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Abstract

 

Data speculative optimization refers to code 

transformations that allow load and store instructions to 

be moved across potentially dependent memory 

operations. Existing research work on data speculative 

optimizations has mainly focused on individual code 

transformation. The required speculative analysis that 

identifies data speculative optimization opportunities and 

the required recovery code generation that guarantees the 

correctness of their execution are handled separately for 

each optimization. This paper proposes a new compiler 

framework to facilitate the design and implementation of 

general data speculative optimizations such as dead store 

elimination, redundancy elimination, copy propagation, 

and code scheduling. This framework allows different 

data speculative optimizations to share the followings: (i) 

a speculative analysis mechanism to identify data 

speculative optimization opportunities by ignoring low 

probability data dependences from optimizations, and (ii) 

a recovery code generation mechanism to guarantee the 

correctness of the data speculative optimizations. The 

proposed recovery code generation is based on Data 

Speculative Code Motion (DSCM) that uses code motion 

to facilitate a desired transformation. Based on the 

position of the moved instruction, recovery code can be 

generated accordingly. The proposed framework greatly 

simplifies the task of incorporating data speculation into 

non-speculative optimizations by sharing the recovery 

code generation and the speculative analysis. We have 

implemented the proposed framework in the ORC 2.1 

compiler and demonstrated its effectiveness on 

SPEC2000 benchmark programs. 

 

1. Introduction 

 

Imprecise data dependence information may decrease 

the effectiveness of compiler optimizations. However, 

obtaining precise data dependence analysis is both 

difficult and expensive for languages such as C in which 

dynamic and pointer-based data structures are frequently 

used. When the data dependence analysis is unable to 

show that there is definitely no data dependence between 

two memory references, the compiler must assume that 

there is a data dependence between them. It is quite often 

that such an assumption is overly conservative. The 

examples in Figure 1 illustrate how such conservative data 

dependences may affect compiler optimizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1, lines represent possible data dependences 

between memory references. For the example in Figure 1 

(a), the possible true dependence between *p and *q (line 

1) prevents possible redundancy elimination of *q in S3. 

The possible output dependence between *p and *r (line 

2) inhibits possible copy propagation of *p in S5. The 

possible true dependence between *p and *r (line 3) 

disallows possible dead store elimination in S4. In this 

example, three compiler optimizations (redundancy 

elimination, copy propagation, dead store elimination) are 

inhibited by possible data dependences. Without these 

Figure 1. Examples of compiler optimizations 

disabled by possible data dependences. 

S1:     = *q 

S2: *p=  b 

 

S3:     =  *q 

 

S4:  *r= … 

 

S5:      =   *p 

S6:   *r= … 

1

2

3

while( p ){ 

S1: if (p->f == 0)   

          …… 

S2: p->f=0; 

       …… 

      p =  p->n; 

S3: if (p->f == 0)  

        …… 

S4: p->f = 0; 

        …… 

       p = p->n; } 

while ( p ){ 

 S1: if (p->f==0) 

           …… 

 S2: p->f=0; 

       …… 

       p = p->n; 

} 

a) Example 1 b) Example 2

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05) 
0-7695-2298-X/05 $ 20.00 IEEE 



possible dependences, those optimizations could have 

been performed by the compiler.  

In the left column of Figure 1 (b), another motivation 

example with a C while statement is shown. In this 

example, the load of p->f in S1 may have possible data 

dependence with the store of p->f in S2. After the loop is 

unrolled, the result code is shown in the right column of 

Figure 1 (b). S1 and S2 are from the first iteration, S3 and 

S4 are from the second iteration. The load of p->f in S3 

cannot be scheduled ahead of the store in S2 because of 

the possible data dependence. If this data dependence 

rarely happens at runtime, it may be profitable to schedule 

the load in S3 before the store in S2 to hide the load 

latency. If the data dependence indeed happens, a 

recovery code needs to be executed to guarantee the 

correct results. 

Getting precise data dependence information is 

difficult because it is hard for a compiler to know what 

memory locations a memory reference may access at run 

time. It is even more difficult when pointers are involved 

in the program. Therefore, using data speculation and 

runtime verification to overcome possible data 

dependences (with low probabilities) has been proposed 

recently in [11-16]. Here, data speculation refers to the 

execution of instructions which may potentially violate 

possible memory dependences albeit infrequently. 

Compiler optimizations are normally divided into two 

phases: the analysis phase and the code transformation 

phase. The analysis phase identifies optimization 

opportunities based on the internal representation (IR) and 

data dependence information. The code transformation 

phase modifies IR to generate improved code. To support 

data speculation, we need a recovery mechanism using 

either hardware or software support to guarantee the 

correctness of their speculative optimizations. 

 

 

 

The work in [12] and [15] uses data speculation in 

code scheduling to generate more efficient code sequence. 

