
A General Compiler Framework for Speculative Optimizations

Using Data Speculative Code Motion

Xiaoru Dai, Antonia Zhai, Wei-Chung Hsu, Pen-Chung Yew

Department of Computer Science and Engineering

University of Minnesota

Minneapolis, MN 55455

{dai, zhai, hsu, yew}@cs.umn.edu

Abstract

Data speculative optimization refers to code

transformations that allow load and store instructions to

be moved across potentially dependent memory

operations. Existing research work on data speculative

optimizations has mainly focused on individual code

transformation. The required speculative analysis that

identifies data speculative optimization opportunities and

the required recovery code generation that guarantees the

correctness of their execution are handled separately for

each optimization. This paper proposes a new compiler

framework to facilitate the design and implementation of

general data speculative optimizations such as dead store

elimination, redundancy elimination, copy propagation,

and code scheduling. This framework allows different

data speculative optimizations to share the followings: (i)

a speculative analysis mechanism to identify data

speculative optimization opportunities by ignoring low

probability data dependences from optimizations, and (ii)

a recovery code generation mechanism to guarantee the

correctness of the data speculative optimizations. The

proposed recovery code generation is based on Data

Speculative Code Motion (DSCM) that uses code motion

to facilitate a desired transformation. Based on the

position of the moved instruction, recovery code can be

generated accordingly. The proposed framework greatly

simplifies the task of incorporating data speculation into

non-speculative optimizations by sharing the recovery

code generation and the speculative analysis. We have

implemented the proposed framework in the ORC 2.1

compiler and demonstrated its effectiveness on

SPEC2000 benchmark programs.

1. Introduction

Imprecise data dependence information may decrease

the effectiveness of compiler optimizations. However,

obtaining precise data dependence analysis is both

difficult and expensive for languages such as C in which

dynamic and pointer-based data structures are frequently

used. When the data dependence analysis is unable to

show that there is definitely no data dependence between

two memory references, the compiler must assume that

there is a data dependence between them. It is quite often

that such an assumption is overly conservative. The

examples in Figure 1 illustrate how such conservative data

dependences may affect compiler optimizations.

In Figure 1, lines represent possible data dependences

between memory references. For the example in Figure 1

(a), the possible true dependence between *p and *q (line

1) prevents possible redundancy elimination of *q in S3.

The possible output dependence between *p and *r (line

2) inhibits possible copy propagation of *p in S5. The

possible true dependence between *p and *r (line 3)

disallows possible dead store elimination in S4. In this

example, three compiler optimizations (redundancy

elimination, copy propagation, dead store elimination) are

inhibited by possible data dependences. Without these

Figure 1. Examples of compiler optimizations

disabled by possible data dependences.

S1: = *q

S2: *p= b

S3: = *q

S4: *r= …

S5: = *p

S6: *r= …

1

2

3

while(p){

S1: if (p->f == 0)

 ……

S2: p->f=0;

 ……

 p = p->n;

S3: if (p->f == 0)

 ……

S4: p->f = 0;

 ……

 p = p->n; }

while (p){

 S1: if (p->f==0)

 ……

 S2: p->f=0;

 ……

 p = p->n;

}

a) Example 1 b) Example 2

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

possible dependences, those optimizations could have

been performed by the compiler.

In the left column of Figure 1 (b), another motivation

example with a C while statement is shown. In this

example, the load of p->f in S1 may have possible data

dependence with the store of p->f in S2. After the loop is

unrolled, the result code is shown in the right column of

Figure 1 (b). S1 and S2 are from the first iteration, S3 and

S4 are from the second iteration. The load of p->f in S3

cannot be scheduled ahead of the store in S2 because of

the possible data dependence. If this data dependence

rarely happens at runtime, it may be profitable to schedule

the load in S3 before the store in S2 to hide the load

latency. If the data dependence indeed happens, a

recovery code needs to be executed to guarantee the

correct results.

Getting precise data dependence information is

difficult because it is hard for a compiler to know what

memory locations a memory reference may access at run

time. It is even more difficult when pointers are involved

in the program. Therefore, using data speculation and

runtime verification to overcome possible data

dependences (with low probabilities) has been proposed

recently in [11-16]. Here, data speculation refers to the

execution of instructions which may potentially violate

possible memory dependences albeit infrequently.

Compiler optimizations are normally divided into two

phases: the analysis phase and the code transformation

phase. The analysis phase identifies optimization

opportunities based on the internal representation (IR) and

data dependence information. The code transformation

phase modifies IR to generate improved code. To support

data speculation, we need a recovery mechanism using

either hardware or software support to guarantee the

correctness of their speculative optimizations.

The work in [12] and [15] uses data speculation in

code scheduling to generate more efficient code sequence.

In [13][14][22], data speculation is used to enable

speculative register allocation. They are all examples of

specific speculative code optimizations.

In [11], Ju et al. proposed a unified compiler

framework for control and data speculation in a code

scheduler. There are three main tasks in their speculative

code scheduler: marking speculative dependence edges,

selecting speculative instructions as scheduling

candidates, and check insertion and DAG update. These

three tasks are integrated with the rest of the instruction

scheduling phase.

