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Abstract—
The computer industry has adopted multi-threaded and multi-

core architectures as the clock rate increase stalled in early 2000’s.
It was hoped that the continuous improvement of single-program
performance could be achieved through these architectures. How-
ever, traditional parallelizing compilers often fail to effectively
parallelize general-purpose applications which typically have com-
plex control flow and excessive pointer usage. Recently hardware
techniques such as Transactional Memory (TM) and Thread-
Level Speculation (TLS) have been proposed to simplify the
task of parallelization by using speculative threads. Potential of
speculative parallelism in general-purpose applicationslike SPEC
CPU 2000 have been well studied and shown to be moderately
successful. Preliminary work examining the potential parallelism
in SPEC2006 deployed parallel threads with a restrictive TLS
execution model and limited compiler support, and thus only
showed limited performance potential. In this paper, we first
analyze the cross-iteration dependence behavior of SPEC 2006
benchmarks and show that more parallelism potential is available
in SPEC 2006 benchmarks, comparing to SPEC2000. We further
use a state-of-the-art profile-driven TLS compiler to identify loops
that can be speculatively parallelized. Overall, we found that
with optimal loop selection we can potentially achieve an average
speedup of 60% on four cores over what could be achieved by a
traditional parallelizing compiler such as Intel’s ICC compiler. We
also found that an additional 11% improvement can be potentially
obtained on selected benchmarks using 8 cores when we extend
TLS on multiple loop levels as opposed to restricting to a single
loop level.

I. I NTRODUCTION

With the advent of multi-threaded (e.g. simultaneous multi-
threading (SMT) [1], hyper-threading [2]) and/or multi-core
(e.g. chip multiprocessors (CMP) [3], [4]) architectures,now
the challenge is to utilize these architectures to improve per-
formance of general-purpose applications. Automatic compiler
parallelization techniques have been developed and found to
be useful for many scientific applications that are floating-
point intensive. However, when applied to general-purpose
integer-intensive applications that have complex controlflow
and excessive pointer accesses, traditional parallelization tech-
niques become quite ineffective, as they need to conservatively
ensure program correctness by synchronizing all potential
dependences in the program. This often requires a programmer
to explicitly create parallel threads and insert synchronizations.
This approach is often error prone and puts a huge burden on
the programmer.

There have been numerous studies on hardware support for
speculative threads, which intend to ease the creation of parallel
threads for programmers and compilers. Recently, Hardware
Transactional Memory (HTM) has been proposed to aid the

Fig. 1. Coverage obtained by parallelizing loops with certain probability of
data dependences.

development of parallel programs; Thread-Level Speculation
(TLS) has been used to exploit parallelism in sequential
applications that are difficult to parallelize using traditional
parallelization techniques. For example, a loop that contains an
inter-thread data dependence due to loads and stores through
pointers cannot be parallelized using traditional compilers; but
with the help of TLS, the compiler can parallelize this loop
speculatively and relying on the underlying hardware to detect
and enforce inter-thread data dependences at run-time. [5], [6],
[7], [8], [9], [10]

Though TLS has been extensively studied in the past, it is
not clear how much TLS could benefit more recent benchmarks
such as SPEC 2006 [11], which represent a different class
of applications. Some recent studies [12] on SPEC 2006
benchmarks have shown very limited potential for TLS (less
than 1%) under very conservative assumptions. In this paper,
we re-examine some of these issues and give a more realistic
assessment of TLS on these benchmarks using a state-of-the-art
TLS compiler. By comparing the data dependence behaviors
of SPEC 2000 and SPEC 2006, we show more potential
parallelism in SPEC 2006 than in SPEC 2000.

One of the key detriments in parallelizing loops is the
presence of cross-iteration data dependences. Figure 1 shows
the results of a potential study: the percentage of execution
that can potentially be parallelized if infrequently occurring
cross-iteration data dependences can bemagically resolved.
The x-axis indicates the dependence frequency; and they-
axis indicates the percentage of total execution that can be
parallelized. A data point at location(C, p) indicates: if loops
containing only memory-resident value data dependences that
occur in less thanp% of threads can be parallelized, then
C% of total execution can be parallelized. We can see that



for these SPEC 2006 benchmarks, there are many loops with
low probability data dependences. For example in 473.astar
if we ignore dependences that only occur in less than 20%
of all iterations, we can parallelize loops that correspondto
96% of total execution. With a traditional compiler, all these
dependences would be synchronized, and thus the resulting
program will exhibit poor parallel execution performance.With
TLS, many of these loops could potentially be parallelized by
speculating on such low probability data dependences.

Our study differs in previous studies on several aspects, and
thus we believe that our results are able to accurately identify
more potential for TLS than those studies. Kejariwalet. al [12]
did not take into account the effect of compiler optimizations
that could improve the performance of TLS, while previous
studies [10], [7], [8], [13] have shown that compiler-based
loop selection and optimizations, such as code scheduling,
can significantly improve the efficiency of TLS. Furthermore,
Kejariwal et. al [12] only considered innermost loops for TLS.
In this paper, our study is not limited to a particular loop level,
rather we attempt to parallelize all loops that can potentially
benefit from TLS. More importantly, instead of a high-level
study on performance potential of TLS, we use a state-of-
the-art TLS compiler to parallelize TLS loops and study their
performance using a detailed simulation infrastructure. Our
results show that, with TLS-oriented compiler optimizations
and optimal selection of loops, we could achieve an average
of about 60% speedup for SPEC 2006 benchmarks over what
could be achieved by a traditional parallelizing compiler such
as Intel’s ICC compiler.

As the current trend is to support more cores on a single chip,
we also study the potential of enhancing TLS performance by
extracting speculative threads at more than one loop level.We
use a compiler-based static loop allocation scheme to efficiently
schedule speculative threads from multiple loop levels. We
show that an additional 11% improvement could potentially
be obtained on selected benchmarks by extending TLS for
multiple loop levels using eight core.

In summary, the contributions of this paper are

1) We present a detailed analysis of cross-iteration data
dependences (both register- and memory-based data de-
pendences) in SPEC 2006 benchmarks. We classify the
benchmarks according to their data dependence behavior.

