Exploring Speculative Parallelism in SPEC2006

Venkatesan Packirisamy, Antonia Zhai, Wei-Chung Hsu, €bang Yew and Tin-Fook Ngai
University of Minnesota, Minneapolis. tIntel Corporation
{packve,zhai,hsu,yew} @cs.umn.edu tin-fook.ngai @intel.com

Abstract—
The computer industry has adopted multi-threaded and multi

core architectures as the clock rate increase stalled in eBr2000’s. ! [e X
0.8

It was hoped that the continuous improvement of single-protam Y / / /' -
performance could be achieved through these architecturesdow- Eos

ever, traditional parallelizing compilers often fail to effectively g

parallelize general-purpose applications which typicaly have com-
plex control flow and excessive pointer usage. Recently handire . :/
techniques such as Transactional Memory (TM) and Thread- o
Level Speculation (TLS) have been proposed to simplify the
task of parallelization by using speculative threads. Potetial of
speculative parallelism in general-purpose applicationike SPEC [—=— 401 brip2 —e—429 mcT ——444 namd —=—445 gobmk —p—473.actar |
CPU 2000 have been well studied and shown to be moderately
successful. Preliminary work examining the potential pardlelism]) o o -
in SPEC2006 deployed parallel threads with a restrictive TIS Fig. 1. Coverage obtained by parallelizing loops with darfarobability of
execution model and limited compiler support, and thus only data dependences.

showed limited performance potential. In this paper, we fir$)
analyze the cross-iteration dependence behavior of SPEC @@ development of parallel programs; Thread-Level Speautati
benchmarks and show that more parallelism potential is avdable (TLS) has been used to exploit parallelism in sequential

in SPEC 2006 benchmarks, comparing to SPEC2000. We further gpplications that are difficult to parallelize using trétital
use a state-of-the-art profile-driven TLS compiler to identfy loops parallelization techniques. For example, a loop that doatan

that can be speculatively parallelized. Overall, we found hat
with optimal loop selection we can potentially achieve an arage inter-thread data dependence due to loads and stores throug

speedup of 60% on four cores over what could be achieved by a Pointers cannot be parallelized using traditional conpileut
traditional parallelizing compiler such as Intel’'s ICC compiler. We with the help of TLS, the compiler can parallelize this loop

also found that an additional 11% improvement can be potentlly speculatively and relying on the underlying hardware tedet
gitg'gﬁdmon selected benchmarks using 8 cores when we extend g enforce inter-thread data dependences at run-time[6]5]
ultiple loop levels as opposed to restricting to a sigle
loop level. [7], (8], [9], [10]) o o
Though TLS has been extensively studied in the past, it is
|. INTRODUCTION not clear how much TLS could benefit more recent benchmarks
With the advent of multi-threaded (e.g. simultaneous multisuch as SPEC 2006 [11], which represent a different class
threading (SMT) [1], hyper-threading [2]) and/or multireo of applications. Some recent studies [12] on SPEC 2006
(e.g. chip multiprocessors (CMP) [3], [4]) architecturasw benchmarks have shown very limited potential for TLS (less
the challenge is to utilize these architectures to improse p than 1%) under very conservative assumptions. In this paper
formance of general-purpose applications. Automatic danp we re-examine some of these issues and give a more realistic
parallelization techniques have been developed and foond @assessment of TLS on these benchmarks using a state-aftthe-
be useful for many scientific applications that are floatingTLS compiler. By comparing the data dependence behaviors
point intensive. However, when applied to general-purposf SPEC 2000 and SPEC 2006, we show more potential
integer-intensive applications that have complex confimt parallelism in SPEC 2006 than in SPEC 2000.
and excessive pointer accesses, traditional parallelizétch- One of the key detriments in parallelizing loops is the
nigues become quite ineffective, as they need to conseelati presence of cross-iteration data dependences. Figurevissho
ensure program correctness by synchronizing all potentitiie results of a potential study: the percentage of exetutio
dependences in the program. This often requires a programntieat can potentially be parallelized if infrequently oating
to explicitly create parallel threads and insert synctrations. cross-iteration data dependences canniagically resolved.
This approach is often error prone and puts a huge burden ®he x-axis indicates the dependence frequency; and ythe
the programmer. axis indicates the percentage of total execution that can be
There have been numerous studies on hardware support parallelized. A data point at locatio{€, p) indicates: if loops
speculative threads, which intend to ease the creationraflpb containing only memory-resident value data dependendds th
threads for programmers and compilers. Recently, Hardwaoecur in less thamp% of threads can be parallelized, then
Transactional Memory (HTM) has been proposed to aid th@% of total execution can be parallelized. We can see that

0% 10% 200 30% 40% 0%

Probability of dependences

for these SPEC 2006 benchmarks, there are many loops wibscribes the related work; Section Ill analyzes the cross-
low probability data dependences. For example in 473.astiéeration dependences that occur in SPEC 2006 benchmarks;
if we ignore dependences that only occur in less than 20%ection IV describes our compiler framework and the evalua-
of all iterations, we can parallelize loops that correspémd tion methodology; Section V shows the performance of TLS
96% of total execution. With a traditional compiler, all e and the scalability of TLS performance. In Section VI we
dependences would be synchronized, and thus the resultinge single -level TLS performance to study the performance
program will exhibit poor parallel execution performan@éth potential for multi-level TLS and in Section VII we present
TLS, many of these loops could potentially be parallelizgd bour conclusions.
speculating on such low probability data dependences.

Our study differs in previous studies on several aspect$, an Il. RELATED WORK
thus we believe that our results are able to accurately ifgent
more potential for TLS than those studies. Kejariealal [12]
did not take into account the effect of compiler optimizatio
that could improve the performance of TLS, while previou

studies [10], [7], [8], [13] have shown that compiler-base recent SPEC 2006 benchmarks. The SPEC 2006 benchmarks

loop selection and optimizations, such as code schedulinr%, L A
can significantly improve the efficiency of TLS. Furthermore present a newer class of applications and it is important t
' examine whether the conclusions drawn for SPEC 2000 will

Kejariwal et. al [12] only considered innermost loops for TLS. hold for these applications. In this paper we address thiseis

In this paper, our study is not_l|m|ted o a particular Ioopelb_ by conducting a detailed study of SPEC 2006 benchmarks
rather we attempt to parallelize all loops that can potéptia . X
using a state-of-the-art TLS compiler.

benefit from TLS. More importantly, instead of a high-level . _
study on performance potential of TLS, we use a state-of- Oplingeret. al [14] presentgd a study on the limits Qf TLS
the-art TLS compiler to parallelize TLS loops and study nheiperformance on some SPECInt95 benchmarks. The impact of

performance using a detailed simulation infrastructurer O _compller optimizations and the TLS overhead were not taken

results show that, with TLS-oriented compiler optimizaso into account in that study. Similarly, Warg al [15] presented

and optimal selection of loops, we could achieve an avera limit study for moduIc_—:‘—Ievc_aI parallelism n opject—qrted
of about 60% speedup for SPEC 2006 benchmarks over w grams. In contrast, in this study, our aim is to illustrat

could be achieved by a traditional parallelizing compilects € re_allzable_ perfo_rma_mce of TLS using a state-of-théFafi
as Intel's ICC compiler. compllgr, while taking into account various TLS overhgads.
As the current trend is to support more cores on a single chiR1 Kejariwal et. al [16] separated the speedup achievable

we also study the potential of enhancing TLS performance ba,r_oug?htragglgncazlog(r)ezd-le\éel pirallehsm _from tr:atﬁg
extracting speculative threads at more than one loop I&Vel. sing the enchmarks assumingoeatie

use a compiler-based static loop allocation scheme toitigi mechanism. They [12] later extended their study to the SPEC

schedule speculative threads from multiple loop levels. W%006 benchmarks. It is worth pointing out that they con-

show that an additional 11% improvement could potentiall entrat_ed on on_Iy inner-most loops and used probabilistic
be obtained on selected benchmarks by extending TLS f Paly5|s to predict TLS performance. We also separate the
multiple loop levels using eight core speedup achievable through traditional non-speculativa-c