In [16], a framework that augments SSA form to

incorporate data speculative information (obtained either

from alias profiling or compiler heuristic rules) is

proposed. Speculative partial redundancy elimination

based on the SSAPRE [5] is presented to exemplify the

use of such a framework.

In both [11][16], the data speculative information is

explicitly annotated either through speculative

dependence edges in dependence graph [11] or

speculative weak updates in SSA form (i.e. χ and µ

operators in [16]). All optimizations that try to incorporate

data speculation thus must be modified and made aware of

such explicitly annotated data speculative information.

In [11], the construction of dependence graph,

selection of scheduling candidates and DAG update are all

modified to handle the speculative dependence edges.

Recovery code generation is decoupled from the

scheduling phase, and works well only for code

scheduling. It may not handle other optimizations directly.

For example, the identification of speculative chains in

their recovery code generation will not be applicable for

eliminating instructions due to speculative redundancy. In

[16], the construction of SSA form, the Φ-insertion step,

the rename step and the code motion step in SSAPRE all

need be modified to identify speculative optimization

opportunities and to generate recovery code. In [11][16],

the accommodation of data speculative information in

optimizations and the recovery code generation have to be

tailored to each specific compiler optimization. They can’t

be shared among optimizations. Such existing frameworks

are difficult to adopt, to extend, and to maintain.

In our framework, as shown in Figure 2, the data

speculative information is integrated into a shared

Speculative Data Dependence Analysis (SDDA) phase by

ignoring low probability data dependences from the

optimizations. Hence, more optimization opportunities

could be exposed for existing optimizations without

requiring any modification to accommodate such

information as in [11] and [16]. When an optimization

opportunity is identified in the analysis phase of an

optimization, a shared mechanism is provided for

Figure 2. Structure of our proposed data

speculative optimizations

Speculative Data Dependence Analysis

Analysis phase

of optimization 1

Data Speculative Code Motion

Code transformation

of optimization 1

…

…

Analysis phase

of optimization n

Code transformation

of optimization n

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

recovery code generation if it is data speculative. The

proposed recovery code generation is based on Data

Speculative Code Motion (DSCM) which uses a code

motion model to determine whether a transformation is

data speculative, and to generate necessary recovery code.

Our framework has two advantages. First, SDDA and

DSCM are shared by all optimizations. Second, the

existing non-speculative optimizations need no

modifications. There is no need to make customized

changes in each optimization to accommodate speculative

information and to generate recovery code as in [11] and

[16]. To show the effectiveness of such an approach, we

have successfully applied our framework to four

optimizations: redundancy elimination, dead store

elimination, copy propagation, and code scheduling.

1.1 Contributions

This paper focuses on and is made novel by proposing

a data speculative code motion framework that transforms

existing data dependence based optimizations into data

speculative optimizations. Prior work on data speculation

all targets specific optimizations, such as code scheduling

[11, 12, 15] or register allocation [13, 14, 22]. The only

prior work that attempts to integrate different compiler

optimizations into a common framework is [16].

However, it requires two major modifications whenever a

new optimization is integrated: (i) an optimization pass

that accommodates data speculation information, and (ii) a

recovery code generation mechanism tailored to that

specific optimization. The framework proposed in this

paper is the first attempt to allow the easy integration of

different data speculative optimizations by sharing the

same speculative data dependence analysis and recovery

code generation while keeping the corresponding non-

speculative optimizations intact by using data speculative

code motion.

The rest of the paper is organized as follows. Section 2

describes the heuristic rule in SDDA. Section 3 discusses

code motion required by each optimization in details.

Section 4 explains DSCM and its recovery code

generation. Section 5 provides the implementation of our

framework. Section 6 discusses the performance of the

framework using SPEC CPU2000 benchmarks, and

section 7 presents our conclusions.

2. Speculative Data Dependence Analysis

Traditional data dependence analyses must

conservatively assume that there is a data dependence

between two memory references unless it can be proven

otherwise, while our speculative data dependence analysis

(SDDA) does exactly the opposite and takes a very

aggressive approach. SDDA assumes that there is no data

dependence between two memory references unless we

could prove that it is very likely, or most definitely, that

those two memory references will access the same

memory locations. Any data dependence with a low

probability will be assumed as no data dependence in the

speculative optimizations. As it turns out, the probability

distribution of most data dependences are very bimodal,

i.e. it is either very likely, or not likely at all [20]. Using

this approach, more optimization opportunities can be

exposed for possible speculation. However, since SDDA

cannot guarantee the correctness of the execution, we still

need the results from the traditional data dependence

analysis to guide the recovery code generation for all

speculative optimizations based on SDDA.

We use access paths [1] to represent memory

references. An access path (AP) of a memory reference is

a non-empty string that consists of the variable name, the

field name of a structure and the de-reference to reach the

memory location of the memory reference. We use rules

similar to those in [1] to generate access paths for memory

references.

A heuristic rule is used to identify highly likely

dependent memory references. The simple heuristic rule

used is as follow: if two memory references have the same

access path, and if the variables involved on the access

path are not explicitly changed between the two

references, then the two references are considered

dependent. Otherwise, they are considered independent.

Data dependence profile [20] could also be used to

provide such information.

