Efficient Architecture Support for Thread-Level Speculation

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Venkatesan Packirisamy

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor Of Philosophy

April, 2009

(© Venkatesan Packirisamy 2009
ALL RIGHTS RESERVED

Efficient Architecture Support for Thread-Level Speculation
by Venkatesan Packirisamy

ABSTRACT

The computer industry has adopted multi-threaded (Simetias Multi-Threading (SMT)
and multi-core (Chip Multiprocessor) architectures asdloek rate increase stalled in early
2000's. It was hoped that the continuous improvement oflsipgogram performance could be
achieved through these architectures. However, traditiparallelizing compilers often fail to
effectively parallelize general-purpose applicationgolhypically have complex control flow
and excessive pointer usage. Thread-Level Speculatio8)fiave been proposed to simplify
the task of parallelization by using speculative threadsoufh the performance of TLS has
been well studied in the past, its power consumption, povfariency and thermal behavior
are not well understood. Also previous work on TLS have cotveged on multi-core based
architecture and relatively little has been done on supppfLS on multi-threaded architec-
tures. With increasing multi-threaded/multi-core desitpoices, it is important to understand
the benefits of the different type of architectures.

The goal of this disseration is to develop architecture riggkes to efficiently implement
TLS in future multi-threaded/multi-core processors. Thsseration proposes a novel cache-
based architecture to support TLS in multi-threaded SMTitecture. A detailed study on the
efficiency of different TLS architectures was conducted @ayparing their performance, power
and thermal characteristics. Through detailed analysisdisseration shows that depending on
the benchmark characteristics different architecturegraore efficient. To improve efficiency,
the disseration proposes a novel SMT-CMP bdsetgrogenousrchitecture which combines

the advantages of both SMT and CMP architectures.

The disseration also proposes novel architecture and éentechniques to efficiently ex-

tract speculative parallelism from multiple loop levels.

Acknowledgements

Dedication

Contents

bstrac

cknowledgemen

Dedication

List of Tabled

List of Figures

1 Introduction

1.1 Related Work

1.2 Dissertation Contributions

Evaluation Framewor

1 TLS execution mo

1.1 TLS hardware model:

2 TLS Compildgr

3 Simulator Framew

3.1 Trace Generation

3.2 Simulati

3.4 Benchmarks e e e 16

323 Pitfalls 32

3.3 Compilation and Evaluation Infrastruclure e X

3.4 Exoloiting_Ea.La.Ilansm_injBECZJOG 34

341 Type lLOO[S o e e e e 35
342 Typel+1L00dS v v v it e e e e e 37
343 Typel+l+IILOOpE o i it 37
3.5 Comparison with SPEC2000 40
3.6 ConcluSiONS 2 4
4 Ffficient TL S support in SMT. 43
4.1 Related Wolk 44
4.2 SMTmodel 45
4.3 Simplified Two-Thread Scheme 46

Vi

5 Performance/Power/Thermal compariso

b1 Relatedwork 65
iLEmmsnLC.Qnﬂgumﬂ.ans 67
5.2.1 Superscalar configuration L. 67
5.2.2 SMTconfiguration 68
5.2.3 CMP configurations 72
5.3 Performance and Power Comparisons 73
3.1 Performante 74
532 Powb 70
533 EDandED] 85
.4 Alternative Configurations 87
5.5 Thermalbehavior 89
6__Heterogeneous TLIS 98
6.1 Relatedwork 99

7.2

7.2.2 Factors affecting scalabillty:

Vii

6.3.2 Impact of switching overhead: 111
6.3.3 Reducing switching overhdad: 112
6.4 ConclUuSIOMS e e e e 131
, lahili i lti-level lative f ik 114
7.1 Relatedwolk e e e 711

7.3 Multi-level TLS loop schedulirl\g 124

7.3.1 _Static vs Dynamic loop selec]ion. e 124
7.3.2 Predicting performance foreachloop 125
7.3.3 loop selection for single-level TUS 126
7.3.4 __SpecOPTAL e 128
7.4 SpecMerge archifecthire L. L 133
4.1 Maintaining state ofinnerloops 134
4.2 _Single-level TLSmodel 361
7.4.3 _SpecMerge micro-architemlure 137
75 Evaluation e e 461
751 Resulls e 147
/.52 Benchmarks. 147
753 Resulls 149
76 Conclusions 531
Conclusion and Future \Work 155
ﬁ.J_Eu.tu.LﬂNerk 715

viii

List of Tables

3.1 SPEC 2006 benchmatks. 23
3.2 SPEC 2000 benchmatks. 24
M 33
3.4 Coverage ofloops parallelized. 35
3.5 _Coverage of loops parallelized in SPEC2000. 40

%@rs 55

5.1 _Architectural parameters for the Superscalar (SEQfimamation and the SMT configurations with 2 ¢

5.2 Die area estimation for (1) Superscalar (SEQ), (2) SMiE@essor with reduced complexity occunving

b4 Die crea esimation o cvPvarghts, 73

5.5 __Comparison of the impact of benchmark behaviors on temeance of SMT-TLS vs CMP-TL$. 7

6 omparison of the impact of various factors on the powasgmption of SMT- MP-TLS. 8

hermal effe 0 on three different architectu®sQ, SMT-4 and the CMP-4-2MB in degree

7.1 Architectural parametdrs

List of Figures

3 Simulator Framewark e e e e 14

3.2 An example loop tree showing_n_es_ti_n,g relationship betneops. Each loop is annotated with four r

3.3 _The combined execution time coverage of loops with ititezad register-based dependences 25

S_M_e_cm@;a,ge of loops with inter-thread memory-basésl dEpendences less than a certain probabi

3__6_']]3_e_gmﬂage of loops with certain number of inter-thmemory-based data dependences in SPE(
A . bab
3.8 Shows the program speedup when different types of loepsaaallelized using 4 corbs. 36

3.9 _Shows the breakdown of execution time while executiegstected loops normalized to sequential

0 [1OW NC DIOAral] SPecaud WNEeN QIISIer) PDES O IENBAIAIIC -0 I!‘ QI € O P O

............................... 46
4.2 Twao Thread Scheme - Cache State Transitions 47
4.3 Speculative Store Handling 50
4.4 Speculative Load Handling e 51
4.5 _Speculative | oad Handling Example 52
- - - - ' i). .. 57

4.7 Execution time breakdown for parallel reg_LQ_n_ex_eQu_ti_thO-C%Z SMT-2, SMT-4 and L. SQ-64 config

4.8 Speedup of | SQ-32,SMT-2,SMT-4 and | SQ-64 architestoser SEQ for selected benchmarks vyitt
5.1 __Speedup of CMP-4-2MB and SMT-4 configurations over SEQ.. .. .75

5.2 _Fxecution time breakdown for parallel region execubbGMP-4-2MB and SMT-4 configurations no
5.3 _Normalized dynamic power consumption of CMP-4-2MB aiilSt configurations normalized to the
5.4 __Total power overhead CMP-4-2MB and SMT-4 configuratiover SEQ. . 83

5.5 EDFE D? of CMP-4-2MB and SMT-4 configurations normalized to SEQ.éHie lower value indicates
5.6 ED? of CMP-4-2MB and SMT-4 configurations normalized to SEQ.éHtie lower value indicates be

5.7 Comparison of speedup for CMP-4-2MB, CMP-2-2MB, SMTad SMT-2 configu::a.ti_o.us. 93

5.8 Comparison of D? for CMP-4-2MB. CMP-2-2MB, SMT-4 and SMT-2 configuratidns4 9

5.9 Comparison of speedup for CMP-4-2MB and CMP-4-1MB ¢ 95

5.10 Comparison of speedup for CMP-4-2MB and CMP-4-1MB it . .. 96

5.11 Thermal map for various configuration (running h264iebdcolor indicates hottest regj_o_[ls. 97

6.1 Comparison of NormalizelfiD? of CMP, SMT configurations with the best configuration forlehenct

ﬁz_ijﬂtemgauems_muLﬂ;mne_amhLLecJure.......................102

6.3 _Comparison of NormalizefiD2 of CMP, SMT configurations with the predict€iD? of heterogeneou:

6.5 Comparison o

6.6 Impact of switchingoverhead. 112

Mr% 120

7.7 Allocation of coresandthread fork 137

Xi

7.8 Modifications to support Multi-level T

7.9 _Speculative store handling

7.10 Commit onerati(l)n

Xii

711 Comparing befween single-level TLS and multi-leveSTL

7.12 Increase in traffic in multi-level TLS .

Chapter 1

Introduction

Continuous clock rate improvement on microprocessors enptist three decades has stalled
in early 2000’s because of power and thermal consideratitinsrompted computer industry
to adopt multi-threaded (e.g. simultaneous multi-thnegdiSMT) [1],hyper-threading[2]) ,
and/or multi-core (e.g. chip multiprocessors (CMP))I3addhitectures in the hope of contin-
uing the performance improvement without increasing tloelckate and its associated power
and thermal problems. With the advent of multi-threaded @udti-core architectures, now
the challenge is to utilize these architectures to impranmégpmance of general-purpose appli-
cations. Automatic compiler parallelization techniqueséibeen developed and found to be
useful for many scientific applications that are floatingapintensive. However, when applied
to general-purpose integer-intensive applications thaeltomplex control flow and excessive
pointer accesses, traditional parallelization techrégoecome quite ineffective, as they need

to conservatively ensure program correctness by synctingnall potential dependences in the

2
program. This often requires a programmer to explicithategoarallel threads and insert syn-

chronizations. This approach is often error prone and phtgye burden on the programmer.

There have been numerous studies on hardware support farlafree threads, which in-
tend to ease the creation of parallel threads for programared compilers. Recently, Hardware
Transactional Memory (HTM) has been proposed to aid theldpreent of parallel programs;
Thread-Level Speculation (TLS) has been used to explo#ligdism in sequential applications
that are difficult to parallelize using traditional paréitation techniques. For example, a loop
that contains an inter-thread data dependence due to loddg@es through pointers cannot be
parallelized using traditional compilers; but with thefhef TLS, the compiler can parallelize
this loop speculatively and relying on the underlying haadmto detect and enforce inter-thread
data dependences at run-time.

There has been a significant amount of research done on ThegablSpeculation (TLS)]5,
6,04,[8 91011, 12,18, 14.115,116] L7 A8,19,20[21 22, 23%] on how to automatically
extract speculative parallelism from programs and on hasupport TLS in hardware. From the
previous work the performance behavior of multi-core (CM&jed TLS is well understood, but
very little has been done to understand other importantacheristics like power consumption,
power efficiency and thermal behavior. Also the multi-tlikeeh (SMT) based TLS has not been
well understood and the current techniques rely on comglexctsires that can support only
small speculative threads |26, 6].

With the current trend towards multi-threaded/multi-carehitectures, the microprocessor

designer is now presented with a variety of multi-threadtedti-core design choices. While

3
comparitive studies [27, 28,179,130 31] on the advantag€3v® and SMT based architectures

have been conducted using various workloads, their reldi@havior in the case of TLS is
not known. To efficiently implement TLS in future multi-ttaged/multi-core processors it is
important to understand the relative advantages of thewsudesign choices when supporting
TLS.

Also with the current trend towards increasing number oédldss/cores supported in the
microprocessor, it is important to utilize all the avaikalhreads/cores to extract performance
in applications. To efficiently utilize the available thdsécores, it is important to extract par-
allelism from multiple loop and function levels. While m@dtS techniques have studied only
single-level parallelism, it is important to develop tecjues to efficiently support multiple
levels of TLS.

This dissertation addresses some of these issues. Firstopese a novel cache-based
architecture to support TLS in SMT processors. Then we paria detailed trade-offs study
by comparing the performance, power consumption and tHdvetavior of SMT based TLS
with the CMP based TLS architecture. Based on our undergjasfithe relative merits of SMT
and CMP based TLS architecture, we propose a SMT-CMP Hastogeneouarchitecture
and show the potential efficiency gain. We also propose demand architecture techniques

to improve scalability of TLS by exploiting speculative ¢lads from multiple loop levels.

1.1 Related Work

Automatic parallelization techniques have been extehsstidied in the past and found to
be successful in parallelizing scientific prograrms| [34,. 3Bt when applied to general pur-
pose programs that have ambiguous data dependences anéxaoorgrol flow, the traditional
compiler is forced to conservatively synchronize on allgmtial inter-thread dependences.

One way to overcome this limitation is to use Thread-Leved@gation(TLS) where the
compiler can ignore these ambiguous or low-probabilityethefences and speculatively paral-
lelize the application. But such speculation requires Waré or software support to ensure
correctness in case the inter-thread dependences do dcoum-Bime. Software techniques
[34,135,[36] to support TLS suffer from large overhead, legdd only limited performance.

Architecture technigues to support TLS have been extegsstedied in the past and found
to be successful due to their lower overhead. Multiscalélf fidtroduced the concept of hard-
ware based TLS and initially used hardware buffers calledrésks Resolution Buffers(ARE)[B7].
Later studies relied on shared memory based cache cohgyastoeols to support TLS 8,12,
13,14 16 17,38].

Compared to CMP based TLS design, SMT based TLS has not béemsiely studied.
Current technigues use complex hardware buffers such asigteng Load-Store queues(LSQs)
in the processor, which due to their smaller size can onlpsusmaller threads.

While the performance aspect of the TLS architectures ateumderstood, their power
efficiency has not been well understood. Reataual[39] compared the power consumption of

CMP based TLS architecture with the Superscalar basedectlvie and found the TLS to be

more power efficient. However other design choices such aE Bbte not considered.

Power consumption, energy efficiency and thermal chaiiatitex of SMT and CMP have
been well understood under various workloads: On parattegnams [[2F] and mobile work-
loads [28], SMT processors outperform CMP processors. Mexven multimedia workloads,
CMP is more efficient[I29]. In the context of multi-program mkimad, Li et. al [30] found
that SMT is more efficient for memory-bound applications I&fCMP is more efficient for
CPU-bound applications; Burret. al[31] found that SMT can achieve a better single thread
performance, but CMP can achieve a higher throughput.

Recently there are some studies that utiliteetergenougrchitecture to improve the energy
efficiency. In most previous studiégtergenousrchitectures [40, 41, 42], different cores with
varying complexity (or varying frequency) are combinedetbgpr to for a multi-core processor.
The multi-program workloads are either statically or dyiaity mapped to the various cores
to improve the overall efficiency of the workload.