In [13][14][22], data speculation is used to enable 

speculative register allocation. They are all examples of 

specific speculative code optimizations. 

In [11], Ju et al. proposed a unified compiler 

framework for control and data speculation in a code 

scheduler. There are three main tasks in their speculative 

code scheduler: marking speculative dependence edges, 

selecting speculative instructions as scheduling 

candidates, and check insertion and DAG update. These 

three tasks are integrated with the rest of the instruction 

scheduling phase. 

In [16], a framework that augments SSA form to 

incorporate data speculative information (obtained either 

from alias profiling or compiler heuristic rules) is 

proposed. Speculative partial redundancy elimination 

based on the SSAPRE [5] is presented to exemplify the 

use of such a framework. 

In both [11][16], the data speculative information is 

explicitly annotated either through speculative 

dependence edges in dependence graph [11] or 

speculative weak updates in SSA form (i.e. χ and µ 

operators in [16]). All optimizations that try to incorporate 

data speculation thus must be modified and made aware of 

such explicitly annotated data speculative information.  

In [11], the construction of dependence graph, 

selection of scheduling candidates and DAG update are all 

modified to handle the speculative dependence edges. 

Recovery code generation is decoupled from the 

scheduling phase, and works well only for code 

scheduling. It may not handle other optimizations directly. 

For example, the identification of speculative chains in 

their recovery code generation will not be applicable for 

eliminating instructions due to speculative redundancy. In 

[16], the construction of SSA form, the Φ-insertion step, 

the rename step and the code motion step in SSAPRE all 

need be modified to identify speculative optimization 

opportunities and to generate recovery code. In [11][16], 

the accommodation of data speculative information in 

optimizations and the recovery code generation have to be 

tailored to each specific compiler optimization. They can’t 

be shared among optimizations. Such existing frameworks 

are difficult to adopt, to extend, and to maintain. 

In our framework, as shown in Figure 2, the data 

speculative information is integrated into a shared

Speculative Data Dependence Analysis (SDDA) phase by 

ignoring low probability data dependences from the 

optimizations. Hence, more optimization opportunities 

could be exposed for existing optimizations without 

requiring any modification to accommodate such 

information as in [11] and [16]. When an optimization 

opportunity is identified in the analysis phase of an 

optimization, a shared mechanism is provided for 

Figure 2. Structure of our proposed data 

speculative optimizations 

Speculative Data Dependence Analysis 

Analysis phase  

of optimization 1 

Data Speculative Code Motion 

Code transformation 

of optimization 1 

…

…

Analysis phase  

of optimization n 

Code transformation 

of optimization n 
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recovery code generation if it is data speculative. The 

proposed recovery code generation is based on Data

Speculative Code Motion (DSCM) which uses a code 

motion model to determine whether a transformation is 

data speculative, and to generate necessary recovery code.  

Our framework has two advantages. First, SDDA and 

DSCM are shared by all optimizations. Second, the 

existing non-speculative optimizations need no 

modifications. There is no need to make customized 

changes in each optimization to accommodate speculative 

information and to generate recovery code as in [11] and 

[16]. To show the effectiveness of such an approach, we 

have successfully applied our framework to four 

optimizations: redundancy elimination, dead store 

elimination, copy propagation, and code scheduling. 

 

1.1 Contributions 

 

This paper focuses on and is made novel by proposing 

a data speculative code motion framework that transforms 

existing data dependence based optimizations into data 

speculative optimizations. Prior work on data speculation 

all targets specific optimizations, such as code scheduling 

[11, 12, 15] or register allocation [13, 14, 22]. The only 

prior work that attempts to integrate different compiler 

optimizations into a common framework is [16]. 

However, it requires two major modifications whenever a 

new optimization is integrated: (i) an optimization pass 

that accommodates data speculation information, and (ii) a 

recovery code generation mechanism tailored to that 

specific optimization. The framework proposed in this 

paper is the first attempt to allow the easy integration of 

different data speculative optimizations by sharing the 

same speculative data dependence analysis and recovery 

code generation while keeping the corresponding non-

speculative optimizations intact by using data speculative 

code motion. 

The rest of the paper is organized as follows. Section 2 

describes the heuristic rule in SDDA. Section 3 discusses 

code motion required by each optimization in details. 

Section 4 explains DSCM and its recovery code 

generation. Section 5 provides the implementation of our 

framework. Section 6 discusses the performance of the 

framework using SPEC CPU2000 benchmarks, and 

section 7 presents our conclusions.  