In Figure 3 (a), p->data in S1 and in S3 are considered

dependent since they have the same access path and the

variable p is not explicitly changed between S1 and S3. p-

>data and *q are considered independent since their

access paths are different. In Figure 3 (b), p->data in S1

and in S3 has the same access path. However, they are

considered as independent because p is explicitly changed

between S1 and S3.

In SDDA, access path information is collected for

every memory reference in a procedure. After that, data

dependence relations between any two memory references

are computed based on the above heuristic rule.

S1: p->data = 10;

 …

S2: *q = 20;

 …

S3: = p->data

S1: p->data = 10;

 …

S2: p = …;

 …

S3: = p->data

Figure 3. Heuristic rule in SDDA

a) Dependent

memory references

b) Non-dependent

memory references

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

3. Code Motion to Enable Data Speculative

Optimizations

When an optimization uses the results of SDDA, it may

violate some unlikely, but possible, data dependences at

runtime. Therefore, we must generate recovery code to

guarantee the correctness of the data speculative

optimizations. In this section, we analyze four data

speculative optimizations to show that the correctness of

data speculative optimizations can be guaranteed by a

special code motion. We explain this in details for data

speculative dead store elimination in section 3.1. The

other three data speculative optimizations (redundancy

elimination, copy propagation and code scheduling) can

be explained in a similar way. We provide a brief

explanation for them in section 3.2, 3.3 and 3.4.

3.1 Code Motion to Enable Data Speculative

Dead Store Elimination

Dead store elimination [17][6] eliminates unnecessary

stores of which the results are not used. For the example

in Figure 4 (a), the analysis phase of the dead store

elimination identifies that the store in S1 is dead on the

left path if there are no highly likely aliased loads or

stores between S1 and S2. But the store cannot be

eliminated directly because there may be possible aliased

loads or stores along the left path (Note: the optimization

uses the results of SDDA). We consider the store as a

speculative optimization opportunity. A special code

motion that moves the store in S1 to both subsequent

blocks can convert the speculative optimization

opportunity to non-speculative optimization opportunity

that guarantees the correctness of the speculative

optimization as shown in Figure 4 (b). The dotted lines

show the direction of the code motion. The question here

is whether the store in S1 can be moved to the target

blocks as described above. This code motion may be

illegal when possible data dependences exist along the

code motion path. However, we could generate recovery

code for every potential violation of memory dependences

along the code motion path to guarantee the correctness of

the code motion. The details of the code motion and the

required recovery code generation are explained in section

4. After the code motion, the code transformation of dead

store elimination can remove the dead store along the left

path. The resulting code after dead store elimination is

shown in Figure 4 (c).

3.2 Code Motion to Enable Data Speculative

Redundancy Elimination

Redundancy elimination [18][5] eliminates loads or

computations of which the results are already available.

For the example in Figure 5 (a), the load of *p in S2 is

redundant when the execution follows the left path. After

the analysis phase of the redundancy elimination

identifies the load in S2 as redundant, our special code

motion will move the load next to S1 as shown in Figure 5

(b). The load can be safely eliminated after the code

motion. The code after redundancy elimination is shown

in Figure 5 (c). In our implementation, the redundant load

is replaced with a move instruction that copies the

destination of the non-redundant load to the destination of

S1: *p= …

S1: *p= …

S2: *p= …

S1: *p = …

S1: *p= …

S2: *p= …

a) Partial dead store

b) Code motion to enable

dead store elimination

S2: *p= … S1: *p = …

c) Code after dead

store elimination

Figure 4. Code motion to enable data

speculative dead store elimination

S2: = *p

S1: t= *p S1: t= *p

 = *p
= *p

S2: = *p

a) Partial redundant

load

b) Code motion to enable

redundancy elimination

S2: = t

S1: t= *p t=*p

c) Code after redundancy

elimination

Figure 5. Code motion to enable data

speculative redundancy elimination

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

the redundant load. Thus the destination of the load in the

recovery code (shown in section 4) does not need any

modification which keeps the code motion independent of

optimizations.

3.3 Code Motion to Enable Data Speculative

Copy Propagation

Copy propagation replaces a load by a register access

if a store to the same memory location can be found

before the load. For example, in Figure 6 (a), the load of

*p in S2 can obtain the result directly from t of the store

instruction in S1. The analysis phase of copy propagation

identifies that the load of *p in S2 can use the result of S1,

our special code motion will move the store in S1

downward as shown in Figure 6 (b). The code after the

copy propagation is shown in Figure 6 (c).

3.4 Code Motion to Enable Data Speculative

Code Scheduling

The code transformation of code scheduling is similar

to upward code motion. Potential data dependences often

limit the effectiveness of code scheduling. With SDDA,

such constraints are relaxed since low probability

dependences are ignored. The scheduler selects the best

candidate to issue in each cycle. If any of the code motion

violates potential data dependences, the verification and

recovery code will be generated to ensure correct

execution.

4. Six Cases of Data Speculative Code Motion

In section 3, we showed that the correctness of data

speculative optimizations can be guaranteed by a special

code motion. If the involved code motion does not violate

any data dependences, no additional work is needed.

Otherwise, recovery code must be generated to enforce

the correctness of the code motion. We call such special

code motion as Data Speculative Code Motion (DSCM).