In summary, the contributions of this paper are pilation techniques from that requires TLS support; howgve
' we consider all loop-levels instead of just the inner-most

1) We present a detailed analysis of cross-iteration dag} the outer-most loops. Furthermore, they manually inter-
dependences (both register- and memory-based data ggned to force the compiler to parallelize loops that were
pendences) in SPEC 2006 benchmarks. We classify thgt automatically parallelized due to ambiguous depeneenc
benchmarks according to their data dependence behavigy. this paper, we utilize an automatic parallelizing corepil

2) We present a comparison of cross-iteration dependenggt performs trade-off analysis using profiling infornoatito
pattern of SPEC 2006 benchmarks with the SPEC 20Q@entify parallel threads—no programmer interventiondezt
benchmarks and show that the SPEC 2006 benchmarksypjle a significant body of previous work focused on
have more potential for parallelism than the benchmarl@xpmiting parallelism using TLS at a single loop nest level
in _SPEC 2000.] _ relatively little has been done to exploit parallelism atltiple

3) With a state-of-art TLS compiler, we extract speculativg,agteq loop levels simultaneously. Reretwal [17] proposed
threads from SPEC 2006 benchmarks and demonstra{g qware-based techniques to determine how to allocatss cor
that there exists additional realizable performance overg threads that are extracted from different nesting levels
traditional parallelizing compiler. _ while our paper proposes compiler techniques that stitical

4) We use a novel static loop allocation algorithm to studyjetermines how to schedule loop iterations from different

the performance potential of TLS when applied to nesteghop nesting levels to different cores. Since the compites h

loops. knowledge of global information, it is able to make better
The rest of the paper is organized as follows: Section Hecisions.

There has been a large body of research work on archi-
tectural design and compiler techniques for TLS [5], [6], [7
8], [9], [10]. But all of these papers based their studies on
éPEC 2000 or other older benchmarks, rather than the more

IIl. DEPENDENCE ANALYSIS OFSPEC 2006.00PS do {

vai t _men()

Consider the example loop shown in Figure 2(a) with do { I oad *p;
two cross-iteration dependences: a register-based depead I oad *p: wai t ()
through register2 and a potential memory-based dependence AN r3=r2+ 2
through pointep andg. In each iteration of the loop, the value T ' (2 =1+ 1
of r2 from the previous iteration is required, thus the compiler rz=ril+1 signal ()
must insert synchronization operations _(tha_| t/signal store *q; store «q:
pair) to ensure correct execution (shown in Figure 2(b)thin } while (condition) si gnal _men()

case of the memory-based dependence, the cross-iter@ion @) A loop with loop-carried } while (condition)

pendence only occurs when the load through poipteccesses register-based and memory-based (b) Loop parallelized with synchro-
the same memory location as the store through poipfepm ~ 9ata dependences. nization.

a previous iteration. Since the compiler is unable to deiem Thread 1 e Theadl Theed? Thesd3

the address pointed to yandqg at compile time, it must in- T T

sert synchronization operations (thai t _nem si gnal _-mem
pair) as shown Figure 2(b). However, such synchronization
can potentially serialize execution unnecessarily, asvehio
Figure 2(c). With the help of TLS, the compiler can paratleli

Load 0x32 '|'
\f\ra\timer'ﬂ()I Load 0x32

Load 048
gop ondence | _»Load 0x64

Store 0x64

: Store 0xB4 Restart --) X
this loop by ignoring ambiguous data dependences and telyin signai_memy ———— Store 0%
on the underlying hardware to detect and enforce all data = e 1 Lozt D4
dependences to ensure correctness at runtime. Figure 2(c . 7
shows the loop executing in TLS mode: when the store througt " waiting stor 0164

pointer q in threadl accesses the same memory location as L
the load through pointep in thread3, the hardware detects (c) Execution serialized due to syr(d) Parallel execution in TLS mode.
the dependence violation and restarts the violating threa@ironization.

Thread2, which does not contain the destination of any intergig. 2. Using synchronization and speculation to satistgriiteration data
thread data dependence, is able to execute in parallel witbpendences.
threadl. This parallelism cannot be exploited without the help

of TLS. However, if the dependence betwesorex g and

load x p occurs frequently causing speculation to fail often,

TABLE |
SPEC 2008BENCHMARKS.

it can potentially degrade performance. In such cases, it is Benchmark| No. of Loops No. of dynamic
desirable for the compiler to insert explicit synchroniaatto _ loop nesting levels
avoid mis-speculation. 212(':?2 Zgg 1;
Understanding the inter-thread data dependence patterns i gobmk 1265 22
an application is critical for estimating its TLS perforntarpo- hmmer 851 5
tential. In this section, we analyze the dependence infooma ﬁi)eq”ugamum o 1
collected through data dependence profiling, and estintete t h264ref 1870 15
importance of TLS hardware support in exploiting paradieli astar 116 6
in the SPEC 2006 benchmarks. mie o u
The weight of each loop in an application is summarized povray 1311 15
as thecombined execution time coverage, which is defined Ibmh' 23 3
as the fraction of total execution time of the program spent sphinx3 609 8

on a particular loop. In this paper, this weight is estimated . .) .

using hardware performance counters. To accurately estimdnvoked through different calling paths are replicated aogd

the combined coverage of a set of loops, the nesting relr€e. For exampld, oop5 in Figure 3 is re_pllcate_d, since two
lationship of these loops must be determined—this is dorfifferent call paths can both lead to the invocatiorl obp5.

with the he|p of a |Oop tree (for example’ Figure 3) An In this paper, we consider the SPEC CPU 2006 benchmarks
example program and its corresponding loop structure alofyittenin C or C++ (shownin Table I). We ignore the programs
with profile information is shown in Figure 3. In the exampleWritten in FORTRAN since they tend to be parallel scientific

| oop4, | oop5 and | oop5’ have no inter-thread memory- Programs that can be successfully parallelized usingttosgil
based data dependence. Tdoenbined coverage of loops with ~ Parallelizing compilers and do not require TLS support.

no memory-based data dependence is the cumulative coverage ,

of | oop4 andl oop5’ , which is 40%. (Coverage dfoop5 A Inter-thread register-based data dependences

is not included since it is nested insidewop4). The loop We first focus on the relatively straightforward register-
tree structure used in this paper is similar to the loop grapbased value dependences. For these dependences, theezompil
described by Wangt. al [13], except for loops that can be is responsible for identifying instructions that produaeda

main() {
while (condition1) {
while { condition2) {

process{);
}
}

Profile:
<100%,4,80.9>

<20%,2,20.3>

<60%,3,1,0.1>

process() {

register dependences is essential. Zhaal [7] have described
how such a compiler can be implemented; and further shown
that aggressive compiler scheduling techniques can retthece
critical forwarding path introduced by such synchroniaa$.

while (condition3) { 1
while (conditiond) { 1 |
foo();
} 0493 /f‘! : —— 433mile
}f(mo; <15%,1,0,05] 3 0.38 ﬂ 453 posray
) ¥ gg;] 462 bguartm
foo() { 2 oo —+— 464 h2Bdref
while { condition5) { Loop graph i —e_470Jbm
} [:loopnode 088 ’
} () :function node 0.86 —+— 4532 sphinxd
Solitescois — : nesting relationship gg:

))))) G ok koA YR
Fig. 3. An example loop tree showing nesting relationshipwben loops. 7

Each loop is annotated with four numbers: coverage, numberter-thread

register-based dependences, number of inter-thread myedmased depen-
dences, and the probability of the most probable loop.

no. of dependences

(a) The combined execution time coverage for benchmarks few
inter-thread memory dependences. (Class 'A).