 

2. Speculative Data Dependence Analysis 

 

Traditional data dependence analyses must 

conservatively assume that there is a data dependence 

between two memory references unless it can be proven 

otherwise, while our speculative data dependence analysis 

(SDDA) does exactly the opposite and takes a very 

aggressive approach. SDDA assumes that there is no data 

dependence between two memory references unless we 

could prove that it is very likely, or most definitely, that 

those two memory references will access the same 

memory locations. Any data dependence with a low 

probability will be assumed as no data dependence in the 

speculative optimizations. As it turns out, the probability 

distribution of most data dependences are very bimodal, 

i.e. it is either very likely, or not likely at all [20]. Using 

this approach, more optimization opportunities can be 

exposed for possible speculation. However, since SDDA 

cannot guarantee the correctness of the execution, we still 

need the results from the traditional data dependence 

analysis to guide the recovery code generation for all 

speculative optimizations based on SDDA. 

We use access paths [1] to represent memory 

references. An access path (AP) of a memory reference is 

a non-empty string that consists of the variable name, the 

field name of a structure and the de-reference to reach the 

memory location of the memory reference. We use rules 

similar to those in [1] to generate access paths for memory 

references.  

A heuristic rule is used to identify highly likely 

dependent memory references. The simple heuristic rule 

used is as follow: if two memory references have the same 

access path, and if the variables involved on the access 

path are not explicitly changed between the two 

references, then the two references are considered 

dependent. Otherwise, they are considered independent. 

Data dependence profile [20] could also be used to 

provide such information. 

In Figure 3 (a), p->data in S1 and in S3 are considered 

dependent since they have the same access path and the 

variable p is not explicitly changed between S1 and S3. p-

>data and *q are considered independent since their 

access paths are different. In Figure 3 (b), p->data in S1 

and in S3 has the same access path. However, they are 

considered as independent because p is explicitly changed 

between S1 and S3.  

 

 

 

 

 

 

 

 

 

 

 

 

In SDDA, access path information is collected for 

every memory reference in a procedure. After that, data 

dependence relations between any two memory references 

are computed based on the above heuristic rule.  

S1: p->data = 10; 

            … 

S2: *q = 20; 

            … 

S3:      = p->data 

S1: p->data = 10; 

            … 

S2: p = …; 

            … 

S3:      = p->data 

Figure 3. Heuristic rule in SDDA 

a) Dependent 

memory references

b) Non-dependent 

memory references
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3. Code Motion to Enable Data Speculative 

Optimizations

When an optimization uses the results of SDDA, it may 

violate some unlikely, but possible, data dependences at 

runtime. Therefore, we must generate recovery code to 

guarantee the correctness of the data speculative 

optimizations. In this section, we analyze four data 

speculative optimizations to show that the correctness of 

data speculative optimizations can be guaranteed by a 

special code motion. We explain this in details for data

speculative dead store elimination in section 3.1. The 

other three data speculative optimizations (redundancy

elimination, copy propagation and code scheduling) can 

be explained in a similar way. We provide a brief 

explanation for them in section 3.2, 3.3 and 3.4. 

 

3.1 Code Motion to Enable Data Speculative 

Dead Store Elimination 

 

 

 

 

 

 

 

Dead store elimination [17][6] eliminates unnecessary 

stores of which the results are not used. For the example 

in Figure 4 (a), the analysis phase of the dead store 

elimination identifies that the store in S1 is dead on the 

left path if there are no highly likely aliased loads or 

stores between S1 and S2. But the store cannot be 

eliminated directly because there may be possible aliased 

loads or stores along the left path (Note: the optimization 

uses the results of SDDA). We consider the store as a 

speculative optimization opportunity. A special code 

motion that moves the store in S1 to both subsequent 

blocks can convert the speculative optimization 

opportunity to non-speculative optimization opportunity 

that guarantees the correctness of the speculative 

optimization as shown in Figure 4 (b). The dotted lines 

show the direction of the code motion. The question here 

is whether the store in S1 can be moved to the target 

blocks as described above. This code motion may be 

illegal when possible data dependences exist along the 

code motion path. However, we could generate recovery 

code for every potential violation of memory dependences 

along the code motion path to guarantee the correctness of 

the code motion. The details of the code motion and the 

required recovery code generation are explained in section 

4. After the code motion, the code transformation of dead

store elimination can remove the dead store along the left 

path. The resulting code after dead store elimination is 

shown in Figure 4 (c). 

 

3.2 Code Motion to Enable Data Speculative 

Redundancy Elimination 

 

 

 

 

 

 

 

Redundancy elimination [18][5] eliminates loads or 

computations of which the results are already available. 