Here, we limit the data dependences to only those

caused by memory references since data dependences

caused by registers will definitely happen at runtime, and

shall not be violated. According to the type of the moved

instruction (memory load or store), the direction of the

motion (upward or downward) and the type of instruction

being crossed by the code motion (another memory load

or store), we classify DSCM into six cases listed in Figure

7. In each case, the dotted line represents the direction of

the code motion and the solid line represents control flow.

In each case, the two memory references are assumed to

have possible data dependence. The summary of the six

cases is given in Table 1. In this paper, ld represents a

memory load and st represents a memory store.

Although case 1 and 4, case 2 and 3 as well as case 5

and 6 are pair-wise similar in terms of code motion, they

are different from the perspective of recovery code

generation. We only generate recovery code for the

moved instruction. The crossed instruction is not changed.

Moving a load upward or downward across a potentially

dependent load may violate input dependence [10].

Normally, violation of input dependence does not affect

the correctness of the program. Hence, it is not taken into

account in our framework.

Table 1. Summary of six cases of DSCM

case

#

moved

inst

crossed

inst

direction dependence

may be

violated

1 ld st upward true dependence

2 ld st downward anti-dependence

 3 st ld upward anti-dependence

4 st ld downward true dependence

5 st st upward output dependence

6 st st downward output dependence

Table 1. Summary of the six cases of DSCM

a) A copy propagation

example

S1: *p = t

S2: = *p

S1: *p = t

S2: = t

S1: *p = t

S1: *p = t

S2: = *p

b) Code motion to enable

copy propagation

c) Code after copy propagation

Figure 6. Code motion to enable data

speculative copy propagation

case 5

ld

st

case 1

st

ld

case 2

Figure 7. Six cases of DSCM

st

ld

case 3

st

stld

st

case 4

st

st

case 6

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

4.1 Recovery Code Generation

Since DSCM may violate possible data dependences,

verification code must be inserted to check if the DSCM is

legal at runtime. If no dependence violation is detected at

runtime, the DSCM is allowed. When the DSCM is not

allowed, the associated recovery code must be executed.

Comparing the memory addresses of the moved memory

reference and the crossed memory reference can tell

whether a data dependence is violated or not. What

instructions should be in the recovery code and when

should the recovery code be executed are dependent on

each case of DSCM. Normally, the recovery code should

include the speculatively moved instruction. If DSCM

moves an instruction upward, we can execute the recovery

code at the original place of the moved instruction. If

DSCM moves an instruction downward, we may execute

recovery code as soon as we detect a check failure in the

verification code. There are four components in recovery

code generation for the DSCM.

• Flag initialization: set a flag to indicate that DSCM is

allowed.

• Verification: by comparing the addresses of the moved

memory reference and the crossed memory reference,

we could check if DSCM is allowed or not. If not, the

flag is cleared (the flag is set initially).

• Insertion of check instruction: a check instruction is

generated to check the flag. If the flag is cleared by

verification code, execute the recovery code.

• Generation of recovery code: initially, only a copy of the

moved instruction is included.

In Figure 8, we show the code segments, which include

flag initialization, verification instructions, check

instructions and recovery code, for case 1, case 4 and case

6, as examples to illustrate how DSCM is supported.

Case 1 moves a l

Case 1 moves a ld upward across a possible dependent

st. In the result code, S1 sets the flag to 1 to indicate the

code motion is allowed. S2 executes the ld that is now

ahead of the st. S3 verifies if DSCM is allowed or not. If

the address (r4) of the ld and the address (r1) of the st

overlap, the code motion violates the true data

dependence, and the flag is cleared to indicate that the

DSCM is not allowed. Detection of the overlap can be

supported by hardware or software. S4 executes the st

which is not changed. S5 is a check instruction to check

the flag. If the flag is 0, indicating an illegal DSCM, then

the recovery code S6 is executed. In this example, the

recovery code is the original ld.

Case 4 is similar to case 1. The difference is that, after

the verification instruction (S2), the check instruction (S3)

is executed immediately to decide if recovery code (S4)

should be executed or not because, if the DSCM is illegal,

the following ld needs the result of the st. The check

instruction (S3) can be eliminated since flag==0 is

equivalent to detect the overlap between r1 and r4. In case

4, the moved instruction (S7) is guarded by a condition

(S6). Whether we should execute the moved instruction or

not depends on the legality of DSCM. If the DSCM is

allowed, we should execute the moved instruction.

In case 6, we do not need the check instruction and the

recovery code. If the DSCM is not allowed, we know that

the crossed st overwrites the moved st. The moved st (S5)

is guarded by a condition (S4) which is the same as in

case 4.

5. Implementation of the Framework

We have implemented the proposed data speculative

optimization framework in Intel’s Open Research

Compiler (ORC) [2] for the IA64 platforms [3] [8]. In our

framework, first it conducts SDDA. Based on the results

of SDDA, analysis phase of an optimization identifies

speculative optimization opportunities. After that,

information about what instruction should be moved and

where the instruction should be moved to is given to the

DSCM support routines. Based on this information, the

DSCM support routines decide which one of the six cases

it belongs to and generate recovery code accordingly.

After that, the moved instructions may be eliminated

during the code transformation of the optimization. In our

framework, the SDDA and DSCM are shared by all

optimizations. Currently, we include optimizations

(redundancy elimination, copy propagation, dead store

elimination) that are in the global optimization phase

WOPT and the code scheduling in the code generation

phase CG of ORC in our framework.

