
Exploiting Speculative Thread-Level Parallelism in Data
Compression Applications

Shengyue Wang, Antonia Zhai, and Pen-Chung Yew

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, MN 55455, USA
{shengyue, zhai, yew}@cs.umn.edu

Abstract. Although hardware support for Thread-Level Speculation (TLS) can
ease the compiler’s tasks in creating parallel programs by allowing the compiler
to create potentially dependent parallel threads, advanced compiler optimization
techniques must be developed and judiciously applied to achieve the desired per-
formance. In this paper, we take a close examination on two data compression
benchmarks,GZIP and BZIP2, propose, implement and evaluate new compiler
optimization techniques to eliminate performance bottlenecks in their parallel ex-
ecution and improve their performance. The proposed techniques (i) remove the
critical forwarding path created by synchronizing memory-resident values; (ii)
identify and categorize reduction-like variables whose intermediate results are
used within loops, and propose code transformation to remove the inter-thread
data dependences caused by these variables; and (iii) transform the program to
eliminate stalls caused by variations in thread size. Whileno previous work has
reported significant performance improvement on parallelizing these two bench-
marks, we are able to achieve up to 36% performance improvement for GZIP and
37% forBZIP2.

1 Introduction

Chip Multiprocessors (CMP) have become nearly commonplace[2, 14, 17, 32]. It is
relatively straightforward for explicitly multithreadedworkloads to benefit from the in-
creasing computing resources, but how would sequential programs take advantage of
such resources? One natural way to speedup a sequential program is to exploit paral-
lelism to utilize multiple processing units. Traditionally, compilers create parallel pro-
grams by identifyingindependentthreads [4, 13, 33]—but this is extremely difficult, if
not impossible, for many general purpose programs due to their complex data structures
and control flow, as well as their use of ambiguous pointers. One promising alternative
to overcome this problem isThread-Level Speculation(TLS), which allows the com-
piler to create parallel threads without insisting on theirindependence. The underlying
hardware ensures that inter-thread dependences through memory are satisfied, and re-
executes any thread for which they are not. Unfortunately, despite numerous proposals
on efficient hardware support [1, 7, 9–12, 19, 20, 24, 25, 29, 31, 34] and compiler opti-
mizations [22, 38–40], only moderate performance improvements have been reported
from parallelizing general purpose programs. This calls for the development of more



aggressive compiler optimizations that take full advantage of profiling information to
perform novel program transformations.

In this paper, we focus on one important class of general purpose applications, data
compression, for which most of the previously proposed techniques are unable to claim
significant performance improvement. Starting with a parallelized and optimized ver-
sion of BZIP2 andGZIP—the parallel loop selection and value communication opti-
mization algorithms are described in our previous work [38–40], we carefully studied
the program behaviors. Three performance bottlenecks are identified and the corre-
sponding optimization techniques are proposed.

1. The first performance bottleneck that we observed is the critical forwarding path
introduced by forwardingmemory-resident values between threads. In our previ-
ous work [40], we have demonstrated the importance of forwarding values between
speculative threads to statisfy inter-thread data dependence ofmemory-resident val-
ues and to avoid speculation failure. However, the criticalforwarding path intro-
duced by such synchronization can serialize paralle threads. In our previous work,
we have proposed a compiler optimization technique to address a similar issue—
reducing the critical forwarding path introduced by communicatingregister-resident
values. In this paper, we apply the same instruction scheduling technique to reduce
the critical forwarding path introduced by communicatingmemory-resident val-
ues. We observe that, to reduce the critical forwarding pathof a memory-resident
value, instructionsmustbe scheduled aggressively—across both control and data
dependences to achieve performance improvement. On the contrary, in the case
of register-resident value, conservative instruction scheduling provides most of the
performance benefit. Details are described in Section 3.1.