12
14+—= 3 ' 5 3 Y ' £ g oo E— 12
o 08 e e I & i e -
& il f Z,/?{] e b £ ;/
=77 ¢ :] /
§ 04 , §os /}f' *
02 ,,,71_4/—— _f{/_,; A 8 s v il /
0 e .| '/ T T T T T 02 ; J/ /
0 1 2 3 4 5 1 7 i 9 29 a L—_."/ -t i . . ./
no. of inter-thread register dependences 0 q 2 3 4 5 5 7 3 =29
—— 40 bzp2 =428 mef 445 gobrmk 48 hmmer —— 458 sjeng Ho. of dependences
—— 457 libquantum —— 464 h264ref —— 473 astar — 433 milc —— 444 namd -
! ——d401 bzip2 =49 mcf —— 444 namd 445 gobmk
—=M3poray 470 m —— 482 sphing Example)
—s—436 hmmer —e—455 sjeng —— 473aztar ——Example
Fig. 4. The combined execution time coverage of loops witerithread (b) The combined execution time coverage for benchmarké wit

register-based dependences inter-thread dependences. (Class 'B’)

o Fig. 5. The combined execution time coverage of loops as etifum of the
consume these value and generate synchronization to ensll,{?,gber of inter-thread memory-based data dependences.
correct execution. For example, in the loop shown in Fig-
ure 2(a), the compiler identifies the cross-iteration itegis
based dependence due to registerand inserts explicit syn- B- Inter-thread memory-based data dependences
chronization, as shown in Figure 2(b). We count the number Unlike register-based dependences, memory-based depen-
of inter-thread register-based dependences (true depeesle dences are difficult to identify using a compiler due to ptisdn
for each loop; and estimate tloembined coverage of the set aliasing. To ensure correctness, traditional parallegjziompil-
of loops with certain number of register-based dependencess insert synchronizations on all possible dependencéh. W
The results are presented in Figure 4. Dhaxis represents TM or TLS support, the compiler is able to aggressively par-
the number of register dependences and the y-axis repsesedltelize loops by speculating on ambiguous data dependence
the correspondingcombined coverage estimated for a cer-However, the performance of such execution depends on the
tain set of loops. If a benchmark has a combined coveradjgelihood of such data dependences occurring at runtime.
of C for x number of dependences, it indicates that loopf a data dependence does occur, a thread can potentially
with less thanx dependences have a combined coverage ofolate data dependence constraints, and thus must behegglias
C%. For example, for the loop in Figure 3, the combinednd re-executed; recovery codes can be executed to restore
coverage of loops with 2 or lesser register dependencesdsrrect state. For example, there is an ambiguous crasgiie
60%.(coverage of loop2+loop4+loop5). The benchmarks withependence, shown in Figure 2(a), due to load through pointe
high combined coverag€] for a small number of dependences«p and store through pointew. Although the compiler cannot
(), potentially exhibit high degree of parallelism. We founddetermine whether there is a dependence betwpemdxq, it
that the high coverage loops in most benchmarks have interan obtain probabilistic information through data depewde
thread register-based dependences. Thus, an effective Th®file. In this section, we conduct detailed analysis oerint
compiler that is capable of synchronizing a few inter-tdreathread memory-based dependence using profiling informatio

19 - by such synchronization [18].
—a—41 bzip2
i ‘}' i = f'/ / —=— 429 m cf
g 08 444 ram d 1.05
g 06 / ,/ / / 445 gobmk 1 o ¥
2 ’ //// ! / —a— 456 hmmer / i
0 { —e— 458 sjeny 0,95
; ¢ e
J{ / f[_/ —— 473 astar g / vl
12 y j E 0.4 # —n—equake
——Example = !
I S e S 8 — —h—MEsa
A an A v an an an anv av o)
dr @8 6 0 P g g -
Probabiltly of dependences
D?S T T T T T T T T T
0 1 2 3 4 5 6 7 8 ==9
Fig. 6. The coverage of loops with inter-thread memory-tagata depen- lo. of dependences

dences less than a certain probability.
(&) The coverage for benchmarks with fewer inter-thread orgm

We classify benchmarks based on the combined coverage of dependences. (Class "A)
loops with different number of memory-based dependences. it
Figure 5(a) shows the results of benchmarks (points corre-
sponding to 433uiLC, 453 POVRAY, 462 LIBQUANTUM and
470LBM in Figure 5(a) overlap) that can achieve a high 08
combined coverage with only a few inter-thread memory-
based data dependences (class 'A); Figure 5(b) shows the
rest of the benchmarks (class 'B’). For benchmarks in class 04
‘A, 90% or more of the total execution can potentially be 0
parallelized by only considering loops with no inter-thdea
dependences. These benchmarks can be parallelized without
hardware support for speculative execution, if the compde
able to prove independence between threads.

In class 'B’ benchmarks, the speculative hardware support (b) The coverage for benchmarks with significant interddrelepen-
are potentially useful, since inter-thread data deperetedo dences. (Class 'B’)
occur. F?gure 6 ShOWS_ the probability of such data depemkanq:ig. 7. The coverage of loops with certain number of inteedld memory-
and their corresponding coverage for class 'B’ benchmarksased data dependences in SPEC 2000
The x-axis represents the probability of inter-thread memory-
based dependences and yhaxis represents the corresponding
combined coverage estimated for a certain set of loops. If &- SPEC 2006 vs. SPEC 2000
benchmark has a combined coverageCofor x probability In this section, we compare the potential parallelism in SPE
of inter-thread dependence, it indicates the loops thay onP000 and SPEC 2006 benchmarks by observing their inter-
have inter-thread dependences with probability of less tha thread data dependence behavior. Figure 7(a) shows class 'A
have a combined coverage G%., For example, for the loop benchmarks in SPEC 2000—benchmarks with few inter-thread
in Figure 3, the combined coverage of loops with only 10%lata dependences; Figure 7(b) shows class 'B’ benchmarks—
or lesser probability memory dependences is 80%.(coveragenchmarks with several cross-iteration dependencesp&em
of loop2+loop3. Other loops are nested inside loop3). Bencling against SPEC 2006 results, shown in Figure 5(a) and in
marks 401Bz1P2, 429MCF, 445G0BMK and 473ASTAR can Figure 5(b), we found that SPEC 2000 suite has fewer class
achieve a large combined coverage, if all loops that only benchmarks. Also the class 'B’ benchmarks in SPEC 2000
contain data dependences that occur in less than 20% &fn only achieve high combined coverage by parallelizing
iterations are speculatively parallelized. These are tups loops with several cross-iteration dependences. Furitierm
that could potentially benefit from TLS support. by examining Figure 8, which presents the frequency of data

