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Abstract. Although hardware support for Thread-Level SpeculatiohS)lcan
ease the compiler’s tasks in creating parallel programdlbwiag the compiler
to create potentially dependent parallel threads, adehooempiler optimization
technigues must be developed and judiciously applied teeehhe desired per-
formance. In this paper, we take a close examination on tw@ clampression
benchmarksGziP and BzIP2, propose, implement and evaluate new compiler
optimization techniques to eliminate performance boétds in their parallel ex-
ecution and improve their performance. The proposed tgadesi (i) remove the
critical forwarding path created by synchronizing memuoegident values; (ii)
identify and categorize reduction-like variables whosterimediate results are
used within loops, and propose code transformation to rentiog inter-thread
data dependences caused by these variables; and (iiijjdmnanthe program to
eliminate stalls caused by variations in thread size. Wilgrevious work has
reported significant performance improvement on paraltaii these two bench-
marks, we are able to achieve up to 36% performance impraveimeczip and
37% forBzIP2.

1 Introduction

Chip Multiprocessors (CMP) have become nearly commonplac®, 17, 32]. It is
relatively straightforward for explicitly multithreadedebrkloads to benefit from the in-
creasing computing resources, but how would sequentigirpms take advantage of
such resources? One natural way to speedup a sequentighprigyto exploit paral-
lelism to utilize multiple processing units. Traditionaltompilers create parallel pro-
grams by identifyingndependenthreads [4, 13, 33]—but this is extremely difficult, if
not impossible, for many general purpose programs due todbmplex data structures
and control flow, as well as their use of ambiguous pointerg fromising alternative
to overcome this problem iShread-Level Speculatioff L S), which allows the com-
piler to create parallel threads without insisting on theitependence. The underlying
hardware ensures that inter-thread dependences througbmare satisfied, and re-
executes any thread for which they are not. Unfortunatelgpde numerous proposals
on efficient hardware support [1,7,9-12,19, 20, 24, 25,298348] and compiler opti-
mizations [22,38-40], only moderate performance improxets have been reported
from parallelizing general purpose programs. This caltstlie development of more



aggressive compiler optimizations that take full advaatafjprofiling information to
perform novel program transformations.

In this paper, we focus on one important class of generalqa&ppplications, data
compression, for which most of the previously proposedn&pies are unable to claim
significant performance improvement. Starting with a daliabd and optimized ver-
sion of BzIP2 andGziP—the parallel loop selection and value communication opti-
mization algorithms are described in our previous work [B8;-we carefully studied
the program behaviors. Three performance bottlenecksdamtified and the corre-
sponding optimization techniques are proposed.

1. The first performance bottleneck that we observed is titiealrforwarding path
introduced by forwardingnemoryresident values between threads. In our previ-
ous work [40], we have demonstrated the importance of fatimgrvalues between
speculative threads to statisfy inter-thread data depasdefmemoryresident val-
ues and to avoid speculation failure. However, the critfoalvarding path intro-
duced by such synchronization can serialize paralle tlstdadur previous work,
we have proposed a compiler optimization technique to addsesimilar issue—
reducing the critical forwarding path introduced by comrcatingregisterresident
values. In this paper, we apply the same instruction sclivegltdchnique to reduce
the critical forwarding path introduced by communicatimgmoryresident val-
ues. We observe that, to reduce the critical forwarding palhmemoryresident
value, instructionsnustbe scheduled aggressively—across both control and data
dependences to achieve performance improvement. On thieapgrin the case
of registerresident value, conservative instruction schedulinyioles most of the
performance benefit. Details are described in Section 3.1.

2. The second performance bottleneck is also due to inteathvalue communica-
tion. This bottleneck is caused by a class of reductiondée@ables: where the vari-
able is defined in the loop body through reduction operatibusthere also exist
uses of the intermediate result of this variable, thus it is irsgible to apply tradi-
tional reduction optimizations [18] to eliminate the intAread data dependence.
We propose an aggressive speculative reduction transfiamta reduce the criti-
cal forwarding path caused by reduction-like variablegaid® of this technique is
described in Section 3.2.

