Dumping one of PokeEMU’s
4MiB virtual machine images to disk currently takes about
90ms, which is almost unnoticeable, but processing 60GB of
data in the same way would take a significant part of the
testing time.

Creating a test suite that runs a large number of test cases
but still produces only a small amount of output will result in
tests that are easier to use. In the following subsections, we
discuss how we reuse data space by chaining the outputs of
one instruction into the inputs of another with a Feistel net-
work construction, and how we use the Feistel construction
as a random input generator.

4.3.1 Reusing Data Space
We assume that in the common case, the key result of testing
is a yes/no result telling whether or not the test passes: in our
case, whether or not the emulator has the correct behavior
on a set of tests. When a test fails unexpectedly, it is also
useful to know more details such as what instruction failed
and what the unexpected output was. But since this occurs
less frequently, it is not necessary for it to be supported
by an aggregated test: developers can re-run a test without
aggregation, or use binary search as described above, to
pinpoint the cause of a failure first detected by an aggregated
test. Under this assumption, we design our aggregated tests
so that instead of recording the output of every instruction,
they produce a result that is affected by the output of every
instruction, so that comparing this shorter result between
runs is enough to detect a problem.
Of course it is mathematically impossible to compress

a long sequence of results into a small space without the
possibility of losing some information. Since we expect that
tests succeeding will be the more common case, we present
a scheme were the final result is only twice as large as the
output of any one instruction, and a failure is guaranteed to

Figure 3. An visual description of the Feistel construction
(left) and the way it combined with test aggregation (right).
Note that param in the right-most diagram refers to the in-
puts pre-designed by symbolic execution.

be detected if only one tested instruction produces an incor-
rect output, and the others behave as expected. If more than
one tested instruction within an aggregated test produces
an incorrect result, the best we can guarantee is that it will
be detected with a high probability.
Our basic approach is to use the output of one tested

instruction as part of the input to the next tested instruc-
tion. If every instruction were invertible (i.e., information-
preserving, implementing a bijective function), this would
be sufficient to detect any single failure. But because many
instructions overwrite data or compute many-to-one func-
tions, we need to chain the instructions together in a slightly
more complicated way.
The construction we use was first invented in cryptogra-

phy, where a similar need arises of building an invertible
function (e.g., an encryption function that can also be de-
crypted) out of repeated application of inner functions that
may not be invertible. It is called a Feistel network or Feis-
tel cipher, after the designer responsible for its first public
use in the development that lead to the cipher DES [7]. The
key property of the construction for cryptographic purposes,
later proved formally [12], is that if the inner functionmeets a
definition of cryptographic strength known as being a “pseu-
dorandom function” and there are enough rounds (at least
3), then constructed function has the analogous property of
being a “pseudorandom permutation”. This cryptographic
definition of pseudorandomness is stronger than, but im-
plies, the properties of (pseudo-) randomness that would be
expected for random testing.
Figure 3 gives a graphical overview of the Feistel con-

struction. The state in a Feistel network is divided into two

equal-sized halves, commonly called L and R (from “left” and
“right”). Suppose that the starting input (e.g. the plaintext in
encryption) is L0 and R0, and that the smaller non-invertible
functions indexed as Fi operate on a value the size of an L
or R. In each round, the state evolves via the relations:

Li = Ri−1 and Ri = Li−1 ⊕ Fi (Ri−1)

where ⊕ represents bitwise XOR. A single round is invert-
ible because Ri−1 can be recovered from Li , and then Li−1
computed as Ri ⊕ Fi (Ri−1). Any number of rounds can be
inverted by repeating this process.
The reason any single incorrect test output can be de-

tected is that the function representing all future rounds of
the computation is invertible. Suppose that R′

i in an incorrect
execution is different from Ri in the correct execution, but
that the rest of the construction implements the same func-
tion, because by assumption no other failures are triggered.
Then the final output of each test is an invertible function
of Ri or R′

i respectively, but if Ri , R′
i , this implies that the

outputs are also different.
If there are multiple incorrect executions, this can still be

detected with high probability, because of the pseudorandom
mixing performed by the Feistel construction. For instance,
suppose that there are two instructions which produce incor-
rect outputs; then there is a chance that the two differences
could cancel out, leaving the final output the same. However,
there is only one incorrect result from the second instruction
which will conceal the failure, and because of the mixing,
we can model it as a value that is selected randomly, inde-
pendent of the implementation. Since we generally have a
block size that is at least 64 bits, the chance of an incorrect
execution generating a result that would conceal a previous
error is no more than 2−64.
To complete the analogy of using a Feistel network con-