For the example in Figure 5 (a), the load of *p in S2 is 

redundant when the execution follows the left path. After 

the analysis phase of the redundancy elimination 

identifies the load in S2 as redundant, our special code 

motion will move the load next to S1 as shown in Figure 5 

(b). The load can be safely eliminated after the code 

motion. The code after redundancy elimination is shown 

in Figure 5 (c). In our implementation, the redundant load 

is replaced with a move instruction that copies the 

destination of the non-redundant load to the destination of 

S1: *p= … 

S1: *p= … 

S2: *p= …

S1: *p = … 

S1: *p= … 

S2: *p= … 

a) Partial dead store 

b) Code motion to enable 

dead store elimination

S2: *p= … S1: *p = … 

c) Code after dead 

store elimination

Figure 4. Code motion to enable data 

speculative dead store elimination 

S2:  = *p 

S1: t= *p S1: t= *p 

      = *p 
= *p 

S2:  = *p 

a) Partial redundant 

load

b) Code motion to enable 

redundancy elimination

S2:  = t 

S1: t= *p t=*p

c) Code after redundancy 

elimination

Figure 5. Code motion to enable data 

speculative redundancy elimination 
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the redundant load. Thus the destination of the load in the 

recovery code (shown in section 4) does not need any 

modification which keeps the code motion independent of 

optimizations. 

 

3.3 Code Motion to Enable Data Speculative 

Copy Propagation 

Copy propagation replaces a load by a register access 

if a store to the same memory location can be found 

before the load. For example, in Figure 6 (a), the load of 

*p in S2 can obtain the result directly from t of the store 

instruction in S1. The analysis phase of copy propagation 

identifies that the load of *p in S2 can use the result of S1, 

our special code motion will move the store in S1 

downward as shown in Figure 6 (b). The code after the 

copy propagation is shown in Figure 6 (c).  

 

 

 

3.4 Code Motion to Enable Data Speculative 

Code Scheduling 

 

The code transformation of code scheduling is similar 

to upward code motion. Potential data dependences often 

limit the effectiveness of code scheduling. With SDDA, 

such constraints are relaxed since low probability 

dependences are ignored. The scheduler selects the best 

candidate to issue in each cycle. If any of the code motion 

violates potential data dependences, the verification and 

recovery code will be generated to ensure correct 

execution.  

 

4. Six Cases of Data Speculative Code Motion 

In section 3, we showed that the correctness of data 

speculative optimizations can be guaranteed by a special 

code motion. If the involved code motion does not violate 

any data dependences, no additional work is needed. 

Otherwise, recovery code must be generated to enforce 

the correctness of the code motion. We call such special 

code motion as Data Speculative Code Motion (DSCM).  

Here, we limit the data dependences to only those 

caused by memory references since data dependences 

caused by registers will definitely happen at runtime, and 

shall not be violated. According to the type of the moved 

instruction (memory load or store), the direction of the 

motion (upward or downward) and the type of instruction 

being crossed by the code motion (another memory load 

or store), we classify DSCM into six cases listed in Figure 

7. In each case, the dotted line represents the direction of 

the code motion and the solid line represents control flow. 

In each case, the two memory references are assumed to 

have possible data dependence. The summary of the six 

cases is given in Table 1. In this paper, ld represents a 

memory load and st represents a memory store.  

 

 

 

 

 

 

 

 

 

 

 

Although case 1 and 4, case 2 and 3 as well as case 5 

and 6 are pair-wise similar in terms of code motion, they 

are different from the perspective of recovery code 

generation. We only generate recovery code for the 

moved instruction. The crossed instruction is not changed. 

Moving a load upward or downward across a potentially 

dependent load may violate input dependence [10]. 

Normally, violation of input dependence does not affect 

the correctness of the program. Hence, it is not taken into 

account in our framework.  

 

Table 1. Summary of six cases of DSCM 

case

#

moved

inst

crossed

inst

direction dependence 

may be 

violated

1 ld st upward true dependence 

2 ld st downward anti-dependence 

 3 st ld upward anti-dependence 

4 st ld downward true dependence 

5 st st upward output dependence 

6 st st downward output dependence 

 

Table 1. Summary of the six cases of DSCM 

a) A copy propagation 

example

S1: *p = t 

S2:   = *p 

S1: *p = t 

S2:   = t 

S1: *p = t 

S1: *p = t 

S2:   = *p 

b) Code motion to enable 

copy propagation 

c) Code after copy propagation 

Figure 6. Code motion to enable data 

speculative copy propagation 

case 5 

ld

st

case 1 

st

ld

case 2 

Figure 7. Six cases of DSCM

st

ld

case 3 

st

stld

st

case 4 

st

st

case 6 
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4.1 Recovery Code Generation 

 

Since DSCM may violate possible data dependences, 

verification code must be inserted to check if the DSCM is 

legal at runtime. If no dependence violation is detected at 

runtime, the DSCM is allowed. When the DSCM is not 

allowed, the associated recovery code must be executed. 

Comparing the memory addresses of the moved memory 

reference and the crossed memory reference can tell 

whether a data dependence is violated or not. What 

instructions should be in the recovery code and when 

should the recovery code be executed are dependent on 

each case of DSCM. Normally, the recovery code should 

include the speculatively moved instruction. If DSCM 

moves an instruction upward, we can execute the recovery 

code at the original place of the moved instruction. If 

DSCM moves an instruction downward, we may execute 

recovery code as soon as we detect a check failure in the 

verification code. There are four components in recovery 

code generation for the DSCM.  