3. The third performance bottleneck is caused to complexrobiltow—threads can
take any execution path through an iteration, and thus vagxecution time. In
the example shown in Figure 1(a), there are 8 parallel tiredth the follow-
ing execution orde?’'1,72,73,74,T5,7T6,T7,andT'8. The size of long threads
T1,74,T7,andT8 contains thousands of dynamic instructions and short dsrea
T2,73,T5,andT'6 contain only a few instructions. Assuming 4 threads are exe-
cuted in parallel, little parallel overlap is possible. Qm&y to get parallel overlap
is to merge short threads with long threads and execute cotise long threads
in parallel, as shown in Figure 1(b). Unfortunately, it ispossible to statically
determine the number of iterations to merge since threas sive not known un-
til runtime. We propose a program transformatiordymamicallymerge multiple
short threads with a long thread. The details are describ&ection 3.3.
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Fig. 1. Iteration merging.
1.1 TheTLSExecution Model

In TLS, the compiler partitions a program into parallel ggative threads without hav-
ing to prove that they are independent, while at runtime tidedying hardware checks
whether inter-thread data dependences are preserved anx@aetes any thread for
which they are not. This TLS execution model allows the peliahtion of programs
that were previously non-parallelizable as demonstrayetid following example.

In this paper, we will only experiment with parallel threalat are created by ex-
ecuting multiple iterations of the same loop simultanepusiowever, we expect the
techniques developed for improving value communicatiguliegble to other parallel
threads. The most straightforward way to parallelize a Iso execute multiple it-
erations of the same loop in parallel. With TLS, loops withguial loop-carried data
dependences are speculatively parallelized. A threadawedl to commit if no inter-
thread data dependence is violated. In case of a data depEndelation, the thread
that contains the consumer instruction is re-executed.

Inter-Thread Value Communication in TLS From the compiler’s perspective, TLS
supports two forms of communication and the compiler candgewhich mechanism
is appropriate for a particular data dependence to obtakirman parallel overlap:

Synchronization explicitly forwards a value between the source and the idatstin
of a data dependence. It allows for partial parallel ovedag is thus suitable for
frequently occurring data dependences that can be claehtified. However, if
the instructions that compute the communicating value paesgly located in a
thread, explicit synchronization could also limit perf@nte by stalling the con-
sumer threads more than necessary.

Speculation relies on the underlying hardware to detect data dependéoiegions at
runtime and trigger re-execution when necessary. It allfmvsnaximum parallel
overlap when speculation always succeeds, however, ifutttan always fails,
this mechanism would introduce a significant performancafte Thus, this form
of value communication is suitable for data dependencesatkalifficult to analyze
and occur rarely.



1.2 Related Work

Researchers have developed various compiler [6, 8, 1692203 and manual [26, 27]
optimization techniques to fully utilize the hardware sagfor TLS to parallelize
general purpose applications. This paper extends ourquework on improving inter-
thread value communication [39, 40] and integrates theweramode generation mech-
anism to enable both inter-thread and intra-thread spgonlo avoid processor stalls
caused by data dependences from memory-resident values.

Existing research in parallel compilers has mainly focusedwo critical perfor-
mance problems: how to divide a sequential program intollgatareads [3, 8, 16, 22,
37,38] and how to improve inter-thread value communicafidh 21, 22, 28, 35, 36,
39-41]. These compiler optimization techniques typicaligrt by building a proba-
bilistic model of speculative execution first, and thenraating the amount of parallel
overlap that can be achieved. However, few recognized thatal applications de-
pendences are often inter-related and intelligent codestoamations could be used to
speculate on predictable dependence patterns for penfaagin.