2) We present a comparison of cross-iteration dependence
pattern of SPEC 2006 benchmarks with the SPEC 2000
benchmarks and show that the SPEC 2006 benchmarks
have more potential for parallelism than the benchmarks
in SPEC 2000.

3) With a state-of-art TLS compiler, we extract speculative
threads from SPEC 2006 benchmarks and demonstrate
that there exists additional realizable performance over a
traditional parallelizing compiler.

4) We use a novel static loop allocation algorithm to study
the performance potential of TLS when applied to nested
loops.

The rest of the paper is organized as follows: Section II

describes the related work; Section III analyzes the cross-
iteration dependences that occur in SPEC 2006 benchmarks;
Section IV describes our compiler framework and the evalua-
tion methodology; Section V shows the performance of TLS
and the scalability of TLS performance. In Section VI we
use single -level TLS performance to study the performance
potential for multi-level TLS and in Section VII we present
our conclusions.

II. RELATED WORK

There has been a large body of research work on archi-
tectural design and compiler techniques for TLS [5], [6], [7],
[8], [9], [10]. But all of these papers based their studies on
SPEC 2000 or other older benchmarks, rather than the more
recent SPEC 2006 benchmarks. The SPEC 2006 benchmarks
represent a newer class of applications and it is important to
examine whether the conclusions drawn for SPEC 2000 will
hold for these applications. In this paper we address this issue
by conducting a detailed study of SPEC 2006 benchmarks
using a state-of-the-art TLS compiler.

Oplingeret. al [14] presented a study on the limits of TLS
performance on some SPECint95 benchmarks. The impact of
compiler optimizations and the TLS overhead were not taken
into account in that study. Similarly, Warget. al [15] presented
a limit study for module-level parallelism in object-oriented
programs. In contrast, in this study, our aim is to illustrate
the realizable performance of TLS using a state-of-the-artTLS
compiler, while taking into account various TLS overheads.

Kejariwal et. al [16] separated the speedup achievable
through traditional thread-level parallelism from that ofTLS
using the SPEC2000 benchmarks assuming anoracle TLS
mechanism. They [12] later extended their study to the SPEC
2006 benchmarks. It is worth pointing out that they con-
centrated on only inner-most loops and used probabilistic
analysis to predict TLS performance. We also separate the
speedup achievable through traditional non-speculative com-
pilation techniques from that requires TLS support; however,
we consider all loop-levels instead of just the inner-most
or the outer-most loops. Furthermore, they manually inter-
vened to force the compiler to parallelize loops that were
not automatically parallelized due to ambiguous dependences.
In this paper, we utilize an automatic parallelizing compiler
that performs trade-off analysis using profiling information to
identify parallel threads—no programmer intervention needed.

While a significant body of previous work focused on
exploiting parallelism using TLS at a single loop nest level,
relatively little has been done to exploit parallelism at multiple
nested loop levels simultaneously. Renauet. al [17] proposed
hardware-based techniques to determine how to allocate cores
to threads that are extracted from different nesting levels;
while our paper proposes compiler techniques that statically
determines how to schedule loop iterations from different
loop nesting levels to different cores. Since the compiler has
knowledge of global information, it is able to make better
decisions.



III. D EPENDENCE ANALYSIS OFSPEC 2006LOOPS

Consider the example loop shown in Figure 2(a) with
two cross-iteration dependences: a register-based dependence
through registerr2 and a potential memory-based dependence
through pointerp andq. In each iteration of the loop, the value
of r2 from the previous iteration is required, thus the compiler
must insert synchronization operations (thewait/signal
pair) to ensure correct execution (shown in Figure 2(b)). Inthe
case of the memory-based dependence, the cross-iteration de-
pendence only occurs when the load through pointerp accesses
the same memory location as the store through pointerq from
a previous iteration. Since the compiler is unable to determine
the address pointed to byp andq at compile time, it must in-
sert synchronization operations (thewait mem/signal mem
pair) as shown Figure 2(b). However, such synchronization
can potentially serialize execution unnecessarily, as shown in
Figure 2(c). With the help of TLS, the compiler can parallelize
this loop by ignoring ambiguous data dependences and relying
on the underlying hardware to detect and enforce all data
dependences to ensure correctness at runtime. Figure 2(d)
shows the loop executing in TLS mode: when the store through
pointer q in thread1 accesses the same memory location as
the load through pointerp in thread3, the hardware detects
the dependence violation and restarts the violating thread.
T hread2, which does not contain the destination of any inter-
thread data dependence, is able to execute in parallel with
thread1. This parallelism cannot be exploited without the help
of TLS. However, if the dependence betweenstore ∗ q and
load ∗ p occurs frequently causing speculation to fail often,
it can potentially degrade performance. In such cases, it is
desirable for the compiler to insert explicit synchronization to
avoid mis-speculation.

Understanding the inter-thread data dependence patterns in
an application is critical for estimating its TLS performance po-
tential. In this section, we analyze the dependence information
collected through data dependence profiling, and estimate the
importance of TLS hardware support in exploiting parallelism
in the SPEC 2006 benchmarks.

The weight of each loop in an application is summarized
as thecombined execution time coverage, which is defined
as the fraction of total execution time of the program spent
on a particular loop. In this paper, this weight is estimated
using hardware performance counters. To accurately estimate
the combined coverage of a set of loops, the nesting re-
lationship of these loops must be determined—this is done
with the help of a loop tree (for example, Figure 3). An
example program and its corresponding loop structure along
with profile information is shown in Figure 3. In the example,
loop4, loop5 and loop5’ have no inter-thread memory-
based data dependence. Thecombined coverage of loops with
no memory-based data dependence is the cumulative coverage
of loop4 andloop5’, which is 40%. (Coverage ofloop5
is not included since it is nested insideloop4). The loop
tree structure used in this paper is similar to the loop graph
described by Wanget. al [13], except for loops that can be

do {
...
load *p;
...
r3 = r2 + 2;
...
r2 = r1 + 1;
...
store *q;

} while (condition)

(a) A loop with loop-carried
register-based and memory-based
data dependences.

do {
...
wait mem()
load *p;
...
wait()
r3 = r2 + 2;
...
r2 = r1 + 1;
signal()
...
store *q;
signal mem()

} while (condition)

(b) Loop parallelized with synchro-
nization.