2. The second performance bottleneck is also due to inter-thread value communica-
tion. This bottleneck is caused by a class of reduction-likevariables: where the vari-
able is defined in the loop body through reduction operations, but there also exist
uses of the intermediate result of this variable, thus it is impossible to apply tradi-
tional reduction optimizations [18] to eliminate the inter-thread data dependence.
We propose an aggressive speculative reduction transformation to reduce the criti-
cal forwarding path caused by reduction-like variables. Details of this technique is
described in Section 3.2.

3. The third performance bottleneck is caused to complex control flow—threads can
take any execution path through an iteration, and thus vary in execution time. In
the example shown in Figure 1(a), there are 8 parallel threads with the follow-
ing execution orderT 1, T 2, T 3, T 4, T5, T6, T7, andT 8. The size of long threads
T 1, T 4, T 7, andT 8 contains thousands of dynamic instructions and short threads
T 2, T 3, T 5, andT 6 contain only a few instructions. Assuming 4 threads are exe-
cuted in parallel, little parallel overlap is possible. Oneway to get parallel overlap
is to merge short threads with long threads and execute consecutive long threads
in parallel, as shown in Figure 1(b). Unfortunately, it is impossible to statically
determine the number of iterations to merge since thread sizes are not known un-
til runtime. We propose a program transformation todynamicallymerge multiple
short threads with a long thread. The details are described in Section 3.3.



(a) Before merging. (b) After merging.

Fig. 1. Iteration merging.

1.1 The TLS Execution Model

In TLS, the compiler partitions a program into parallel speculative threads without hav-
ing to prove that they are independent, while at runtime the underlying hardware checks
whether inter-thread data dependences are preserved and re-executes any thread for
which they are not. This TLS execution model allows the parallelization of programs
that were previously non-parallelizable as demonstrated by the following example.

In this paper, we will only experiment with parallel threadsthat are created by ex-
ecuting multiple iterations of the same loop simultaneously . However, we expect the
techniques developed for improving value communication applicable to other parallel
threads. The most straightforward way to parallelize a loopis to execute multiple it-
erations of the same loop in parallel. With TLS, loops with potential loop-carried data
dependences are speculatively parallelized. A thread is allowed to commit if no inter-
thread data dependence is violated. In case of a data dependence violation, the thread
that contains the consumer instruction is re-executed.

Inter-Thread Value Communication in TLS From the compiler’s perspective, TLS
supports two forms of communication and the compiler can decide which mechanism
is appropriate for a particular data dependence to obtain maximum parallel overlap:

Synchronization explicitly forwards a value between the source and the destination
of a data dependence. It allows for partial parallel overlapand is thus suitable for
frequently occurring data dependences that can be clearly identified. However, if
the instructions that compute the communicating value are sparsely located in a
thread, explicit synchronization could also limit performance by stalling the con-
sumer threads more than necessary.

Speculation relies on the underlying hardware to detect data dependenceviolations at
runtime and trigger re-execution when necessary. It allowsfor maximum parallel
overlap when speculation always succeeds, however, if speculation always fails,
this mechanism would introduce a significant performance penalty. Thus, this form
of value communication is suitable for data dependences that are difficult to analyze
and occur rarely.



1.2 Related Work

Researchers have developed various compiler [6, 8, 16, 22, 39, 40] and manual [26, 27]
optimization techniques to fully utilize the hardware support for TLS to parallelize
general purpose applications. This paper extends our previous work on improving inter-
thread value communication [39, 40] and integrates the recover code generation mech-
anism to enable both inter-thread and intra-thread speculation to avoid processor stalls
caused by data dependences from memory-resident values.

Existing research in parallel compilers has mainly focusedon two critical perfor-
mance problems: how to divide a sequential program into parallel threads [3, 8, 16, 22,
37, 38] and how to improve inter-thread value communication[12, 21, 22, 28, 35, 36,
39–41]. These compiler optimization techniques typicallystart by building a proba-
bilistic model of speculative execution first, and then estimating the amount of parallel
overlap that can be achieved. However, few recognized that in real applications de-
pendences are often inter-related and intelligent code transformations could be used to
speculate on predictable dependence patterns for performance gain.