Prabhuet al. [26,27] have developed several advanosahualcode transforma-
tions to improve the performance of TLS, and they expect tloggammers to apply
these techniques. Although some of the techniques deddrpPrabhtet al.resemble
the techniques in this paper at a first glance; detailed enations reveal significant dif-
ferences: (i) both papers have observed that reductioahlas can serialize program
execution, but Prabhet al.only applied traditional reduction variable eliminati@th-
nigue to remove them, while we studied the existence of &lelass of reduction-like
variables with complex usage patterns and develop new cadsformations to pre-
vent them from serializing execution; (ii) although botlppahas proposed techniques
to balance the workload that are assigned to each threadteoation merging tech-
nique is proposed in the context of automatic compilaticth s can be integrated in
an optimizing compiler.

2 Compression Algorithms

The compression applications are commonly used generpbpe applications. TLS
typically achieves modest speedup for those applicatibnerder to gain insight on
the performance bottleneck and exploit more potential sjpéige TLP, we select two
compression benchmarkgip2 andGzip from SPEC2000 benchmark suite for an ex-
tensive study.

BZIP2 Bzip2 [5] represents one class of compression applicationsutest a block-
based algorithm. It divides the input data into blocks ofslze N ranging from 100k
to 900k bytes, and processes the blocks sequentially. Vithdepossible to process
different blocks in parallel, the huge size of the specuadiata modified by each thread
often exceeds the capacity of speculative buffer providedlbS, which is typically
from 16k to 32k bytes. The frequent stalls due to the bufferflow inhibit most of the
performance gains from TLS.



During the compression of each blo§lof size NV, the most time consuming part is
Burrows-Wheeler Transform (BWT). It form§ rotations of a block by cyclically shift
S, and sorts these rotations lexicographically. Bucket soused in the main sorting
phase. The buckets are organized as a two-level hieraftahioature. The big bucket
in the outer level contains all rotations starting with theng character, while the small
bucket in the inner level contains all rotations startingwhe same two characters.

Consequently, a two-level nested loop is used to traversk backet to sort all
rotations inside. The outer loop seems an ideal target fadlpbexecution since sorting
of big buckets can be done independently. However, in ospéedup the sequential
algorithm, the information about the sorting of the curremtket is kept in the global
data structures such gsiadrantand used in the sorting of following buckets to avoid
redundant computations. Also, the results of sorting threeti big bucket are used to
update other unsorted buckets. As a result, those optimisator sequential algorithm
introduces inter-thread dependences that are undesfatparallel execution. On the
other hand, the performance of the inner loop is mainly kahiby the reduction-like
variableworkDone Reduction elimination cannot be applied here simoekDoneis
also used somewhere in the loop besides the reduction apesathe sorting of each
small bucket is done by callingSort SinceqSortis not always called in every inner
loop iteration, it introduces unbalanced load among thsead

The compression algorithm also include other phases suamasngth encoding,
move-to-front encoding, and Huffman encoding. The pertoroe of the main loops
in those phases are typically limited by long critical fordiag paths that are hard to
optimize.

The decompression phasesniP2 has much lower coverage than in the compres-
sion phase. Similar to compression, decompression isymegitbfor one block at a time.
Decompression of multiple blocks cannot run in parallel thuthe size limitation of the
speculative buffer. Most loops in the decompression plasequential due to the fact
that the decoding of a character is completely dependeriteoprevious characters.

GZIP Gzip[42] represents another class of compression applicatasises a dictionary-
based algorithm. The input data is scanned sequentialtg arrepeated string is de-
tected, itis replaced by a pointer to the previous stringagtttable is used for detecting

a repeated string. All input strings of length three areritegkin the hash table.

Two versions of the algorithm are implementBeflatefastis a simplified version,
which is fast but with low compression ratio. The main logrédtes through all input
characters. Each time a match is found, it is selected imaedgli The main perfor-
mance limitation is caused by the use of global variablek ssiwokaheadandstrstart
Deflate a more complex and time consuming version, uses a techoadleel lazy eval-
uation in order to find a longer match. With lazy evaluatidrg match is not selected
immediately. Instead, it is kept and compared with the negdbr the next input string
for a better choice. However, the use of current match in #éxt matching step causes
additional data dependences. Bd#flateanddeflatefastcall longestmatchto find the
longest match among all string with the same hash index. Vemge iteration size of
the main loop is typically small due to the facts that mosttahgs do not match with
the current string and a fast check is used to avoid unnegess@parison.