DSCM support routines use data dependence

information provided by a conservative data dependence

analysis (CDDA). DSCM generates recovery code when

Case 1:

Before DSCM:

st [r1] = r2

ld r3 =[r4]

After DSCM:

S1: flag =1

S2: ld r3 = [r4]

S3: if overlap(r1, r4)

 flag =0

S4: st [r1]= r2

S5: if (flag == 0)

S6: ld r3=[r4]

Case 4:

Before DSCM:

st [r1] = r2

ld r3 = [r4]

After DSCM:

S1: flag =1

S2: if overlap(r1,r4)

 flag =0

S3: if (flag==0)

S4: st[r1] = r2

S5: ld r3 = [r4]

S6: if (flag == 1)

S7: st [r1] = r2

Case 6:

Before DSCM:

st [r1] = r2

st [r3] = r4

After DSCM:

S1: flag =1

S2: if overlap(r1, r3)

 flag =0

S3: st [r3] = r4

S4: if (flag == 1)

S5: st [r1] = r2

Figure 8. Code generation support of DSCM

case 1, 4 and 6

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

the code motion crosses a data dependence indicated in

CDDA but ignored in SDDA. In our implementation, the

CDDA is based on ORC’s alias analysis. The alias

analysis in ORC has two parts. First part is a points-to

analysis which is based on a non-standard type system

[21]. Second part is a rule based alias analysis. A base

rule assumes that two memory references are not aliased if

their bases are different. An offset rule assumes that two

memory references are not aliased if their bases are the

same, and their memory access ranges defined by the

offset and the size of the fields do not overlap. A type rule

assumes that two memory references are not aliased if

their types are different. For example, memory reference

to type float cannot be aliased with a reference to type

integer. The above three rules and some other rules are

used in the ORC’s rule based alias analysis. Based on the

results of the alias analysis, CDDA assumes that there is a

possible data dependence between two memory references

if they are aliased.

The performance of data speculation framework is

highly dependent on the target machine architecture. In

our case, we take advantage of the two architectural

features: data speculative loads and predication, available

on the IA64 platforms to implement our DSCM support.

In our implementation, the DSCM support routines can

generate recovery code for case 1, 4 and 6. Case 2, 3 and

5 can be implemented in the same way. However, they are

not needed in the four speculative optimizations presented

here.

5.1 Case 1 of DSCM

IA64 architecture includes instructions ld.a (advanced

load) and chk.a (advanced load check) [3]. ld.a executes a

load operation and it also stores the memory address of

the load into the Advanced Load Address Table (ALAT).

A store instruction will invalidate any entry in ALAT that

has a memory address overlapping with the store address.

The overlap detection is supported by hardware. chk.a

checks the ALAT entry set by its corresponding ld.a. It

will invoke the recovery code if the entry becomes invalid

by an intervening store. An example is shown in Figure 9

(a). In this example, the moved load is changed to ld.a. At

its original location, a chk.a instruction is generated. In

this example, the recovery code is simply a copy of the

moved load instruction, i.e. it needs to reload the data. In

case 1 of DSCM, when a computation or a load

instruction that directly or indirectly depends on a chk.a

instruction that needs to be moved across the chk.a

instruction, such an instruction needs to be added to the

recovery code of the chk.a instruction. One such an

example is shown in Figure 9 (b).

5.2 Case 4 and Case 6 of DSCM

We use predicate registers in IA64 to hold the results

of the verification instructions. There are 64 predicate

registers in IA64. In IA64, a compare instruction can set

two predicate registers at the same time. For example, pr1,

pr2 = cmp.ne 2, 3 will set predicate register pr1 to 1 and

pr2 to 0. Most instructions in IA64 can be guarded by

predicate registers. If the predicate register of an

instruction is set to 0, then this instruction is executed as a

NOP. We use predication to generate more compact

recovery code. For case 4, the resulting code is shown in

Figure 10 (a). For case 6, the resulting code is shown in

Figure 10 (b). In cases 4 and 6, we use software to detect

the overlap between two memory references. In Figure 11,

we only show the cases in which memory references are

naturally aligned and have the same size. When memory

references are un-aligned, using software to detect the

overlap requires extra instructions and becomes more

Code after r4=r2+1 is

moved across the chk.a:

ld.a r2 = [r3]

r4 = r2 + 1

st [r1] = …

chk.a, recovery

Recovery:

 ld r2 = [r3]

 r4 = r2 +1

Code before case 1

DSCM:

st [r1] = …

ld r2 = [r3]

r4 = r2 + 1

Code after case 1

DSCM:

ld.a r2 = [r3]

st [r1] = …

chk.a r2, recovery

r4 = r2 + 1

Recovery:

 ld r2 = [r3]

a) A load is moved b) A computation inst

is moved

Figure 9. Recovery code for case 1

Code before case 4

DSCM:

st [r1] = r2

ld r3 = [r4]

Code after case 4

 DSCM:

pr1, pr2 = cmp.ne r1, r4

[pr2] : st [r1] = r2

ld r3 = [r4]

pr1: st [r1] = r2

Code before case 6

DSCM:

st [r1] = r2

st [r3] = r4

Code after case 6

 DSCM:

pr1, pr2 = cmp.ne r1, r3

st [r3] = r4

[pr1]: st [r1] = r2

a) Recovery code for

case 4

b) Recovery code for

case 6

Figure 10. Recovery code for case 4 and 6

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

complex. In the code generated by ORC, un-aligned

memory references are very rare, so we don’t allow data

speculation on un-aligned memory references in case 4

and 6. When two memory references have different sizes

such as word and byte, we will change the byte address to

a word address by ignoring the two low bits of the byte

address.