Prabhuet al. [26, 27] have developed several advancedmanualcode transforma-
tions to improve the performance of TLS, and they expect the programmers to apply
these techniques. Although some of the techniques described by Prabhuet al.resemble
the techniques in this paper at a first glance; detailed examinations reveal significant dif-
ferences: (i) both papers have observed that reduction variables can serialize program
execution, but Prabhuet al.only applied traditional reduction variable elimination tech-
nique to remove them, while we studied the existence of a large class of reduction-like
variables with complex usage patterns and develop new code transformations to pre-
vent them from serializing execution; (ii) although both paper has proposed techniques
to balance the workload that are assigned to each thread, ouriteration merging tech-
nique is proposed in the context of automatic compilation and thus can be integrated in
an optimizing compiler.

2 Compression Algorithms

The compression applications are commonly used general-purpose applications. TLS
typically achieves modest speedup for those applications.In order to gain insight on
the performance bottleneck and exploit more potential speculative TLP, we select two
compression benchmarksBZIP2 andGZIP from SPEC2000 benchmark suite for an ex-
tensive study.

BZIP2 BZIP2 [5] represents one class of compression applications thatuses a block-
based algorithm. It divides the input data into blocks of thesizeN ranging from 100k
to 900k bytes, and processes the blocks sequentially. Whileit is possible to process
different blocks in parallel, the huge size of the speculative data modified by each thread
often exceeds the capacity of speculative buffer provided by TLS, which is typically
from 16k to 32k bytes. The frequent stalls due to the buffer overflow inhibit most of the
performance gains from TLS.



During the compression of each blockS of sizeN , the most time consuming part is
Burrows-Wheeler Transform (BWT). It formsN rotations of a block by cyclically shift
S, and sorts these rotations lexicographically. Bucket sortis used in the main sorting
phase. The buckets are organized as a two-level hierarchical structure. The big bucket
in the outer level contains all rotations starting with the same character, while the small
bucket in the inner level contains all rotations starting with the same two characters.

Consequently, a two-level nested loop is used to traverse each bucket to sort all
rotations inside. The outer loop seems an ideal target for parallel execution since sorting
of big buckets can be done independently. However, in order to speedup the sequential
algorithm, the information about the sorting of the currentbucket is kept in the global
data structures such asquadrantand used in the sorting of following buckets to avoid
redundant computations. Also, the results of sorting the current big bucket are used to
update other unsorted buckets. As a result, those optimizations for sequential algorithm
introduces inter-thread dependences that are undesirablefor parallel execution. On the
other hand, the performance of the inner loop is mainly limited by the reduction-like
variableworkDone. Reduction elimination cannot be applied here sinceworkDoneis
also used somewhere in the loop besides the reduction operations. The sorting of each
small bucket is done by callingqSort. SinceqSort is not always called in every inner
loop iteration, it introduces unbalanced load among threads.

The compression algorithm also include other phases such asrun-length encoding,
move-to-front encoding, and Huffman encoding. The performance of the main loops
in those phases are typically limited by long critical forwarding paths that are hard to
optimize.

The decompression phase inBZIP2 has much lower coverage than in the compres-
sion phase. Similar to compression, decompression is performed for one block at a time.
Decompression of multiple blocks cannot run in parallel dueto the size limitation of the
speculative buffer. Most loops in the decompression phase is sequential due to the fact
that the decoding of a character is completely dependent on the previous characters.

GZIP GZIP [42] represents another class of compression applicationsthat uses a dictionary-
based algorithm. The input data is scanned sequentially, once a repeated string is de-
tected, it is replaced by a pointer to the previous string. A hash table is used for detecting
a repeated string. All input strings of length three are inserted in the hash table.