Similar to BzIP2, the decompression phasedzip has a much lower coverage
than in the compression phase. The decompression is pefiseguentially since the
decoding of the current character depends on the charalteosled previously. As a
result, it is hard to extract TLP in the decompression phase.

3 TLSOptimizations

For bothBzIP2 andGzip, the main hurdle to create efficient parallel programs under
TLS is data and control dependences. In this session, wepeageveral compiler op-
timization techniques to overcome these limitations.

3.1 Speculative Scheduling for Memory-Resident Value Communication

In order to avoid excessive failures under TLS, synchrdiuna are required for fre-
quently occurringnemorydependences. While scheduling fegisterresident value
communication has been shown effective for many benchn{8&s the benefit of
scheduling fomemoryresident value communication is still unknown. Due to thet$

thatmemorydependences are prevalent in bethp2 andGzip, it is important to in-

vestigate the performance impact of scheduling technitprasemoryresident value.
Unlike the scheduling foregisterresident value, the scheduling mfemoryresident
value may interact with the underlying TLS support. The etz how scheduling and
TLS work together need a closer examination.

T1 T

a1z T2
wait 1d.sa r6, [r5] wait
load [r3], r4 add r2, 16, 1
signal rl, r2
chk.a r6, recovery) load [r3], r4
core [+1]. 12 store [r1], 2|
4 1=—r3 signal rl, r2| store [r1], r2)
Il:esta:t T load [r3], r4 expose
(a) Speculation. (b) Synchronization. (c) Spec. scheduling.

Fig. 2. Scheduling for memory-resident value communication.

Figure 2(a) shows two threads T1 and T2 with a frequently o@oy dependence
betweerstoreandload. To avoid mis-speculation, synchronization is used toyd#la
execution ofload until storefinishes its execution, as shown in Figure 2(b)signal
instruction is inserted aftestoreto explicitly forward both the address (stored in register
rl) and the value (stored in registe) to T2.

In order to reduce the waiting time twfad, speculative scheduling is applied so that
both the address (stored in registey and the value (stored in registe) of storeare



computed earlier. Control and data speculation are usedeome the dependence
limitation during aggressive scheduling, and recoveryecndeds to be generated for
possible mis-speculation as well. In our study, we suppaith lsontrol and data spec-
ulation similar to those on 1A-64 architecture [15]. As shoim Figure 2(c), in order
to compute the value a® earlier, the instructions it depends on have to be scheduled
If load r6, [r5] in the dependence chain is scheduled across an aliasirg steill be
changed into a data speculative lo&td). If it crosses a branch, it will be changed into
a control speculative loadds). In this exampleld.sais used for both data and control
speculation. A check instructiarhk.ais inserted to the home location of the specula-
tively scheduled load to detect possible mis-speculationsase of a mis-speculation,
the corresponding recovery code is invoked to re-compuleedfiorward the value, as
shown in Figure 2(c). When instructions are speculativehesluled across a branch, a
signal with NULL address is inserted to the alternative p&ttecution of such signal
indicates that a wrong signal from the other path has alreaéy forwarded.

The consumer thread keeps both addresses and values ina Epaarding buffer.
Itis accessed by each exposed load that is not proceededdmngdasthe same location
in the same thread. If the address matches, the value wilsbé. When the consumer
thread receives the same sighaice, it indicates a mis-speculation is detected by the
producer thread, and either the address or value has beaghyvforwarded. The old
address and value are replaced by the new ones. The consuesat has to be squashed
if the old value has already been consumed.