Some benchmarks, such as 486MMER, 458 SJENGand dependences that must be speculated during parallel éxecut
444NAMD, can only achieve a high combined coverage, ifve found that with the exception efMmP, MCF, VPR_PLACE
loops containing frequently-occurring memory-based depeAND BzIP2, class 'B’ benchmarks in SPEC 2000 must specu-
dences are parallelized. These dependences potentigliyree late on high-probability cross-iteration dependencesctuexe
synchronization. Previous studies has shown that fretjuent high combined coverage. This is consistent with results
occurring memory-based data dependences could be syncheported by previous studies: in SPEC 2000, only a few bench-
nized by the compiler with profiling data [8]; and aggressivenarks,AMMP, MCF, VPR_PLACE, demonstrated high degree of
code scheduling could reduce critical-path length intcetl parallelism under TLS. The data dependences charaatsristi

—+—ammp
~=—ypr_place

——mef
hzip2
—— et

——twolf

Coverage
=
(=2}

——vpr_raute

——parser
~— pethbmk
—+-azip

T T T T T T T T —#—vortex
1 2 3 4] B 7 B =8 [=gap

No. of dependences —+—crafly

12 —+—ammp
- mcf

; f/-—75/ - h‘f" —a—vr_place

——hzip2

Profiling Support
=

Edge

——parser

‘ W ¥ et ool
04 1 — peramk
{ pE
02 f; B ﬁ / — gip
[—|
0 T T T H T T T

Coverage

—_ -

oo o
z,____:_
Q\%‘r

Thread Extraction Thread Optimization

==l |

g

Sequential Multithreaded
Code Code

Non-loop Partitionin

=
=
=
5]
=
S
=
=

Loop Selection

Instruction Scheduling
Reduction Transformation

—-Vr_fiute
60 (go @\P @'\a @\P cgo @\P i QS\D —pEp
\m%uhe:'\(buﬁg,\ b
Probability of dependences e oraty
Fig. 8. The coverage of loops with inter-thread memory-adata depen- Fig. 9. Compilation infrastructure

dences less than a certain probability in SPEC 2000.
Under thread-level speculation (TLS), the compiler piri
in SPEC2000 and SPEC2006 illustrate that SPEC 2006 Canprogram into Specu|ative|y para||e| threads without hgv|
potentially achieve a higher degree of parallelism under tho decide at compile time whether they are independent. At
context of TLS. runtime, the underlying hardware determines whether -inter
. thread data dependences are preserved, and re-executes any
D. Pitfalls thread for which they are not. The most straightforward veay t
Even though profiling inter-thread data dependences is crparallelize a loop is to execute multiple iterations of tloatp in
cial in determining the suitability of using TLS to paraifd parallel. In our baseline execution model, the compileuess
a loop, TLS performance cannot be directly inferred fromhat two nested loops will not be speculatively parallalize
this information. In fact, TLS performance depends on mangimultaneously. In Section VI, we will study the potential f
other factors such as the size of the threads, thread spgawnigupporting speculative threads at multiple nesting levels
overhead, loop iteration counts, and etc. Aggressive codeWe use a cache based protocol based on STAMPede [6] to
scheduling can reduce the impact of synchronization farint support speculative threads in CMP. When executing specula
thread dependences [7], [8], [13]. Furthermore, librafjsazan tive threads, speculative stores will be buffered in thegie
also cause inter-thread data dependences, which is nat takel data cache and speculative loads are marked using a kpecia
into account here. A common example is the calimalloc, bit in the cache. When a dependence is detected the violating
which could potentially cause inter-thread dependencestalu thread and all its successors are restarted. When theiniplat
its internal data structures. Such dependences can mlgnti thread is squashed, all speculation marker bits in the L& dat
be eliminated using parallel libraries. cache are reset with a gang-clear (1 cycle). When a thread
From the data presented in the earlier sections, we c@aommits it sends a signal to its immediate successor, and the
see that SPEC 2006 benchmarks have numerous inter-thréaiter becomes the new non-speculative thread. More detail
dependences which could benefit from TLS hardware suppoon the TLS architecture model used can be found in [6].
Such TLS hardware support could help to parallelize benclrequently occurring memory-based dependences andeegist
marks in class 'B’ with low-frequency data dependences arshsed scalar dependences are synchronized by inserticiglspe
could also help the compiler in handling those ambiguowesint instructions as shown in Figure 2(b) similar to [8], [7].
thread data dependences (in class ‘A’ benchmarks). AlsaymaCompilation Infrastructure
benchmarks have frequent register and memory dependence®ur compiler infrastructure is built on Open64 3.0 Compiler
which could benefit from aggressive code scheduling by tHa9], an industrial-strength open-source compiler tangetn-
compiler to reduce critical-path lengths introduced bycsyn- tel's Itanium Processor Family (IPF).
nizations and increase execution overlap between threads. To create and optimize speculative parallel threads, the co
piler must perform accurate performance trade-off anslii
IV. COMPILATION AND EVALUATION INFRASTRUCTURE (etermine whether the benefit of speculative parallel ei@eu
To evaluate the amount of parallelism that can be exploite@Utweighs the cost of failed speculation and then aggrelgsiv
with hardware support for coarse-grain speculation and a@ptimize loops that benefit from speculation. In our case, th
vanced compiler optimization technology in the SPEC20080mpiler performs such analysis and optimizations based on
benchmark suite, we simulate the execution of these bendRop nesting, edge, as well as data dependence profilinggusi
marks with an architectural simulator that support mudtipl train input set), as shown in Figure 9. The TLS compiler has
cores and speculative execution. In the rest of this sectien two distinct phases, as shown in Figure 9, thread extraction
will describe the execution model, as well as the compitatioand optimization:
and simulation infrastructure used in this paper. Thread Extraction: The compiler can extract threads
Execution Model: from both loops and non-loop regions. In this paper we

TABLE Il

ARCHITECTURAL PARAMETERS

TABLE Il

COVERAGE OF LOOPS PARALLELIZED

Parameter . Benchmark Coverage (%) No. of loops
Fetch/Issue/Retire widtH 6/4/4 I T+ T T+ +1 1 T+ T+ W+
Integer units 6 units / 1 cycle latency milc 13 | 79 79 5 22 22
Floating point units 4 units / 12 cycle latency lbm 0 100 100 0 1 2
Memory ports 2Read, 1Write ports h264ref 0 53 83 2 32 36
Register Update Unit 128 entries libquantum | 0 98 08 1 5 5
(ROB,issue queue) _ sphinx3 | 40 | 83 | 91 1119 |21
LSQ size 64 entries povray 0 3 63 0 4 5
L1l Cache 64K, 4 way 32B bzip2 il 3 31 Z 5 14
Cache Latency L1 1 cycle, L2 18 cycles namd 1 8 96 7 22 50
Memory latency 150 cycles for 1st chunk, gobmk 0 6 13 0 1 5

18 cycles subsequent chunks hmmer 0 0 79 2 1 6
Unified L2 2MB, 8 way associative, 64B blocksize sjeng 0 0 1 0 0 6
Physical registers/thread 128 Integer and 128 Floating point registers astar 0 5 99 0 2 8
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4 is built on SimpleScalar. We not only model the register nena