• Flag initialization: set a flag to indicate that DSCM is 

allowed. 

• Verification: by comparing the addresses of the moved 

memory reference and the crossed memory reference, 

we could check if DSCM is allowed or not. If not, the 

flag is cleared (the flag is set initially). 

• Insertion of check instruction: a check instruction is 

generated to check the flag. If the flag is cleared by 

verification code, execute the recovery code. 

• Generation of recovery code: initially, only a copy of the 

moved instruction is included. 

In Figure 8, we show the code segments, which include 

flag initialization, verification instructions, check 

instructions and recovery code, for case 1, case 4 and case 

6, as examples to illustrate how DSCM is supported.  

     

 

 

 

 

 

 

 

 

 

 

Case 1 moves a l

Case 1 moves a ld upward across a possible dependent 

st. In the result code, S1 sets the flag to 1 to indicate the 

code motion is allowed. S2 executes the ld that is now 

ahead of the st. S3 verifies if DSCM is allowed or not. If 

the address (r4) of the ld and the address (r1) of the st 

overlap, the code motion violates the true data 

dependence, and the flag is cleared to indicate that the 

DSCM is not allowed. Detection of the overlap can be 

supported by hardware or software. S4 executes the st

which is not changed. S5 is a check instruction to check 

the flag. If the flag is 0, indicating an illegal DSCM, then 

the recovery code S6 is executed. In this example, the 

recovery code is the original ld.  

Case 4 is similar to case 1. The difference is that, after 

the verification instruction (S2), the check instruction (S3) 

is executed immediately to decide if recovery code (S4) 

should be executed or not because, if the DSCM is illegal, 

the following ld needs the result of the st. The check 

instruction (S3) can be eliminated since flag==0 is 

equivalent to detect the overlap between r1 and r4. In case 

4, the moved instruction (S7) is guarded by a condition 

(S6). Whether we should execute the moved instruction or 

not depends on the legality of DSCM. If the DSCM is 

allowed, we should execute the moved instruction.  

In case 6, we do not need the check instruction and the 

recovery code. If the DSCM is not allowed, we know that 

the crossed st overwrites the moved st. The moved st (S5) 

is guarded by a condition (S4) which is the same as in 

case 4. 

 

5. Implementation of the Framework 

 

We have implemented the proposed data speculative 

optimization framework in Intel’s Open Research 

Compiler (ORC) [2] for the IA64 platforms [3] [8]. In our 

framework, first it conducts SDDA. Based on the results 

of SDDA, analysis phase of an optimization identifies 

speculative optimization opportunities. After that, 

information about what instruction should be moved and 

where the instruction should be moved to is given to the 

DSCM support routines. Based on this information, the 

DSCM support routines decide which one of the six cases 

it belongs to and generate recovery code accordingly. 

After that, the moved instructions may be eliminated 

during the code transformation of the optimization. In our 

framework, the SDDA and DSCM are shared by all 

optimizations. Currently, we include optimizations 

(redundancy elimination, copy propagation, dead store 

elimination) that are in the global optimization phase 

WOPT and the code scheduling in the code generation 

phase CG of ORC in our framework.  

DSCM support routines use data dependence 

information provided by a conservative data dependence 

analysis (CDDA). DSCM generates recovery code when 

Case 1: 

Before DSCM: 

st [r1] = r2

ld r3 =[r4] 

After DSCM: 

S1: flag =1 

S2: ld r3 = [r4] 

S3: if overlap(r1, r4) 

         flag =0 

S4: st [r1]= r2 

S5: if (flag == 0) 

S6:     ld r3=[r4] 

Case 4: 

Before DSCM: 

st [r1] = r2

ld r3 = [r4] 

After DSCM: 

S1: flag =1 

S2: if overlap(r1,r4) 

        flag =0 

S3: if (flag==0) 

S4:     st[r1] = r2 

S5: ld r3 = [r4]

S6: if (flag == 1) 

S7:      st [r1] = r2 

Case 6: 

Before DSCM: 

st [r1] = r2

st [r3] = r4 

After DSCM: 

S1: flag =1 

S2: if overlap(r1, r3) 

         flag =0 

S3: st [r3] = r4

S4: if (flag == 1) 

S5:      st [r1] = r2 

Figure 8. Code generation support of DSCM 

case 1, 4 and 6 
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the code motion crosses a data dependence indicated in 

CDDA but ignored in SDDA. In our implementation, the 

CDDA is based on ORC’s alias analysis. The alias 

analysis in ORC has two parts. First part is a points-to 

analysis which is based on a non-standard type system 

[21]. Second part is a rule based alias analysis. A base

rule assumes that two memory references are not aliased if 

their bases are different. An offset rule assumes that two 

memory references are not aliased if their bases are the 

same, and their memory access ranges defined by the 

offset and the size of the fields do not overlap. A type rule 

assumes that two memory references are not aliased if 

their types are different. For example, memory reference 

to type float cannot be aliased with a reference to type 

integer. The above three rules and some other rules are 

used in the ORC’s rule based alias analysis. Based on the 

results of the alias analysis, CDDA assumes that there is a 

possible data dependence between two memory references 

if they are aliased.   