Most research on TLS concentrated on exploiting TLS on alesitopp level or a single
function call level. Renaat. al[43] proposed a hardware based technique to extract speeula
threads from multiple levels. Here the threads are aggelgséxtracted from multiple levels
and it relies on complex hardware based runtime system toesffly utilize the available cores

and filter out non-performing loop levels.

1.2 Dissertation Contributions

In this dissertation, we make several contributions thailifates efficient implementation of

speculative threads in multi-threaded/multi-core preoes

1. We analyze the performance potential for TLS in the mooemt SPEC 2006 bench-
marks and show the importance of supporting TLS. We also eoenine performance of
SPEC 2006 with older SPEC 2000 benchmarks and show a trerzaldswnore parallel

applications which need TLS support.

2. We propose a cache-based architecture to support TLS ih [@bktessors. We show
that the new technique proposed can outperform other knogthads to support TLS in

SMT.

3. We perform a detailed comparison of performance, poweitlagrmal characteristics of

both SMT based and CMP based TLS architectures. We foundathat

4. To exploit the advantages of both SMT and CMP based TLS,rgose a novel SMT-
CMP basedheterogeneousrchitecture to efficiently support TLS. We show that this
novel architecture can lead to better efficiency than thedggmeous SMT or CMP based

TLS architecture.

5. We propose a compiler based approach to extract TLS elisailat multiple loop levels.

With support from compiler, we show how the architectureigiesan be simplified.

The rest of the dissertation is organized as follows:

Chapter[P describes the evaluation framework used in te&Egh

Chapter[B discusses the potential for TLS performance inCSEED6 and compares it

with the performance of SPEC 2000.

Chapter[# presents a novel cache-based architecture torsys in SMT processors.

Chapter [b presents a detailed comparison of SMT based Tlftenture with CMP

based TLS architecture.

Chapter [shows the potential gain in efficiency by using &rfyeheous multi-core

architecture.

Chapter[V presents the architectural and compiler teckaitpexploit multi-level TLS.

Chapter[B we present our conclusions and opportunitiesufard work.

Chapter 2

Evaluation Framework

In this chapter, we present the details on the TLS model usddaadescription of the our

evaluation framework.

2.1 TLS execution model

Under thread-level speculation (TLS), the compiler parg a program into speculatively par-
allel threads without having to decide at compile time whethey are independent. Atruntime,
the underlying hardware determines whether interthreda dependences are preserved, and
re-executes any thread for which they are not. The mosigstfarward way to parallelize a
loop is to execute multiple iterations of that loop in paghllin our baseline execution model,
the compiler ensures that two nested loops will not be spéiealy parallelized simultaneously.
In Chaptefd’, we will study the potential for supporting sgative threads at multiple nesting

levels.

Elements of TLS:

Thread Fork: A fork instruction is inserted by the compiler at the begimnof each iteration.
On execution of théork instruction, a new thread is created in the next availabidvaare

context after a constant delay.

Speculative Buffering: When executing the speculative thread, all data createspa®ilative
and should not be allowed to modify the non-speculative exdrief the application. To

avoid this the hardware buffers all the results from the sjaive thread.

Dependence Checking:To enforce correctness of the application the hardware toienfor
any dependency violations by the speculative thread. Alhory addresses loaded by
the speculative thread are tracked by the hardware andetiéakdependency violations

after every store from non-speculative thread (or othdrezapeculative threads).

Thread Squash: If a violation is detected, the hardware restarts the thezaball the specula-

tive data along with the special bits used to track spearadre discarded.

Sychronization: To communiate scalar values across threads, the compslentinspecial syn-
chronization instructionsvait andsignal Frequenty occuring memory dependences are

also synchronized as described [n1[44].

Thread Commit: When the non-speculative thread finishes execution, thé imaxediate
thread in fork order becomes the new non-speculative thr&élden a thread becomes

non-speculative, all its speculatve state is integrated thie non-speculative state of the

10

application. Also the special bits used to track dependeand buffer speculative results

are discarded.

2.1.1 TLS hardware model:

In this thesis we use both SMT and CMP based architecturagfmost TLS. SMT support for
TLS is described in detail in chaptét 4.

For the CMP based TLS architecture, we use a cache basecqréi@msed on STAM-
Pede[[45]. When executing speculative threads, specailatores will be buffered in the pri-
vate L1 data cache and speculative loads are marked usirgcelspit in the cache. When a
dependence violation is detected the violating thread &rits auccessors are restarted. When
the violating thread is squashed, all speculation markeribithe L1 data cache are reset with
a gang-clear (1 cycle). When a thread commits it sends aldigita immediate successor, and
the latter becomes the new non-speculative thread. Moadisleh the TLS architecture model
used can be found i [45]. In this thesis, we allow memory @senmunication between spec-
ulative threads. So if a speculative thread does a storehwitrids latter versions of the same
value in the other caches, the target cache line is ‘combimitkl the current value if the latter
thread had not speculatively read from the same locationekample, say thread-3 writes to
location A it creates a version in its private cache. Say rowad-2 writes to location A+1 and
it finds a version of the cache line created by thread-3 inrit&fe cache (assuming A and A+1
map to the same cache line). Since thread-3 has not read dicatidn A+1, the store does not

cause speculation failure. So we allow thread-3's storepttate the value in location A+1 in

11
thread-3's cache line. Now if thread-3 issues a load to ionah+1, it can get the lattest value

of A+1 stored by thread-2.

Frequently occurring memory-based dependences andeebated scalar dependences
are synchronized by inserting special instructions as stiowigure 3.1() similar to[120,19].
In this thesis, we assume a fast interconnection networlotoencunicate values between the

threads. (The values can also be communicated through tbadt.)

2.2 TLS Compiler

Our compiler infrastructure is built on Open64 3.0 Compilé6], an industrial-strength open-
source compiler targeting Intel.s Itanium Processor Ra(iflF). To create and optimize spec-
ulative parallel threads, the compiler must perform adeupgrformance trade-off analysis to
determine whether the benefit of speculative parallel gi@twutweighs the cost of failed
speculation and then aggressively optimize loops thatflidram speculation. In our case, the
compiler performs such analysis and optimizations basddapnesting, edge, as well as data
dependence profiling (using train input set), as shown in Bd. The TLS compiler has two

distinct phases, as shown in Fig._]2.1, thread extractioroatichization:

Loop Selection: In the loop selection phase, the compiler estimates thdl@gparformance
of each loop based on the cost of synchronizations, as weleaprobability and the
cost of speculation failures. The compiler then choosestallglize a set of loops that

maximize the overall program performance based on suamatsins [24/ 44].

12

c c
o o
£ o |B|| 2
2 c IS =)
c %2} = = bt
k=) £ S S o)
8 sl |2 2|3
o 2 = c L
g Parallel 2 3 f_f S Optimized
N
a Codes e c c g Parallel
=} o o o =
o = = = c Codes
| (&) |) =
o > > o
< = ke)
> %] o) 1)
n £ o 4
Optimization

!
Loop Nestin}; Edge ‘ Data Depende}'ce

Profiling Support

Figure 2.1: Compilation infrastructure

Code Optimization: The selected parallel loops are optimized with various danpp-
timization techniques to enhance TLS performance: (i) edister-resident values and
memory-resident values that cause inter-thread data depeas with more than 20%
probability are synchronized [20]; (ii) instructions ameheduled to reduce the critical
forwarding path introduced by the synchronizatibnl [19,;44i) computation and usage
of reduction-like variables are transformed to avoid spamn failure [44]; and (iv) con-

secutive loop iterations are merged to balance the workibaeighboring threads$ [44].

2.3 Simulator Framework

We use a trace-driven, out-of-order Superscalar procegsaiation infrastructure. Prior TLS
research typically simulated the first billion instructsoim each benchmark after skipping the
initialization portion. The truncated simulation does nover all phases in a benchmark, and

thus can potentially miss important program behavior thdy @ppear in the later parts of

13

. S fial BBY
Compiler Framework ebcm:nry'a — generation BBV file — Sirmpoint
Slmulanon pomt
Parallel binar
¥ Foint Label list
\. weights
Parallel : Sync _| Sequential
Trace Generation points Trace Generation
Paraliel traces Sequemtlal traces

AN

Simulator Framework

Figure 2.2: Trace Generation Framework

the execution [147]. To improve simulation accuracy and ttuce simulation time, we have

adopted a SimPoint-based sampling technifue [48].

2.3.1 Trace Generation

Before generating traces for the simulasimpoint samples have to be selected. The sequential
binary created by the compiler is used to generate BasickBlectors (BBV) which are then
used to selecsimpoint samples. The selected sample points are feed iretedfuential trace
generator which creates traces for corresponding poitgsted. The trace generator is based on
the PIN instrumentation todl[49]. The tool instrumenteatsnstructions to extract information
such as instruction address, registers which are read attdmto, memory address for memory
instructions, opcode, etc. The collected information idgtem to the output trace file which will

be used by the simulator.

The parallel trace generator is augmented so that it seleetexact same code regions in

14

Trace Files Label list

l |

Simplescalar based S P
Superscalar/SMT/CMP simulator - Traces Hotspot
Thermal results
Timing results
Paint Sealing — Final results
weights

Figure 2.3: Simulator Framework

the parallel executables as that in the sequential sanfgilgs[Z.2 gives a block diagram of the

trace generation framework.

2.3.2 Simulation

We use a detailed out-of-order simulator based on Simghs{®d] to simulate both SMT and
CMP architectures. Figi—d.3 shows a block diagram of the lsitnuframework.

We not only model the register renaming, the reorder bulffiemch prediction, instruction
fetching, branching penalties and the memory hierarchippaance, but also extend the infras-
tructure to model different aspects of TLS execution inzigdexplicit synchronization through
signal/wait, cost of thread commit/squash, etc.

To estimate power consumption of the processors, the sianuig integrated with the
Wattch [51] power model. The power consumption for the comrhos in the CMP archi-

tectures is simulated using Oridn_[52]. The power traceedad by the simulator are fed to

15
HotSpot [53] to evaluate the thermal behavior of the system.

2.3.3 Thermal simulation

While sampling techniques described here can significaatdyce the simulation time without
compromising simulation accuracy for processor perfoireaand power consumption, these
techniques cannot be applied to thermal simulation. Torately simulate the thermal effects
of a certain benchmark on TLS, we must construct the powesuwoption trace for the ex-
ecution of the entire benchmark. In our study, we use the ptraees corresponding to the
selected samples to reconstruct the power trace of theedrginichmark.

Let's assume that the original full execution trace (withsampling) can be broken into a
set ofm segments{ty, to, ..., tm}; we refer to this list ag . In simpointsampling, a subset of
T saySis selected for detailed simulation. For each selected segrthere is a corresponding
power tracep. Let us refer to the set of such power tracedPad-or every segmertt in the
original traceT, there is a corresponding segment sayn the samplesS that belong to the
same phase ds The behavior of; is similar to that ofs; as they belong to the same phase.
So we could approximate the power behaviot;dfy using the power trace & in its place.
Using this method, we construct the power trace of the eetiexution sequencfiy, to, ...,
tm} by using the power trace of the corresponding sampled seigspfam eacht;. The resulting
approximatepower trace is fed to HotSpdi [b3] to study the thermal betraef the different
configurations. We found that by taking advantage of theg@basavior, such thermal estimate

is quite accurate.

16

Table 2.1: Details of Benchmarks

SPEC 2000 Benchmarks
Benchmark| No of loops se-| coverage of se
lected lected regions
perlbmk 9 25%
art 25 99%
vpr_place 3 55%
gcc 98 83%
parser 40 82%
vpr_route 19 94%
mcf 13 98%
equake 9 93%
ammp 21 99%
twolf 20 47%
bzip2 19 81%
mesa 3 63%
gzip 6 99%
crafty 3 13%
vortex 8 67%
gap 8 30%
SPEC 2006 Benchmarks
bzip2 14 46%
mcf 6 97%
gobmk 13 21%
sphinx3 21 97%
namd 50 99%
povray 5 63%
astar 7 73%
Ibm 2 99%
h264ref 36 79%
libquantum | 5 99%
sjeng 6 40%
hmmer 5 96%
milc 22 85%

2.3.4 Benchmarks

We use the SPEC 2000 and SPEC 2006 benchmarks to evaluatzioniques. All the bench-
marks are run usingef input set. For trace generation we use 100 Million tracescntigct
maximum of 10 traces (-maxK=10) per benchmark. Tdblé 2.@gjikie details about the loops

selected and their execution time coverage.

Chapter 3

Benchmark Analysis

Before we discuss efficient architecture techniques fopstjmg TLS, it is important to under-
stand the potential for TLS. In this chapter we present alyaisaof benchmark behavior and
show how TLS can overcome the limitations of a traditionabfializing compiler.

Though TLS has been extensively studied in the past, it ickeatr how much TLS could
benefit more recent benchmarks such as SPEC 2006 [54], wépchsent a different class of
applications. Some recent studiésl[55] on SPEC 2006 benkkrhave shown very limited
potential for TLS (less than 1%) under very conservativeliaggions. In this chapter, we re-
examine some of these issues and give a more realistic as@ssf TLS on these benchmarks
using our state-of-the-art TLS compiler. Also we compare tehavior of SPEC 2000 and
SPEC 2006 benchmarks and show more potential parallelismlf in SPEC 2006 than in
SPEC 2000.

Our study differs in previous studies on several aspectbilars we believe that our results

17

18
are able to accurately identify more potential for TLS thiaose studies. Kejariwagt. al [55]

did not take into account the effect of compiler optimizaahat could improve the perfor-
mance of TLS, while previous studies [25] 19] 20|, 44] havenshthat compiler-based loop

selection and optimizations, such as code scheduling, igaifisantly improve the efficiency

of TLS. Furthermore, Kejariwagt. al [55] only considered innermost loops for TLS. In this
chapter, our study is not limited to a particular loop levather we attempt to parallelize all
loops that can potentially benefit from TLS. More importgnithstead of a high-level study on
performance potential of TLS, we use a state-of-the-art @piler to parallelize TLS loops

and study their performance using a detailed simulatioragtfucture. Our results show that,
with TLS-oriented compiler optimizations and optimal stilen of loops, we could achieve an
average of about 60% speedup for SPEC 2006 benchmarks oaticadid be achieved by a
traditional parallelizing compiler such as Intel's ICC gaiter. In comparison, the SPEC 2000

benchmarks achieve only about 32% geometric mean speedup.