Simulation Infrastructure:

accurate simulator, where each core is an out-of-order su-

ing, the reorder buffer, branch prediction, instructiotcifiéng,

) ~ branching penalties and the memory hierarchy performance,
focus on loop-level parallelism. In the loop selectiony,; aiso extend the infrastructure to model different apec
phase, the compiler first estimates the parallel perfor@angs 1| s execution including explicit synchronization thghu
of each loop, then choose to parallelize a set of loops thafynai/wait, cost of thread commit/squash, etc. Simutatio
maximize the overall program performance based on sugfyrameters used for our experiments are shown in Table II.
estimation. Previous work [20] builds the performance |, this study, we use the reference input to simulate all
estimation based on detailed data dependence profilipgnchmarks. In case of benchmarks with multiple input sets,
information, as shown in Figure 9. Thus, the achievablgq first input set is used. To get an accurate estimate of TLS
performance of speculative parallel threads is tied W't?éerformance, we parallelize and simulate all loops (with at
the accuracy of performance estimation. I.e., inaccurajgast 0.05% dynamic execution time coverage) in each of the
profiling information, and inaccurate-estimation informapenchmarks. Based on the simulated speedup of each loop, we
tion can potentially lead to the selection of sub-optima|,se our loop selection algorithm to select the best set gfdoo
loops. In this paper, since we aim to demonstrate thgnich maximizes the performance of the entire benchmark.
optimal performance that can be achieved with SPEC200§, yeport the speedup achieved by the entire benchmark, the
benchmarks, we eliminated this uncertainty from oubyerage speedup of all the selected loops is calculated and
evaluation. When selecting which loops to parallelize tQueighted by the coverageof the loops. For each simulation
maximize program performance, instead of relying on &, “several billion instructions are fast-forwarded taate the

compiler estimation, we use the simulated parallel angh,ns and different samples of 500 million instructions are
sequential execution time of each loop to determine th§mlated to cover all the loops.

actual benefit of parallelizing that loop.

Optimization: Loops that are selected for paralleliza- V. EXPLOITING PARALLELISM IN SPEC2006

tion must be transformed for efficient speculative parallel |, this section, we evaluate the amount of parallelism
execution. In our case, the following optimizations are, sjiaple in SPEC 2006 benchmarks using the framework
applied: (i) all register-resident values, as well as mgmOr yoscrined in Section IV. To isolate the parallelism thatrzen
resident values that cause inter-thread data dependeng@sey oited without the help of TLS, we take three increas-

in 20% of all threads are synchronized [8]; (ii) instruc-ng)y aggressive attempts to parallelize loops in SPEC 2006
tions are scheduled to reduce the critical forwarding patjachmarks:

introduced by the synchronization [7], [13]; (iii) compu-
tation and usage of reduction and reduction-like variables
are transformed to avoid speculation failure and reduce
synchronization [21]; and (iv) consecutive loop iteraton
are merged to balance the workload between neighboring
threads [21].

Type I: Loops that are identified as parallel by a traditional
compiler;

Type II: Loops that have no inter-thread data dependence
at runtime (for the particularef input set used), but are
not identified as parallel by the compiler, a.kRrpbably
Parallel Loops;

Type Ill: Loops that contain inter-thread data depen-
dences, thus require TLS support to parallelize, a.Kcae
Foeculative Loops.

We simulate a 4-core CMP using a trace-driven, cycle-

perscalar processor based on SimpleScalar [22]. The trace-

generation portion of this infrastructure is based on th iRt
strumentation tool [23], and the architectural simulaantion

1The coverage of a loop is defined as the fraction of dynamicwian
time of the loop

Table Il shows the percentage of total execution thabnly theseTrue Speculative Loops classB benchmarks gain a
can be parallelized when loops of different types becomgpeedup of 42% giving them an overall speedup of 46%.
parallelizable. To examine TLS performance in detail, Figure 11 shows

To determine the performance impact associated with pargke execution time breakdown of parallel execution with TLS
lelizing a particular type of loops, the set of loops belong tsupport (only selected loops) and sequential executior. Th
that type are selected to maximize overall performance. TH§EQ bars show the normalized execution time of the sequential
overall program speedup is then calculated by considehiag texecution running on one core. THeMP bars show the
speedup and coverage of the selected loops. For example,detmalized execution time of the parallel program exegutin
the selected set of loops b, Lo, Ls, ... Ln}. Let their on four cores. Each bar is divided into six segmerBssy
corresponding coverage beCy, Cp, Cg, ... Gy } and their represents the amount of time spent in executing usefuliast
corresponding speedup HeS;, $, S, ... S }. The overall tions and the delay due to lack of instruction level parisitel
program speedup is then calculatedSpeedup = 1/((1-C1 + inside each thread:;ack of threads represents the amount of
G +..Cp) + C/S + Ci/S + .. C1/Sy). In this experiment, time wasted due to the lack of parallel threads (probablytdue
we assume it is always possible to identify the optimal set @éw iteration count in a loop)Synchronization represents the
loops that maximize overall performance, however, in tgali amount of time spent in synchronizing frequently occurring
the Compiler can potentially select Sub—optimal |OOpS due tmemory dependences and register dependeﬂmﬂ;p misses
performance estimation error [18]. represents the amount of time the processor stalled due to
A. Type | Loops cache missesSguash represents the amount of time wasted

We applied the Intel C++ compiler [24] to the SPEC 200(fﬂxecuting instruction that are eventually thrown away due t

benchmarks to select parallel loops. The benchmarks are co |Ie_d spec_ul_ann;Other_ corresponds to everything _else. In
piled with - 08 -i po -parallel -par -threshol do particular, it includes time wasted due to speculative dyuff

options. The option par - t hr eshol d0 allows the compiler overflow and load imbalance between consecutive threads.

to parallelize loops without taking into considerationetad ~ We first will focus on the class3 benchmarks. InHM-
overhead. The loops selected by the Intel compiler are taen pMER, the loop af ast - al gori t hms. c: 133 is selected for
allelized using our TLS compiler and simulated. The speedRfrallelization, however it has many inter-thread depenes
achieved by the selected loops over sequential execution!f{t require synchronizations. These synchronizatioesiter
shown as the first set of bars in Figure 10. With the exception & critical forwarding path between the threads and seéaliz
MmiLc, which achieved a speedup of 11%, s®rHINX3, which gxecutmn. Thus, by performing speculative instructiomesiul-
achieved a speedup of 7%, none of the benchmarks is aifl§ t0 move the producers of these dependences as early as
to speedup over sequential application. Overall, the géme POssible in the execution [7], [13], the parallel overlap is
mean of the speedup is only 1%. significantly increased; and the benchmark achieves a 90%

This result is anticipated, since the complex control flowt anProgram speedup. Similar behavior is observedniavD,
ambiguous data dependence patterns prohibit the traditioyvhere synchronization and instruction scheduling leads to
compiler from parallelizing large loops. We have found timat 164% program speedup.
most benchmarks the compiler has only chosen to parallelizeFor ASTAR, the important loop is atvay2_. cpp: 100,
simple inner loops with known iteration count. It is worthwhich has a few inter-thread dependences. Some of these
pointing out that, although many clags benchmarks, such dependences are frequent, and thus are synchronizeds atieer
as MILC and LBM, contain loops with no inter-thread datainfrequent, and thus are speculated on. Without TLS support
dependences, the compiler is unable to identify these loopese infrequent occurring dependences must be synckerhniz
as being parallel. and can lead to serialization of the execution. With the loélp
TLS, this loop achieves a 17% speedup.