The data stored in the forwarding buffer will not be checkedifiter-thread depen-
dence violation. In Figure 2(c), if there is another stosgrinctionstore 1betweersig-
nal andstore and it accesses the same addresda@s it will not cause an inter-thread
dependence violation since the forwarded data is invigibkore 1 However, if an-
other store instructiostore 2afterstoreaccesses the same address, an inter-thread de-
pendence violation should be detected sistoee 2produces a newer value that should
be used byoad. For this purpose, we insert a new instructexposémmediately af-
ter storeto inform the consumer thread to make the forwarded datasedgor the
dependence checking.

3.2 Aggressive Reduction Transfor mation

A reduction operation iteratively summarizes informatioto a single variable called
the reduction variable. The presence of reduction variatéeises inter-thread depen-
dences, and serializes parallel execution. Such setialivaan become performance
bottlenecks when nested loops are involved. The exampl&iré 3(a)-i shows a re-
duction variableum defined in a nested loop. During the parallel execution obtiter
loop, in threadi, the definition in the last iteration of the inner loop is ussdthread
i+ 1in the first iteration of the inner loop. This creates an kiteead data dependence
that must be synchronized as shown in Figure 3(a)-ii. Howesteeh synchronization
can potentially serialize parallel execution.

In traditional parallelizing compilers [18], reductionnables are eliminated through
a process in which multiple independent variables are edeaibd store in an array as
shown in Figure 3(a)-iii. Because each thread stores remugariable in a different



location, inter-thread data dependences are eliminated, the threads can be paral-
lelized. The final result of the reduction operation is coteguafter parallel execution
ends.

Although reduction elimination is effective in removingen-thread dependences,
the application of this technique is limited due to one int@pnt constraint—intermediate
results of the reduction operation cannot be used anywheheiparallelized loop. In
the example shown in Figure 3(b)-i, the intermediate resuthe reduction variable
sum is used in the outer loop. In order to retrieve the intermtediasult, the reduc-
tion valuable must be communicated between the parallehtts. Fortunately, we can
perform partial reduction elimination and update the vadieum only once in the
outer loop, as shown in Figure 3(b)-ii, where all uses of #rgtuction variableum in
the outer loop is replaced withum + sum/[i]. Although the reduction variable is not
eliminated, its impact on the parallel performance is dyeatiuced, as we can see that
the distance between the updateoefn in a thread and use of it in the successor thread
becomes relatively small. Another benefit of this transfation is that the summation
step can be eliminated. Under TLS, because all local scatarthread-private, we can
avoid the creation of the arrayum|] and use a scalar to hold the partial results of the
reduction operation, as shown in Figure 3(b)-iii. Just Bke other values that are com-
municated through synchronization, the critical forwagipath of this communication
can be reduced with instruction scheduling.

Unfortunately, not all usage patterns of reduction vagahtan be optimized as
described above. In the example shown in Figure 3(c)-istheal instruction cannot
be scheduled before the inner loop because it depends orakhe of sum0 which
is computed by the inner loop; amdhit instruction cannot be scheduled after the inner
loop, because itis used to guard a branch instruction. Asudtréhe critical forwarding
path introduced by the reduction variable is very long. &oately, the outcome of the
branch instruction guarded by the reduction variable isrofiredictable; and we can
exploit this predictability to postpone the use of the rdtucvariable till after the
completion of the inner loop. In the example shown in Figufie)-3, the branch is
predicted as not-taken; moved across the inner loop anditeckas a verification. In
the original location of this branch, botum0 andx are saved, so that they can be
used later in the verification. The use«fm is delayed so that the critical forwarding
path is reduced. When the value ofm becomes available, and the branch is proved
to be mis-predicted, the thread must be squashed and antumizga version of code
must be executed [30]. The squash/recovery mechanism ilaales this aggressive
optimization is already available in TLS, thus no extra kaack support is needed.