struction for aggregating test cases, Fast PokeEMU chooses
an L/R block size large enough to accommodate either all
the inputs or all the outputs of any tested instruction in an
aggregation. Each round function Fi copies the inputs to
the locations expected by a tested instruction, executes the
instruction, and copies the outputs back to an appropriately
sized memory block, padding with zero bits if needed. The
inputs to the first tested instruction can be arbitrary as in
simple aggregation, since they are just R0; while L0 can just
be zero.

4.3.2 Feistel Construction as a Random Input
Generator

Conveniently, we do not need a new mechanism for produc-
ing random inputs, because the Feistel network construction
described in Section 4.3.1 already produces unpredictable
pseudo-random values from the interacting behavior of pre-
vious instructions, which we supplement with other mixing

Figure 4. Change of test case structure. The 4 diagrams
from top to bottom are test cases of (a) vanilla PokeEMU, (b)
with simple aggregation, (c) with looping, and (d) with all
three new features.

operations. To repeatedly execute an instruction with vary-
ing inputs, we simply execute it repeatedly with outputs
chained to following inputs thorough the Feistel construc-
tion. The choice of which test inputs to take from the Feis-
tel construction chooses between which parts of the CPU
state are random versus set from a pre-generated test case.
Commonly the test execution budget will be larger than the
number of tests created by vanilla PokeEMU. In this case
we use the natural combination of taking a fully PokeEMU-
generated test case as the first test of an instruction, and then
modifying the test with random data for subsequent loop
iterations. In this way the random testing can only improve
the error detection of pure symbolic execution.

5 Experiments
In this section we describe the experiments we conduct to
evaluate the performance and error coverage of Fast Po-
keEMU’s tests as compared with those generated by vanilla
PokeEMU, when used to compare the behavior of QEMU
and KVM.

5.1 Implementation Details
Of the 336,798 instruction tests generated by PokeEMU, we
select 128,742 which do not raise triple fault or other fatal
exceptions. For aggregation we group the test cases accord-
ing to which of 870 instructions they test: the number of test
cases per instruction varies from 1 to a configurable upper
bound of 4096.
For comparison with the previous evaluation of vanilla

PokeEMU, we generate tests from the same version of Bochs
(2.4.5) and test a similar version of QEMU (0.12.4). To evalu-
ate the impact of random testing with looping, we also run
PokeEMU with historical versions of QEMU ranging from
1.0 to 2.4. We have ported the KVM-based test execution
environment to the version of KVM in a more recent Linux
kernel (4.4.0-45-generic). The tests were generated using an
Intel Core i7-4770, and the KVM tests were executed on an
Intel Core i5-6200U, both running Ubuntu Linux 16.04.

Though our long-term goal is to treat all exceptions simi-
larly to other results of an instruction execution, our current
implementation can only recover from some exceptions. The

test cases run in kernel mode (ring 0) of the virtual machine,
so our first implementation has the exception handlers run
at this level as well; the test case and the exception handler
share a stack which the CPU uses to store exception informa-
tion. Unfortunately this design does not work if an exception
occurs while the stack is unusable, for instance a page fault
that occurs when an instruction tries to write to the stack.
The CPU encounters an exceptional situation while trying to
set up the stack for the exception handler; this then triggers
a second exception handler which fails for the same reason.
Instead of an infinite loop of interrupted exception handlers,
Intel’s design simply halts the processor in this condition
(sometimes referred to as a “triple fault”). We have begun to
investigate an approach to avoiding this problem by putting
the exception handlers in a separate task. This is not a fun-
damental problem, but it has some level of complexities, and
requires more engineering work. As a temporary solution,
we restrict our evaluation to instruction test cases that do
not raise unsupported exceptions in either QEMU or KVM
when executed individually. We select these tests by running
all of the tests generated by PokeEMU individually. Unless
otherwise noted, reported results describe only this subset
of the tests.

5.2 Performance Experiment
Since our major goal is to improve the performance of Po-
keEMU, the very first thing to evaluate is how much faster
the Fast PokeEMU is compared with the vanilla PokeEMU. In
this experiment, we compare the performance of PokeEMU
and Fast PokeEMU with combinations of different features.