(c) Execution serialized due to syn-
chronization.

(d) Parallel execution in TLS mode.

Fig. 2. Using synchronization and speculation to satisfy inter-iteration data
dependences.

TABLE I

SPEC 2006BENCHMARKS.

Benchmark No. of Loops No. of dynamic
loop nesting levels

bzip2 232 11
mcf 52 5
gobmk 1265 22
hmmer 851 5
sjeng 254 10
libquantum 94 4
h264ref 1870 15
astar 116 6
milc 421 11
namd 619 4
povray 1311 15
lbm 23 3
sphinx3 609 8

invoked through different calling paths are replicated in loop
tree. For example,loop5 in Figure 3 is replicated, since two
different call paths can both lead to the invocation ofloop5.

In this paper, we consider the SPEC CPU 2006 benchmarks
written in C or C++ (shown in Table I). We ignore the programs
written in FORTRAN since they tend to be parallel scientific
programs that can be successfully parallelized using traditional
parallelizing compilers and do not require TLS support.

A. Inter-thread register-based data dependences

We first focus on the relatively straightforward register-
based value dependences. For these dependences, the compiler
is responsible for identifying instructions that produce and



Fig. 3. An example loop tree showing nesting relationship between loops.
Each loop is annotated with four numbers: coverage, number of inter-thread
register-based dependences, number of inter-thread memory-based depen-
dences, and the probability of the most probable loop.

Fig. 4. The combined execution time coverage of loops with inter-thread
register-based dependences

consume these value and generate synchronization to ensure
correct execution. For example, in the loop shown in Fig-
ure 2(a), the compiler identifies the cross-iteration register-
based dependence due to registerr2 and inserts explicit syn-
chronization, as shown in Figure 2(b). We count the number
of inter-thread register-based dependences (true dependences)
for each loop; and estimate thecombined coverage of the set
of loops with certain number of register-based dependences.
The results are presented in Figure 4. Thex-axis represents
the number of register dependences and the y-axis represents
the correspondingcombined coverage estimated for a cer-
tain set of loops. If a benchmark has a combined coverage
of C for x number of dependences, it indicates that loops
with less thanx dependences have a combined coverage of
C%. For example, for the loop in Figure 3, the combined
coverage of loops with 2 or lesser register dependences is
60%.(coverage of loop2+loop4+loop5). The benchmarks with
high combined coverage (C) for a small number of dependences
(x), potentially exhibit high degree of parallelism. We found
that the high coverage loops in most benchmarks have inter-
thread register-based dependences. Thus, an effective TLS
compiler that is capable of synchronizing a few inter-thread

register dependences is essential. Zhaiet. al [7] have described
how such a compiler can be implemented; and further shown
that aggressive compiler scheduling techniques can reducethe
critical forwarding path introduced by such synchronizations.

(a) The combined execution time coverage for benchmarks with few
inter-thread memory dependences. (Class ’A’).

(b) The combined execution time coverage for benchmarks with
inter-thread dependences. (Class ’B’)

Fig. 5. The combined execution time coverage of loops as a function of the
number of inter-thread memory-based data dependences.

B. Inter-thread memory-based data dependences

Unlike register-based dependences, memory-based depen-
dences are difficult to identify using a compiler due to potential
aliasing. To ensure correctness, traditional parallelizing compil-
ers insert synchronizations on all possible dependences. With
TM or TLS support, the compiler is able to aggressively par-
allelize loops by speculating on ambiguous data dependences.
However, the performance of such execution depends on the
likelihood of such data dependences occurring at runtime.
If a data dependence does occur, a thread can potentially
violate data dependence constraints, and thus must be squashed
and re-executed; recovery codes can be executed to restore
correct state. For example, there is an ambiguous cross-iteration
dependence, shown in Figure 2(a), due to load through pointer
∗p and store through pointer∗q. Although the compiler cannot
determine whether there is a dependence between∗p and∗q, it
can obtain probabilistic information through data dependence
profile. In this section, we conduct detailed analysis on inter-
thread memory-based dependence using profiling information.



Fig. 6. The coverage of loops with inter-thread memory-based data depen-
dences less than a certain probability.

We classify benchmarks based on the combined coverage of
loops with different number of memory-based dependences.
Figure 5(a) shows the results of benchmarks (points corre-
sponding to 433.MILC , 453.POVRAY, 462.LIBQUANTUM and
470.LBM in Figure 5(a) overlap) that can achieve a high
combined coverage with only a few inter-thread memory-
based data dependences (class ’A’); Figure 5(b) shows the
rest of the benchmarks (class ’B’). For benchmarks in class
’A’, 90% or more of the total execution can potentially be
parallelized by only considering loops with no inter-thread
dependences. These benchmarks can be parallelized without
hardware support for speculative execution, if the compiler is
able to prove independence between threads.

In class ’B’ benchmarks, the speculative hardware support
are potentially useful, since inter-thread data dependences do
occur. Figure 6 shows the probability of such data dependences
and their corresponding coverage for class ’B’ benchmarks.
The x-axis represents the probability of inter-thread memory-
based dependences and they-axis represents the corresponding
combined coverage estimated for a certain set of loops. If a
benchmark has a combined coverage ofC for x probability
of inter-thread dependence, it indicates the loops that only
have inter-thread dependences with probability of less than x
have a combined coverage ofC%., For example, for the loop
in Figure 3, the combined coverage of loops with only 10%
or lesser probability memory dependences is 80%.(coverage
of loop2+loop3. Other loops are nested inside loop3). Bench-
marks 401.BZIP2, 429.MCF, 445.GOBMK and 473.ASTAR can
achieve a large combined coverage, if all loops that only
contain data dependences that occur in less than 20% of
iterations are speculatively parallelized. These are the loops
that could potentially benefit from TLS support.