The performance of data speculation framework is 

highly dependent on the target machine architecture. In 

our case, we take advantage of the two architectural 

features: data speculative loads and predication, available 

on the IA64 platforms to implement our DSCM support. 

In our implementation, the DSCM support routines can 

generate recovery code for case 1, 4 and 6. Case 2, 3 and 

5 can be implemented in the same way. However, they are 

not needed in the four speculative optimizations presented 

here. 

5.1 Case 1 of DSCM 

 

 

 

IA64 architecture includes instructions ld.a (advanced

load) and chk.a (advanced load check) [3]. ld.a executes a 

load operation and it also stores the memory address of 

the load into the Advanced Load Address Table (ALAT). 

A store instruction will invalidate any entry in ALAT that 

has a memory address overlapping with the store address. 

The overlap detection is supported by hardware. chk.a 

checks the ALAT entry set by its corresponding ld.a. It 

will invoke the recovery code if the entry becomes invalid 

by an intervening store. An example is shown in Figure 9 

(a). In this example, the moved load is changed to ld.a. At 

its original location, a chk.a instruction is generated. In 

this example, the recovery code is simply a copy of the 

moved load instruction, i.e. it needs to reload the data. In 

case 1 of DSCM, when a computation or a load

instruction that directly or indirectly depends on a chk.a 

instruction that needs to be  moved across the chk.a 

instruction, such an instruction needs to be added to the 

recovery code of the chk.a instruction. One such an 

example is shown in Figure 9 (b). 

 

5.2 Case 4 and Case 6 of DSCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We use predicate registers in IA64 to hold the results 

of the verification instructions. There are 64 predicate 

registers in IA64. In IA64, a compare instruction can set 

two predicate registers at the same time. For example, pr1, 

pr2 = cmp.ne 2, 3 will set predicate register pr1 to 1 and 

pr2 to 0. Most instructions in IA64 can be guarded by 

predicate registers. If the predicate register of an 

instruction is set to 0, then this instruction is executed as a 

NOP. We use predication to generate more compact 

recovery code. For case 4, the resulting code is shown in 

Figure 10 (a). For case 6, the resulting code is shown in 

Figure 10 (b). In cases 4 and 6, we use software to detect 

the overlap between two memory references. In Figure 11, 

we only show the cases in which memory references are 

naturally aligned and have the same size. When memory 

references are un-aligned, using software to detect the 

overlap requires extra instructions and becomes more 

Code after r4=r2+1 is 

moved across the chk.a: 

ld.a r2 = [r3] 

r4 = r2 + 1 

st [r1] = … 

chk.a, recovery  

 

Recovery: 

     ld r2 = [r3] 

     r4 = r2 +1 

Code before case 1  

DSCM: 

st [r1] = … 

ld r2 = [r3] 

r4 = r2 + 1 

 

Code after case 1  

DSCM: 

ld.a r2 = [r3] 

st [r1] = … 

chk.a r2, recovery  

r4 = r2 + 1 

 

Recovery: 

     ld r2 = [r3] 

a) A load is moved b) A computation inst 

is moved

Figure 9. Recovery code for case 1 

Code before case 4  

DSCM: 

st [r1] = r2 

ld r3 = [r4] 

 

Code after case 4 

 DSCM: 

pr1, pr2 = cmp.ne r1, r4 

[pr2] : st [r1] = r2 

ld r3 = [r4] 

pr1: st [r1] = r2 

Code before case 6 

DSCM: 

st [r1] = r2 

st [r3] = r4 

 

Code after case 6 

 DSCM: 

pr1, pr2 = cmp.ne r1, r3 

st [r3] = r4 

[pr1]: st [r1] = r2 

a) Recovery code for 

case 4

b) Recovery code for 

case 6

Figure 10. Recovery code for case 4 and 6 
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complex. In the code generated by ORC, un-aligned 

memory references are very rare, so we don’t allow data 

speculation on un-aligned memory references in case 4 

and 6. When two memory references have different sizes 

such as word and byte, we will change the byte address to 

a word address by ignoring the two low bits of the byte 

address.  

 

5.3 DSCM Crossing Multiple Dependent sts or lds

 

In previous sections, we discuss DSCM only in the 

context of moving a single memory reference across 

another possible dependent memory reference. In real 

applications, the compiler may need to move a single 

memory reference across multiple loads and stores. 