Simple Aggregation To evaluate the performance of sim-
ple aggregation, we compare the execution time to run a
group of test cases one by one against running all of them at
once. For each instruction, we generate a large test equiva-
lent to all the test cases of this instruction, and execute it. We
call this large test an “aggregation” in the rest of this paper.
In addition, we also run each test case of this instruction
separately and report the sum of the executing times for
comparison.

Feistel Aggregation Even when the number of test cases is
the same, Feistel aggregation may be slower than simple ag-
gregation because of the overhead of maintaining andmixing
extra state. To measure this, we also generate aggregations
with the Feistel chain.

Looping For the final configuration of performance exper-
iments, we use the mode of Fast PokeEMU that executes
instructions with a loop as well as chaining their inputs and
outputs. For a direct overhead comparison, we perform one
set of runs with an execution count of 1, which is the same
as Feistel aggregation without looping except for overhead.
Then we also perform a set of runs with an execution count

Mode Total time (s) Time per test (ms)
1 Separate 84871.8 583.528
2 Simple 334.7 2.313
3 Feistel 345.0 2.448
4 Loop (1) 345.2 2.672
5 Loop (10000) 1635.4 0.002

Table 1. Runtime performance of Fast PokeEMU test execu-
tion in QEMU. Row 1 shows the result of vanilla PokeEMU,
while the row 2 through row 5 are aggregated tests combined
with different features.

of 10000, which shows the incremental cost of executing
instructions more times.

The results of our performance experiments are shown in
Table 1. The most obvious performance difference is that all
forms of aggregated tests are much faster than running tests
separately. Because sometimes an aggregated test will fail
even when its constituent cases did not, the number of cases
is slightly different for the different modes, so the average
time per test is the best measure for comparison. Despite
the varying total number, we still can see that the Feistel
aggregation and looping impose overheads over simple ag-
gregation by comparing time per test. Because the overheads
are further amortized, looping with a larger execution count
can execute many more instruction tests in not much more
time.

5.3 Error Coverage Experiment
Table 2 shows the effect of test case aggregation on whether
test cases show a difference in behavior between QEMU and
KVM. Recall that we aggregate the test cases in groups ac-
cording to the instruction they test. When we run the tests
separately, we classify a match if all of the tests show the
same result between QEMU and KVM, and a mismatch if at
least one shows a differing result. The aggregated result is
from a single test case that is the Feistel-aggregation combi-
nation of the separate tests; it yields just one result.

The design goal of aggregation is to not affect the results
of tests; to evaluate how well we achieve this, we run each
set of tests in three ways. First we run each test separately,
with no extra features, comparable to the previous evaluation
of vanilla PokeEMU. Second we run each test individually,
but with the extra code such as to support the Feistel con-
struction. Finally we run the set of tests aggregated together
using the Feistel construction (but without random testing).
The ideal result would be for all treatments of an instruction
test set to give the same match/mismatch results; as can be
seen from the first and last lines of the table, this was the
most common result.
Some of the remaining entries in other lines are likely

limitations of our aggregation implementation. Unlike tests

Separated result Separated result with extra code Aggregated result # of instructions
1 Match Match Match 578
2 Match Match Mismatch 20
3 Match Mismatch Match 5
4 Match Mismatch Mismatch 13
5 Mismatch Match Match 18
6 Mismatch Match Mismatch 0
7 Mismatch Mismatch Match 31
8 Mismatch Mismatch Mismatch 292

Table 2. Effect of aggregation on QEMU behavior difference coverage. For most instructions (rows 1 and 8), an aggregated test
case gives the same result as separated tests.

that run separately, a test in an aggregation may not start
running from the baseline machine state if the side effect of
previous tests is not totally cleaned up. In addition, since the
test cases of PokeEMU become more complicated as we add
looping and the Feistel construction (as shown in Figure 4),
there are more engineering challenges in performing correct
clean up.