Some benchmarks, such as 456.HUMMER, 458.SJENG and
444.NAMD , can only achieve a high combined coverage, if
loops containing frequently-occurring memory-based depen-
dences are parallelized. These dependences potentially require
synchronization. Previous studies has shown that frequently
occurring memory-based data dependences could be synchro-
nized by the compiler with profiling data [8]; and aggressive
code scheduling could reduce critical-path length introduced

by such synchronization [18].

(a) The coverage for benchmarks with fewer inter-thread memory
dependences. (Class ’A’)

(b) The coverage for benchmarks with significant inter-thread depen-
dences. (Class ’B’)

Fig. 7. The coverage of loops with certain number of inter-thread memory-
based data dependences in SPEC 2000

C. SPEC 2006 vs. SPEC 2000

In this section, we compare the potential parallelism in SPEC
2000 and SPEC 2006 benchmarks by observing their inter-
thread data dependence behavior. Figure 7(a) shows class ’A’
benchmarks in SPEC 2000—benchmarks with few inter-thread
data dependences; Figure 7(b) shows class ’B’ benchmarks—
benchmarks with several cross-iteration dependences. Compar-
ing against SPEC 2006 results, shown in Figure 5(a) and in
Figure 5(b), we found that SPEC 2000 suite has fewer class
’A’ benchmarks. Also the class ’B’ benchmarks in SPEC 2000
can only achieve high combined coverage by parallelizing
loops with several cross-iteration dependences. Furthermore,
by examining Figure 8, which presents the frequency of data
dependences that must be speculated during parallel execution,
we found that with the exception ofAMMP, MCF, VPR PLACE

AND BZIP2, class ’B’ benchmarks in SPEC 2000 must specu-
late on high-probability cross-iteration dependences to achieve
a high combined coverage. This is consistent with results
reported by previous studies: in SPEC 2000, only a few bench-
marks,AMMP, MCF, VPR PLACE, demonstrated high degree of
parallelism under TLS. The data dependences characteristics



Fig. 8. The coverage of loops with inter-thread memory-based data depen-
dences less than a certain probability in SPEC 2000.

in SPEC2000 and SPEC2006 illustrate that SPEC 2006 can
potentially achieve a higher degree of parallelism under the
context of TLS.

D. Pitfalls

Even though profiling inter-thread data dependences is cru-
cial in determining the suitability of using TLS to parallelize
a loop, TLS performance cannot be directly inferred from
this information. In fact, TLS performance depends on many
other factors such as the size of the threads, thread spawning
overhead, loop iteration counts, and etc. Aggressive code
scheduling can reduce the impact of synchronization for inter-
thread dependences [7], [8], [13]. Furthermore, library calls can
also cause inter-thread data dependences, which is not taken
into account here. A common example is the call tomalloc,
which could potentially cause inter-thread dependences due to
its internal data structures. Such dependences can potentially
be eliminated using parallel libraries.

From the data presented in the earlier sections, we can
see that SPEC 2006 benchmarks have numerous inter-thread
dependences which could benefit from TLS hardware support.
Such TLS hardware support could help to parallelize bench-
marks in class ’B’ with low-frequency data dependences and
could also help the compiler in handling those ambiguous inter-
thread data dependences (in class ’A’ benchmarks). Also, many
benchmarks have frequent register and memory dependences
which could benefit from aggressive code scheduling by the
compiler to reduce critical-path lengths introduced by synchro-
nizations and increase execution overlap between threads.

IV. COMPILATION AND EVALUATION INFRASTRUCTURE

To evaluate the amount of parallelism that can be exploited
with hardware support for coarse-grain speculation and ad-
vanced compiler optimization technology in the SPEC2006
benchmark suite, we simulate the execution of these bench-
marks with an architectural simulator that support multiple
cores and speculative execution. In the rest of this section, we
will describe the execution model, as well as the compilation
and simulation infrastructure used in this paper.
Execution Model:

Fig. 9. Compilation infrastructure

Under thread-level speculation (TLS), the compiler partitions
a program into speculatively parallel threads without having
to decide at compile time whether they are independent. At
runtime, the underlying hardware determines whether inter-
thread data dependences are preserved, and re-executes any
thread for which they are not. The most straightforward way to
parallelize a loop is to execute multiple iterations of thatloop in
parallel. In our baseline execution model, the compiler ensures
that two nested loops will not be speculatively parallelized
simultaneously. In Section VI, we will study the potential for
supporting speculative threads at multiple nesting levels.

We use a cache based protocol based on STAMPede [6] to
support speculative threads in CMP. When executing specula-
tive threads, speculative stores will be buffered in the private
L1 data cache and speculative loads are marked using a special
bit in the cache. When a dependence is detected the violating
thread and all its successors are restarted. When the violating
thread is squashed, all speculation marker bits in the L1 data
cache are reset with a gang-clear (1 cycle). When a thread
commits it sends a signal to its immediate successor, and the
latter becomes the new non-speculative thread. More details
on the TLS architecture model used can be found in [6].
Frequently occurring memory-based dependences and register-
based scalar dependences are synchronized by inserting special
instructions as shown in Figure 2(b) similar to [8], [7].
Compilation Infrastructure

Our compiler infrastructure is built on Open64 3.0 Compiler
[19], an industrial-strength open-source compiler targeting In-
tel’s Itanium Processor Family (IPF).

To create and optimize speculative parallel threads, the com-
piler must perform accurate performance trade-off analysis to
determine whether the benefit of speculative parallel execution
outweighs the cost of failed speculation and then aggressively
optimize loops that benefit from speculation. In our case, the
compiler performs such analysis and optimizations based on
loop nesting, edge, as well as data dependence profiling (using
train input set), as shown in Figure 9. The TLS compiler has
two distinct phases, as shown in Figure 9, thread extraction
and optimization:

Thread Extraction: The compiler can extract threads
from both loops and non-loop regions. In this paper we



TABLE II

ARCHITECTURAL PARAMETERS.