5.3 DSCM Crossing Multiple Dependent sts or lds

In previous sections, we discuss DSCM only in the

context of moving a single memory reference across

another possible dependent memory reference. In real

applications, the compiler may need to move a single

memory reference across multiple loads and stores.

In case 1, if a load is moved upward across several

possibly dependent stores, we only need to generate one

check instruction at its initial location. If any of those

stores accesses the same memory location as the load, the

recovery code associated with the check instruction will

reload the data. Hence, only one check instruction is

needed for a load to cross multiple stores or loads in case

1.

In case 4 and case 6, a store is moved downward

across multiple loads and stores. The compiler needs to

generate a check instruction for every crossed load and

store with possible dependences. In Figure 11, we move

the first store downward across two other stores and two

loads. All verification instructions except the first one are

guarded by the predicate register pr1, which will be set to

0 when the DSCM is not allowed. All check/recovery

instructions are guarded by a predicate register pr2, which

is set to 1 when the DSCM is not allowed. After recovery

code is executed (in which the store is re-executed), pr2 is

reset to 0. When pr1 and pr2 are both 0, all of the

subsequent verification instructions and check instructions

will be ignored to guarantee the correctness. We shouldn’t

execute the recovery code multiple times. In the example,

S2, S6, S9, S13 are instructions which will set pr2 to 0 if

pr2 is 1. After pr2 is changed from 1 to 0 (at this time, pr1

is already 0), all the following verification and check

instructions are ignored.

In case 4 and case 6, we need to generate check

instructions for every possible dependent memory

references that are crossed by the code motion of the st. In

order to avoid generating too many check instructions, we

constrain the code motion in case 4 and case 6 not to cross

procedure calls and loops.

6. Experimental Results

We evaluate the effectiveness of our framework on

Itanium2 processor [8] using all the benchmarks from

SPEC CINT2000 and all the C benchmarks from SPEC

CFP2000. The runtime performance (in number of CPU

cycles) for each benchmark is measured using pfmon [9].

All benchmarks are run with the reference input set. The

base case for comparison is compiled with –O3 without

data speculation by ORC. We compare optimizations with

data speculation enabled by our framework to the base

case in which they are not data speculative. In the

following discussion, we list the percentage of runtime

performance improvement, speculation fail rate, number

of loads reduced, number of store reduced. We also show

the average static number of dependent memory

references crossed in each data speculative code motion

opportunities in mesa and crafty are quite limited because

most stores are to local variables. For all other

benchmarks, the improvement ranges from 0.5% to 7%.

The performance improvement of speculative redundancy

elimination is marginal in integer benchmarks because the

integer load latency is only 1 cycle when the load hits in

L1 cache (a floating load has 6 cycles latency because the

data comes from the L2 cache). Many redundant loads hit

in the L1 cache, therefore, the saving of the redundant

loads is relatively insignificant on Itanium 2. However,

for future architectures with further increased clock rates,

it may become harder to maintain a single clock hit

latency for L1 Cache. The performance gain from

redundant loads elimination will become more significant.

The performance improvement of data speculative code

scheduling on integer code is also not very impressive.

This is because the linked list traversal often dominates

memory references in the integer benchmarks. It is pretty

difficult for the code scheduler to overlap memory

references during the linked list traversal due to true data

dependences. Speculative dead store elimination and

speculative copy propagation do not yield much

performance improvement in most benchmarks.

Code before

DSCM:

st [r1] = r2

st [r3] = r4

ld r5 = [r6]

st [r7] = r8

ld r9 = [r10]

Code after DSCM:

S1: pr1, pr2 = cmp.ne r1, r3

S2: [pr2]: pr2 = 0

S3: st [r3] = r4

S4: [pr1]: pr1, pr2 = cmp.ne r1, r6

S5: [pr2]: st [r1] = r2

S6: [pr2]: pr2=0

S7: ld r5 = [r6]

S8: [pr1]: pr1, pr2 = cmp.ne r1, r7

S9: [pr2] : pr2 = 0

S10: st [r7] = r8

S11: [pr1]: pr1, pr2 = cmp.ne r1, r10

S12: [pr2]: st [r1] = r2

S13: [pr2]: pr2 = 0

S14: ld r9 = [10]

S15: [pr1]: st[r1] = r2

Figure 11. Recovery code for a st moved

across multiple lds and sts

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

Table 2. Static count of crossed dependent

memory references

Benchmark Dependent

references

Benchmark Dependent

references

ammp 6.4 gzip 1.8

art 2.1 mcf 2.3

bzip2 1.5 mesa 1.8

crafty 1.6 parser 3.0

Eon 2.2 perlbmk 1.3

Equake 2.8 twolf 1.9

Gap 1.5 vortex 5.1

Gcc 1.2 vpr 2.7

In DSCM, when we move a memory reference across

another data dependent memory reference, we need to

verify the correctness of the code motion. In Table 2, we

show the average static number of the dependent memory

references crossed by each code motion. For most

benchmarks, the number is smaller than 3.