One class of limitations we have found in analyzing these
results relates to the flags in the page table and segment
descriptors that are set when memory regions are accessed.
Fast PokeEMU does not currently record changes to these
flags as outputs of an instruction (and they are not treated as
such by XED). This leads to several of the mismatch/match/-
match (row 5) results, because the fact that an access bit
is not set can be seen in the machine state right after the
instruction executes, but is overwritten by later accesses in
cleanup code or later tests in an aggregation. Specifically a
problem of this sort with the accessed bit of the code seg-
ment descriptor applies to in (%dx),%al and likely 16 other
variants of in and out instructions in row 5. Ideally the fix
for this problemwould be to treat the accessed bits as instruc-
tion outputs, but this would be somewhat complex because
PokeEMU would need to simulate or otherwise determine
which page table entry a memory access uses. It would also
sometimes be tricky to read accessed bits without disturbing
them, because any memory access might set some accessed
bit.

Some other results show cases in which mismatches come
from real behavior differences in QEMU, but which are found
only sporadically because of limitations of Fast PokeEMU.
One example from row 2, match/match/mismatch, is the in-
struction setbe (%eax), which sets a byte in memory to
either 0 or 1 based on a comparison result. The mismatch
is caused by a limitation of QEMU that it does not enforce
segment-limit checks on memory accesses: the test accesses
a memory location that is below the end of a segment, which
correctly causes a general-protection exception on the real
processor but does not in QEMU. However the address in-
tended in PokeEMU’s test case would not have triggered the

Fix Instruction PokeEMU Fast PokeEMU

321c535 BSF_GdEdR ∗ ∗
BSR_GdEdR ∗ ∗

dc1823c

BTR_EdGdM ∗ ∗
BTR_EdGdR ∗
BTR_EdIbR ∗
BTC_EdGdR ∗
BTC_EdIbR ∗
BT_EdGdR ∗
BT_EdIbR ∗
BTS_EdGdR ∗
BTS_EdIbR ∗

5c73b75

MOV_CdRd ∗ ∗
MOV_DdRd ∗ ∗
MOV_RdCd ∗ ∗
MOV_RdDd ∗ ∗

Table 3. Historical bugs revealed by vanilla and Fast Po-
keEMU

exception; in the current test results the exception happens
only because the address in %eax is accidentally overwritten.
(A separate test case that should have consistently caused the
exception was excluded from this evaluation because it did
not run correctly on its own under KVM.) After analyzing it,
we plan to fix this problem by ensuring that Fast PokeEMU
correctly saves and restores %eax when the register is used
as part of a memory operand (e.g., (%eax)), in addition to
saving and restoring the pointed-to memory location. 4 other
SETcc instructions with memory operands in row 2 would
likely also be addressed by the same fix.

5.4 Historical Bug Experiment
The previous evaluation of PokeEMU did not directly com-
pare to random testing, and it did not associate discovered
bugs with their fixes. Our next experiment looks at which be-
havior differences found by PokeEMU and/or Fast PokeEMU
in an older version of QEMU can be confirmed as real bugs

because they were fixed in a later QEMU version. We also
evaluate which of these failures were only found with the
addition of random testing to vanilla PokeEMU based only
on symbolic execution.

In particular, we do binary search among a range of histor-
ical QEMUs to identify a related bug. Given a test that reveals
a behavior differences on a buggy version of QEMU, we find
an more recent version of QEMU in which this test no longer
reveals differences. The chance is high that this bug has been
fixed before or at this version. We than start binary search
between the buggy version and known fixed version, until
we find the first historical QEMU in which the test reveals
no difference. By studying the code and comments, we can
confirm whether the changes made in this version of QEMU
is the fix to a bug, and whether this bug is associated with
the behavior differences detected by the test.
We start the experiment by running all the aggregations

on an old version of QEMU, both with and without random
testing. For random testing, we set the loop count to 10,000,
namely repeating each test with 10,000 sets of random inputs
the instruction.
With aggregations that reveal new differences, the next

step is to check whether those results are associated with
bugs. For each aggregation, we rerun all the single tests it
includes with random testing, and collect a single test that
reveals differences when running on old QEMU but matches
on the latest version of QEMU. Those tests are eligible for
the rest of the experiment, since the cause of differences in
old QEMU revealed by them have been fixed in latest QEMU.
We then pick one eligible test for each instruction, and do
binary search from the old QEMU through a more recent one,
to find the first version of QEMU that reveals no difference.