Two versions of the algorithm are implemented.Deflatefastis a simplified version,
which is fast but with low compression ratio. The main loop iterates through all input
characters. Each time a match is found, it is selected immediately. The main perfor-
mance limitation is caused by the use of global variables such aslookaheadandstrstart.
Deflate, a more complex and time consuming version, uses a techniquecalled lazy eval-
uation in order to find a longer match. With lazy evaluation, the match is not selected
immediately. Instead, it is kept and compared with the matches for the next input string
for a better choice. However, the use of current match in the next matching step causes
additional data dependences. Bothdeflateanddeflatefastcall longestmatchto find the
longest match among all string with the same hash index. The average iteration size of
the main loop is typically small due to the facts that most of strings do not match with
the current string and a fast check is used to avoid unnecessary comparison.



Similar to BZIP2, the decompression phase inGZIP has a much lower coverage
than in the compression phase. The decompression is performed sequentially since the
decoding of the current character depends on the charactersdecoded previously. As a
result, it is hard to extract TLP in the decompression phase.

3 TLS Optimizations

For bothBZIP2 andGZIP, the main hurdle to create efficient parallel programs under
TLS is data and control dependences. In this session, we propose several compiler op-
timization techniques to overcome these limitations.

3.1 Speculative Scheduling for Memory-Resident Value Communication

In order to avoid excessive failures under TLS, synchronizations are required for fre-
quently occurringmemorydependences. While scheduling forregister-resident value
communication has been shown effective for many benchmarks[39], the benefit of
scheduling formemory-resident value communication is still unknown. Due to the facts
thatmemorydependences are prevalent in bothBZIP2 andGZIP, it is important to in-
vestigate the performance impact of scheduling techniquesfor memory-resident value.
Unlike the scheduling forregister-resident value, the scheduling ofmemory-resident
value may interact with the underlying TLS support. The details of how scheduling and
TLS work together need a closer examination.

(a) Speculation. (b) Synchronization. (c) Spec. scheduling.

Fig. 2. Scheduling for memory-resident value communication.

Figure 2(a) shows two threads T1 and T2 with a frequently occurring dependence
betweenstoreandload. To avoid mis-speculation, synchronization is used to delay the
execution ofload until storefinishes its execution, as shown in Figure 2(b). Asignal
instruction is inserted afterstoreto explicitly forward both the address (stored in register
r1) and the value (stored in registerr2) to T2.

In order to reduce the waiting time ofload, speculative scheduling is applied so that
both the address (stored in registerr1) and the value (stored in registerr2) of storeare



computed earlier. Control and data speculation are used to overcome the dependence
limitation during aggressive scheduling, and recovery code needs to be generated for
possible mis-speculation as well. In our study, we support both control and data spec-
ulation similar to those on IA-64 architecture [15]. As shown in Figure 2(c), in order
to compute the value ofr2 earlier, the instructions it depends on have to be scheduled.
If load r6, [r5] in the dependence chain is scheduled across an aliasing store, it will be
changed into a data speculative load (ld.a). If it crosses a branch, it will be changed into
a control speculative load (ld.s). In this example,ld.sais used for both data and control
speculation. A check instructionchk.ais inserted to the home location of the specula-
tively scheduled load to detect possible mis-speculations. In case of a mis-speculation,
the corresponding recovery code is invoked to re-compute and re-forward the value, as
shown in Figure 2(c). When instructions are speculatively scheduled across a branch, a
signal with NULL address is inserted to the alternative path. Execution of such signal
indicates that a wrong signal from the other path has alreadybeen forwarded.

The consumer thread keeps both addresses and values in a special forwarding buffer.
It is accessed by each exposed load that is not proceeded by a store to the same location
in the same thread. If the address matches, the value will be used. When the consumer
thread receives the same signaltwice, it indicates a mis-speculation is detected by the
producer thread, and either the address or value has been wrongly forwarded. The old
address and value are replaced by the new ones. The consumer thread has to be squashed
if the old value has already been consumed.