Parameter
Fetch/Issue/Retire width 6/4/4
Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports
Register Update Unit 128 entries
(ROB,issue queue)
LSQ size 64 entries
L1I Cache 64K, 4 way 32B
L1D Cache 64K, 4 way 32B

Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk,

18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize
Physical registers/thread 128 Integer and 128 Floating point registers
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4

focus on loop-level parallelism. In the loop selection
phase, the compiler first estimates the parallel performance
of each loop, then choose to parallelize a set of loops that
maximize the overall program performance based on such
estimation. Previous work [20] builds the performance
estimation based on detailed data dependence profiling
information, as shown in Figure 9. Thus, the achievable
performance of speculative parallel threads is tied with
the accuracy of performance estimation. I.e., inaccurate
profiling information, and inaccurate-estimation informa-
tion can potentially lead to the selection of sub-optimal
loops. In this paper, since we aim to demonstrate the
optimal performance that can be achieved with SPEC2006
benchmarks, we eliminated this uncertainty from our
evaluation. When selecting which loops to parallelize to
maximize program performance, instead of relying on a
compiler estimation, we use the simulated parallel and
sequential execution time of each loop to determine the
actual benefit of parallelizing that loop.
Optimization: Loops that are selected for paralleliza-
tion must be transformed for efficient speculative parallel
execution. In our case, the following optimizations are
applied: (i) all register-resident values, as well as memory-
resident values that cause inter-thread data dependences
in 20% of all threads are synchronized [8]; (ii) instruc-
tions are scheduled to reduce the critical forwarding path
introduced by the synchronization [7], [13]; (iii) compu-
tation and usage of reduction and reduction-like variables
are transformed to avoid speculation failure and reduce
synchronization [21]; and (iv) consecutive loop iterations
are merged to balance the workload between neighboring
threads [21].

Simulation Infrastructure:
We simulate a 4-core CMP using a trace-driven, cycle-

accurate simulator, where each core is an out-of-order su-
perscalar processor based on SimpleScalar [22]. The trace-
generation portion of this infrastructure is based on the PIN in-
strumentation tool [23], and the architectural simulationportion

TABLE III

COVERAGE OF LOOPS PARALLELIZED.

Benchmark Coverage (%) No. of loops
I I + II I + II + III 1 I + II I + II + III

milc 13 79 79 5 22 22
lbm 0 100 100 0 1 2
h264ref 0 53 83 2 32 36
libquantum 0 98 98 1 5 5
sphinx3 40 83 91 11 19 21
povray 0 3 63 0 4 5
bzip2 2 3 31 4 6 14
mcf 0 85 93 0 6 6
namd 1 8 96 7 22 50
gobmk 0 6 13 0 1 5
hmmer 0 0 79 2 1 6
sjeng 0 0 1 0 0 6
astar 0 5 99 0 2 8

is built on SimpleScalar. We not only model the register renam-
ing, the reorder buffer, branch prediction, instruction fetching,
branching penalties and the memory hierarchy performance,
but also extend the infrastructure to model different aspects
of TLS execution including explicit synchronization through
signal/wait, cost of thread commit/squash, etc. Simulation
parameters used for our experiments are shown in Table II.

In this study, we use the reference input to simulate all
benchmarks. In case of benchmarks with multiple input sets,
the first input set is used. To get an accurate estimate of TLS
performance, we parallelize and simulate all loops (with at
least 0.05% dynamic execution time coverage) in each of the
benchmarks. Based on the simulated speedup of each loop, we
use our loop selection algorithm to select the best set of loops
which maximizes the performance of the entire benchmark.
To report the speedup achieved by the entire benchmark, the
average speedup of all the selected loops is calculated and
weighted by the coverage1 of the loops. For each simulation
run, several billion instructions are fast-forwarded to reach the
loops and different samples of 500 million instructions are
simulated to cover all the loops.

V. EXPLOITING PARALLELISM IN SPEC2006

In this section, we evaluate the amount of parallelism
available in SPEC 2006 benchmarks using the framework
described in Section IV. To isolate the parallelism that cannot
be exploited without the help of TLS, we take three increas-
ingly aggressive attempts to parallelize loops in SPEC 2006
benchmarks:

Type I: Loops that are identified as parallel by a traditional
compiler;
Type II: Loops that have no inter-thread data dependence
at runtime (for the particularref input set used), but are
not identified as parallel by the compiler, a.k.a.,Probably
Parallel Loops;
Type III: Loops that contain inter-thread data depen-
dences, thus require TLS support to parallelize, a.k.a.,True
Speculative Loops.

1The coverage of a loop is defined as the fraction of dynamic execution
time of the loop



Table III shows the percentage of total execution that
can be parallelized when loops of different types become
parallelizable.

To determine the performance impact associated with paral-
lelizing a particular type of loops, the set of loops belong to
that type are selected to maximize overall performance. The
overall program speedup is then calculated by considering the
speedup and coverage of the selected loops. For example, let
the selected set of loops be{L1, L2, L3, ... Ln}. Let their
corresponding coverage be{ C1, C2, C3, ... Cn } and their
corresponding speedup be{ S1, S2, S3, ... Sn }. The overall
program speedup is then calculated asSpeedup = 1/((1-(C1 +
C2 + .. Cn)) + C1/S1 + C1/S2 + .. C1/Sn). In this experiment,
we assume it is always possible to identify the optimal set of
loops that maximize overall performance, however, in reality,
the compiler can potentially select sub-optimal loops due to
performance estimation error [18].

A. Type I Loops

We applied the Intel C++ compiler [24] to the SPEC 2006
benchmarks to select parallel loops. The benchmarks are com-
piled with -O3 -ipo -parallel -par -threshold0
options. The option-par-threshold0 allows the compiler
to parallelize loops without taking into consideration thread
overhead. The loops selected by the Intel compiler are then par-
allelized using our TLS compiler and simulated. The speedup
achieved by the selected loops over sequential execution is
shown as the first set of bars in Figure 10. With the exception of
MILC , which achieved a speedup of 11%, andSPHINX3, which
achieved a speedup of 7%, none of the benchmarks is able
to speedup over sequential application. Overall, the geometric
mean of the speedup is only 1%.