The range of QEMU versions we use in the historical bug
experiment is 1.0 to 2.4. The reason for this range is that Po-
keEMU relies on a small modification to QEMU to produce
machine state dumps in the common format used for com-
parison, and this modification must be ported to a historical
version to use it. (We also considered implementing a con-
verter from one of QEMU’s native state dump formats, but
this would have had similar engineering challenges.) Most of
the porting of the changes to support the 39,685 revisions be-
tween 1.0 and 2.4 was accomplished automatically using Git
merging. However the process was not fully automatic since
we had to occasionally resolve merge conflicts manually or
update the dumping functionality for changes in QEMU’s
internals. Because the merged versions were stored in a Git
repository, we also found it convenient to use the “bisect”
feature of Git to perform the binary search over versions.

The results of the experiment are summarized in Table 3.
Fast PokeEMU’s results for QEMU 1.0 reveal later-fixed be-
havior differences across 15 instructions as we aggregated
them (7 unique mnemonics), that were fixed by three differ-
ent commits (indicated by prefixes of their commit hashes

in the official repository; see for instance https://git.qemu.
org/?p=qemu.git;a=commit;h=5c73b75). The developers’ one-
line summaries of the fixing commits were “Implement tzcnt
and fix lzcnt”, “Preserve the Z bit for bt/bts/btr/btc”, and
“mov to/from crN/drN: ignore mod bits”.

Many of the differences were already found by vanilla
PokeEMU, but Fast PokeEMU’s random testing allowed it to
find the problem in the BT* family of instructions muchmore
reliably. Intel’s documentation specifies that the value of the
OF flag after these instructions is undefined, and most real
processors leave it unmodified, but older versions of QEMU
set OF based on another bit in the bit-vector, sharing code
with the way the flags are set after a shift instruction. Bochs
has the correct behavior, but since the correct implementa-
tion does not require a branch, symbolic execution provides
no particular coverage guarantee. On the other hand, the
results show how this problem can be detected with high
probability by random testing.

The number of behavior differences that this experiment
can attribute to later bug fixes seems small relative to the
total number of differences Fast PokeEMU reports. One likely
reason is the limited range of QEMU versions we have tested
so far; bugs fixed before version 1.0 or after 2.4 would not be
found in this experiment. Expanding the range of covered
versions is something we plan for the future: of course it
would also be interesting to know what differences remain
in the most recent QEMU version. Note also that the current
experiment starts only with behavior differences that (Fast)
PokeEMU does report, so it does not provide information
about whether there are bugs that PokeEMU should find,
but does not (false negatives). A further investigation of this
question using historical bugs is also in our future plans.

6 Related Work
We mention here some of the most closely related work in
symbolic execution and emulator testing, as well as other
software testing.

Symbolic Execution Symbolic execution is becoming in-
creasingly common as an approach to explore the behavior
of software systems and generate test cases. There are a
number of other symbolic execution tools that could be used
for the same purpose that PokeEMU and Fast PokeEMU use
FuzzBALL.

KLEE [3] may be the best-known system for symbolic ex-
ecution. Because KLEE operates on LLVM bitcode produced
by a compiler, it could be applied to Bochs whose source
code is available, but not to a high fidelity emulator available
only as a binary.

S2E [4] is a whole-system binary-level symbolic execution
systemwhich is implemented using both KLEE and QEMU. It
translates instructions first into QEMU’s TCG intermediate
representation (IR), and then into the LLVM IR for symbolic

https://git.qemu.org/?p=qemu.git;a=commit;h=5c73b75
https://git.qemu.org/?p=qemu.git;a=commit;h=5c73b75

execution. S2E’s namesake selective symbolic execution fea-
tures are not needed because PokeEMU explores instruction
implementations exhaustively.

Anothermore recently released binary symbolic execution
tool is angr [18]. The angr system is structured as a collection
of loosely-coupled libraries which can implement a variety
of symbolic execution algorithms. For instance among these
veritesting [2] might be useful to address challenges with
path explosion in branching, such as a case in Bochs segment
cache initialization that PokeEMU currently handles via a
specialized procedure summary.