The data stored in the forwarding buffer will not be checked for inter-thread depen-
dence violation. In Figure 2(c), if there is another store instructionstore 1betweensig-
nal andstore, and it accesses the same address asstore, it will not cause an inter-thread
dependence violation since the forwarded data is invisibleto store 1. However, if an-
other store instructionstore 2afterstoreaccesses the same address, an inter-thread de-
pendence violation should be detected sincestore 2produces a newer value that should
be used byload. For this purpose, we insert a new instructionexposeimmediately af-
ter store to inform the consumer thread to make the forwarded data exposed for the
dependence checking.

3.2 Aggressive Reduction Transformation

A reduction operation iteratively summarizes informationinto a single variable called
the reduction variable. The presence of reduction variables causes inter-thread depen-
dences, and serializes parallel execution. Such serialization can become performance
bottlenecks when nested loops are involved. The example in Figure 3(a)-i shows a re-
duction variablesum defined in a nested loop. During the parallel execution of theouter
loop, in threadi, the definition in the last iteration of the inner loop is usedby thread
i+1 in the first iteration of the inner loop. This creates an inter-thread data dependence
that must be synchronized as shown in Figure 3(a)-ii. However, such synchronization
can potentially serialize parallel execution.

In traditional parallelizing compilers [18], reduction variables are eliminated through
a process in which multiple independent variables are created and store in an array as
shown in Figure 3(a)-iii. Because each thread stores reduction variable in a different



location, inter-thread data dependences are eliminated, thus the threads can be paral-
lelized. The final result of the reduction operation is computed after parallel execution
ends.

Although reduction elimination is effective in removing inter-thread dependences,
the application of this technique is limited due to one important constraint—intermediate
results of the reduction operation cannot be used anywhere in the parallelized loop. In
the example shown in Figure 3(b)-i, the intermediate resultof the reduction variable
sum is used in the outer loop. In order to retrieve the intermediate result, the reduc-
tion valuable must be communicated between the parallel threads. Fortunately, we can
perform partial reduction elimination and update the valueof sum only once in the
outer loop, as shown in Figure 3(b)-ii, where all uses of the reduction variablesum in
the outer loop is replaced withsum + sum[i]. Although the reduction variable is not
eliminated, its impact on the parallel performance is greatly reduced, as we can see that
the distance between the update ofsum in a thread and use of it in the successor thread
becomes relatively small. Another benefit of this transformation is that the summation
step can be eliminated. Under TLS, because all local scalarsare thread-private, we can
avoid the creation of the arraysum[] and use a scalar to hold the partial results of the
reduction operation, as shown in Figure 3(b)-iii. Just likeany other values that are com-
municated through synchronization, the critical forwarding path of this communication
can be reduced with instruction scheduling.

Unfortunately, not all usage patterns of reduction variables can be optimized as
described above. In the example shown in Figure 3(c)-i, thesignal instruction cannot
be scheduled before the inner loop because it depends on the value ofsum0 which
is computed by the inner loop; andwait instruction cannot be scheduled after the inner
loop, because it is used to guard a branch instruction. As a result, the critical forwarding
path introduced by the reduction variable is very long. Fortunately, the outcome of the
branch instruction guarded by the reduction variable is often predictable; and we can
exploit this predictability to postpone the use of the reduction variable till after the
completion of the inner loop. In the example shown in Figure 3(b)-ii, the branch is
predicted as not-taken; moved across the inner loop and executed as a verification. In
the original location of this branch, bothsum0 andx are saved, so that they can be
used later in the verification. The use ofsum is delayed so that the critical forwarding
path is reduced. When the value ofsum becomes available, and the branch is proved
to be mis-predicted, the thread must be squashed and an un-optimized version of code
must be executed [30]. The squash/recovery mechanism that enables this aggressive
optimization is already available in TLS, thus no extra hardware support is needed.