In case 1, if a load is moved upward across several 

possibly dependent stores, we only need to generate one 

check instruction at its initial location. If any of those 

stores accesses the same memory location as the load, the 

recovery code associated with the check instruction will 

reload the data. Hence, only one check instruction is 

needed for a load to cross multiple stores or loads in case 

1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case 4 and case 6, a store is moved downward 

across multiple loads and stores. The compiler needs to 

generate a check instruction for every crossed load and 

store with possible dependences. In Figure 11, we move 

the first store downward across two other stores and two 

loads. All verification instructions except the first one are 

guarded by the predicate register pr1, which will be set to 

0 when the DSCM is not allowed. All check/recovery 

instructions are guarded by a predicate register pr2, which 

is set to 1 when the DSCM is not allowed. After recovery 

code is executed (in which the store is re-executed), pr2 is 

reset to 0. When pr1 and pr2 are both 0, all of the 

subsequent verification instructions and check instructions 

will be ignored to guarantee the correctness. We shouldn’t 

execute the recovery code multiple times. In the example, 

S2, S6, S9, S13 are instructions which will set pr2 to 0 if 

pr2 is 1. After pr2 is changed from 1 to 0 (at this time, pr1 

is already 0), all the following verification and check 

instructions are ignored. 

In case 4 and case 6, we need to generate check 

instructions for every possible dependent memory 

references that are crossed by the code motion of the st. In 

order to avoid generating too many check instructions, we 

constrain the code motion in case 4 and case 6 not to cross 

procedure calls and loops. 

 

6. Experimental Results 

 

We evaluate the effectiveness of our framework on 

Itanium2 processor [8] using all the benchmarks from 

SPEC CINT2000 and all the C benchmarks from SPEC 

CFP2000. The runtime performance (in number of CPU 

cycles) for each benchmark is measured using pfmon [9]. 

All benchmarks are run with the reference input set. The 

base case for comparison is compiled with –O3 without 

data speculation by ORC. We compare optimizations with 

data speculation enabled by our framework to the base 

case in which they are not data speculative. In the 

following discussion, we list the percentage of runtime 

performance improvement, speculation fail rate, number 

of loads reduced, number of store reduced. We also show 

the average static number of dependent memory 

references crossed in each data speculative code motion 

opportunities in mesa and crafty are quite limited because 

most stores are to local variables. For all other 

benchmarks, the improvement ranges from 0.5% to 7%. 

The performance improvement of speculative redundancy 

elimination is marginal in integer benchmarks because the 

integer load latency is only 1 cycle when the load hits in 

L1 cache (a floating load has 6 cycles latency because the 

data comes from the L2 cache). Many redundant loads hit 

in the L1 cache, therefore, the saving of the redundant 

loads is relatively insignificant on Itanium 2. However, 

for future architectures with further increased clock rates, 

it may become harder to maintain a single clock hit 

latency for L1 Cache. The performance gain from 

redundant loads elimination will become more significant. 

The performance improvement of data speculative code 

scheduling on integer code is also not very impressive. 

This is because the linked list traversal often dominates 

memory references in the integer benchmarks. It is pretty 

difficult for the code scheduler to overlap memory 

references during the linked list traversal due to true data 

dependences. Speculative dead store elimination and 

speculative copy propagation do not yield much 

performance improvement in most benchmarks.   

Code before 

DSCM:

st [r1] = r2 

st [r3] = r4 

ld r5 = [r6] 

st [r7] = r8 

ld r9 = [r10]

Code after DSCM: 

S1:  pr1, pr2 = cmp.ne r1, r3 

S2:  [pr2]: pr2 = 0 

S3:  st [r3] = r4 

S4:  [pr1]: pr1, pr2 = cmp.ne r1, r6 

S5:  [pr2]: st [r1] = r2 

S6:  [pr2]: pr2=0 

S7:  ld r5 = [r6] 

S8:  [pr1]: pr1, pr2 = cmp.ne r1, r7 

S9:  [pr2] : pr2 = 0 

S10:  st [r7] = r8 

S11:  [pr1]: pr1, pr2 = cmp.ne r1, r10 

S12:  [pr2]: st [r1] = r2 

S13:  [pr2]: pr2 = 0 

S14:  ld r9 = [10] 

S15:  [pr1]: st[r1] = r2 

Figure 11. Recovery code for a st moved 

across multiple lds and sts 
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Table 2. Static count of crossed dependent 

memory references 

Benchmark Dependent 

references 

Benchmark Dependent  

references 

ammp 6.4 gzip 1.8 

art 2.1 mcf 2.3 

bzip2 1.5 mesa 1.8 

crafty 1.6 parser 3.0 

Eon 2.2 perlbmk 1.3 

Equake 2.8 twolf 1.9 

Gap 1.5 vortex 5.1 

Gcc 1.2 vpr 2.7 

 

In DSCM, when we move a memory reference across 

another data dependent memory reference, we need to 

verify the correctness of the code motion. In Table 2, we 

show the average static number of the dependent memory 

references crossed by each code motion. For most 

benchmarks, the number is smaller than 3. 