Emulator Testing One of the most commonly discussed
challenges in emulator testing is achieving coverage of em-
ulator behaviors. The performance of test cases, our main
concern in this paper, has received relatively less attention.
The EmuFuzzer [15] and KEmuFuzzer [14] systems are

predecessors to PokeEMU that perform random fuzz test-
ing instead of using symbolic execution to generate tests.
EmuFuzzer targeted only user-mode emulators, while KE-
muFuzzer developed most of the infrastructure for executing
whole-system tests that is also used in PokeEMU, so its test
execution performance is similar to vanilla PokeEMU.
Though KVM primarily uses hardware virtualization, it

also contains an emulator that is used in some uncommon
situations. Amit et al. point out that bugs in this emulator are
more serious that had been previously appreciated, because
its use can be triggered for any instruction by an adver-
sarial guest [1]. They propose the approach of applying a
human-created test suite originally developed by Intel for
testing real CPUs, and with it they discover a large number
of bugs in the KVM emulator. Unfortunately such a test suite
is expensive to produce, and would also be useful to compet-
ing hardware manufacturers, so such suites are usually not
shared publicly. Automated techniques that can reduce the
cost of constructing such tests are still required.
Another use for differences in behavior between emula-

tors and real hardware is for malicious software to detect
whether it is running on real hardware; in this context the
differences are sometimes called “red pills”. Inspired by this
application, Shi et al. use six weeks of researcher effort to de-
velop testing templates that capture interesting operands for
x86 instructions [17]. They find that testing with these cho-
sen inputs reveals more red pills per test than EmuFuzzer’s
random fuzzing.

Many emulators and binary analysis tools (including both
QEMU and FuzzBALL) work by translating instructions into
a simplified intermediate representation (IR). Though these
IRs are typically tool-specific, some are similar enough that
they can be translated into a common language for compari-
son purposes. Kim et al. [11] describe how to cross-compare
several x86 tools of this sort using symbolic execution, and

discover a number of bugs in their CPU models. When com-
patible IRs are available, comparing the IR expressions di-
rectly is more powerful than generating test cases as (Fast)
PokeEMU does, but test cases can also be used to compare
with tools with incompatible IRs, interpreters like Bochs, and
real CPUs.

Resetting Side Effects Efficiently undoing the side effects
of one test before executing another is a common concern of
test execution in many application contexts. For instance, a
performance trade-off similar to the one we address occurs
in randomly testing Java methods: each test case is short,
so it would be inefficient to start a fresh JVM for each test,
but for reproducibility one test should not affect the next.
Ways to efficiently reset static state within a single JVM have
been developed for Java testing tools, such as JCrasher [5].
However JCrasher’s techniques are specific to features of
the JVM such as classloaders and static initialization, so they
would not apply in our context.

7 Future Work
The implementation limitation of Fast PokeEMU we would
like to address next is support for test cases that raise fatal
exceptions including triple faults and other unsupported
exceptions. We will explore handling exceptions using a
different task with its own stack segment and data segments,
so that record the information about one exception without
triggering a new one.
Now that Fast PokeEMU can execute test cases more

quickly, it would be interesting to expand the set of tests
beyond the ones previously used with vanilla PokeEMU. For
instance we might test more instruction variants, or more
combinations of CPU modes.

8 Conclusion
Ensuring the correctness of a CPU emulator requires a large
number of instruction tests, but to be practical the test suite
must execute quickly. We propose techniques to speed up the
execution of whole-system emulator tests by testing many
instructions at the same time, and saving space by chaining
test outputs to subsequent inputs. We have implemented
these techniques in Fast PokeEMU, an automatic test gener-
ation system for x86-32. Compared to the prior PokeEMU
system without these improvements, Fast PokeEMU’s tests
run much more quickly, but reveal most of the same behavior
differences in QEMU.

Acknowledgments
We thank the anonymous reviewers for suggestions which
have helped us improve the paper’s presentation. This pa-
per is based upon work supported by the National Science
Foundation under grant no. 1514444.

References
[1] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran

Shlomo. 2015. Virtual CPU Validation. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP ’15). ACM, New York,
NY, USA, 311–327. DOI:http://dx.doi.org/10.1145/2815400.2815420

[2] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brum-
ley. 2014. Enhancing symbolic execution with veritesting. In 36th
International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014. 1083–1094. DOI:http://dx.doi.org/10.
1145/2568225.2568293

[3] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings. 209–224. http://www.usenix.
org/events/osdi08/tech/full_papers/cadar/cadar.pdf

[4] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: a platform for in-vivo multi-path analysis of software systems.
In Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011. 265–278. DOI:http:
//dx.doi.org/10.1145/1950365.1950396

[5] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An Au-
tomatic Robustness Tester for Java. Softw. Pract. Exper. 34, 11 (Sept.
2004), 1025–1050. DOI:http://dx.doi.org/10.1002/spe.602

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. 337–340. http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[7] Horst Feistel. 1971. Block cipher cryptographic system. US Patent
3,798,359. (1971).