However, this aggressive transformation does not handle all usage patterns ofsum

within the loop: the reduction variable can be used in the inner loop, as shown in Fig-
ure 3(c)-iii. In order to reduce the critical forwarding path introduced by such usage,
the branch in the inner loop has to be moved to the outer loop. Is it possible to make
such a code transformation and to guarantee that all mis-predictions are detected? The
answer is yes, and the key to this transformation is that mostreduction operations are
monotonic. If the reduction variable is monotonically increasing or decreasing and the
branch is to test whether it is greater or less than a certain loop invariant, the verifica-
tion can be delayed till after the inner loop is complete. In our example, if the condition



sum+sum0 > 100 is true in the inner loop, it must also be true for the test in the outer
loop. Mis-predictions can always be detected by the delayedverification in the outer
loop.

while(cond1) {
while(cond2) {

sum++;
}

}
(i)A reduction variable

while(cond1) {
wait(sum);
while(cond2) {

sum++;
}
signal(sum);

}
(ii)Synchronizing the
reduction variable

while(cond1) {
while(cond2) {

sum[i]++;
}

}
while(cond1) {

sum+=sum[i];
}
(iii)Traditional
reduction elimination

(a) Reduction elimination.

while(cond1) {
while(cond2) {

sum++;
}
. . .

=sum;
. . .

} (i)Using intermediate
result of reduction
variable

while(cond1) {
while(cond2) {

sum[i]++;
}
. . .

wait(sum);
=sum+sum[i];
. . .

sum+=sum[i];
signal(sum);

}
(ii)Reduction transformation
with explicit forwarding

while(cond1) {
while(cond2) {

sum0++;
}
. . .

wait(sum);
=sum+sum0;
. . .

sum+=sum0;
signal(sum);

}
(iii)Replace sum[]
with sum0

(b) Reduction-like variable with a single use and short critical forwarding path.

while(cond1) {
wait(sum);
if(sum+sum0>x)

work1;
else

work2;
. . .

while(cond2) {
sum0++;

}
. . .

sum+=sum0;
signal(sum);

}
(i)Used to determine
a branch outcome

while(cond1) {
sum0’=sum0;
x’=x;
work2;
. . .

while(cond2) {
sum0++;

}
. . .

wait(sum);
if(sum+sum0’>x’)

recovery;
sum+=sum0;
signal(sum);

}
(ii) Predicting
branch outcome
then verifying

while(cond1) {
wait(sum);
while(cond2) {

sum0++;
if(sum+sum0>100)

return;
work1;

}
. . .

sum+=sum0;
signal(sum);

}
(iii) Used in the
inner loop

while(cond1) {
while(cond2) {

sum0++;
work1;

}
. . .

wait(sum);
if(sum+sum0>100)

recovery;
sum+=sum0;
signal(sum);

}
(iv) Predicting
branch outcome
then verifying
in the outer loop

(c) Using the intermediate result of a reduction variable todetermine a branch outcome.

Fig. 3. Transformation for reduction-like variable.



3.3 Iteration Merging for Load Balancing

In TLS, to preserve the sequential semantics, speculative threads must be committed in
order. Thus, if a short thread that follows a long thread completes before the long thread,
it must stall till the long thread completes. When workload is not balanced between
parallel threads, the waiting time can be significant. One way to achieve more balanced
workloads is to merge multiple short iterations with a long iteration, so that multiple
iterations of a loop are aggregated into a single thread.

Figure 1(a) shows the Control Flow Graph (CFG) of a nested loop. Each node in
the graph represents a basic block. The outer loop is selected for parallelization. The
path A->B->D on the left is more likely to be taken than the path A->C->...->C->D
on the right. However, the right path is much longer than the left path since an inner
loop is involved. This causes the load imbalance problem. A shorter thread finishes its
execution much earlier than a longer thread, but it has to wait until the previous longer
thread commits its results.