Table 3 shows the speculations fail rate and the 

reduction of load and store instructions. We compute the 

speculation fail rate as the number failed check 

instructions divided by the number of advanced loads. 

The penalty of executing recovery code could be very 

high because it may involve instruction cache misses for 

the recovery code and branch mis-predictions for the 

check instructions. However, since the speculation failure 

rate for most benchmarks is below 1%, we need not worry 

too much about the mis-speculation penalty. Ammp has a 

high failure rate (about 8%) because there are many stores 

between the advanced load and its corresponding check 

instruction that caused frequent false conflicts in 

ALAT(Note: ALAT only tracks lower address bits of an 

advanced load).   

The reduction of load instructions indicates the 

potential of speculative redundancy elimination. From the 

measurements, floating-point benchmarks have a larger 

reduction in their load instructions. Normally, a larger 

load instruction reduction will result in a higher 

performance improvement. 

 

Table 3. Speculation failure rate,

reduction of loads and stores 

Benchmark Speculation 

failure rate 

Number of 

loads reduced

Number of

stores reduced 

ammp 8.20% 17.20% 35.6% 

art 0.02% 10.0% <0.01% 

bzip2 0.50% 1.30% <0.01% 

crafty 3.10% 0.12% 0.60% 

eon 0.02% -0.25% <0.01% 

equake 0.20% 31.6% <0.01% 

gap 0.06% 0.12% <0.01% 

gcc 1.14% 5.36% 2.60% 

gzip 0.10% 0.60% <0.01% 

mcf 1.50% 4.60% <0.01% 

mesa <0.01% <0.01% 0.12% 

parser 0.67% 0.20% 0.58% 

perlbmk 0.03% 1.30% 0.15% 

twolf 0.18% 5.80% 9.28% 

tortex 0.17% 1.50% <0.01% 

vpr 0.02% 6.50% 0.31% 

 

For the reduction of store instructions, only two 

benchmarks (ammp, twolf) have a large reduction of the 

store instructions. In the benchmarks we studied, 

speculative dead store elimination and speculative copy 

propagation do not yield much performance gain. 

However, in one time-consuming procedure of ammp, it 

identified many opportunities for data speculative dead 

store elimination. An example code is shown below. 
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Figure 12. Performance impact of data speculative optimizations 
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In this example, a1->VP has a possible dependence 

with (*nodelist)[inode].q100, (*nodelist)[inode].sqp, and 

(*nodelist)[inode].q010. The CDDA detects no 

dependences among a1->VP, a1->dpx and a1->q based on 

the results of rule-based alias analysis in ORC. In the 

example, after copy propagation on a1->VP, the store to 

a1->VP in S1 is speculative dead because it is overwritten 

in S4 and (*nodelist)[inode].sqp in S2, 

(*nodelist)[inode].q010 in S4 may need the result of the 

store. Deleting the store in S1 contributes very little to the 

performance gain because the stores can be issued for free 

and overlapped with the load of a1->dpx. Similar 

examples can be found in benchmark twolf. For all other 

benchmarks, speculative dead store elimination and copy

propagation have very few optimization opportunities. 

DSCM may increase code size by generating recovery 

code. IA64 is an EPIC architecture and NOP instruction 

may be generated by compiler to occupy an instruction 

slot if there are not enough instructions in one cycle. Our 

verification and check instructions may use the instruction 

slot which is originally occupied by a NOP. From our 

experiment, we observed on average a 5% code 

expansion.    

 

7. Conclusions

 

In this paper, a general data speculation compiler 

framework is presented to enable data speculation in non-

speculative optimizations such as redundancy elimination, 

dead store elimination, copy propagation and code 

scheduling. The key idea in the framework is to use data

speculative code motion (DSCM) to move an instruction 

to a position that would trigger a non-speculative 

optimization. During DSCM, recovery code will be 

generated to guarantee the correctness of the code motion. 

After DSCM, the optimization becomes the same as the 

non-speculative one. In the proposed framework, a shared 

speculative data dependence analysis (SDDA) is used to 

hide low probability dependences from optimizations. 

Hence, no changes are needed to those optimizations to 

identify speculative optimization opportunities. The 

SDDA and DSCM can be shared by all optimizations in 

the proposed framework. These two advantages greatly 

simplify the task of adopting data speculation into those 

optimizations. We have implemented the recovery code 

generation using the advanced load and predication 

instructions in IA64 [3]. Our results show that the 

proposed framework can be efficiently implemented in 

IA64 and achieve significant speedups for some 

benchmarks. 
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