POVRAY, although a clas#®\ benchmark, is able to benefit
from speculation. The important loop osg. cpp: 248 is a
e speculative loop with a few mispeculations, thus it is non-

B. Type | + Il Loops

With the addition of Probably Parallel Loops, class A
benchmarks achieve significant performance gain, howev
classB benchmarks remain sequential. The cladsenchmarks parallel for a traditional compiler. Unfortunately, thelessted

gain 68% speedup due to theRBmbably Parallel Loops while . .
class B benchmarks gain only 4%. If the compiler is ableIoops have small trip counts, and the cores are often idles th

. ._the benchmark is only able to achieve a moderate program
to determine that these loops are parallel, we can potlynnafspeedup of 9%.

parallelize these loops without TLS support. Among the<las ,

A benchmarks, significant portion of the loopsspHINX3 and Not all benchmar_ks are aple to benefit from TLEBMK .

H264REF are Probably Parallel Loops; and all loops inviLc has many loops with low trip counts, thus many execution
. " cycles are wasted as the cores are idling. Loops with large

LBM andLIBQUANTUM are Probably Parallel Loops. trip counts are not able to achieve the desired speedup for

C. Typel + 1l + 11l Loops two reasons: first of all, the amount of work in consecutive
With the addition of True Speculative Loops, we find that iterations is often unbalanced; secondly, many iteratiwege

many classB benchmarks are able to achieve speedup. Witlarge memory footprints that lead to buffer overflow of the

|41

kJ

Speedup

-

]
O =Ml mwin &
]

By 11
/{'-.

||:| Type 1 B Type 1+2 0O All types |

Fig. 10. Shows the program speedup when different typesapfsi@re parallelized using 4 cores.

Normalized execution time
=
o
1

0.4 - e - —
0.2+ 2
L3 =
a 1
[| [(i [[[| [(i |
e 2kl 2| | el k| BE| BE| BE| BE| BE| BE|
[[T] 00 [0 [[F R (i} [T [TR] 00 [00 [[T (3] o |
mile Il |h2E4refpquantumephins3| povray | bzip2 et narmd | gobmk | himmer | sjieng astar

|E.| Busy B Cache misses O Lack of thread O Synchronization B Squash 3@ Otherl

Fig. 11. Shows the breakdown of execution time while exaguthe selected loops normalized to sequential executioa ti

speculative states. The geometric mean of the thread size

the top 50 loops (in terms of coverage) is 800,000 instrastio

Overall, coBMmK only achieves 1% performance improvemen
with TLS support.

Loops in SJENG have many inter-thread dependences th:
occur in 70% of all iterations, and thus need synchronipatio
However, the critical forwarding path introduced by thege-s
chronization cannot be reduced through instruction sclivegiu
due to intra-thread dependences. TheissNG was unable to F 4
benefit from TLS. N

To summarize, TLS is effective in parallelizing both class
A and classB loops. Overall, if we select the optimal set
of loops, we can achieve a program speedup of about 60%
(geometrical mean) , in contrast to a traditional compikdrich
only achieves a 1% program speedup.

Speedup

5]
]
4
14
5
i
i

T
g

i &

& T v

\
& g o

|D2 cores @4 cares O8 cures|

Fig. 12. Speedup increases with increasing number of cores

performance of these benchmakrs is able to scale with the num

D. Scalability ber of cores. INLIBQUANTUM, the super-linear performance

As technok)gy Sca|65, the number of cores that can WHW is due to cache prEfetChing effect between the Spmlat
integrated onto a single die increases. Thus, it is impottan threads.
understand whether TLS can efficiently utilize all the aatalié Among classB benchmarksNAMD shows good scalability
cores. In this section, we study the scalability of TLS perfo andMcCF benefits from cache prefetching effect as the number
mance by comparing the speedup achieved using two, four aatithreads increases. Unfortunately, none of the othertbenc
eight cores. The results of this study are shown in Figure 12narks are scalableiMMER suffers from frequent synchroniza-

When the number of cores is increased from two to four, théon; POVRAY andBzIpP2 suffers from small trip cOunt&sTAR
geometric mean of the speedup increases by about 35%; wheet only suffers from frequently synchronization, but also
increased further to eight cores, the performance increasefrequent squashes; F@oBMK and SJIENG the performance
33%. Among classA benchmarksBM,SPHINX3, H264rREF improvement for TLS is negligible in all configurations.
and LIBQUANTUM contain important loops that have large To summarize, with our existing execution model, only a
iteration count and substantial amount of parallelismstthe few benchmarks are able to scale with the number of cores;

and even for the benchmarks that do scale, most of them sc&BI®ACROSS loops. We extend the OPTAL algorithm [25] that
sub-linearly. While the reasons for the lack of scalabitiiffer ~was originally designed for core allocation for nested DQAL
from benchmark to benchmark, it is obvious that the amourind DOACROSS loops to allocate cores for TLS loops at
of parallelism is limited. Thus, we will develop new executti compile time.

models to improve the scalability of TLS in the next sectlon.A. Speculative OPTAL algorithm

The OPTAL algorithm uses a dynamic programming based
bottom-up approach to decide how many cores to allocate to
As the number of cores on a chip keeps increasing, it is ineach loop-nest level so that entire benchmark with mukiple
portant to ensure that the parallel performance of TLS l@aps levels of nested parallel loops can achieve the optimal per-
scale. Unfortunately, almost all benchmarks scale sumlily, formance. Based on simulated performance and coverage of
and many,HUMMER, POVRAY, BZIP2, ASTAR, GOBMK and each loop level, the algorithm considers different possibl
SJENG exhibits poor scalability. Similar to previous proposalsllocations on TLS loop nests and selects the allocatioh tha
on TLS, the results presented in Section V-D only allow onenaximize program performance. When deciding how many
loop nest level to execute in parallel when multiple levels ocores to allocate to a TLS loop at a particular loop-nestljeve

nested loops exist. Our goal in this section, is to examinge algorithm only examines its immediate inner loops.

the feasibility and benefit of exploiting TLS parallelisnoffin The inputs to the algorithm are the loop tree obtained during
multiple loop levels in a loop nest simultaneously. Remau loop-nest profiling phase of the compiler and the maximum
al [17] proposed an architectural design to support out-deor number of cores available for the benchmark (s&y. Zrhe
forking of speculative threads. It allows spawning of moreutput is the optimal core allocation for each TLS loop level
speculative threads on the outer loop levels before spawniand also the estimated optimal performance for the bendhmar
less speculative threads on the inner loops. However, it is Predicting performance for each loop: Before estimating
unclear how to best allocate cores to speculative threads fine multi-level TLS loops performance, the algorithm esties
the outer and the inner loops. In their work, a hardwaredbaséhe single-level performance of each TLS loop level. In the
design, referred to adynamic task merging is deployed. Hard- case of a DOACROSS loop, the time required for the parallel
ware counters are used to identify threads that suffer &natju executionT, can be calculated by its initiation delay A
squashes; and these threads are prohibited from spawnmg remilar method to estimate the performance of a TLS loop has
threads. Other than requiring complex hardware suppoet, tileen studied in [13]. In this study, we use the real perfogaan
proposed approach has the following limitations. First ibf a result for each TLS loop we obtained in the previous section.
using number of squashes as a measurement of TLS efficiencyLet SingleSpeedup; ; represent the speedup achieved by
is inaccurate. As we have seen in Section V, the performanparallelizing the single-level TL$oop; usingj cores, where

of TLS loops is also determined by synchronization, iterati j € 20,2122, ... 2 . Let BestSpeedup(i,j) represent the best
count, load balancedness, and etc. Secondly, the hardearespeedup achievable by parallelizing the multi-level TL8po
unable to pre-determine the TLS potential of inner loops. Asest starting afl oop;) usingj cores.