The idea of using iteration merging to solve this problem is to combine multiple
consecutive loop iterations to make the workload more balanced. When a short but
frequent path is identified, a new inner loop is formed which only contains the part
from this short path. As shown in Figure 1(b), the newly formed inner loop, which
contains A, B and D from the short path, is marked by the shadowed blocks. For all
basic blocks that are reached from the outside of this inner loop, tail duplications are
needed in order to eliminate side entries. In this example, block D′ is tail duplicated
and inserted in the outer loop. A new block E is also inserted to the beginning of the
outer loop, and only contains a trivial unconditional branch that transfers the control
flow to A. Later afork instruction will be inserted to E in order to spawn a new thread
at runtime. After this transformation, multiple short iterations are combined together
with a long iteration, resulting in more balanced workloadsamong threads.

4 Evaluation

We have developed our TLS compiler based on the ORC compiler,which is an industrial-
strength open-source compiler targeting Intel’s Itanium Processor Family (IPF). Three
phases are added to support TLS compilation. The first phase performs data dependence
and edge profiling, and feeds profile information back to the compiler. The second phase
selects loops that are suitable for TLS [38]. Optimizationsfor TLS are applied in the
third phase. Both the loop selection and the optimization phases extensively use profiles
obtained by usingtrain input set.

For the optimization techniques proposed in this paper, we have implemented schedul-
ing for memory-resident value communication. Both aggressive reduction transforma-
tion and iteration merging are still under development and performed manually for this
study.

4.1 Simulation Methodology

The compiled multithreaded binary is running on a simulatorthat is built upon Pin [23]
and models a CMP with four single-issue in-order processors. The configuration of our



Table 1. Simulation parameters.

Issue Width 1
L1-Data Cache 32KB, 2-way, 1 cycleCommu. Buffer 128 entries, 1 cycle
L2-Data Cache 2MB, 4-way, 10 cycleCommu. Delay 10 cycles
Cache Line Size 32B Thread Spawning 10 cycles
Write Buffer 32KB, 2-way, 1 cycleThread Squashing 10 cycles
Addr. Buffer 32KB, 2-way, 1 cycleMain Memory Latency 50 cycles

Table 2. Benchmark statistics.

Application Input Number of Average Average Num of Coverage
Name Set Parallelized LoopThread SizeThreads/Invocation

BZIP2 program 11 147 3692 61%
graphic 11 153 3929 58%
source 11 137 4451 65%

GZIP program 5 865 1519 89%
graphic 5 231 2532 80%
source 5 923 2549 84%
random 5 180 61921 81%

log 5 1378 1303 79%

simulated machine model is listed in Table 1. Each of processor has a private L1 data
cache, a write buffer, an address buffer, and a communication buffer. The write buffer
holds the speculatively modified data within a thread [34]. The address buffer keeps
all exposed memory addresses accessed by a speculative thread. The communication
buffer stores data forwarded by the previous thread. All four processors share a L2 data
cache.

All simulations are performed using theref input set. To save the simulation time,
each parallelized loop is simulated up to 1 thousand invocations, and each invocation is
simulated up to 0.1 million iterations. Overall, it allows us to simulate up to 4 billion
instructions while covering all parallel loops.

4.2 Performance Impact

We have evaluated the proposed compiler optimizations using the simulation infrastruc-
ture described in the last section. The performance of the parallelized code is measured
against a fully optimized sequential version running on a single processor. Since both
GZIP andBZIP2 have multipleref input sets, we evaluate both two benchmarks on all
input sets. Benchmark statistics are listed in the Table 2 and the program speedup is
shown in Figure 4.

Each bar in Figure 4 is broken down into five segments explaining what happens
during all cycles. Thesyncsegment represents time spent waiting for forwarded val-
ues; thefail segment represents time wasted executing failed threads; thewait segment
correspond to amount of time the processor has completed execution and is waiting
for previous thread to commit; thebusysegment corresponds to time spent performing
useful work; and theothersegment corresponds to stalls due to other constraints.
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Fig. 4. Program speedup compared to sequential execution. This figure shows the per-
formance impact of the proposed optimizations on allref input sets.