3.1 Related work

There has been a large body of research work on architectas&in and compiler techniques
for TLS [14,[45, 19200, 21, "25]. But all of these papers baseit studies on SPEC 2000 or
other older benchmarks, rather than the more recent SPEE8®hmarks. The SPEC 2006
benchmarks represent a newer class of applications an#hipirtant to examine whether the
conclusions drawn for SPEC 2000 will hold for these appiices. In this chapter we address

this issue by conducting a detailed study of SPEC 2006 beadtusing a state-of-the-art TLS

19

compiler.

Oplingeret. al[15] presented a study on the limits of TLS performance ones8RECINt95
benchmarks. The impact of compiler optimizations and th& Bkerhead were not taken into
account in that study. Similarly, Wargt. al [56] presented a limit study for module-level
parallelism in object-oriented programs. In contrast,hiis study, our aim is to illustrate the
realizable performance of TLS using a state-of-the-art Ta®piler, while taking into account
various TLS overheads.

Kejariwalet. al[57] separated the speedup achievable through traditibredd-level paral-
lelism from that of TLS using the SPEC2000 benchmarks assyarioracle TLS mechanism.
They [55] later extended their study to the SPEC 2006 bendtsndt is worth pointing out
that they concentrated on only inner-most loops and usdubpilistic analysis to predict TLS
performance. We also separate the speedup achievablglhtradlitional non-speculative com-
pilation techniques from that requires TLS support; howewe consider all loop-levels instead
of just the inner-most or the outer-most loops. Furthermitrey manually intervened to force
the compiler to parallelize loops that were not automdgigadrallelized due to ambiguous de-
pendences. In this chapter, we utilize an automatic péizatig compiler that performs trade-off
analysis using profiling information to identify parallélréads—no programmer intervention

needed.

20
3.2 Dependence analysis of SPEC 2006 loops

Consider the example loop shown in Figlire_3]1(a) with twcssiiteration dependences: a
register-based dependence through regi®eand a potential memory-based dependence through
pointer p andg. In each iteration of the loop, the value r& from the previous iteration is re-
quired, thus the compiler must insert synchronization afp@ns (thesait/signal pair) to en-

sure correct execution (shown in Figlire 3:1L(b)). In the cditske memory-based dependence,
the cross-iteration dependence only occurs when the lsaddh pointerp accesses the same
memory location as the store through poirddrom a previous iteration. Since the compiler is
unable to determine the address pointed tplandq at compile time, it must insert synchro-
nization operations (theait mem/signal mem pair) as shown Figure_3:I{b). However, such
synchronization can potentially serialize execution wessarily, as shown in Figufe_3.3(c).
With the help of TLS, the compiler can parallelize this logpignoring ambiguous data de-
pendences and relying on the underlying hardware to detetceaforce all data dependences
to ensure correctness at runtime. Figure 3]1(d) shows tiedgecuting in TLS mode: when
the store through pointerin threadl accesses the same memory location as the load through
pointer p in thread3, the hardware detects the dependence violation andteetttarviolating
thread.T hread?, which does not contain the destination of any inter-tthiéeta dependence, is
able to execute in parallel witthreadl. This parallelism cannot be exploited without the help
of TLS. However, if the dependence betwestorex q andload * p occurs frequently causing
speculation to fail often, it can potentially degrade parfance. In such cases, it is desirable

for the compiler to insert explicit synchronization to avenis-speculation.

21

Understanding the inter-thread data dependence patteemsapplication is critical for es-

timating its TLS performance potential. In this section,amalyze the dependence information

collected through data dependence profiling, and estirhatigrtportance of TLS hardware sup-

port in exploiting parallelism in the SPEC 2006 benchmarks.

do {
ic');d *p;
r3= r2 + 2;
r2= rl + 1;
store *q;

} while (condition)

(@) A loop with loop-carried register-based and
memory-based data dependences.

Thread 2

Walt_mern(T

Thread 1

Load Ox32

1
]
1
1
]
Store OxG :

signal_memi{) |- —————»
—1 Load Oxas

— — - - Indicates
weAiting

(c) Execution serialized due to synchronization.

Load 0x32 -

Store OxB4

do {
wait_mem()
load *p;
wait ()
r3 =r2 + 2;

r2 =rl + 1;
signal()

store *q;
signal_mem()
} while (condition)

(b) Loop parallelized with synchronization.

Thread 1 Thread 2 Thread 3

Load 0x48
depﬁ’"dgnce | > Load 0xG4

Restart --> x

— Load 0x64

Store Ox96

Store Ox64

(d) Parallel execution in TLS mode.

Figure 3.1: Using synchronization and speculation to fyaitiger-iteration data dependences.

The weight of each loop in an application is summarized astimbined execution time

coverage which is defined as the fraction of total execution time @ grogram spent on a

22

main{) {
while { condition1) {
while { condition2) {

}
process();
}
}

process() {
while { condition3) {
while { conditiond) {
foo();
}
foof);
}
}

foo(){
while { condition5) {

}

H

Source code

Profile:
<100%,4,8,0.9>

<20%,2,20.3>

<60%,3,1,0.1>

=25%,2,00>

<15%,1,0,0

<15%,1,00>

Loop graph

1 :loop node
) :function node
— : nesting relationship

Figure 3.2: An example loop tree showing nesting relatignsletween loops. Each loop is
annotated with four numbers: coverage, number of intezatthrregister-based dependences,
number of inter-thread memory-based dependences, anddhehility of the most probable

loop.

23
particular loop. In this chapter, this weight is estimatathg hardware performance coun-

ters. To accurately estimate thembinedcoverage of a set of loops, the nesting relationship
of these loops must be determined—this is done with the hiekp loop tree (for example,
Figure[3.:2). An example program and its corresponding ldaetire along with profile infor-
mation is shown in Figure—3.2. In the examplepp4, Loop5 andloop5’ have no inter-thread
memory-based data dependence. ttmmbined coveragef loops with no memory-based data
dependence is the cumulative coveragd @p4 and loop5’, which is 40%. (Coverage of
loopb is not included since it is nested insideop4). The loop tree structure used in this
chapter is similar to the loop graph described by Wahgal [44], except for loops that can
be invoked through different calling paths are replicatedbbp tree. For examplé,oop5 in

Figurel3.2 is replicated, since two different call paths loath lead to the invocation afoop5.

Table 3.1: SPEC 2006 benchmarks.

Benchmark| No. of Loops No. of dynamic
loop nesting levels|
bzip2 232 11
mcf 52 5
gobmk 1265 22
hmmer 851 5
sjeng 254 10
libquantum 94 4
h264ref 1870 15
astar 116 6
milc 421 11
namd 619 4
povray 1311 15
Ibm 23 3
sphinx3 609 8

In this chapter, we consider the SPEC CPU 2006 benchmarkiemwm C or C++ (shown

in Table[3:1). Also we consider the SPEC CPU 2000 benchmariktewin C[32. We ignore

Table 3.2: SPEC 2000 benchmarks.

24

Benchmark| No. of Loops No. of dynamic
loop nesting levels|
gzip 191 6
vpr_place 416 5
vpr_route 416 6
gcc 2429 10
mesa 903 6
art 74 6
mcf 53 5
equake 91 5
crafty 405 9
ammp 358 10
parser 537 10
perlbmk 751 8
gap 1659 10
vortex 230 7
bzip2 159 9
twolf 888 7

the programs written in FORTRAN since they tend to be pdratieentific programs that can
be successfully parallelized using traditional paratialj compilers and do not require TLS

support.

3.2.1 Inter-thread register-based data dependences

We first focus on the relatively straightforward registaséd value dependences. For these de-
pendences, the compiler is responsible for identifyingrirtgions that produce and consume
these value and generate synchronization to ensure cexectition. For example, in the loop
shown in Figur§ 3.I(h), the compiler identifies the crosgation register-based dependence due
to registerr2 and inserts explicit synchronization, as shown in Fiuiéd]. We count the num-
ber of inter-thread register-based dependences (truendepees) for each loop; and estimate

the combinedcoverage of the set of loops with certain number of regiséesed dependences.

25

12

1_ P 8 B i n B m a I i]
v (8 ’f,? 4_,_.‘ — HL
= v
o —7"7771

I 1 2 3 4 f B 7] g =9
no. of inter-thread register dependences

—+—1bzp2 =48 mef 445 gobmk 456 hmmer —+—453 gjeng
—— 467 [bouantum —— 464 h2Gdref —473aster —433mic —— 444 namd
——3povray —i 470 |m —— 4872 sphiny Example

(a) The combined execution time coverage for SPEC 2006 Inegudts.

12 ——at
—5—aquake
14 . ; - o ||—mesa
f i A A /*/ amrmp

/ o
- ——ypr_place

08 ; > 4 7
7 17T =
0F f £ ——bzip2
/ __j_ 7 __,;/ / —gec
04 {-‘ I/ / - twolf
/ % a’f{ - ypr_route
03 3 rr,-f —o—parser
? / ~—petlbmk
4 ' I —

coverage

04— T # T B T T T _»_gzip
o 1 2 3 4 5 b Wule

no. of interthread register dependences a4
—— crafty

(b) The combined execution time coverage for SPEC 2000 lmears.

Figure 3.3: The combined execution time coverage of looph wier-thread register-based
dependences

26
The results for SPEC 2006 are presented in Fifjure B.3(a) @nesponding results for SPEC

2000 are shown in Figufe_3:3[b). Theaxis represents the number of register dependences
and the y-axis represents the correspondiombinedcoverage estimated for a certain set of
loops. If a benchmark has a combined coveragg fafr x number of dependences, it indicates
that loops with less thar dependences have a combined coveragé%f For example, for
the loop in Figuré_312, the combined coverage of loops with Rsser register dependences is
60%.(coverage of loop2+loop4+loop5). The benchmarks hiigh combined coverag€j for

a small number of dependencesg, (potentially exhibit high degree of parallelism. We found
that the high coverage loops in most benchmarks have imtead register-based dependences.
Thus, an effective TLS compiler that is capable of synctriogi a few inter-thread register
dependences is essential. Zleai al [19] have described how such a compiler can be im-
plemented; and further shown that aggressive compilerdsding techniques can reduce the

critical forwarding path introduced by such synchronizas.

3.2.2 Inter-thread memory-based data dependences

Unlike register-based dependences, memory-based deusysdare difficult to identify using
a compiler due to potential aliasing. To ensure correctrteaditional parallelizing compilers
insert synchronizations on all possible dependences. Withor TLS support, the compiler
is able to aggressively parallelize loops by speculatingrobiguous data dependences. How-
ever, the performance of such execution depends on théhtiosl of such data dependences

occurring at runtime. If a data dependence does occur, adhran potentially violate data

27

] 1 2 3 4 g g i g ==9

no. of dependences

—a— 433 milc —a— 453 poray 462 libguantum
—n— 464 h264ref —a—470.Ibm —— 452 sphinxd

(@) The combined execution time coverage for benchmarks
with few inter-thread memory dependences. (Class 'A).

12

P = = e il
=] /
M7 ,/ /
e o o = J

1] 1 2 3 4 5 g Z g ==9

Ho. of dependences

——401 bzip2 —s—428mcf —a— 444 namd —s— 4435 gobmk
—4—456 hmmer —e— 453 sjery —»—473astar ——Example

(b) The combined execution time coverage for benchmarks
with inter-thread dependences. (Class 'B’)

Figure 3.4: The combined execution time coverage of loopa asction of the number of
inter-thread memory-based data dependences.

28

1.2

0018-

207 =
o 7
Tk i

0% 0% 20% 3% 40% 5S0% B0% Y0% 80% 90% 100%

Probabittiy of depemlences

——40 bzip2 —=—429mcf —a—d444 namd 445.obmk
—a—456 hmmer ——458 sjeny —e—473astar —s—Example

Figure 3.5: The coverage of loops with inter-thread mentmyed data dependences less than
a certain probability.

dependence constraints, and thus must be squashed aretrgesk recovery codes can be ex-
ecuted to restore correct state. For example, there is aigamis cross-iteration dependence,
shown in Figur¢ 3.1(%), due to load through pointprand store through pointexq. Although
the compiler cannot determine whether there is a depend®tesen«p andxq, it can obtain
probabilistic information through data dependence profileghis section, we conduct detailed
analysis on inter-thread memory-based dependence usfiing information.

We classify benchmarks based on the combined coverage s {oibh different number of
memory-based dependences. First we present the resuB® €€ 2006. Figurg 3.4{a) shows
the results of benchmarks (points corresponding to M838., 453POVRAY, 462LIBQUAN -
TuM and 470uBM in Figure[3.4(d) overlap) that can achieve a high combine@rege with
only a few inter-thread memory-based data dependencess (&3; Figure[3:4(0) shows the
rest of the benchmarks (class 'B’). For benchmarks in clas®0% or more of the total execu-

tion can potentially be parallelized by only consideringgde with no inter-thread dependences.

29
These benchmarks can be parallelized without hardwareosufgpy speculative execution, if

the compiler is able to prove independence between threads.

In class 'B’ benchmarks, the speculative hardware suppempatentially useful, since inter-
thread data dependences do occur. Fifgure 3.5 shows thebpitybaf such data dependences
and their corresponding coverage for class ‘B’ benchmaiilte x-axis represents the proba-
bility of inter-thread memory-based dependences and-drds represents the corresponding
combinedcoverage estimated for a certain set of loops. If a benchinaska combined cov-
erage ofC for x probability of inter-thread dependence, it indicates tapk that only have
inter-thread dependences with probability of less thhave a combined coverage@¥%., For
example, for the loop in Figule=3.2, the combined coverageays with only 10% or lesser
probability memory dependences is 80%.(coverage of lolmap8. Other loops are nested
inside loop3). Benchmarks 4zip2, 429McF, 445G0BMK and 473ASTAR can achieve
a large combined coverage, if all loops that only contaira @btpendences that occur in less
than 20% of iterations are speculatively parallelized. sehare the loops that could potentially
benefit from TLS support.

Some benchmarks, such as 4%56MMER, 458 SIENGand 444NAMD, can only achieve a
high combined coverage, if loops containing frequentlgtmdng memory-based dependences
are parallelized. These dependences potentially requirehsonization. Previous studies has
shown that frequently occurring memory-based data depeedecould be synchronized by the
compiler with profiling datall20]; and aggressive code scifiag could reduce critical-path

length introduced by such synchronizatibn![58].