Table 3 shows the speculations fail rate and the

reduction of load and store instructions. We compute the

speculation fail rate as the number failed check

instructions divided by the number of advanced loads.

The penalty of executing recovery code could be very

high because it may involve instruction cache misses for

the recovery code and branch mis-predictions for the

check instructions. However, since the speculation failure

rate for most benchmarks is below 1%, we need not worry

too much about the mis-speculation penalty. Ammp has a

high failure rate (about 8%) because there are many stores

between the advanced load and its corresponding check

instruction that caused frequent false conflicts in

ALAT(Note: ALAT only tracks lower address bits of an

advanced load).

The reduction of load instructions indicates the

potential of speculative redundancy elimination. From the

measurements, floating-point benchmarks have a larger

reduction in their load instructions. Normally, a larger

load instruction reduction will result in a higher

performance improvement.

Table 3. Speculation failure rate,

reduction of loads and stores

Benchmark Speculation

failure rate

Number of

loads reduced

Number of

stores reduced

ammp 8.20% 17.20% 35.6%

art 0.02% 10.0% <0.01%

bzip2 0.50% 1.30% <0.01%

crafty 3.10% 0.12% 0.60%

eon 0.02% -0.25% <0.01%

equake 0.20% 31.6% <0.01%

gap 0.06% 0.12% <0.01%

gcc 1.14% 5.36% 2.60%

gzip 0.10% 0.60% <0.01%

mcf 1.50% 4.60% <0.01%

mesa <0.01% <0.01% 0.12%

parser 0.67% 0.20% 0.58%

perlbmk 0.03% 1.30% 0.15%

twolf 0.18% 5.80% 9.28%

tortex 0.17% 1.50% <0.01%

vpr 0.02% 6.50% 0.31%

For the reduction of store instructions, only two

benchmarks (ammp, twolf) have a large reduction of the

store instructions. In the benchmarks we studied,

speculative dead store elimination and speculative copy

propagation do not yield much performance gain.

However, in one time-consuming procedure of ammp, it

identified many opportunities for data speculative dead

store elimination. An example code is shown below.

0%

5%

10%

15%

20%

25%

30%

35%

40%

a
m

m
p

a
r
t

b
z
i
p

2

c
r
a
f
t
y

e
o
n

e
q

u
a
k
e

g
a
p

g
c
c

g
z
i
p

m
e
s
a

m
c
f

p
a
r
s
e
r

p
e
r
l
b

m
k

t
w

o
l
f

v
o

r
t
e
x

v
p
r

dead store

elim.

copy

propagation

redundancy

elim.

code

scheduling

i
m

p
r
o
v
e
m

e
n
t

p
e
r
c
e
n
t
a
g
e

Figure 12. Performance impact of data speculative optimizations

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

In this example, a1->VP has a possible dependence

with (*nodelist)[inode].q100, (*nodelist)[inode].sqp, and

(*nodelist)[inode].q010. The CDDA detects no

dependences among a1->VP, a1->dpx and a1->q based on

the results of rule-based alias analysis in ORC. In the

example, after copy propagation on a1->VP, the store to

a1->VP in S1 is speculative dead because it is overwritten

in S4 and (*nodelist)[inode].sqp in S2,

(*nodelist)[inode].q010 in S4 may need the result of the

store. Deleting the store in S1 contributes very little to the

performance gain because the stores can be issued for free

and overlapped with the load of a1->dpx. Similar

examples can be found in benchmark twolf. For all other

benchmarks, speculative dead store elimination and copy

propagation have very few optimization opportunities.

DSCM may increase code size by generating recovery

code. IA64 is an EPIC architecture and NOP instruction

may be generated by compiler to occupy an instruction

slot if there are not enough instructions in one cycle. Our

verification and check instructions may use the instruction

slot which is originally occupied by a NOP. From our

experiment, we observed on average a 5% code

expansion.

7. Conclusions

In this paper, a general data speculation compiler

framework is presented to enable data speculation in non-

speculative optimizations such as redundancy elimination,

dead store elimination, copy propagation and code

scheduling. The key idea in the framework is to use data

speculative code motion (DSCM) to move an instruction

to a position that would trigger a non-speculative

optimization. During DSCM, recovery code will be

generated to guarantee the correctness of the code motion.

After DSCM, the optimization becomes the same as the

non-speculative one. In the proposed framework, a shared

speculative data dependence analysis (SDDA) is used to

hide low probability dependences from optimizations.

Hence, no changes are needed to those optimizations to

identify speculative optimization opportunities. The

SDDA and DSCM can be shared by all optimizations in

the proposed framework. These two advantages greatly

simplify the task of adopting data speculation into those

optimizations. We have implemented the recovery code

generation using the advanced load and predication

instructions in IA64 [3]. Our results show that the

proposed framework can be efficiently implemented in

IA64 and achieve significant speedups for some

benchmarks.