The baseline performance is obtained when all existing TLS optimization tech-
niques are applied as described in [38]. It is shown in the first bar. Three optimiza-
tion techniques proposed in this paper are added on top of thebaseline in the follow-
ing order: scheduling for memory-resident value communication, aggressive reduction
transformation, and iteration merging. Each time a new technique is applied, thecu-
mulativeperformance is reported. They are shown in the second, third, and fourth bar
respectively.

1. Scheduling for memory-resident values has a significant performance impact on
GZIP. Forgraphic andrandom input sets, the program performance is improved
by 24% and 36% respectively.

2. Reduction transformation that removes the critical forwarding path introduced by
reduction variables benefitsBZIP2 significantly. Forgraphic input, we saw a 7%
performance improvement. This performance improvement mainly comes from the
inner loop of bucket sort, as described in Section 2, whose performance is limited
by a reduction-like variableworkDone.

3. Iteration merging can further improve the performance for loops that have unbal-
anced workloads. The performance ofBZIP2 onsource input is greatly improved
by 9% after this technique is applied.

4.3 A Sensitivity Study

The statistics for different inputs can be found in the Table2. In the table, coverage is
defined as the fraction of execution parallelized in the original sequential program. The
coverage for both benchmarks is high: around 60% forBZIP2 and 80% forGZIP. Thread
size is defined as the number of dynamic instructions. InBZIP2, the average thread size
and the average number of threads per invocation are consistent across different input
sets. However, inGZIP, graphic andrandom input sets have much shorter threads
than others. The difference in the thread size indicates that different execution paths
may be taken under different input sets.

Instruction scheduling is effective forGZIP on bothgraphic andrandom input
sets. However, it is ineffective onsource input set. In order to better understand this



phenomenon, we examine the most time-consuming loop indeflate for an examination
(see Section 2). There are three major paths in that loop:Path 1 is taken if no matched
string is found.Path 2 is taken if a matched string is found, and it is better than the
previous match.Path 3 is taken if a matched string is found, and it is not better than
the previous match. The generated parallel threads are aggressively optimized along
path 2, sincepath 2 is identified as the most frequent path based on thetrain
input set. For theref input set,path 2 is the frequent path for bothgraphic and
random input sets, but it is taken less frequently forsource input set. As a result,
performance improvement onsource input set is less significant than other two.

Reduction transformation achieves significant performance improvement forBZIP2
on thegraphic input set, however, only moderate performance improvementfor
source andprogram input sets. After a close look at the loops, we find that they
have more balanced workloads ongraphic input set than on other two after reduction
transformation. For other two input sets, load imbalance becomes the new bottleneck
after reduction transformation, and their performance is greatly improved after iteration
merging is applied.

5 Conclusions and Future Work

Researchers have found it difficult to exploit parallelism in data compression applica-
tions, even with the help of TLS. In this paper, we report the results of an extensive study
on parallelizing these benchmarks, under the context of TLS. We have identified sev-
eral performance bottlenecks caused by data and control dependences. To address these
problems, we propose several effective compiler optimization techniques that take ad-
vantage of profiling information to remove stalls caused by such dependences. Careful
evaluation of these technique reveals that, we can achieve up to 37% program speedup
for BZIP2, and 36% forGZIP.

Although our techniques have only been applied toBZIP2 andGZIP, in our experi-
ence, the data and control access patterns we studied in thispaper have been observed
in many other integer benchmarks. We are currently integrate these applications in our
compiler infrastructure so that we can evaluate the impact of the proposed techniques
on a wide-range of applications. We believe, although no single optimization will en-
able the creation of efficient parallel programs for TLS, a compiler infrastructure that
supports a general set of compiler optimization techniques, each designed to optimally
manage a specific situation, can be built to create efficient parallel programs.
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