1.05
1 - L. &

0.95 *L'/
g 4/; 7 ——att
§ s + —=—equake
3 / —&—MEsE
© s L

0.8
D?S T T T T T T T T T
o 1 2 3 4 5 B 7 8 ==8
Ho. of dependences

(@) The coverage for benchmarks with fewer inter-thread

memory dependences. (Class 'A)

12 EE—
1 1 = R S VA S —s—ypr_place
P a e il
o 08 jﬁ%—i e / ——hzip2
g i/ il ——qo
§ 08 J Fi— -/—“/ / Ff —o—twnlf
8 { /—)’4@—/ / —&—vpr_route
L J X / g parser
[—=a—netbmk
U C_d /f"_--:;‘—_”}’L—'/j ke ZZ‘P
0 4 .—'/. T T T T T T T —s—yarex
o 1 2 3 4 5 B 7T 8 =9 |
No. of dependences —+—craty

30

(b) The coverage for benchmarks with significant inter-dkdre
dependences. (Class 'B’)

Figure 3.6: The coverage of loops with certain number ofritiieead memory-based data de-
pendences in SPEC 2000

31

12 ——ammp
14 —a—fncf
5 —aoyr place
L 08 T /._a.._l_,, —— bzip2
g 0g - - —=—[arser
: M’/ L —a—telf
9 pyg ‘= f// e permk
0z — m / —
et ok
0T T T T —a—\{IF rilte
ap & 3 o o o o 3 © o ap
SR R R P R
—i—YOHEN
Probability of dependences v craly

Figure 3.7: The coverage of loops with inter-thread mentmyed data dependences less than
a certain probability in SPEC 2000.

Figure[3.6(d) shows class A benchmarks in SPEC 2000—heacks with few inter-
thread data dependences; Fidure 3]6(b) shows class 'Bhbearks—benchmarks with several
cross-iteration dependences. Comparing against SPEQ-280s, shown in Figufe 3.4]a) and
in Figure[3:4{0), we found that SPEC 2000 suite has fewersclisbenchmarks. Also the
class 'B’ benchmarks in SPEC 2000 can only achieve high coetbcoverage by parallelizing
loops with several cross-iteration dependences. Furirernby examining Figule—3.7, which
presents the frequency of data dependences that must hdadpdaduring parallel execution,
we found that with the exception afuMP, MCF, VPR_PLACE AND BZIP2, class 'B’ benchmarks
in SPEC 2000 must speculate on high-probability crossditem dependences to achieve a high
combined coverage. This is consistent with results refddiyeprevious studies: in SPEC 2000,
only a few benchmarksammP, MCF, VPR_PLACE, demonstrated high degree of parallelism
under TLS. The data dependences characteristics in SPBGRRDSPEC2006 illustrate that

SPEC 2006 can potentially achieve a higher degree of pisall@nder the context of TLS.

32
3.2.3 Pitfalls

Even though profiling inter-thread data dependences isatmcdetermining the suitability of
using TLS to parallelize a loop, TLS performance cannot Ipectly inferred from this infor-
mation. In fact, TLS performance depends on many otherifastach as the size of the threads,
thread spawning overhead, loop iteration counts, and eggréssive code scheduling can re-
duce the impact of synchronization for inter-thread depends [[1B| 20, 44]. Furthermore,
library calls can also cause inter-thread data dependewtésh is not taken into account here.
A common example is the call tmalloc which could potentially cause inter-thread depen-
dences due to its internal data structures. Such depersleangotentially be eliminated using
parallel libraries.

From the data presented in the earlier sections, we can aekdth SPEC 2006 and SPEC
2000 benchmarks have numerous inter-thread dependenadsashild benefit from TLS hard-
ware support. Such TLS hardware support could help to izl benchmarks in class 'B’
with low-frequency data dependences and could also helpdimpiler in handling those am-
biguous inter-thread data dependences (in class 'A beadksh Also, many benchmarks have
frequent register and memory dependences which could bémefi aggressive code schedul-
ing by the compiler to reduce critical-path lengths introeldi by synchronizations and increase

execution overlap between threads.

33

Table 3.3: Architectural parameters.

Parameter

Fetch/Issue/Retire width 6/4/4

Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports

Register Update Unit 128 entries
(ROB,issue queue)

LSQ size 64 entries
L1l Cache 64K, 4 way 32B
L1D Cache 64K, 4 way 32B
Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk,

18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize
Physical registers/thread 128 Integer and 128 Floating point registars
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4

3.3 Compilation and Evaluation Infrastructure

To evaluate the amount of parallelism that can be exploitithl Rardware support for coarse-
grain speculation and advanced compiler optimizationrteldgy in the SPEC 2006 and SPEC
2000 benchmark suites, we simulate the execution of thesehb®arks with our detailed archi-
tectural simulator discussed in chagfkr 2.

In this study, we use the reference input to simulate all beyarks. In case of benchmarks
with multiple input sets, the first input set is used. To getaanurate estimate of TLS per-
formance, we parallelize and simulate all loops (with asi€a05% dynamic execution time
coverage) in each of the benchmarks. Based on the simulpestigp of each loop, we use

our loop selection algorithm to select the best set of loopgklvmaximizes the performance

34

of the entire benchmark. To report the speedup achieveddenkire benchmark, the aver-
age speedup of all the selected loops is calculated and te€idly the coverage of the loops.
For each simulation run, several billion instructions astfforwarded to reach the loops and

different samples of 500 million instructions are simutate cover all the loops.

3.4 Exploiting Parallelism in SPEC2006

In this section, we evaluate the amount of parallelism atél in SPEC 2006 benchmarks using
the framework described in Secti@nl3.3. To isolate the [misth that cannot be exploited
without the help of TLS, we take three increasingly aggkesattempts to parallelize loops in

SPEC 2006 benchmarks:
Type |: Loops that are identified as parallel by a traditional cospil

Type ll: Loops that have no inter-thread data dependence at rurfomidé particularef
input set used), but are not identified as parallel by the demp.k.a. Probably Parallel

Loops

Type lll: Loops that contain inter-thread data dependences, thugeetlS support to

parallelize, a.k.a.True Speculative Loops

Table 3% shows the percentage of total execution that cgratadlelized when loops of
different types become parallelizable.
To determine the performance impact associated with jplizatig a particular type of

loops, the set of loops belong to that type are selected tomiex overall performance. The

35

Table 3.4: Coverage of loops parallelized.

Benchmark Coverage (%) No. of loops
I [LI I VI T A A I | B I T

milc 13| 79 79 5 | 22 22
Ibm 0 | 100 | 100 0 |1 2
h264ref 0 |53 83 2 |32 36
libquantum | O | 98 98 1 |5 5
sphinx3 40 | 83 91 11| 19 21
povray 0 3 63 0 4 5
bzip2 2 |3 31 4 |6 14
mcf 0 |85 93 0 |6 6
namd 1|8 96 7 |22 50
gobmk 0 |6 13 0 1 5
hmmer 0 |0 79 2 1 6
sjeng 0 |0 1 0|0 6
astar 0 |5 99 0 |2 8

overall program speedup is then calculated by considetiegspeedup and coverage of the
selected loops. For example, let the selected set of loopgd-hel,, L3, ... Ly}. Let their
corresponding coverage KeCy, Cy, Cg, ... Cy } and their corresponding speedup{&;, S,

S5, ... § }. The overall program speedup is then calculate8 psedup= 1/((1-C1 + C; + ..
Cn) + Ci/S +Ci/S + .. C1/S,). In this experiment, we assume it is always possible totifien
the optimal set of loops that maximize overall performaryever, in reality, the compiler

can potentially select sub-optimal loops due to perforreastimation erroi [58].

3.4.1 TypelLoops

We applied the Intel C++ compilelr [59] to the SPEC 2006 beratisito select parallel loops.
The benchmarks are compiled witb3 -ipo -parallel -par -thresholdO options. The
option -par-threshold0 allows the compiler to parallelize loops without takingaronsid-

eration thread overhead. The loops selected by the Intgbibeinare then parallelized using our

36

Speedup

||:|Tj,rpe 1 BType 1+2 0Al 13,rpes|

Figure 3.8: Shows the program speedup when different typlmps are parallelized using 4
cores.

TLS compiler and simulated. The speedup achieved by thetedldoops over sequential exe-
cution is shown as the first set of bars in Figure 3.8. With #tweption ofviLc, which achieved

a speedup of 11%, argPHINX3, which achieved a speedup of 7%, none of the benchmarks is
able to speedup over sequential application. Overall, goengtric mean of the speedup is only
1%.

This result is anticipated, since the complex control flod ambiguous data dependence
patterns prohibit the traditional compiler from paraltédig large loops. We have found that in
most benchmarks the compiler has only chosen to paralleiimple inner loops with known
iteration count. It is worth pointing out that, although npattassA benchmarks, such asLc
andLBM, contain loops with no inter-thread data dependences gtim@iter is unable to identify

these loops as being parallel.

37

Nomualized execution time
[}
(a2}
1

8-

Ik
L
[an}

[| [(i [[(i |

ze| g2l ke 2E| k| BE| & 22| k|
o |1 [T o [[F=8 o [F=3 [£=8 t 5] [F=8 = oo [

mile Il |h2E4refpquantumephins3| povray | bzip2 et narmd | gobmk | himmer | sjieng astar

|E.| Busy B Cache misses O Lack of thread O Synchronization B Squash 3@ Otherl

Figure 3.9: Shows the breakdown of execution time while etieg the selected loops normal-
ized to sequential execution time

3.4.2 Typel+ Il Loops

With the addition ofProbably Parallel LoopsclassA benchmarks achieve significant perfor-
mance gain, however, claBbenchmarks remain sequential. The clasbenchmarks gain
68% speedup due to theBeobably Parallel Loopswvhile classB benchmarks gain only 4%.
If the compiler is able to determine that these loops arellpgrave can potentially parallelize
these loops without TLS support. Among the cléasdenchmarks, significant portion of the
loops inSPHINX3 andH264REF areProbably Parallel Loopsand all loops inmiLC, LBM and

LIBQUANTUM areProbably Parallel Loops

3.4.3 Typel+Il+Ill Loops

With the addition ofTrue Speculative Loopsve find that many clasB benchmarks are able to
achieve speedup. With only the$eue Speculative LoopdassB benchmarks gain a speedup
of 42% giving them an overall speedup of 46%.

To examine TLS performance in detail, Figlirel 3.9 shows tlee@ion time breakdown of

38
parallel execution with TLS support (only selected loop®s) aequential execution. TIREQ

bars show the normalized execution time of the sequent&digion running on one core. The
CMP bars show the normalized execution time of the parallel fanmgexecuting on four cores.
Each bar is divided into six segmentBusyrepresents the amount of time spent in executing
useful instructions and the delay due to lack of instructewel parallelism inside each thread;
Lack of threadsepresents the amount of time wasted due to the lack of phthaikads (prob-
ably due to low iteration count in a loop$ynchronizatiorrepresents the amount of time spent
in synchronizing frequently occurring memory dependerares register dependencdsache
missegepresents the amount of time the processor stalled duehe caissesSquashrepre-
sents the amount of time wasted executing instruction tteaeeentually thrown away due to
failed speculationQOthercorresponds to everything else. In particular, it inclutlee wasted
due to speculative buffer overflow and load imbalance betvee@secutive threads.

We first will focus on the clasB benchmarks. IRMMER, the loop afast-algorithms.c:133
is selected for parallelization, however it has many itleead dependences that require syn-
chronizations. These synchronizations create a critwatdrding path between the threads and
serialize execution. Thus, by performing speculativeriredion scheduling to move the produc-
ers of these dependences as early as possible in the exefiflitd4], the parallel overlap is
significantly increased; and the benchmark achieves a 9@%ramn speedup. Similar behav-
ior is observed ilNAMD, where synchronization and instruction scheduling leads 164%

program speedup.

39
For ASTAR, the important loop is atray2_.cpp:100, which has a few inter-thread de-

pendences. Some of these dependences are frequent, arataéhschronized; others are
infrequent, and thus are speculated on. Without TLS suppms$e infrequent occurring depen-
dences must be synchronized, and can lead to serializatithre @xecution. With the help of
TLS, this loop achieves a 17% speedup.

POVRAY, although a clasé benchmark, is able to benefit from speculation. The importan
loop incsg. cpp:248is atrue speculative looiith a few mispeculations, thus it is non-parallel
for a traditional compiler. Unfortunately, the selectedde have small trip counts, and the cores
are often idle; thus the benchmark is only able to achieve denade program speedup of 9%.

Not all benchmarks are able to benefit from T BMK has many loops with low trip
counts, thus many execution cycles are wasted as the carédliag. Loops with large trip
counts are not able to achieve the desired speedup for tvgonea first of all, the amount
of work in consecutive iterations is often unbalanced; sdbp many iterations have large
memory footprints that lead to buffer overflow of the spetiwastates. The geometric mean
of the thread size for the top 50 loops (in terms of coverag@0D,000 instructions. Overall,
GOBMK only achieves 1% performance improvement with TLS support.

Loops inSJENG have many inter-thread dependences that occur in 70% dfeaditions,
and thus need synchronization. However, the critical fodivey path introduced by these syn-
chronization cannot be reduced through instruction sdivegldue to intra-thread dependences.
Thus,SJENGwas unable to benefit from TLS.

To summarize, TLS is effective in parallelizing both cl#sand clasB loops. Overall, if

40

Table 3.5: Coverage of loops parallelized in SPEC 2000.

Benchmark Coverage (%) No. of loops
| P00 | T++00 2 [T+00 | T+1+101

mesa 0 4 37 0|6 7

art 7 179 79 217 7
equake 14 | 90 20 419 10
gzip 0 |9 59 0|1 5
vpr_place 1|2 80 0|1 7
vpr_route 0 25 74 0|3 7
gcc 7 9 27 2|11 25
mcf 0|0 91 0] 2 6
crafty 0|0 1 0|0 3
ammp 0 15 48 0|3 7
parser 0 23 51 0|21 33
perlbmk 0 |7 57 0|2 9
gap 0 0 30 00 2
vortex 0 8 20 02 2
bzip2 0|0 81 0|0 19
twolf 0 | 17 26 0|5 5

we select the optimal set of loops, we can achieve a prograsdsyp of about 60% (geometrical

mean) , in contrast to a traditional compiler, which onlyiaghs a 1% program speedup.

3.5 Comparison with SPEC2000

In this section, we evaluate the amount of parallelism altel in SPEC 2000 and contrast it
with results from SPEC 2006.

Table[35 shows the percentage of total execution that cparadlelized when loops of dif-
ferent types become parallelizable for SPEC 2000 benchsn&igure[3.10 shows the speedup
for SPEC 2000 benchmarks due to different types of loops.

As in the case of SPEC 2006 the compiler fails to identify paréoops, leading to only
2% overall performance due to Type-l loops. Except in Clag@enchmarks\RT andEQUAKE

the compiler could not identify any parallel loops.