However, this aggressive transformation does not hantiesate patterns ofum
within the loop: the reduction variable can be used in theiroop, as shown in Fig-
ure 3(c)-iii. In order to reduce the critical forwarding pantroduced by such usage,
the branch in the inner loop has to be moved to the outer Igojp.dossible to make
such a code transformation and to guarantee that all miiqtiens are detected? The
answer is yes, and the key to this transformation is that memktction operations are
monotonic. If the reduction variable is monotonically ieasing or decreasing and the
branch is to test whether it is greater or less than a cemaip invariant, the verifica-
tion can be delayed till after the inner loop is complete.unexample, if the condition



sum+ sum0 > 100 is true in the inner loop, it must also be true for the test exdhter
loop. Mis-predictions can always be detected by the delageiiication in the outer

loop.

while{ cond1) {
while{ cond2) {
sum++;
}

(i)A reduction variable

while( cond1) { sunfi] ++;
while( cond2) { }
sumt+;
} wai t (sum;
=sumtsunii];
=sum
sumt=sunii];
} (i)Using internediate signal (sum;

result of reduction

vari abl e

while( cond1) {
wait (sumn;
while( cond2) {
Sumt+;

’
signal (sum;

(ii)Synchronizing the
reduction variabl e

(a) Reduction elimination.

while( cond1) {
while{ cond2) {

(ii)Reduction transfornation
with explicit forwarding

while( cond1) {
while( cond2) {

sunfi] ++;

}
while( cond1) {
sumt=sunii];

(iii)Traditional
reduction elimnation

while( cond1) {
while( cond2) {
sunD++;
}

wait (sumn;
=sum+sunD;

sumt=suni;
signal (sum;

}
(iii)Replace sunf]
w th sunD

(b) Reduction-like variable with a single use and shoricaltforwarding path.

while( cond1) {
wait (sumn;
if( sumrsunD>x)
wor k1;
else
wor k2;

while( cond2) {
sunD++;

}
éﬁﬁw=sunﬁ;
si gnal (sum;

(i)Used to determne
a branch outcone

while( cond1) {
sunD’ =sunD; while( cond1) {
X' =X; while( cond1) { while( cond2) {
wor k2; wai t (sum; sunD++;
while( cond2) { wor k1;
while( cond2) { sunD++; }
sunD++; if(sumrsun0>100) S
} return; wait (sum;
S wor k1; if(sumrsunD>100)
wai t (sum; recovery;
if(sumrsunD’ >x’) S sum+=sunD;
recovery; sumt=sunD; signal (sum;
sumt=sunD; signal (sum; }
si gnal (sum; } (iv) Predicting
(iii) Used in the branch out conme
(ii) Predicting i nner | oop then verifying
branch out cone in the outer |oop
then verifying

(c) Using the intermediate result of a reduction variabldétermine a branch outcome.

Fig. 3. Transformation for reduction-like variable.



3.3 lteration Merging for Load Balancing

In TLS, to preserve the sequential semantics, speculdtireads must be committed in
order. Thus, if a short thread that follows a long thread deteg before the long thread,
it must stall till the long thread completes. When workloachot balanced between
parallel threads, the waiting time can be significant. Ong twaachieve more balanced
workloads is to merge multiple short iterations with a loteration, so that multiple
iterations of a loop are aggregated into a single thread.

Figure 1(a) shows the Control Flow Graph (CFG) of a nesteg.l&ach node in
the graph represents a basic block. The outer loop is sdléatearallelization. The
path A=>B->D on the left is more likely to be taken than the path-&->...->C->D
on the right. However, the right path is much longer than #fepath since an inner
loop is involved. This causes the load imbalance problemhdktsr thread finishes its
execution much earlier than a longer thread, but it has to uvdil the previous longer
thread commits its results.