[8] Alex Fishman, Mike Rapoport, Evgeny Budilovsky, and Izik Eidus. 2013.
HVX: Virtualizing the Cloud. In 5th USENIX Workshop on Hot Topics
in Cloud Computing. USENIX, Berkeley, CA. https://www.usenix.org/
conference/hotcloud13/workshop-program/presentations/Fishman

[9] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-
Vectors and Arrays. In Computer Aided Verification, 19th International
Conference, (CAV 2007). 519–531.

[10] Andrew Henderson, Aravind Prakash, Lok-Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. 2014. Make it work,
make it right, make it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In International Symposium on Soft-
ware Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26,
2014. 248–258. DOI:http://dx.doi.org/10.1145/2610384.2610407

[11] Soomin Kim,Markus Faerevaag,Minkyu Jung, SeungIl Jung, DongYeop
Oh, JongHyup Lee, and Sang Kil Cha. 2017. Testing intermediate rep-
resentations for binary analysis. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
353–364. https://doi.org/10.1109/ASE.2017.8115648

[12] Michael Luby and Charles Rackoff. 1988. How to Construct Pseudoran-
dom Permutations from Pseudorandom Functions. SIAM J. Comput.
17, 2 (1988), 373–386. DOI:http://dx.doi.org/10.1137/0217022

[13] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn
Song, and Petros Maniatis. 2012. Path-exploration lifting: hi-fi tests
for lo-fi emulators. In Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2012, London, UK, March 3-7, 2012. 337–348. DOI:
http://dx.doi.org/10.1145/2150976.2151012

[14] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. 2010. Testing System Virtual Machines. In Proceedings
of the 19th International Symposium on Software Testing and Analysis
(ISSTA ’10). ACM, New York, NY, USA, 171–182. DOI:http://dx.doi.
org/10.1145/1831708.1831730

[15] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. 2009. Testing CPU Emulators. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis
(ISSTA ’09). ACM, New York, NY, USA, 261–272. DOI:http://dx.doi.
org/10.1145/1572272.1572303

[16] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical
Study of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990),
32–44. DOI:http://dx.doi.org/10.1145/96267.96279

[17] Hao Shi, Abdulla Alwabel, and Jelena Mirkovic. 2014. Cardinal
Pill Testing of System Virtual Machines. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, San Diego,
CA, 271–285. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/shi

[18] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Krügel, and Giovanni Vigna. 2016. SOK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016. 138–157. DOI:http://dx.doi.org/10.1109/SP.2016.17

[19] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to
Computer Security via Binary Analysis. In Proceedings of the 4th Inter-
national Conference on Information Systems Security. Keynote invited
paper. Hyderabad, India.

[20] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). 283–294. http://doi.acm.org/10.1145/1993498.1993532

[21] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. 2007. Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis. In Proceedings of ACM Conference
on Computer and Communication Security.

http://dx.doi.org/10.1145/2815400.2815420
http://dx.doi.org/10.1145/2568225.2568293
http://dx.doi.org/10.1145/2568225.2568293
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dx.doi.org/10.1145/1950365.1950396
http://dx.doi.org/10.1145/1950365.1950396
http://dx.doi.org/10.1002/spe.602
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Fishman
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/Fishman
http://dx.doi.org/10.1145/2610384.2610407
https://doi.org/10.1109/ASE.2017.8115648
http://dx.doi.org/10.1137/0217022
http://dx.doi.org/10.1145/2150976.2151012
http://dx.doi.org/10.1145/1831708.1831730
http://dx.doi.org/10.1145/1831708.1831730
http://dx.doi.org/10.1145/1572272.1572303
http://dx.doi.org/10.1145/1572272.1572303
http://dx.doi.org/10.1145/96267.96279
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/shi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/shi
http://dx.doi.org/10.1109/SP.2016.17
http://doi.acm.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Approach Overview
	3 Background
	3.1 Symbolic Execution
	3.2 FuzzBALL
	3.3 PokeEMU

	4 Approach
	4.1 Simple Aggregation
	4.2 Looping and Random Testing
	4.3 Reusing Memory Space

	5 Experiments
	5.1 Implementation Details
	5.2 Performance Experiment
	5.3 Error Coverage Experiment
	5.4 Historical Bug Experiment

	6 Related Work
	7 Future Work
	8 Conclusion
	References