41

|8 Type-1 B Type-142 OType-14243

Figure 3.10: Shows the program speedup when different typlesps are parallelized using 4
cores for SPEC 2000.

From Figure (3110, we can see that tAmbably Parallel Loopshave a geometric mean
speedup of 10%. Among the Class-A benchmarks, almost albtpes do not suffer from any
mis-speculations and thus @eobably Parallel LoopsBut among Class-B benchmarks which
have inter-thread dependences, the geometric mean speedupProbably Parallel Loopss
only 3%. T With the addition offruely Speculative Loopshe speedup for Class-B increases
to 19%. This shows the importance of supporting TLS to explbthe potential parallelism in
SPEC 2000 benchmarks.

When compared to SPEC 2006 benchmarks the overall speediyi?4% where the
SPEC 2006 achieved 60%. This clearly shows the trend towante parallelism in more

recent class of applications in SPEC 2006 suite.

42
3.6 Conclusions

Previous studies of SPEC 2006 based on high level analysgsst@wn only a limited potential
for TLS. These studies did not taken into account the berafitempiler-based optimizations.
In this chapter, using a state-of-the-art TLS compiler, hasthat SPEC 2006 applications can
be successfully parallelized speculatively with TLS.

We show that often the traditional parallelizing compilannot prove independence due to
the existence of complex control flow and ambiguous datassese even if many benchmarks
contain parallel loops. With the help of TLS, thgs#tentially parallel loopsan be parallelized,
and thus potentially allowing six benchmarkaLc, LBM, H264REF, LIBQUANTUM , SPHINX
andPOVRAY, to achieve a speedup of 78%, if the best set of loops aretsdleEurthermore,
TLS can parallelize loops that cannot be parallelized hyitianal compilers due to infrequent
inter-thread dependencesuly speculative loopgs With TLS, benchmarkszip2, MCF, NAMD,
GOBMK, HMMER, SJIENGandASTAR can potentially achieve an additional 46% speedup. Over-
all, with four cores we can achieve a speedup of 60% on alllreacks (geometric mean) and
with eight cores the speedup can reach 91% when compareduergél execution.

When compared to SPEC 2006, the SPEC 2000 benchmarks haeeimterthread de-
pendences leading to fewer class 'A benchmarks and oveealormance of only 26% when
compared to 60% in SPEC 2006. This shows a trend towards raca#igd applications and the
need to support TLS in future multi-threaded/multi-corehétectures to exploit this available

parallelism.

Chapter 4

Efficient TLS support in SMT

Most previous work on TLS assumed CMP based architecturéle whly a few have con-
centrated on SMT based multi-threaded architectures.tiBgiSMT based speculative multi-
threading approaches either use complex hardware [60fdimiged resources like Load-Store
Queues(LSQs) 6, 26] to buffer speculative results, anetond load addresses to check for
dependence violations. The advantage of LSQ-based medhioatithe LSQs are already avail-
able to the processor, so the technique does not need any magiifications to the processor
architecture as in the case di_[60]. The main disadvantagesiing LSQs is their limited size
since it is not cost effective (or power efficient) to havey&at. SQs. Due to this consideration,
LSQ based architectures can support only small threadsolutesearch []44] shows that if
we need to consider a more realistic overhead of forking eathrit becomes more difficult to

justify at small granularities. Hence, it is important tgport larger threads.

43

44
In this chapter, we propose a novel cache-based archiéeituimplement speculative mul-

tithreading in SMT processors that only requires a few elsitsito each cache line in existing
L1 cache in SMT. Also our approach can handle large thread® siow the entire cache can

be used to buffer results and to check for dependences.

4.1 Related Work

Speculative multithreading architectures have been etutiitensely during the past decade.
Earlier architectures were based on special hardwaretstescfor dependence checking like
the address resolution buffer (ARB) ih_[37], and the memadsahbiguation table (MDT) in
[61]. These special hardware structures are of limitedaimbneed extra cycles to access them.
To avoid these limitations cache-based architecturessiiexulative versioning cache (SVC)
[38] and STAMPede [16] were proposed.

When compared to speculative multithreading on chip mudtpssors (CMPs), there are
very few studies on supporting speculative multithreadoxgSMTs. In [62], private L1 cache
for each context is used to buffer speculative values andegertience checking. In DMT[6]
and in IMT [26] an enhanced LSQ is used.

The main limitation of the LSQ-based approach is the limie of the queue. To over-
come this limitation we propose a cache-based scheme irchiister. We draw many ideas
from the cache architectures proposed for CMPs. The diftera@s that the CMP-based ar-

chitectures have private L1 cache for each core and is usedffier results. The dependence

45
checking hardware is also distributed among different Ldhea. In our approach, all the con-

texts in the SMT share the same cache.

Concurrent to our work, STAMPed&_[63] has extended the c@chtcol described in
[186], to support shared cache architectures. Their tecienieps studied in the context of multi-
core processors using shared cache. [Inl [64], shared L2 ¢tmcdesl technique was used to
speculatively parallelize database applications. Thdhgih mention that it could be applied to
SMT processors all their results and conclusions are for §MMile our scheme is specifically

aimed at SMT processors.

4.2 SMT model

We consider a SMT architecture where many resources liké fgieue and issue queue are
fully shared [[65]. Figurd_4]1 gives a block diagram of the SM@hitecture. When more then
one thread are actively executing, we need to choose whieladhto fetch intructions from
at every cycle. We use the ICOUNT policy shown in“1[65] to decah the thread to fetch
from. Also when instructions from multiple threads are setmlcommit, the instructions from
non-speculative thread is given more priority.

To implement speculative multithreading, we need hardwapport to buffer results from
speculative threads and detect dependence violation bettieeads. In sectioh 4.3, we first
present a simplified scheme that supports only one spemulditiead, and in sectioh_%.4 we

extend this scheme to four (or more) threads.

46

Fetch queue

CEETTTTH e
table oL
cache
Fetch Lnit Decodes unit
RUU Load store
T Wnit guesue
A Function
cache units

Register
File

I:l - Addedimadified for speculative multithreading

I:l - Shared between threads
I:l - partitioned between threads

Figure 4.1: SMT Block Diagram

4.3 Simplified Two-Thread Scheme

In this section, we consider a SMT processor with only twedlls. As there are only two
threads, at least one of the threads has to be non-speeulaév there will be at most one
speculative thread. In such a two-thread SMT, we only neadroduce two extra states to each
cache line Speculative Valid (SV) and Speculative Dirty (SBAch cache line also needs two
extra bits -Speculative Load (SL) and Speculative Modified (8VMjupport data dependence
checking. In the proposed scheme, all of speculative datlept only in the shared L1 cache,
and all of the data stored in L2 cache are non-speculativgur&iZ4.2 presents the cache-line
state transitions in this scheme. In Figurel 4.2 the tramstare of the form 'Command from
processor / Action taken’. The processor can issue loark,stpeculative load and speculative

store commands to the L1 cache.

Speculative value buffering When a speculative thread writes, the value is stored intheesl

L1 data cache with the SM bit of the cache line set and the clwbdransitions to the

a7

Ld / Miss
fetchfroml2

N
<-$pLd/ Mis

. sfetch |
\ fromLZsetSL |
4y .

Sp St/ Miss M / T
fetch from 1.2, / spstiwe, -
setSMi \ SpStiset /setSMi

L sy

Figure 4.2: Two Thread Scheme - Cache State Transitions

SD state. The value stays in the cache till the thread is ctienor squashed. Thus, the

L1 D-cache acts asstore bufferthat stores speculative updates.

Dependence Violation DetectionWhen a speculative thread issues a load operation, it first
checks if a speculative thread has already written the vall@ewever, by having just
one SM (speculative modified) bit for each cache line, we cabe sure which word
in a particular cache line was written by the speculativedtr To allow more precise
dependence information, we could maintain one SM bit (Sktiefach word in the cache
line. If the SMi bit is not set, the SL (speculative load) bitlwe set and the cache line
transitions to SV (speculative valid) state, as this loadadcause a possible dependence
violation, when a non-speculative write arrives later.

Here, when a non-speculative thread writes into a cacheifitiee SL bit is already set,
it indicates that the speculative thread has read a stale vahe speculative thread will

be squashed and restarted.

48

Non-speculative thread executionlf the state of the cache line being written to is SD (spec-
ulatively dirty), the non-speculative thread writes théueadirectly to L2 cache. Also, it
writes the portion of the data non-overlapped with the sladiely modified data (indi-
cated by SMi bits) into the L1 cache. This merging is donehsbthe speculative thread
can get the most recent non-speculative value from L1 caélieo this simplifies the
commit operation.

Reads by a non-speculative thread to a speculatively mddifie (SD) are treated as a
cache miss While handling this cache miss the non-speculative thtakes the value

directly from the L2 cache.

Replacement policy Speculatively modified cache lines or the lines with the Slsbt cannot
be evicted from the cache. If evicted, we lose informationcivitan lead to incorrect
execution. When we have to replace a line, a line which has nbthe SL and SM bits
set is selected.

If a non-speculative thread needs to replace a line and dildd a clean line, it avoid
replacing the speculative line by directly sending the estjuo L2 cache. In case of
speculative thread, the thread is suspended. Once thelapexthread becomes non-

speculative, the SL and SM bits are cleared to allow it toicort its execution.

Commit and Squash When a thread commits, both the SL and SMi bits are cleareds Th
can be easily implemented as a gang-clear operation. Ualliiex schemes where every

speculative value needs to be written to the cache at theé pbcommit (which could

49
potentially take hundreds of cycles), the commit operatian be done in just one cycle

in our scheme by gang-clearing both SL and SMi bits.

When a thread squashes, the SL bit in all cache lines is clégesg-clear). The valid bit
for a cache line is also cleared if the SM bit is set. This ie like conditional gang-clear
operation used in Cheriy[56]. It was shown that this operatan be easily implemented

in only a few cycles.

4.4 Four-Thread Scheme

When executing more than one speculative thread, the L1checaeeds to buffer results from
two or more threads, so the two-thread scheme cannot beldiegiplied. In this section we

propose a scheme which can efficiently handle more than @oaiktive thread. The basic idea
is to use the entire set in the cache to buffer different vassif the same line created by the
different threads. We will use a 4-thread system to simplify explanation. The scheme could

be similarly extended to systems with more than 4 threads.

Speculative Buffering The L1 D-cache has to buffer results from multiple threadsys need
to maintain different versions of the same cache line. Althef versions are kept on
the same set in the cache. We introd@@ener bits (OW) which keep the speculative
thread-id that wrote into the cache line. We need four OWfbitshe four threads. For
a non-speculative cache line, the OW bits are cleared. Buoffof speculative values is

explained in Figurd_4:3(p). Figufe_4.3(b) shows an exampleraithread 2 tries to write

50
a new version of A to a set which already contain versions fitmmead 1 and thread 3.

Store

- Consider OWVY bits as part of tag
- Do Tag matching

hit s hit

~.miss

Replace a line

-Copy non-speculative data
{either from L1 or L2)

|Create version by setting OWV bit\

To dependence checking

Virite value
Set SMi bit
1

(a) Method
Store A, N
(thread 2))
(o oy oWy O
0010‘ Al | 1000| A3 ‘ 0010‘ B1 ‘ 0000| C
2
——
s »
- Evict C
@ Bring A from L2
New value of A written
B (= = =
0010‘ Al ‘ 1000‘ A3 ‘ 0010| B1 | 0100‘ A2
(b) Example

Figure 4.3: Speculative Store Handling

Speculative Load Execution A cache line can be read by any of the four threads, so a single
SL bit is not sufficient to indicate which thread has causegeddence violation. We
introduce a SL bit for each thread on each line of cache (4fbit#l threads). The
execution of aspeculative loadnstruction is explained in Fig_7.9{a). We can see that
the speculative loactan either load from its own version (i.e., a hit), from pres&sor

thread’s version (i.e., a partial hit) and from L2 cache. (neiss - Figure[2.5(b)).

Dependence DetectiorWhen a store executes, it checks whether the versions oatedine

51

Load <th_id>

- Consider OVV bits as part of tag
- Do Tag matching

YA .
< s pit_ >TSS

‘ Search for predecessor ‘

miss __— ~——___ Partial hit
—__Ifexists —=
Read line from L2 ‘ -
Create non-spec.version -Read value from predecessor

-Set SL[th_id] bit

-Set SL[th_id] bit if

-Read value
SMi not set

(:Return valuej)

Figure 4.4: Speculative Load Handling

belong to any of its own successor threads. If SL bit is sedmgrof the successor threads,
the successor thread is squashed along with its succe3$maldest squashed thread is
then restarted. In case if the SL bit is not set, the storetepdae latter thread’s version
if the corresponding SMi bit is not set. This is done so thatl#ttter thread would get the

lattest version of the value stored.

Non-Speculative Thread ExecutionExecution of a load in a non-speculative thread is very
similar to the speculative load shown in Figyre_79(a). Betrion-speculative load does
not set any SL bit, and also the partial hit scenario does ocotiro The execution of a
non-speculative store is also similar to the speculativeaith shown in Figurd_4.5{a),
except that the non-speculative store does not set the OVBhdits. Also, the non-
speculative store merges its value with all versions in tehe. This is done so that the

speculative threads will get the most recent non-speweelagrsion of the cache line.

Commit and Squash To squash a thread, the SL[threif] is cleared for all of the lines in the

cache. This can be done as a gang-clear operation. Alsorthaésliinvalidated if any

52

Read from A1
Load A, _
(thread 2) " Set SL[2] in A1

oW O OW oW
1000| A3 |0010| A1 |0010| B1 |0000| C

(a) Partial Hit

Load A,

(thread 1) >

(o oy oWy O
0100‘ A2 |1000| A3 ‘0010‘ B1 ‘0000| C
2
——
s »
- Evict C
Bring A from L2
- Read value
-Set SL[1] bit
[l (= = =
0100‘ A2 ‘1000‘ A3 ‘0010| B1 |0000‘ A
(b) Example

Figure 4.5: Speculative Load Handling Example

of the SMi bit is set. This is accomplished by a conditionahgyalear operation as in
two-thread scheme.

To commit a thread, the SL [thread] bit and the SMi bits of the thread are cleared. The
commit operation must ensure that there is only one nonugtae version present in
L1 cache. If a cache line to which the current thread wrotedreher version which
is earlier than that of the current thread, then that verameds to be written back and
invalidated. To speedup the commit process, a list of blékcasneeded to be committed

is maintained in a special hardware buffer calbeeherbuffer. Theownerbuffer used is

53
similar to theownerbuffer assumed in[[45] to assist the commit process. In madio

usingownerbuffer, we can potentially overlap the commit process whith éxecution of
the next thread. Our simulation shows that this overheadesano potential performance

degradation.