8. Acknowledgements

This work was supported in part by U.S. National

Science Foundation under grants EIA-9971666, CCR-

0105571, CCR-0105574, and EIA-0220021, and grants

from Intel Corp.

9. References:

[1] B.-C. Cheng, W.-M. Hwu. “Modular Interprocedural

Pointer Analysis Using Access Paths: Design,

Implementation, and Valuation”, in Proceedings of the

ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), SIGPLAN Notices

35(5), pages 57--69, June 2000

[2] Open Research Compiler for Itanium Processors, http://ipf-

orc.sourceforge.net, Jan 2003.

[3] Intel Corp., IA64 Application Developer’s Architecture

Guide,

http://developer.intel.com/design/ia64/downloads/adag.htm

[4] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and

Mark Streich. “Effective Representation of Aliases and

Indirect Memory Operations in SSA Form”, in Proceedings

of the International Conference on Compiler Construction

(CC), pages 253--267, 1996.

[5] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo,

Peng Tu, and Fred Chow. “Partial Redundancy Elimination

in SSA Form”, ACM Transactions on Programming

Languages and Systems, 21(3) pages 627--676, 1999.

[6] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming

Liu, and Peng Tu. “Register Promotion by Sparse Partial

Redundancy Elimination of Loads and Stores”, in

Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation

(PLDI), pages 26--37, June 1998.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.

Wegman, and F. Kenneth Zadeck, "Efficiently Computing

Static Single Assignment Form and the Control

Dependence Graph," in ACM Transactions on

Programming Languages and Systems, pages 451--490

October 1991.

[8] Intel Corp., Itanium Processor Micro-architecture

Reference,

http://developer.intel.com/design/ia64/donwloads/245473.h

tm, March 2000.

[9] S. Eranian, “Pfmon Performance Monitoring Tool.”

ftp://ftp.hpl.hp.com/pub/linux-ia64

[10] U. Banerjee. Dependence Analysis for Supercomputing.

Kluwer Academic Publishers, Boston, MA, 1988.

[11] R. D.-C. Ju, K. Nomura, U. Mahadevan, and L.-C. Wu, “A

Unified Compiler Framework for Control and Data

Speculation”, in Proceedings of 2000 Int’l Conf. On

S1: a1->VP += k*(*nodelist)[inode].q100;

S2: a1->dpx += k*(*nodelist)[inode].sqp;

S3: k = c1*a1->q*yt;

S4: a1->VP += k*(*nodelist)[inode].q010;

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

Parallel Architectures and Compilation Techniques

(PACT), pages 157--168, October 2000

[12] D.M. Gallagher, W.Y. Chen, S.A. Mahlke, J.C. Gyllenhaal,

and W.W. Hwu. “Dynamic Memory Disambiguation Using

the Memory Conflict Buffer”, in Proceedings of the Six

International Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), pages 183--93, 1994.

[13] Matthew Postiff, David Greene, Greene and Trevor Mudge.

“The Store-Load Address Table and Speculative Register

Promotion”, in Proeedings of the 33rd Annual Intl. Symp.

on Microarchitecture (MICRO), pages 235--244, December

2000.

[14] J. Lin, T. Chen, W.C. Hsu, P.C. Yew, “Speculative

Register Promotion Using Advanced Load Address Table

(ALAT)”, in the Proceedings of the First Annual

IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pages 125--134, March 2003

[15] A. S. Huang, G. Slavenburg, and J. P. Shen. “Speculative

Disambiguation: A Compilation Technique for Dynamic

Memory Disambiguation”, in Proceedings of the 21st

International Symposium on Computer Architecture

(ISCA), pages 200--210, April 1994.

[16] J. Lin, T. Chen, W.-C. Hsu, P.C. Yew, D.-C. Ju, T.-F.

Ngai, S. Chun, “A Compiler Framework for Speculative

Analysis and Optimizations”, in Proceedings of the ACM

SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Pages 289--299, 2003.

[17] J. Knoop, O. Ruthing, and B. Steffen, "Partial Dead Code

Elimination", in Proceedings of ACM SIGPLAN Conf. on

Prog. Lang. Design and Implementation (PLDI), pages

147--158, 1994.

[18] Preston Briggs and Keith D. Cooper. “Effective Partial

Redundancy Elimination”, in Proceedings of the ACM

SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), SIGPLAN Notices, 29(6)

pages 159--170, June 1994.

[19] Chow, F., Chan, S., Kennedy, R., Liu, S., Lo, R., and Tu,

P. “A New Algorithm for Partial Redundancy Elimination

Based on SSA form”, in Proceeding of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI), pages 273--286, 1997.

[20] Chen, T., Lin, J., Dai, X., Hsu, W.-C., and Yew, P.-C.,

“Data Dependence Profiling for Speculative Optimization”,

in Proceedings of the 13
th

 International Conference on

Compiler Construction (CC), pages 57--72, March 2004.

[21] Bjarne Steensgaard, “points-to Analysis in Almost Linear

Time”, POPL, pages 32--41, 1996.

[22] W.Y. Chen, S.A. Mahlke, W.M. Hwu, T. Kiyohara, and

P.P. Chang, “Tolerating Data Access Latency with Register

Preloading”, in Proceedings of the 6
th

 International

Conference on Supercomputing, July 1992, pp. 104--113.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