The idea of using iteration merging to solve this problempi€dmbine multiple
consecutive loop iterations to make the workload more lwadnWhen a short but
frequent path is identified, a new inner loop is formed whiclyaontains the part
from this short path. As shown in Figure 1(b), the newly fodmener loop, which
contains A, B and D from the short path, is marked by the shaddwocks. For all
basic blocks that are reached from the outside of this iromgp,[tail duplications are
needed in order to eliminate side entries. In this exampekidD' is tail duplicated
and inserted in the outer loop. A new block E is also inserteth¢ beginning of the
outer loop, and only contains a trivial unconditional bitaicat transfers the control
flow to A. Later afork instruction will be inserted to E in order to spawn a new tdrea
at runtime. After this transformation, multiple short adons are combined together
with a long iteration, resulting in more balanced workload®ong threads.

4 Evaluation

We have developed our TLS compiler based on the ORC comitéch is an industrial-
strength open-source compiler targeting Intel’s Itaninmc@ssor Family (IPF). Three
phases are added to support TLS compilation. The first prea$ferms data dependence
and edge profiling, and feeds profile information back to tivailer. The second phase
selects loops that are suitable for TLS [38]. Optimizati@msTLS are applied in the
third phase. Both the loop selection and the optimizaticasph extensively use profiles
obtained by using r ai n input set.

For the optimization techniques proposed in this paper,ave implemented schedul-
ing for memory-resident value communication. Both aggves®duction transforma-
tion and iteration merging are still under development aerdggmed manually for this
study.

4.1 Simulation Methodology

The compiled multithreaded binary is running on a simulétat is built upon Pin [23]
and models a CMP with four single-issue in-order procesddrs configuration of our



Table 1. Simulation parameters.

Issue Width 1
L1-Data Cache| 32KB, 2-way, 1 cyclgCommu. Buffer 128 entries, 1 cycle
L2-Data Cache|2MB, 4-way, 10 cyclegCommu. Delay 10 cycles
Cache Line Size 32B|Thread Spawning 10 cycles
Write Buffer | 32KB, 2-way, 1 cycléThread Squashing 10 cycles
Addr. Buffer | 32KB, 2-way, 1 cycl@ain Memory Latenc 50 cycles
Table 2. Benchmark statistics.
Application Input Number of Average | Average Num of|Coverag
Name Set |Parallelized LoopThread SizeThreads/Invocation
BZIP2 |program 11 147 3692 61%
graphic 11 153 3929 58%
source 11 137 4451 65%
GZIP |prograni 5 865 1519 89%
graphic 5 231 2532 80%
source 5 923 2549 84%
random 5 180 61921 81%
log 5 1378 1303 79%

simulated machine model is listed in Table 1. Each of prawdsas a private L1 data
cache, a write buffer, an address buffer, and a communicétiffer. The write buffer
holds the speculatively modified data within a thread [34je ddress buffer keeps
all exposed memory addresses accessed by a speculatiad.tiitee communication
buffer stores data forwarded by the previous thread. Ali frocessors share a L2 data
cache.

All simulations are performed using thef input set. To save the simulation time,
each parallelized loop is simulated up to 1 thousand invmesatand each invocation is
simulated up to 0.1 million iterations. Overall, it allows to simulate up to 4 billion
instructions while covering all parallel loops.

4.2 Performancelmpact

We have evaluated the proposed compiler optimizationgubmsimulation infrastruc-
ture described in the last section. The performance of thalpbhzed code is measured
against a fully optimized sequential version running onrgle processor. Since both
GzIP andBzIP2 have multiple ef input sets, we evaluate both two benchmarks on all
input sets. Benchmark statistics are listed in the Tabled?tha program speedup is
shown in Figure 4.

Each bar in Figure 4 is broken down into five segments explgimihat happens
during all cycles. Thesyncsegment represents time spent waiting for forwarded val-
ues; thefail segment represents time wasted executing failed thrdaelsait segment
correspond to amount of time the processor has completezliigre and is waiting
for previous thread to commit; tHrisysegment corresponds to time spent performing
useful work; and thethersegment corresponds to stalls due to other constraints.
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Fig. 4. Program speedup compared to sequential execution. Thie fiiows the per-
formance impact of the proposed optimizations orr all input sets.