Speculative State OverflowAs we see in the two-thread case, we cannot replace a line with
SL or SM bit set. If a speculative thread encounters a caclks arid if it is not able to
find a clean line to replace from the cache, it can either suspad walit till it becomes
non-speculative or it can squash the successor threadeasdme its cache lines. In this
thesis we avoid frequent squashes due to swehnflowby forcing the speculative thread
to stall till it becomes non-speculative. While waitinghagad occupies shared resources
like fetch queue, RUU and LSQ. There may be a situation whiktheresources are
occupied by the suspended thread and the non-speculatesdtis unable to proceed,
thus, causing a deadlock. To avoid this scenario, the sgéaithread will give up its

resources when it is stalled.

Speculative Victim Buffer In our approach, we use the different cache lines in the samne s
to buffer the speculative values. When two or more data ioicatare mapped to the
same set, all the speculative versions (from 4 or more tjezhnot be buffered in the
same set leading to overflow. As we saw above such specusddites overflow can lead
to stalling of speculative threads. To reduce the impacuohsverflow due to conflict

cache misses, we introduceSpeculative Victim BufferSimilar to a traditional victim

54

buffer [67] the Speculative Victim Buffebuffers the cache blocks which are replaced
from the cache. Unlike traditional victim buffers, the kscevicted could contain spec-
ulative bits which need to be maintained till the correspogdpeculative thread is com-
mitted. Every speculative load, in addition to the cachdrséte L1 cache, also checks
the Speculative Victim Buffen get the most recent version. If the version is found in the
victime buffer, the corresponding SL bit is set. Every st@aguest searches tpecula-
tive Victim Bufferto check for any dependence violations. Also during commatess,
the speculative versions of the committing thread foundh@Speculative Victim Buffer

are also committed.

To further reduce the stalling due to speculative statefloverwhen a non-speculative
thread misses in L1 data cache and all the versions avaitatiie set are speculative, we

force the non-speculative thread’s request to directlyoghe L2 cache.

Implementation Issues While executing apeculative loadwe may have to search the entire
set in the cache to get the predecessor thread’s cache lilse, vhile detecting mis-
speculation, we need to search the entire set to find if angessor thread has set the
SL hit. These operations can be implemented by adding mgie to the tag matching
hardware but it could increase cache hit time. In our schevaeassume there is special
hardware that does these "whole-set” operations, whichejst keparate from the tag
matching hardware. We need only one instance of this haedasad the whole cache set
is copied into it when we have to perform such whole-set dmera. We assume such

special operations take 3 cycles.

55
4.5 Performance evaluation

In this section we compare the performance of LSQ based TtHitacture with the cache

based two-thread and four-thread schemes proposed indheps sections.

4.5.1 Experimental Methodology

We used the simulation framework described in Chapler 2.speeific processor parameters

used are described in Tadle 14.1.

Table 4.1: Architectural parameters.

Parameter
Fetch/Issue/Retire width 6/4/4
Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports
Register Update Unit 128 entries
(ROB,issue queue)
LSQ size 64 entries
Memory ports 2 read and 1 write ports
L1l Cache 64K, 4 way associative, 32B blocksize
L1D Cache 64K, 4 way associative, 32B blocksize
Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk,

18 cycles subsequent chunks
Branch predictor Bimod, 2K entries
Unified L2 4MB, 8 way associative, 64B blocksize
Branch mis-prediction penalty 6 cycles
Physical registers/thread 128 Integer and 128 Floating point registars
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4

4.5.2 Results

We consider the following configurations:

56

SEQ: This is an out-of-order superscalar processor with pat@mmelescribed in TablE~5.1.
SMT-2: This is an out-of-order SMT processor which can supportttweads at a time using
the two-thread scheme described in Secfiod 4.3. This coatign has the same number
of functional units as in the superscalar.Each line of cda®e9 extra bits (8 SMi and 1

SL).

SMT-4: This SMT processor can support four threads using thetfoead scheme described
in Section[4}. It also has the same number of functionakwastin SEQ. Each line of
cache is augmented with 8 SMi bits, 4 OW bits and 32 SL bits {8for each thread to

avoid thread violations due to aliasing).

LSQ-32 This SMT processor supports 4 threads and uses the LS@-basehanism as in
[26][6]. It has the same number of functional units, but ueesa space for enhanced
LSQs that support speculation. Each thread has 32 LSQ nffigis is similar to the

configuration used in previous studies I[256, 6].

LSQ-64: This SMT configuration is similar to LSQ-32 except that ish&t LSQ entries for
each thrad. We use this configuration to show the impact afgusery large LSQs to

implement TLS.

Figure[4.6(3) shows the speedup of all the four TLS architestover the SEQ architecture
for SPEC 2000 benchmarks. Figufe_4.(b) shows the speedufisréor SPEC 2006 bench-

marks. We see that the SMT-2 architecture performs aboutr0% worse than the LSQ-32

Speadup
&

A S
1) 3@0 ,\o& G@'
‘ﬂ‘\ _55\/)

Ly
NP -
&ra-'& SR

& o

e
i

[og-32 B smi- 2 0 a4 Dlsgr4]

> | PR
40‘{@ ér*é"@ C’F}

(a) Speedup for SPEC 2000 benchmarks.

Speedup

|50 mawT-2 OSMT4 OLS0-64|

(b) Speedup for SPEC 2006 benchmarks.

57

Figure 4.6: Speedup of LSQ-32, SMT-2, SMT-4 and LSQ-64 caomnéions over SEQ.

58
architecture for SPEC 2000 and SPEC 2006 benchmarks condigigly. Over all the bench-

marks it performs about 12% worse than the LSQ-32 architecflihe SMT-4 performs about
4% and 5% better than LSQ-32 architecture correspondirgh5PEC 2000 and SPEC 2006
benchmarks. Over all the benchmarks it performs 4% bettsr tt5Q-32 architecture. The
LSQ-64 architecture matches the performance of the SMEHitacture in all the benchmarks.

To better understand the performance and understand thits wfegach of the architecture
we present the execution time breakdown for parallel regixecution in Figure[4.7() for
SPEC 2000 and Figufe_4.7|b) for SPEC 2006 benchmarks. IméJdLr(b) each bar is divided
into six segmentsBusyrepresents the amount of time spent in executing usefuluictgins
and the delay due to lack of instruction level parallelisrside each thread;ack of threads
represents the amount of time wasted due to the lack of phthtieads (probably due to low
iteration count in a loop)Synchronizatiomepresents the amount of time spent in synchronizing
frequently occurring memory dependences and registemdepeesCache missesepresents
the amount of time the processor stalled due to cache miSspgshrepresents the amount
of time wasted executing instruction that are eventualtgwim away due to failed speculation;
Overflowcorresponds to the amount of time wasted due to speculatite ®/erflow andther
corresponds to everything else. In particular, it inclutlese wasted due to instruction cache
misses, branch mis-predictions and load imbalance beta@asecutive threads.

The SMT-2 architecture which uses only two threads perfonose than other architec-
tures in most benchmarks due to its reduced ability to ekpkmiallelism. For example iRiLC

SMT-4 is almost 2 times faster than the SMT-2. Similar slowdalue to reduced parallelism is

— b2

==

o
t

Normmalized execution time
TS
{

= =T

ha
t

=

i

rafty

at |vpr_place|upr_route | 2quake | m ammp gee PE mesa

|m Busy mWatting formemory oLack of theads o Synchronizaion m Squash @Others @ Overflow |

perbmk] aser | vorex fil

SSE0LLSQMAMT

(a) Breakdown for SPEC 2000 benchmarks.

R

mile: I

h2Bdret (ibouentum | sthingd | poway

mwwwmm%%

i | ek namdﬁ gobmk | bmmer

‘uBusy wWatting formemory oLack ofthreads o Synchranization mSeuash o Cthers |0verluw| HEQLLIGIENT

#

i

seng | adtar

(b) Breakdown for SPEC 2006 benchmarks.

59

Figure 4.7: Execution time breakdown for parallel regioa@iion of LSQ-32, SMT-2, SMT-4
and LSQ-64 configurations normalized to the SEQ configunatio

60
significant in benchmarks likesm ,NAMD ,MCF,HMMER,EQUAKE AND GCC. Also we can see

that the SMT-2 architecture has more wastage due to thredations than other architectures
in benchmarks\RT,VPR_ROUTE,VPR_PLACE, PERLBMK, GZIP, LIBQUANTUM AND GOBMK .
These additional violations are caused dufatse violationsas the SMT-2 uses just one SL bit
for the entire cache block. If the non-speculative threailesito the same cache block which
was read by the speculative thread, the speculative theeesbiarted even if the speculative
thread had read from a different word in the same cache blwak the location written by the
non-speculative thread.

We overcome these limitations in the SMT-4 architecturecivhises 4 threads as in the
LSQ-32 configuration and also it uses additional SL bits jpehe block to do fine-grained de-
pendence checking and thus avéatke violations In LSQ-32 configuration all the speculative
state is buffered in LSQs of only 32 entries in size. When tB&lis full, the thread is stalled
till it becomes non-speculative. This stall due to such sfaive overflow is shown iOver-
flow bars in Figure[[417. We can see this effect is significant ircherarksART VPR_PLACE,
EQUAKE, AMMP, TWOLF, PARSER MILC, LBM AND H264REF. When compared to LSQ-32,
the SMT-4 configuration uses the larger L1 data cache to biiffeesults as seen in Section
4. Due to this we dont see overflow in SMT-4 in most benchmalk addition to increased
stalling, the LSQ-32 also looses performance due to secpreftects that occur because of
stalling. For example in benchmaweR_PLACE the LSQ-32 suffers from increased delay due
to cache misses than the SMT-4 architecture. These segoeffiacts cause more slowdown in

VPR_PLACE than the actual stalling due to overflow. In benchmars which has very large

61
threads (on the order of 100,000 instructions) SMT-4 alsarfoaws.

In benchmarkszip2 in SPEC 2006, the SMT-4 performs worse than LSQ-32 confiigura
Here the LSQ-32 (also LSQ-64 suffer) from overflow and thecalzgive threads are stalled. In
the SMT-4 configuration though the threads are not staltexy;, éventually are squashed due to
dependence violations. Due to increased violations in SNkTperforms worse than LSQ-32
configuration. Similar effect was also seen in benchmakar.

When we consider LSQ-64 configuration which has larger LS@Qes,overflow effect is
reduced leading to better performance. In almost all beacksn the LSQ-64 configuration
matches the performance of SMT-4 configuration leading takqgverall performance in both
SPEC 2000 and SPEC 2006 benchmarks.

We can see that eventhough the LSQ-32 architecture suftersdpeculative state overflow
in many benchmarks, the overall improvement due to the SMcHitecture is only 4.5% over
all benchmarks. This is because many benchmarks do not $tdfa overflow due to their
smaller thread size. To highlight the effectiveness of oMTS} architecture, we show the
performance of only the benchmarks which suffer from spiud state overflow in Figure
3.

From Figure[Z18. we can see that the SMT-4 configuration ped@bout 19% better than
the LSQ-32 configuration and about 5% better than the LSQeifiguration. Even the SMT-2
configuration performs about 1% better than the LSQ-32 cordigon due to reduced overflow

in SMT-2.

62

2.4

Speedhp

[misg-32 msmt-2 Osmt4 Olsg64 |

Figure 4.8: Speedup of LSQ-32,SMT-2,SMT-4 and LSQ-64 &chires over SEQ for selected
benchmarks witloverflowproblem

4.6 Conclusions

In this chapter we proposed novel cache-based schemesgorsdp.S in SMT processors.
We showed how our cache-based schemes can support TLS tithimg large associative
structures like LSQs used in previous approaches. Also du&der size of L1 data cache,
we showed that our cache based design can support largads$hwethout suffering from stall
due to speculative state overflow. Our novel two-thread reeheequires only few bits to be
added to each cache line and with this simple modificationareachieve about 10% speedup
over the superscalar processors. Our four-thread schetheshghtly more complex hardware
outperforms LSQ based SMT design by about 4.5%. It outpe$drSQ based design by 19%
if we consider only selected benchmarks which suffer spdivel state overflow. In the next
chapter we will study the efficiency of our cache based deaigh compare it with existing

CMP based TLS designs.

Chapter 5

Performance/Power/Thermal

comparison

Even though there have been numerous studies on the perfceragpects of CMP based TLS
(CMP-TLS) and SMT based TLS (SMT-TLS) architectures [15.1,68,79,[10, T1[12, 13, 14,
15,[16,[17] , there has not been a detailed comparative stndfper performance, power
and thermal effectsvhen compared to Superscalar architectumneler the constraint of same
chip area Such detailed study is essential to identify the issuekendifferent multithreaded
architectures which in turn would help in efficient TLS atebture design. In this chapter we
present a detailed comparison of SMT and CMP based TLS acthits in terms performance,
power consumption, energy efficiency and thermal behavior.

The power and performance characteristics of both the SMiTtlam CMP architectures

have been studied extensively under different workloadsileno et. al [27] show that SMT

63

64
achieves better speedup for explicitly parallel worklogidem SPLASH-2), Kaxiragt. al [28]

conclude that SMT is more power efficient. Sasaakaal show that CMP is more power ef-
ficient for multimedia workload and Burret. al [31] show CMP to have higher throughput.
However, it is difficult, if not impossible, to determine wehi architecture is more efficient to
support TLS based on previous work, since the charactarisfi TLS workload is fundamen-

tally different from those of other multi-threaded worktiza

Available parallelism vary during executiorinlike multi-threaded workloads, the amount
of parallelism that can be exploited by TLS may vary duringaiion of a program.
In particular, different loops can have different amouritparallelism; for significant
portion of execution, efficient speculation threads cafoextracted. When available
speculative threads are insufficient for utilizing all haede threads, some of the cores
will idle in a CMP-based architectures, while resources lmardynamically reallocated

to exploit instruction level parallelism in SMT.

Resource competition and sharing between speculative amépeculative threaddn SMT,
the non-speculative thread competes and shares resouthespeculative threads. Such
competition can degrade the performance of the non-spgaeutdaread. On the other
hand, resource sharing can also benefit the performance®fHg., a speculative thread
fetches data into the cache during it execution, even ifpeewative thread is eventually
squashed, the data it brought into the cache can potertiialsed by the non-speculative
thread or other speculative threads. In a CMP architecthreads only share data that

are located in the L2 cache, while in a SMT architecture, gathe L1 can be shared as

65
well.
Power consumption due to speculation failu#hen data dependence is violated, the thread
that contains the consumer of the dependence must be ratedecSuch re-executions

can cause additional power consumption.