long as the outer loop does not show performance degradationCombining speedup: The basic step in the algorithm is to

it will monopolize the cores. The inner loops will never befind the speedup of an outer loop when its inner loops are
attempted for parallelization even if they have more paliain. also parallelized. Lets call the function to calculate ths
This will lead to a suboptimal allocation of cores. GetCombinedSpeedup(Li,M,N). GetCombinedSpeedup(L;,M,N)

In this section, we propose a compiler-based core allocatioeturns the speedup of lool when we allocate M cores
scheme that statically schedules cores for threads eattacto parallelizeL; and N cores to parallelize its child loops in
from different levels of a loop nest. In this section, thethe loop treel; ;. GetCombinedSpeedup(L;,M,N) is shown in
performance potential of parallelizing multiple levels BES Algorithm 1.
loops is extrapolated from the parallel performance of lsing Recursive algorithm:
level of parallel execution using the compiler-based aitimn The Speculative-OPTAL algorithm starts from the leaf level
scheme. Since the nested loops are parallelized simuliahgo in the loop tree and calculates the speedup of parent nodes
this extrapolation can be inaccurate, due to some secondé&gsed on the child loops’ speedup. The Speculative-OPTAL
effects such as increase/decrease in cache misses. Fustker algorithm is shown in Algorithm 2.
it is possible for the number of squashes for an outer loop to The exact allocation of cores to the inner loop is given in the
vary slightly due to the parallelization of inner loops. Hawer, vector ChildAllocatel;,p). This would be used by the compiler
we believe that the impact of these secondary effects can tmestatically allocate cores. Here, we are interested irnvéthee
negligible; and neglecting these effects does not change thf BestSpeedup Loqt,2¥, the performance potential of TLS for
conclusion of this paper. Exploring the hardware modifaadi the entire benchmark when applied to multiple loop levels.
needed to support the parallelization of multiple level$oops Complexity analysis:
is beyond the scope of our paper. The Speculative-OPTAL is called for every node in the loop

Compiler-based scheduling schemes for nested loops havee. LetA be the number of nodes in the tree (including both
been studied in the past to support nested DOALL anibops and functions). In Speculative-OPTAL, the outer loop

V1. EXPLOITING SPECULATIVE PARALLELISM AT
MULTIPLE LEVELS OFLOOPS

Input: Outer loopL;, M cores allocated ta;, N cores

allocated to the next level(’s child loops)
Output: Speedup ot with the specified allocation
Read Cycled() - the number of cycles spent in lodp
from the profile;

foreach Child of loop Lj, Lj ; do
/*Find total sequential cycle$s for all inner loops.*/

Read Cycled j) - the number of cycles spent in loop
Li,; when invoked fromL; from the profile;
SumBefPar += Cyclek(;);

[*Find total T, for all inner loops after
parallelization.*/

ParCycled(; ;) = Cycles(, j) =+ BestSpeedup(Li j,N);
SumAfterPar += ParCyclels(j);

end

[*Ts of outer loop after inner loops are parallelized.*/
CycleslnnerPar = Cyclels() - SumBefPar + SumAfterPar;
[*Calculate combined speedup.*/

ParCycled(;) = CyclesInnerPar- SingleSpeedup; m;

return (Cycled() + ParCEv)_cIe NE
Algorithm 1: The GetCombinedpeedup(L;i,M,N) to get the

speedup of outer lool; when its inner loops are parallelized.

25

(5]

Speedup
- in

s

h264ref sphirxd oy agtar G

|DSingIeJeve\ 4 cores) EBMultidevel (4 cores) O Single-level (8 cores) OMulti-level (5 cores)|

Fig. 13. Speedup over sequential execution using 4 and & euith multi-
level TLS loops

Input: Loop L; and ¥ the number of cores to allocate.
Output: Estimated speedup of the entire benchmark -
BestSpeedup(oq,2¢) and a vector
ChildAllocate(;,p) which indicates for each
loop, how many cores need to be allocated to its
child loops.
if Lj is leafthen
foreachp € { 20,21, 22, . 2% 1 do
| BestSpeedup(i,p) = SingleSpeedup; p;
end

return;
end

[*Allocate child loops first.*/
foreach L child of Lj do
| Speculative-OPTALL; j);
end
[*Inner loop’s best allocation already known. Try all
possible allocations for the outer loop*/
foreachp € { 0,1,.K } do
foreachq € { 0,1,..p } do
CurSpeedup(,q) =
GetCombinedSpeedup(L;,29,2P/29);
if CurSpeedup(L;,q) > MaxSpeedup then
MaxSpeedup = CurSpeedlp();
ChildAllocate(;,p) = q;
end
end
BestSpeedup(i,p) = MaxSpeedup;

end
Algorithm 2: The Speculative-OPTAL algorithm.

HUMMER are omitted due to the lack of nested parallelizable
loops; LBM, NAMD and MCF are omitted due to the fact that
the Speculative-OPTAL algorithm is unable to identify npl&
levels of loops that can perform better than the single €.

For the remaining benchmarks, Figure 13 compares the

iterates for K times and the inner loop iterates on the aragerformance of multi-level TLS performance estimated Hase
of K/2 tlmesz. So, total number of timeSetCombinedSpeedup o oyr algorithm with the single-level TLS performance. Wit
is called isK*/2. The loop inside GetCombinedSpeedup iterateg, r cores, we can extract TLS parallelism from two levels of
over all the children of the node. The average number qfqns and with eight cores, we extract TLS parallelism from
children per node is a constartf,] for a tree. So, theztotal upto three levels. IrsPHINX3 the selected loop cannot utilize
time taken for Speculative-OPTAL is approximatelK/2. 5| the available cores due to frequent squashes. Muléitlev
Therefore, the complexity of Speculative-OPTAL isAQ6ince 1| 5 can potentially improve the performance over singtele
K'is a constant. TLS by about 18% with 8 cores. IROVRAY, the iteration
counts of the selected loops are low (around 4), and thus many
B. Results cores idle. With multi-level TLS, all the cores are utilized
If TLS threads are spawned only from a single level ofnd thus multi-level TLS can potentially outperform single
loop, many benchmarks, both from class A and class B, exhibdvel TLS by about 13%. In benchmarsTAR the selected
diminishing return as the number of cores increases, asrsholops have frequent mis-speculations, and thus executien c
in Figure 12. With spawning speculative threads from mldtip cles are wasted. With multi-level TLS, two nested loops,
levels of loops, cores can potentially be better utilizedutting in Way2_. cpp, | i ne 65 andl i ne 100 respectively, are
in better scalability of the cores. We applied our allogatio selected, are parallelized simulteneously. The mul@l&vS
algorithm to extract speculative threads for all benchmmarkoutperforms single-level TLS by 6% on 8 cores.HA64REF,
but omitted the results for some from our presentation due taulti-level TLS outperforms single-level TLS by 7% on 8
the following reasonssziP2, GOBMK andSJENGare omitted cores. Overall, for the benchmarks mentioned, Figure 1&/sho
due to the lack of TLS parallelism overalliBQUANTUM and that by extracting speculative threads at multiple levéloop

nest, we are able to achieve an additional speedup of about 8@ J.-Y. Tsai, J. Huang, C. Amlo, D. Lila, and P.-C. Yew, ‘@hSu-
with four cores and 11% with eight cores for these selected
benchmarks.