This result is anticipated, since the complex control flow and
ambiguous data dependence patterns prohibit the traditional
compiler from parallelizing large loops. We have found thatin
most benchmarks the compiler has only chosen to parallelize
simple inner loops with known iteration count. It is worth
pointing out that, although many classA benchmarks, such
as MILC and LBM , contain loops with no inter-thread data
dependences, the compiler is unable to identify these loops
as being parallel.

B. Type I + II Loops

With the addition of Probably Parallel Loops, class A
benchmarks achieve significant performance gain, however,
classB benchmarks remain sequential. The classA benchmarks
gain 68% speedup due to theseProbably Parallel Loops while
class B benchmarks gain only 4%. If the compiler is able
to determine that these loops are parallel, we can potentially
parallelize these loops without TLS support. Among the class
A benchmarks, significant portion of the loops inSPHINX3 and
H264REF areProbably Parallel Loops; and all loops inMILC ,
LBM and LIBQUANTUM areProbably Parallel Loops.

C. Type I + II + III Loops

With the addition ofTrue Speculative Loops, we find that
many classB benchmarks are able to achieve speedup. With

only theseTrue Speculative Loops classB benchmarks gain a
speedup of 42% giving them an overall speedup of 46%.

To examine TLS performance in detail, Figure 11 shows
the execution time breakdown of parallel execution with TLS
support (only selected loops) and sequential execution. The
SEQ bars show the normalized execution time of the sequential
execution running on one core. TheCMP bars show the
normalized execution time of the parallel program executing
on four cores. Each bar is divided into six segments:Busy
represents the amount of time spent in executing useful instruc-
tions and the delay due to lack of instruction level parallelism
inside each thread;Lack of threads represents the amount of
time wasted due to the lack of parallel threads (probably dueto
low iteration count in a loop);Synchronization represents the
amount of time spent in synchronizing frequently occurring
memory dependences and register dependences;Cache misses
represents the amount of time the processor stalled due to
cache misses;Squash represents the amount of time wasted
executing instruction that are eventually thrown away due to
failed speculation;Other corresponds to everything else. In
particular, it includes time wasted due to speculative buffer
overflow and load imbalance between consecutive threads.

We first will focus on the classB benchmarks. InHM-
MER, the loop atfast-algorithms.c:133 is selected for
parallelization, however it has many inter-thread dependences
that require synchronizations. These synchronizations create
a critical forwarding path between the threads and serialize
execution. Thus, by performing speculative instruction schedul-
ing to move the producers of these dependences as early as
possible in the execution [7], [13], the parallel overlap is
significantly increased; and the benchmark achieves a 90%
program speedup. Similar behavior is observed inNAMD ,
where synchronization and instruction scheduling leads toa
164% program speedup.

For ASTAR, the important loop is atway2 .cpp:100,
which has a few inter-thread dependences. Some of these
dependences are frequent, and thus are synchronized; others are
infrequent, and thus are speculated on. Without TLS support,
these infrequent occurring dependences must be synchronized,
and can lead to serialization of the execution. With the helpof
TLS, this loop achieves a 17% speedup.

POVRAY, although a classA benchmark, is able to benefit
from speculation. The important loop incsg.cpp:248 is a
true speculative loop with a few mispeculations, thus it is non-
parallel for a traditional compiler. Unfortunately, the selected
loops have small trip counts, and the cores are often idle; thus
the benchmark is only able to achieve a moderate program
speedup of 9%.

Not all benchmarks are able to benefit from TLS.GOBMK

has many loops with low trip counts, thus many execution
cycles are wasted as the cores are idling. Loops with large
trip counts are not able to achieve the desired speedup for
two reasons: first of all, the amount of work in consecutive
iterations is often unbalanced; secondly, many iterationshave
large memory footprints that lead to buffer overflow of the



Fig. 10. Shows the program speedup when different types of loops are parallelized using 4 cores.

Fig. 11. Shows the breakdown of execution time while executing the selected loops normalized to sequential execution time

speculative states. The geometric mean of the thread size for
the top 50 loops (in terms of coverage) is 800,000 instructions.
Overall, GOBMK only achieves 1% performance improvement
with TLS support.

Loops in SJENG have many inter-thread dependences that
occur in 70% of all iterations, and thus need synchronization.
However, the critical forwarding path introduced by these syn-
chronization cannot be reduced through instruction scheduling
due to intra-thread dependences. Thus,SJENG was unable to
benefit from TLS.

To summarize, TLS is effective in parallelizing both class
A and classB loops. Overall, if we select the optimal set
of loops, we can achieve a program speedup of about 60%
(geometrical mean) , in contrast to a traditional compiler,which
only achieves a 1% program speedup.

D. Scalability

As technology scales, the number of cores that can be
integrated onto a single die increases. Thus, it is important to
understand whether TLS can efficiently utilize all the available
cores. In this section, we study the scalability of TLS perfor-
mance by comparing the speedup achieved using two, four and
eight cores. The results of this study are shown in Figure 12.

When the number of cores is increased from two to four, the
geometric mean of the speedup increases by about 35%; when
increased further to eight cores, the performance increaseis
33%. Among classA benchmarks,LBM ,SPHINX3, H264REF

and LIBQUANTUM contain important loops that have large
iteration count and substantial amount of parallelism, thus the

Fig. 12. Speedup increases with increasing number of cores

performance of these benchmakrs is able to scale with the num-
ber of cores. InLIBQUANTUM , the super-linear performance
gain is due to cache prefetching effect between the speculative
threads.

Among classB benchmarks,NAMD shows good scalability
andMCF benefits from cache prefetching effect as the number
of threads increases. Unfortunately, none of the other bench-
marks are scalable:HMMER suffers from frequent synchroniza-
tion; POVRAY andBZIP2 suffers from small trip counts;ASTAR

not only suffers from frequently synchronization, but also
frequent squashes; ForGOBMK and SJENG the performance
improvement for TLS is negligible in all configurations.

To summarize, with our existing execution model, only a
few benchmarks are able to scale with the number of cores;



and even for the benchmarks that do scale, most of them scale
sub-linearly. While the reasons for the lack of scalabilitydiffer
from benchmark to benchmark, it is obvious that the amount
of parallelism is limited. Thus, we will develop new execution
models to improve the scalability of TLS in the next section.