To conduct a detailed study comparing the two architectuned to understand the relative
merits of each architecture, we must identify two architezt with the sameost In this
chapter, we choose to compare two architectures with the shenarea. A wide spectrum of
design choices and tradeoffs are studied using commontysisailation techniques.

The rest of the chapter is organized as follows: Se¢fioh &stribes the related work. Sec-
tion[5.2 considers various trade-offs and configures theetlrchitectures, Superscalar, SMT
and CMP, with equal die area; Sect[onl5.3 evaluates thenpeafice and energy-delay-product
of each architecture under TLS workload; Secfiod 5.4 stuthe sensitivity of these results
with several key architectural parameters; Sedfioh 5.5qmis the thermal effects of the TLS-

workload on the three architectures; and in Secti@mwe present our conclusions.

5.1 Related work

While the discussions on TLS performance have mostly beeeruhe context of CMF 19,
20,124], SMT processors can also be extended to support [T6.365E]. However, given the
characteristics of TLS workload described earlier, it iselear which architecture can achieve

a higher performance and a better power efficiency whileticrgdess thermal stress.

66
Renauet. al [39] compared the power efficiency of a CMP processor with Buport

against an equal-area, wide-issue Superscalar proceBhey concluded that the CMP pro-
cessor with TLS support can be more power efficient on gemengdose applications. Their
selection of equal-area configurations is based on a rougyhrgstion that a 6-issue Superscalar
has the same area as a 4-core 3-issue CMP. In this chaptemdeat@ detailed study of area
overhead to identify equal area configurations. Also weuitelSMT based TLS in our com-
parison. Warget. al [69], compared speedup of SMT and CMP using simple assungptim
choose the configurations. In this chapter, we study seeeral area configurations based on
detailed area estimation. Also we present a detailed cdsgwawhich includes performance,
power and thermal effects.

Numerous studies have compared the SMT and CMP performangeosver efficiency un-
der different workloads. On parallel prograrnsl[27] and rfeoiorkloads([28], SMT processors
outperform CMP processors. However, on multimedia worddo&MP is more efficienf[29].
In the context of multi-program workload, let. al [30] found that SMT is more efficient for
memory-bound applications while CMP is more efficient forlCBound applications; Burns
et. al [31] found that SMT can achieve a better single threatbpmance, but CMP can achieve
a higher throughput.

In terms of thermal effects of CMP and SMT processors, Doeald! [70] found that SMT
produces more thermal stress than CMP; whileLi al [30] show that the two architectures
have similar peak operating temperatures but SMT proces$sae more localized heating. In

contrast to these studies which used multi-programmed loadk, we use TLS workloads to

67
study the thermal behavior.

Recently, there are many studies which perform design spaueration for CMP proces-
sors both using multi-programmed workloads|[71] and paralbrkloads[[72]. In this chapter,

we study the design space for TLS workloads.

5.2 Processor Configurations

For fair power and performance comparisons among Supears@MP-TLS and SMT-TLS
architectures, we maintain the same chip area for the thffeeesht processor configurations.
We use a detailed area estimation tool presented_in [73].le/thé original tool only targets
SimpleScalar-based architectures, we have extendedthimtestimate area of SMT and CMP
architectures.

However, even for a fixed chip area, many processor configustre possible by varying
the size of the cores and the caches; and it is not possiblehustively evaluate the entire
design space. In this section, we describe how equal-acegsor configurations are selected

for fair comparisons in this study.

5.2.1 Superscalar configuration

Our base configuration is a SimpleScalar-based Supersuakitecture. The architectural pa-
rameter of this processor can be found in Téblk 5.1. The dee@cupied by each component of
this processor can be found in Tabl€el5.2, estimated by thardi estimation tool 73] (assum-

ing 70nm technology). We refer to this architecture asSE&) architecturgsince it executes

68

Table 5.1: Architectural parameters for the Superscalaf)Sonfiguration and the SMT con-
figurations with 2 and 4 threads

Parameter Superscalar SMT-4 SMT-2

Fetch/Decode/lssue/Retire Width12/12/8/8 12/12/8/8 12/12/8/8

Integer units 8 units / 1 cycle latency | 7 units 7 units

Floating point units 5 units / 12 cycle latency 4 units 5 units

Memory ports 2Read, 1Write ports 2R, AW 1R and 1W

Register Update Unit 256 entries 196 234

(ROB,issue queue)

LSQ size 128 entries 96 110

L1l Cache 64K, 4 way 32B 64K, 4 way 32B| 16K, 4 way 32B

L1D Cache 64K, 4 way 32B 64K, 4 way 32B| 16K, 4 way 32B
Common to Superscalar and SMT

Cache Latency L1 1 cycle, L2 18 cycles

Memory latency 150 cycles for 1st chunk, 18 cycles subsequent chunks

Unified L2 2MB, 8 way associative, 64B blocksize

Branch predictor 2K Pattern history table (PHT), 2K Branch target buffer (BTB

Branch mis-prediction penalty | 6 cycles

Physical registers per thread 128 Integer, 128 Floating point and 64 predicate registers

Thread overhead 5 cycles fork, 5 cycles commit and 1 cycle inter-thread comication

sequential programs.

5.2.2 SMT configuration

We use the SMT architecture discussed in chapter 4. Whenamapo the Superscalar archi-
tecture, the SMT architecture incurs additional overheadipport threads. To configure a SMT
processor with an equal area, we need to reduce the conyptéxfie processor to compensate
for the area increase due to threads. First, we show theastihoverhead of different compo-
nents and then we show how we reduce the processor compiexgst the desired equal-area

configuration.

69

Table 5.2: Die area estimation for (1) Superscalar (SEQ)S{T processor with reduced
complexity occupying an equal area and (3) CMP processtravitequal area as SEQ.

Hardware structures

Area effect due to

Area in MA?

for7Onmtechnology

Issue width (d)| SMT Threads(t)| Function units(f) || Superscalar SMT with overhead| adjusted SMT
Function units
Integer units None None O(f) 1,057.96 1,057.96 925.71
Floating point units None None O(f) 1,436.73 1,436.73 1,149.3¢
Load store units None None O(f) 450.00 450.00 450.00
2,944.69 2,944.69 2,525.1C
Pipeline logic:
Fetch unit o(d) o(t) None 390.00 487.50 487.50
Decode unit (dispatch o(d) 20% overhead None 360.00 396.00 396.00
Issue (scheduler) o(d) None None 320.00 352.00 352.00
Write back unit None None O(f) 320.00 352.00 308.00
Commit unit o(d) 20% overhead None 176.00 202.40 202.40
1,566.00 1,789.90 1,745.9C
Register File O(min (f,d)¥ o(t) O(min (f,d)¥ 1,111.46 4,445 .83 4,128.83
LSQ None None 0O(f3) 1,446.30 1,473.33 954.99
RUU None None 0o(f3) 15,215.25 16,911.31 11,515.5¢
BTB, ALAT, IFQ 740.00 2113.00 1,320.1C
Caches
TLBS No change Extra port No change 105.46 116.00 116.00
Level 1 i-cache No change Extra port No change 1426.72 1956.64 1,956.64
Level 1 d-cache No change| Extra TLS bits O(ports) 1956.64 2,257.07 2,257.07
Level 2 cache No change No change No change 41397.78 41397.78
Total Area without L2 26,512.04 34,007.61 26,520.22
Total Area 67,909.83 75,405.39 67,918.0(
Total chip area in mm 83.2 92.4 83.2

SMT overhead due to threads

In Table[5.2, using the die-area estimation tdoll [73], traverhead of the SMT architecture

with the same configuration as a Superscalar architectuiskoiwn. Estimated area overhead

for different components are discussed below:

Register Update Unit (RUU): The RUU occupied 57% of the core area and is the central

hardware support for out-of-order execution.

In SMT, thelRId shared by several

70
threads, thus a thread identifier is needed to distinguistetftries. This leads to about

10% increase in area.

Register file: Each thread needs its own register file. This leads to 4 tin@sase in the area

of register file.

Fetch logic: The area cost for the instruction fetching stage is incithgeapproximately 25%
to support thecountfetch policy. The branch predictor, I-cache and I-TLB negtiee
port to support fetching from multiple threads. The retuddrass stack is replicated for

each thread.

Data cache: The area for the first level data cache increases approXymnbiés for storing

the extra bits required for supporting TLS[68].

Out-of-order logic: If we consider the different components that constituteaineof-order
like the RUU, LSQ, create vector and pipeline stages, theheaal due to 4 threads is 11%
in our estimation. In[[31] it is estimated to be about 68% Hyailue to the duplication of

larger remap-tables for supporting 8 threads.

The overall area cost for supporting a SMT processor of theeszonfiguration as Super-
scalar (SEQ) is approximately 28%. When taking into consiiilen the L2 cache, the area

overhead of the entire chip is approximately 11%.

71
Configuring equal-area SMT processor

The complexity of the core can be reduced by reducing margnpetiers, but our main target
is the RUU(Register Update Unit) since it occupies a sigaifidie area (about 56% of SEQ).
However, if we simply reduce the number of RUU and LSQ (Loant&Queue) entries while
holding other parameters constant, we must reduce the nuohiRUU entries by 40%. This
approach clearly creates a performance bottleneck, arsdpgtaduces a sub-optimal design.
RUU requires many ports, since it is the central structucessed by almost all pipeline stages.
By reducing the number of function units, we can reduce thaber ports in RUU, in turn,
reduce the area cost of RUU.

In this chapter, we reduce both the number of function units the number of RUU and
LSQ entries to achieve the desired area cost. The exact acetiigh chosen for SMT configu-
ration is shown in TablEZ5. 1. In TaHleb.2, the area of eachpom@nt in this equal area SMT
configuration is shown.

To study the impact of the reduction in the number of TLS ttiseave include a configu-
ration called SMT-2 which supports 2 threads (equal areaEd3 &d SMT-4). Reducing the
number of threads reduced the area overhead by about 13%vedgiatiow a similar strategy of
reducing the number of RUU entries and function units to cemsate for the SMT overhead.

The configuration for SMT-2 is shown in Talileb.1.

72

Table 5.3: Architecture Parameters for the CMP configunatiwith: 4 cores + 2MB L2 cache;
2 cores + 2MB L2 cache; 4 cores + 1MB L2 cache;

Parameter CMP-4-2MB | CMP-2-2MB CMP-4-1MB

Fetch/Decode/lssue/Retire Width6/6/4/4 9/9/6/6 9/9/6/6

Integer units 4 units 6 units 6 units

Floating point units 2 units 4 units 3 units

Register Update Unit 106 entries | 148 entries 122 entries

LSQ size 44 entries 74 entries 64 entries

L1 D-cache size 16K 32K 32K

L1 I-cache size 16K 32K 32K

Unified L2 2MB, 8 way associative, 64B blocksizZe 1IMB, 8 way associative, 64H
blocksize

Branch predictor 1K Pattern history table (PHT), 1K Branch target buffer (BTB

5.2.3 CMP configurations

In choosing the area-equivalent CMP configurations we haeediesign choices. One way is
to hold the L2 size the same as in SEQ and allocate less areadhbrcore, so the total area for
the multiple cores is the same as that of the Superscalar@sia [31]). Another choice is to
reduce L2 cache size and use the area for allocating moréaareach core (as in_[30]). Also,
we could reduce the number of cores supported, which withalls to use larger cores. To
cover all these design choices, we consider three diff@@mfigurations of CMP architecture -
CMP-4-2MB(CMP-4cores-2MB L2 cache), CMP-4-1MB, and CMR2¥B.

The specifics of each of configuration are shown in TBble 58e®mated the area of each

configuration and made sure they have the same area (showblm[E.4).

73

THaranaR S e e g Rt pB- IR oYRete e
area (nnt) area (Nnt) area (Nnt)
Function units
Integer units 0.648 0.972 0.972
Floating point units 0.704 1.056 1.408
Load Store units 0.367 0.551 0.551
1.719 2.579 2.931
Pipeline logic
Fetch unit 0.239 0.358 0.358
Decode unit 0.220 0.330 0.330
Issue unit 0.196 0.294 0.294
Writeback unit 0.196 0.294 0.319
Commit unit 0.108 0.161 0.161
Caches
TLBs 0.104 0.129 0.129
L1 I-cache 0.439 0.877 0.877
L1 D-cache 0.503 1.362 1.330
Register file 0.414 0.802 0.874
RUU 1.943 4,73 6.1
LSQ 0.194 0.574 0.710
Misc 0.344 0.463 0.458
Core Size 6.6 12.95 14.76
Bus area 5.95 2.975
L2 cache 50.71 25.35 50.71
Chip size 83.2 83.2 83.2

5.3 Performance and Power Comparisons

We compare the three different architectures - CMP-base8l, BMT-based TLS and Super-
scalar in terms of performance in Sectlon3.3.1. In Se¢fi@@5we compare their power con-
sumption, and in Sectidn'5.3.3, we useergy-delay produtED) andenergy-delay-squared
product (ED?) to compare energy efficiency. We use the evaluation framewescribe in

chapter[R to compare the different architectures.

74
5.3.1 Performance

Fig.[5 shows the speedup of the entire benchmark suitg Giperscalar (SEQ) performance
as the base and Fig. 5.2 shows the breakdown of executiomtimare executing loops selected
by the compiler. In this section, we only show the TLS confagions: CMP-4-2MB and SMT-
4. We will discuss other possible configurations in Sedfigh 5

For SPEC 2000 benchmarks, the CMP-4-2MB slows dowpdribmk gcc twolf, mesa
gzip, vortex vpr_route andcrafty, leading to ageometric meaiGM) slowdown of 8% when
compared to SEQ. Due to its dynamic sharing of resources,-&MBble to extract good per-
formance even in benchmarks with limited parallelism exaepnesaandperlbmk leading to
about 21% speedup over SEQ. In SPEC 2006 benchmarks, thed=2WB achieves speedup
in most benchmarks except gobmk povray, h264refandsjeng leading to ageometric mean
(GM) speedup of 18% when compared to SEQ. SMT-4 gains speedalpbenchmarks and
achieves an overall performance of 39% better than SEQ.

Each benchmark benefits from specific architecture depgnalinits characteristics. A
comparison of the impact of different benchmark charasties on the TLS performance in
CMP and SMT architectures is presented in Tdbld 5.5.