From the above results, it is clear that many SPEC 2006s]

benchmarks have potential for multi-level TLS. Our commpile

based allocation algorithm can allocate cores among th&-mul [7;
levels TLS loops to improve overall performance. With such

a compiler-based approach, we could also avoid complex
hardware modifications needed to support multi-level TLS.

VIl. CONCLUSIONS

(8]

9
Previous studies of SPEC 2006 based on high level analy5|[s]
have shown only a limited potential for TLS. These studies

did not taken into account the benefits of compiler-based opi

mizations. In this paper, using a state-of-the-art TLS citenp
we show that SPEC 2006 applications can be successfully
parallelized speculatively with TLS.
We show that often the traditional parallelizing compiler
cannot prove independence due to the existence of complé®
control flow and ambiguous data accesses, even if many
benchmarks contain parallel loops. With the help of TLS,

thesepotentially parallel loops can be parallelized, and thus

potentially allowing six benchmarksjiLc, LBM, H264REF,
LIBQUANTUM, SPHINX and POVRAY, to achieve a speedup of [14]
78%, if the best set of loops are selected. Furthermore, TLS
can parallelize loops that cannot be parallelized by tiauit
compilers due to infrequent inter-thread dependentasgy(
speculative loops). With TLS, benchmarksziP2, MCF, NAMD,

GOBMK, HMMER, SJENG and ASTAR can potentially achieve

10]

[11]

[13]

perthreaded Processor ArchitecturtEEE Transactions on Computers,
Soecial Issue on Multithreaded Architectures, vol. 48, no. 9, September
1999.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “Teampede
approach to thread-level speculation,” &CM Trans. on Computer
System, vol. 23, August 2005, pp. 253-300.

A. Zhai, C. B. Colohan, J. Steffan, and T. C. Mowry, “Coriepi Opti-
mization of Scalar Value Communication Between Specwdaiitareads,”
in 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-X), Oct 2002.

A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Cpitn
erx Optimization of Memory-Resident Value CommunicatiortBeen
Speculative Threads,” iThe 2004 International Symposium on Code
Generation and Optimization, Mar 2004.

Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F.gsi, “A
Cost-Driven Compilation Framework for Speculative Pafiahtion of
Sequential Programs,” inCM SIGPLAN 04 Conference on Programming
Language Design and Implementation (PLDI’04), June 2004.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, andlorrellas,
“POSH: A TLS Compiler that Exploits Program Structure,” ACM
SGPLAN 2006 Symposium on Principles and Practice of Parallel
Programming, March 2006.

Standard Performance Evaluation Corporation, “Th&SFCPU 2006
Benchmark Suite,” http://www.specbench.org.

A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, UBanerjee,
A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos,ighi
analysis of the performance potential of thread speculat&ing spec cpu
2006,” in ACM SIGPLAN 2007 Symposium on Principles and Practice
of Parallel Programming, 2007.

S. Wang, “Compiler Techniques for Thread-Level Spatiah,” Ph.D.
dissertation, University of Minnesota, 2007.

J. Oplinger, D. Heine, and M. Lam, “In Search of Spedu&fThread-
Level Parallelism,” inProceedings PACT 99, October 1999.

] F. Warg and P. Stenstrm, “Limits on speculative modaiel paral-

[16]

an additional 46% speedup. Overall, with four cores we can
achieve a speedup of 60% on all benchmarks (geometric
mean) and with eight cores the speedup can reach 91% wq(fﬂ
compared to sequential execution.

To exploit parallelism at multiple levels of loop nest, weds
a novel compiler-based core-allocation scheme to effigient;;g,
allocate cores to iterations from multiple levels of a logsn
Our results show that the proposed mechanism can potgntiall
achieve an additional 11% performance gain with a 8-coligg
processor on selected benchmarks.

Acknowledgements: This work is supported in part by a

[20]

grant from National Science Foundation under CNS-0834598;
EIA-0220021, a contract from Semiconductor Research Coop-
eration under SRC-2008-TJ-1819, and gift grants from Intel

and IBM.

(1]

(2]
(3]
[4]

REFERENCES

J. Emer, “EV8: The Post-ultimatélpha.(Keynote address),” ihnterna-
tional Conference on Parallel Architectures and Compilation Techniques,
2001. [Online]. Available: http:/research.ac.upc.astpl/keynote.htm
Intel Corportation, “Intel Pentium 4 Processor with HEchnology,”
http://www.intel.com/personal/products /pentium4/esthreading.htm.
Intel Corporation, “Intel's Dual-Core Processor for §ktop PCs,”
http://www.intel.com/personal/desktopcomputer/doate/, 2005.

AMD Corporation, “Leading the Industry: Multi-core
Technology & Dual-Core Processors from
http://multicore.amd.com/en/Technology/, 2005.

AMD,”

[22]

(23]

[24]

[25]

lelism in imperative and object-oriented programs on cmgfpims,”
in International Conference on Parallel Architectures and Compilation
Techniques (PACT 2001).

A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, HSaito,
U. Banerjee, A. Nicolau, A. V. Veidenbaum, and C. D. Polyctopoulos,
“On the performance potential of different types of spetivdathread-
level parallelism,” in20th Annual ACM International Conference on
Supercomputing, 2006.

J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J.€llas, “Tasking
with Out-of-Order Spawn in TLS Chip Multiprocessors: Miarohitec-
ture and Compilation,” irl9th Annual ACM International Conference on
Supercomputing, June 2005.

S. Wang, A. Zhai, and P.-C. Yew, “Exploiting SpeculatiThread-Level
Parallelism in Data Compression Applications, Tine 19th International
Workshop on Languages and Compilers for Parallel Computing, Oct
2006.

“Open64 the open research compiler,” http://www.cpenet/.

S. Wang, K. S. Yellajyosula, A. Zhai, and P.-C. Yew, “lp&election
for Thread-Level Speculation,” ifhe 18th International Workshop on
Languages and Compilers for Parallel Computing, Oct 2005.

A. Zhai, S. Wang, P.-C. Yew, and G. He, “Compiler optiation for par-
allelizing general-purpose applications under threadtlspeculation,” in
Poster presented at ACM S GPLAN 2008 Symposium on Principles and
Practice of Paralledl Programming, Feb 2008.

D. Burger and T. M. Austin, “The simplescalar tool seersion 2.0,
ACM SIGARCH Computer Architecture News, June 1997.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loewm
S. Wallace, V. Reddi, and K. Hazelwood, “Pin: building cumsiped
program analysis tools with dynamic instrumentation,ABM SSGPLAN
05 Conference on Programming Language Design and |mplementation
(PLDI’05), June 2005.

“Intel c++ compiler,” http://www.intel.com/cd/softare/products/asmo-
na/eng/277618.htm.

C. D. Polychronopoulos, D. J. Kuck, and D. A. Padua, ligitig multi-
dimensional loop parallelism on large-scale parallel pssor systems,”
|EEE Trans. Computers, vol. 38, no. 9, 1989.