VI. EXPLOITING SPECULATIVE PARALLELISM AT

MULTIPLE LEVELS OFLOOPS

As the number of cores on a chip keeps increasing, it is im-
portant to ensure that the parallel performance of TLS loopscan
scale. Unfortunately, almost all benchmarks scale sub-linearly,
and many,HUMMER, POVRAY, BZIP2, ASTAR, GOBMK and
SJENGexhibits poor scalability. Similar to previous proposals
on TLS, the results presented in Section V-D only allow one
loop nest level to execute in parallel when multiple levels of
nested loops exist. Our goal in this section, is to examine
the feasibility and benefit of exploiting TLS parallelism from
multiple loop levels in a loop nest simultaneously. Renauet.
al [17] proposed an architectural design to support out-of-order
forking of speculative threads. It allows spawning of more
speculative threads on the outer loop levels before spawning
less speculative threads on the inner loops. However, it is
unclear how to best allocate cores to speculative threads for
the outer and the inner loops. In their work, a hardware-based
design, referred to asdynamic task merging is deployed. Hard-
ware counters are used to identify threads that suffer frequent
squashes; and these threads are prohibited from spawning new
threads. Other than requiring complex hardware support, the
proposed approach has the following limitations. First of all,
using number of squashes as a measurement of TLS efficiency
is inaccurate. As we have seen in Section V, the performance
of TLS loops is also determined by synchronization, iteration
count, load balancedness, and etc. Secondly, the hardware is
unable to pre-determine the TLS potential of inner loops. As
long as the outer loop does not show performance degradation,
it will monopolize the cores. The inner loops will never be
attempted for parallelization even if they have more parallelism.
This will lead to a suboptimal allocation of cores.

In this section, we propose a compiler-based core allocation
scheme that statically schedules cores for threads extracted
from different levels of a loop nest. In this section, the
performance potential of parallelizing multiple levels ofTLS
loops is extrapolated from the parallel performance of single
level of parallel execution using the compiler-based allocation
scheme. Since the nested loops are parallelized simultaneously,
this extrapolation can be inaccurate, due to some secondary
effects such as increase/decrease in cache misses. Furthermore,
it is possible for the number of squashes for an outer loop to
vary slightly due to the parallelization of inner loops. However,
we believe that the impact of these secondary effects can be
negligible; and neglecting these effects does not change the
conclusion of this paper. Exploring the hardware modifications
needed to support the parallelization of multiple levels ofloops
is beyond the scope of our paper.

Compiler-based scheduling schemes for nested loops have
been studied in the past to support nested DOALL and

DOACROSS loops. We extend the OPTAL algorithm [25] that
was originally designed for core allocation for nested DOALL
and DOACROSS loops to allocate cores for TLS loops at
compile time.

A. Speculative OPTAL algorithm

The OPTAL algorithm uses a dynamic programming based
bottom-up approach to decide how many cores to allocate to
each loop-nest level so that entire benchmark with multiple-
levels of nested parallel loops can achieve the optimal per-
formance. Based on simulated performance and coverage of
each loop level, the algorithm considers different possible
allocations on TLS loop nests and selects the allocation that
maximize program performance. When deciding how many
cores to allocate to a TLS loop at a particular loop-nest level,
the algorithm only examines its immediate inner loops.

The inputs to the algorithm are the loop tree obtained during
loop-nest profiling phase of the compiler and the maximum
number of cores available for the benchmark (say 2K). The
output is the optimal core allocation for each TLS loop level
and also the estimated optimal performance for the benchmark.

Predicting performance for each loop:Before estimating
the multi-level TLS loops performance, the algorithm estimates
the single-level performance of each TLS loop level. In the
case of a DOACROSS loop, the time required for the parallel
executionTp can be calculated by its initiation delayd. A
similar method to estimate the performance of a TLS loop has
been studied in [13]. In this study, we use the real performance
result for each TLS loop we obtained in the previous section.

Let SingleSpeedupi, j represent the speedup achieved by
parallelizing the single-level TLSloopi using j cores, where
j ∈ 20,21,22, ... 2K . Let BestSpeedup(i,j) represent the best
speedup achievable by parallelizing the multi-level TLS loop
nest starting at(loopi) using j cores.

Combining speedup:The basic step in the algorithm is to
find the speedup of an outer loop when its inner loops are
also parallelized. Lets call the function to calculate thisas
GetCombinedSpeedup(Li,M,N). GetCombinedSpeedup(Li,M,N)
returns the speedup of loopLi when we allocate M cores
to parallelizeLi and N cores to parallelize its child loops in
the loop treeLi, j. GetCombinedSpeedup(Li,M,N) is shown in
Algorithm 1.

Recursive algorithm:
The Speculative-OPTAL algorithm starts from the leaf level

in the loop tree and calculates the speedup of parent nodes
based on the child loops’ speedup. The Speculative-OPTAL
algorithm is shown in Algorithm 2.

The exact allocation of cores to the inner loop is given in the
vector ChildAllocate(Li,p). This would be used by the compiler
to statically allocate cores. Here, we are interested in thevalue
of BestSpeedup Lroot ,2K , the performance potential of TLS for
the entire benchmark when applied to multiple loop levels.

Complexity analysis:
The Speculative-OPTAL is called for every node in the loop

tree. Letλ be the number of nodes in the tree (including both
loops and functions). In Speculative-OPTAL, the outer loop



Input : Outer loopLi, M cores allocated toLi, N cores
allocated to the next level (Li’s child loops)

Output : Speedup ofLi with the specified allocation
Read Cycles(Li) - the number of cycles spent in loopLi

from the profile;
foreach Child of loop Li, Li, j do

/*Find total sequential cyclesTs for all inner loops.*/
Read Cycles(Li, j) - the number of cycles spent in loop
Li, j when invoked fromLi from the profile;
SumBefPar += Cycles(Li, j);
/*Find total Tp for all inner loops after
parallelization.*/
ParCycles(Li, j) = Cycles(Li, j) ÷ BestSpeedup(Li, j,N);
SumAfterPar += ParCycles(Li, j);

end
/*Ts of outer loop after inner loops are parallelized.*/
CyclesInnerPar = Cycles(Li) - SumBefPar + SumAfterPar;
/*Calculate combined speedup.*/
ParCycles(Li) = CyclesInnerPar÷ SingleSpeedupi,M;
return (Cycles(Li) ÷ ParCycles(Li)) ;

Algorithm 1 : The GetCombinedSpeedup(Li,M,N) to get the
speedup of outer loopLi when its inner loops are parallelized.