The baseline performance is obtained when all existing Thfzation tech-
nigues are applied as described in [38]. It is shown in the fies. Three optimiza-
tion techniques proposed in this paper are added on top diakeline in the follow-
ing order: scheduling for memory-resident value commurocaaggressive reduction
transformation, and iteration merging. Each time a newnigke is applied, theu-
mulativeperformance is reported. They are shown in the second, @uirdi fourth bar
respectively.

1. Scheduling for memory-resident values has a significanfopmance impact on
GzIP. Forgr aphi ¢ andr andominput sets, the program performance is improved
by 24% and 36% respectively.

2. Reduction transformation that removes the critical fmding path introduced by
reduction variables benefitz P2 significantly. Foigr aphi ¢ input, we saw a 7%
performance improvement. This performance improvemeirilgneomes from the
inner loop of bucket sort, as described in Section 2, whos®peance is limited
by a reduction-like variableork Done.

3. lteration merging can further improve the performaneddops that have unbal-
anced workloads. The performancesaiP2 onsour ce inputis greatly improved
by 9% after this technique is applied.

4.3 A Sensitivity Study

The statistics for different inputs can be found in the Téblén the table, coverage is
defined as the fraction of execution parallelized in theinabsequential program. The
coverage for both benchmarks s high: around 60%forP2 and 80% foiGzIP. Thread
size is defined as the number of dynamic instructionszi®2, the average thread size
and the average number of threads per invocation are censitross different input
sets. However, irgzIP, gr aphi ¢ andr andominput sets have much shorter threads
than others. The difference in the thread size indicatesdifferent execution paths
may be taken under different input sets.

Instruction scheduling is effective f@ziP on bothgr aphi ¢ andr andominput
sets. However, it is ineffective agour ce input set. In order to better understand this



phenomenon, we examine the most time-consuming lodpjfitute for an examination
(see Section 2). There are three major paths in that Baph 1 is taken if no matched
string is foundPat h 2 is taken if a matched string is found, and it is better than the
previous matchPat h 3 is taken if a matched string is found, and it is not better than
the previous match. The generated parallel threads aresgjgely optimized along
pat h 2, sincepat h 2 is identified as the most frequent path based ort thai n
input set. For the ef input setpat h 2 is the frequent path for botlr aphi ¢ and
r andominput sets, but it is taken less frequently &our ce input set. As a result,
performance improvement @our ce input set is less significant than other two.
Reduction transformation achieves significant perforreamprovement foszip2
on thegr aphi c input set, however, only moderate performance improverfant
sour ce andpr ogr aminput sets. After a close look at the loops, we find that they
have more balanced workloadsgnaphi c input set than on other two after reduction
transformation. For other two input sets, load imbalanambrees the new bottleneck
after reduction transformation, and their performanceéstly improved after iteration
merging is applied.

5 Conclusionsand Future Work

Researchers have found it difficult to exploit parallelisndata compression applica-
tions, even with the help of TLS. In this paper, we report giits of an extensive study
on parallelizing these benchmarks, under the context of. W& have identified sev-
eral performance bottlenecks caused by data and contrehdepces. To address these
problems, we propose several effective compiler optinozatechniques that take ad-
vantage of profiling information to remove stalls causedumghsdependences. Careful
evaluation of these technique reveals that, we can achte 8i7% program speedup
for BzIP2, and 36% foiGzIP.

Although our techniques have only been appliegé1oP2 andGzIp, in our experi-
ence, the data and control access patterns we studied ipapé have been observed
in many other integer benchmarks. We are currently integrase applications in our
compiler infrastructure so that we can evaluate the impatiieproposed techniques
on a wide-range of applications. We believe, although nglsioptimization will en-
able the creation of efficient parallel programs for TLS, anpder infrastructure that
supports a general set of compiler optimization technige@sh designed to optimally
manage a specific situation, can be built to create efficierglfel programs.
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