Fig. 13. Speedup over sequential execution using 4 and 8 cores with multi-
level TLS loops

iterates for K times and the inner loop iterates on the average
of K/2 times. So, total number of timesGetCombinedSpeedup
is called isK2/2. The loop inside GetCombinedSpeedup iterates
over all the children of the node. The average number of
children per node is a constant (C1) for a tree. So, the total
time taken for Speculative-OPTAL is approximatelyλ K2/2.
Therefore, the complexity of Speculative-OPTAL is O(λ ) since
K is a constant.

B. Results

If TLS threads are spawned only from a single level of
loop, many benchmarks, both from class A and class B, exhibit
diminishing return as the number of cores increases, as shown
in Figure 12. With spawning speculative threads from multiple
levels of loops, cores can potentially be better utilized, resulting
in better scalability of the cores. We applied our allocation
algorithm to extract speculative threads for all benchmarks,
but omitted the results for some from our presentation due to
the following reasons:BZIP2, GOBMK and SJENGare omitted
due to the lack of TLS parallelism overall;LIBQUANTUM and

Input : Loop Li and 2K the number of cores to allocate.
Output : Estimated speedup of the entire benchmark -

BestSpeedup(Lroot,2K) and a vector
ChildAllocate(Li,p) which indicates for each
loop, how many cores need to be allocated to its
child loops.

if Li is leaf then
foreach p ∈ { 20, 21, 22, .. 2K } do

BestSpeedup(i,p) = SingleSpeedupi,p;
end
return;

end
/*Allocate child loops first.*/
foreach Li, j child of Li do

Speculative-OPTAL(Li, j);
end
/*Inner loop’s best allocation already known. Try all
possible allocations for the outer loop*/
foreach p ∈ { 0,1,..K } do

foreach q ∈ { 0,1,..p } do
CurSpeedup(Li,q) =
GetCombinedSpeedup(Li,2q,2p/2q);
if CurSpeedup(Li,q) ≥ MaxSpeedup then

MaxSpeedup = CurSpeedup(Li,q);
ChildAllocate(Li,p) = q;

end
end
BestSpeedup(i,p) = MaxSpeedup;

end
Algorithm 2 : The Speculative-OPTAL algorithm.

HUMMER are omitted due to the lack of nested parallelizable
loops; LBM , NAMD and MCF are omitted due to the fact that
the Speculative-OPTAL algorithm is unable to identify multiple
levels of loops that can perform better than the single levelTLS.

For the remaining benchmarks, Figure 13 compares the
performance of multi-level TLS performance estimated based
on our algorithm with the single-level TLS performance. With
four cores, we can extract TLS parallelism from two levels of
loops, and with eight cores, we extract TLS parallelism from
upto three levels. InSPHINX3 the selected loop cannot utilize
all the available cores due to frequent squashes. Multi-level
TLS can potentially improve the performance over single-level
TLS by about 18% with 8 cores. InPOVRAY, the iteration
counts of the selected loops are low (around 4), and thus many
cores idle. With multi-level TLS, all the cores are utilized,
and thus multi-level TLS can potentially outperform single-
level TLS by about 13%. In benchmarkASTAR the selected
loops have frequent mis-speculations, and thus execution cy-
cles are wasted. With multi-level TLS, two nested loops,
in Way2 .cpp, line 65 and line 100 respectively, are
selected, are parallelized simulteneously. The multi-level TLS
outperforms single-level TLS by 6% on 8 cores. InH264REF,
multi-level TLS outperforms single-level TLS by 7% on 8
cores. Overall, for the benchmarks mentioned, Figure 13 shows
that by extracting speculative threads at multiple levels of loop



nest, we are able to achieve an additional speedup of about 8%
with four cores and 11% with eight cores for these selected
benchmarks.

From the above results, it is clear that many SPEC 2006
benchmarks have potential for multi-level TLS. Our compiler-
based allocation algorithm can allocate cores among the multi-
levels TLS loops to improve overall performance. With such
a compiler-based approach, we could also avoid complex
hardware modifications needed to support multi-level TLS.

VII. C ONCLUSIONS

Previous studies of SPEC 2006 based on high level analysis
have shown only a limited potential for TLS. These studies
did not taken into account the benefits of compiler-based opti-
mizations. In this paper, using a state-of-the-art TLS compiler,
we show that SPEC 2006 applications can be successfully
parallelized speculatively with TLS.

We show that often the traditional parallelizing compiler
cannot prove independence due to the existence of complex
control flow and ambiguous data accesses, even if many
benchmarks contain parallel loops. With the help of TLS,
thesepotentially parallel loops can be parallelized, and thus
potentially allowing six benchmarks,MILC , LBM , H264REF,
LIBQUANTUM , SPHINX and POVRAY, to achieve a speedup of
78%, if the best set of loops are selected. Furthermore, TLS
can parallelize loops that cannot be parallelized by traditional
compilers due to infrequent inter-thread dependences (truly
speculative loops). With TLS, benchmarksBZIP2, MCF, NAMD ,
GOBMK, HMMER, SJENG and ASTAR can potentially achieve
an additional 46% speedup. Overall, with four cores we can
achieve a speedup of 60% on all benchmarks (geometric
mean) and with eight cores the speedup can reach 91% when
compared to sequential execution.

To exploit parallelism at multiple levels of loop nest, we used
a novel compiler-based core-allocation scheme to efficiently
allocate cores to iterations from multiple levels of a loop nest.
Our results show that the proposed mechanism can potentially
achieve an additional 11% performance gain with a 8-core
processor on selected benchmarks.
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