Large sequential non-parallelized code regionsThe CMP-4-2MB slows down about 8%
compared to SEQ in SPEC 2000 benchmarks but if we considentire benchmark (Fig—3.1),
while it achieved about 13% speedup if we consider only tmallghregions (in Fig.[5]12). Sim-
ilarly it achieves about 40% speedup if we consider the fanadgions in SPEC 2006, but the

speedup is only 18% if we consider the entire benchmark. Méitlye benchmarks considered

OCMP-4-2MB BEMT4

(a) Speedup for SPEC 2000 benchmarks.

Speedup

rlll
il NE

|3 CivP-4-2vE B SMT-4

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.1: Speedup of CMP-4-2MB and SMT-4 configurationsr &EQ.

75

76

£ 14 =

o
[

Nonmnalized executi

[e R e R e
= o B oy oo —=

QCH me clj ot

1arser gap | mef mesaLenbnﬁ crafty | art ammquuak& r_roLtg i wip | hzip2

|E Busy MW aiting for memory O Lack oftreads O Synchrorization B Souash B 0thers |

(a) Breakdown for SPEC 2000 benchmarks.

9 15

.E 2 -

2

£ -

§ 15 o

g |

fos

g ; E &l P i o g
‘S‘C‘M ‘SCM ‘S il ‘S‘C‘M S‘C‘M ‘S‘CM ‘S‘C‘M ‘SHM ‘S‘C‘M scmi ‘SC‘M ‘S‘C‘M ‘S‘C‘M‘
bzip? | mef6 | gobrk | sphined | namd | powray | actar | lbm o | h264ref [bouantum sieng |hummer | mic

‘EI Busy @aiting for memary O Lack of threads O Synchronization M Souash O Others ‘ §-SEtY, C-CMP-4-2MB, M - SMT-4

(b) Breakdown for SPEC 2006 benchmarks.

Figure 5.2: Execution time breakdown for parallel regioa@axion of CMP-4-2MB and SMT-4
configurations normalized to the SEQ configuration.

e

Table 5.5: Comparison of the impact of benchmark behaviorthe performance of SMT-TLS

vs CMP-TLS.
Benchmark Impact on Reasons
characteristics CMP SMT
Large sequential regions X v SMT could use all resources to extract ILP inside sequerggibns.

Low TLP inside parallel regiong X v

SMT effectively uses all its resources while many cores infFCaduld
be idle

High cache miss rates v v

Both can hide memory latency and speculative threads cdatgine
data. SMT has more advantage due to shared L1.

Threads with a large working set v/ X

SMT L1 cache overflows more often as it is shared by all threads

Frequent mis-speculations X X

Mis-speculations wastes resources and affects non-siizeuthread
performance.

have significant sequential (non-parallelized) regiongctviuffer poor performance on CMP-

4-2MB due to its static partitioning of resources. Tdelbmkshows more than 50% slowdown

for CMP-4-2MB configuration. The coverage of sequentiaiarg in perlbmkis about 75%.

Due to this very low parallel-region coverage, we see a hegesdse in overall performance for

perlbmk In benchmarkwolf, the CMP performs about 29% better than SEQ when we consider

parallel regions. But when we consider the entire benchjrthek CMP performs about 8%

worse than SEQ due to only 47% coverage of non-parallelizgibns. Similarly inh264ref

CMP-4-2MB achieves about 17% speedup inside parallel negimt slows down by about

10% when we consider the entire benchmark. Similamngfty, vprplace, gobmk, sjeng and

bzip2(SPEC 200&uffer from poor sequential region performance.

On the other hand, the SMT configuration was able to dynatyioadllocate its resources

to exploit ILP when executing in sequential regions. Eveyugh there is a slight slowdown in

some benchmarks for SMT, the impact is much less when compar€MP. For example, in

h264refSMT-4 performs 19% better than SEQ while CMP-4-2MB slows dday about 10%,

inspite of both achieving similar speedup inside parakgions. Overall, SMT-4 performs

78
about 44% better than SEQ if we consider only the parallebregin SPEC 2000 benchmarks

while its performance reduces to 21% when we consider theedrgnchmark. In SPEC 2006
benchmarks the parallel region speedup is about 58% wiglewlrall benchmark performance
is 44%.

Low TLS parallelism inside parallelized regions: Even in benchmarks with high parallel
region coverage, the CMP-4-2MB can do worse due to limitedlfgism inside the parallelized
regions. For example in benchmarkvray, the parallel region coverage is 63%, but the loops
selected have very poor iteation count leading to many dsréeeing idle (indicated aack
of thread3. Due to the limited parallelism available, the CMP did net good performance,
while SMT due to its dynamic resource allocation, uses teeureces to extract ILP within the
threads, resulting in a better performance than CMP. Her&MT-4 is able to dynamically re-
allocate its resources to exploit instruction-level plateim inside the available threads leading
to about 5% speedup. Similarly arafty the CMP-4-2MB suffers due to synchronization and
poor iteration count. Similar effect can be seemat, mesa, perlomk, crafty, gzip, vortex and
vpr_route In all these cases the SMT-4 is able to dynamically re-atl®ds resources to exploit
instruction-level parallelism in the remaining threads.

Large number of cache missesin benchmarkequakeand inmcf the SEQ configuration
spends most of the execution time waiting for memory due trgel number of cache misses.
Both CMP-4-2MB and SMT-4 are able to better hide the memagniey through sharing of
the common working set. Such sharing of the working set alsame data needed by one

thread to bepre-fetchedby another thread. The benchmarguakeand mcfhave excellent

79
TLS parallelism, consequently, there are very few squadbes to the combined effect of par-

allelism and prefetching, both CMP-4-2MB and SMT-4 achigeed performance. Similarly,
benchmarksnilc, libquantum twolf andvpr_placegain from good TLS parallelism and cache
prefetching leading to performance gain for both SMT and CMP

In SMT, both L1 cache and L2 cache are shared by all the thrésaiting to better prefetch-
ing when compared to CMP where the threads share only thedicéntwolf, vpr_place and
vpr_route, SMT-4 performs better than CMP-4-2MB due to prefetchirfgafin L1 cache.

Effect of frequent squashes:Frequent dependence violations hurts the performance of
both SMT-4 and CMP-4-2MB configurations as seen in benchsngek, vortex, gzip, mesa,
sphinx3, astar and bzip2(SPEC 2008ut in the case of SMT-4, since the processor resources
are shared, speculative threads compete for resourcegheithon-speculative thread. If the
speculative work done is eventually wasted due to deperdeitations we do not gain any
thread-level parallelism while we also hurt the perfornr@an€non-speculative thread. Due to
this there is a slowdown in SMT-4 when compared to CMP-4-2Miewthere are frequent

squashes as shown in Figurel5.2 for benchmbzis2 and sphinx& SPEC 2006.

5.3.2 Power

To understand the power behavior of the two architecturescampare the breakdown of dy-
namic power consumption in Fig.5.3. The power consumpsaroirmalized to the total power
consumption of SEQ configuration. We used ideal clock gdtiag) in theWattchsimulator to

get dynamic power consumption.

80
Dynamic power is proportional taCV?f, wherea is the activity factorC is the capaci-

tance of the transistoy, the supply voltage, anfithe frequency of the circuit. In our simulation,
we keptV and f the same for all three configurations. So dynamic power raiffees among
the three configurations are mainly due to #eévity factor or thecapacitance of the circuit.

Core complexity: The Superscalar uses the most complex core and has thetiiVedse
while SMT core is also complex. But the CMP configuration usaaller cores and, hence, has
a smalleiC value than that in Superscalar and SMT. The largest compafielynamic power,
we call it thewindow powey combines the power consumption of function blocks related
out-of-order execution including RUU, LSQ, result bus,. efhe CMP configuration uses a
smaller instruction window leading to lower window powemsamption across all bench-
marks. Similarly, it consumes less power in the cache sihcsds a smaller cache than in
other configurations as shown in Hig.15.3.

Activity factor: SMT and CMP both execute the same parallel TLS code so thigntac
factor is very similar. However, SEQ runs the sequentiakoatiich does not have any special
TLS instructions, leading to a smaller activity factor tf&dT and CMP. Another factor which
affects the activity is the amount of speculation. Both SMil £&MP suffer from frequent
dependence violations, but the power wasted due to squasBe4T is higher due to its higher
complexity. This effect can be seen in benchmaaksnp, mesa, gzip, vortex, astar, sphinx3
and bzip2(SPEC 2006The SEQ has a more complex core than both SMT and CMP, and thus
consumes higher power. But due to its lower activity fadt®pbwer consumption is lower than

SMT.

81
Extra hardware: The TLS architectures have extra power overhead due to the lexrd-

ware needed to implement TLS. The extra hardware used by SMiinimal, but CMP uses a
common bus to connect the cores. The power overhead duestodimimon bus is significant,

and not present in SEQ and SMT configurations.

18
14
12

08
0B
04
02

b]) bbb bbb b ok

parser | gec | ogap | omof | mesa perbmk] crafty | an | ammp |equake | bwof ypr_route_place | vortex | gap | bzip?

|DCache B Reyfle DA OWindow BClock BTLS hardware IThreadvinIalinn‘ S-5E0, C-CMP-4-2ME, U - SMT-4

(a) Dynamic power consumption for SPEC 2000 benchmarks.

Nommalized dynamic power consumption

bzip? | mef | goomk | sprine | ramd | povay | astar | bmo | R6drefibguantm sjeng | hummer

‘DCacha BRegile DAL OWindow BClock BTLS hardware @ Threadviu\atiun‘ S-8EQ, C-CMP-4-2MB, M- SMT-4

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.3: Normalized dynamic power consumption of CMPMB and SMT-4 configura-
tions normalized to the power consumption of SEQ.

Overall, due to the combined effect of complex cores andidptee wastage, SMT on

average consumes about 17% more dynamic power than SEQ € 3600 and 22% more

82
dynamic power for SPEC 2006 benchmarks. CMP, due to its emetdires, consumes about

11% less dynamic power than SEQ in SPEC 2000 and 3% lessePE€ 2006 benchmarks.

Total power: Total power consumption of the processor includes leak&mje? power in
addition to the dynamic power considered above. To get fmdaler consumption, we use
aggressive clock gating Wattch simulator (cc3).

The static power consumption depends on the program egrectitne and on the number
of components that have leakage power (i.e. number of stams). If the configuration

Both SMT-4 and CMP-4-2MB achieve good speedup in many beadksnwhich leads to
lesser static power than SEQ. Also SMT-4 consumes lesdar gtaver than CMP-4-2MB due
to its higher speedup.

The CMP-4-2MB configuration due to its lower complexity catk more resources in the
same chip area. For example, the CMP-4-2MB uses two timesuhdber of function units,
RUU entries, etc. Due to the use of a larger number of compente CMP has more leakage
power than SMT. The SMT-4 also uses more resources when cethpa SEQ. The register
file is four times larger in SMT-4 when compared SEQ and alsséis additional bits in the L1
data cache. Due to additional resources both SMT-4 and CiMM& can consume additional
leakage power when compared SEQ.

Fig. [5.2 shows the total power overhead for SMT and CMP ovép.Slthe SMT-4 due to
its good speedup in benchmankef, ammp, equake, sphinx3, namd, lbm, hummer,isélble

to makeup for its increase in dynamic power. For examplkenmnp the total power overhead

Total power overhead

B CWP-4-20B B SMT-4 |

(a) Overhead for SPEC 2000 benchmarks.

Total power overhead

|0 CMP-4-2MB BSMT-4 |

Figure 5.4:

(b) Overhead for SPEC 2006 benchmarks.

Total power overhead CMP-4-2MB and SMT-4 comfiians over SEQ.

83

84
of SMT is only 82% when compared to 291% overhead for dynamwegp. Whereas in bench-

marks such agarser, gcc, gap, crafty, perlomk, gobmk, povray, astaere the speedup of
SMT-4 is limited, the SMT-4 configuration suffers from moeakage due to its larger register
file and other resources.

Similar to SMT-4, the CMP-4-2MB due to its good speedupriof, equake, namd, Ibm,
hummer, milcsuffers from lower leakage power. But in other benchmarke tuits limited
speedup and its larger resources incuring leakage poveerfférs from increased leakage.

Overall, the CMP-4-2MB inspite of its lower dynamic powemsamption suffers from
20% total power overhead when compared to SEQ due to inctestadc power caused by
lower performance and larger resources. The SMT-4 due wyitamic power overhead due
to dependence violations and static power overhead dus tedtster file leads to about 30%
power overhead. The CMP-4-2MB due to its higher speedup gré®EC 2006 benchmarks
suffers only 4% overhead when compared SEQ. The SMT-4 caafign due to its higher
dynamic power overhead caused from higher number of misedations in SPEC 2006 bench-
marks leads to about 19% overhead when compared to SEQ.Ialethe benchmarks the
CMP-4-2MB consumes 12% lesser power than the SMT-4 configara

A summary of how the various factors affect power consunmpitioSMT and CMP is pre-

sented in Tabld_4l 6.

85

Table 5.6: Comparison of the impact of various factors orptheer consumption of SMT-TLS
vs CMP-TLS.

Different factors C:\I/InFE) actsc’z;l_r Reasons

Core complexity v X CMP with simpler cores consumes lesser dynamic power asiséeg. [5.3

Execution time X v SMT has lower execution time than SEQ leading to lower leak&yt CMP
slowsdown in some benchmarks leading to more leakage.

Frequent squashes X X Squashing leads to additional dynamic power in both SMT aviéPC

Number of transistors X v More transistors in CMP cause more leakage than in SMT.

5.3.3 ED andED?

From the previous sections, we see that SMT and CMP have alifeagent behavior in power
consumption and performance. To combine their effects wenergy-delay produdED) and
energy-delay-squared produg D?).

Fig. &35 shows the ED anBD? when we consider the entire program execution. As
discussed before, the CMP-4-2MB configuration suffers fpwor performance in SPEC 2000
benchmarks. Due to the poor performance the ED for CMP-4-28/4&bout 24% worse than
SMT-4 and 31% worse than SEQ. When we consklBf the effect of poor performance further
worsens leading to 55% worgeD? than SMT-4. The SMT-4 configuration due to its higher
power overhead suffers from 7% worser ED than SEQ. When wsiderE D?, it gains 11%
betterE D> when compared to SEQ.

When we consider SPEC 2006 benchmarks, where the CMP-4-2At3 dpetter perfor-
mance and SMT-4 suffers from extra power overhead due taémtgsquashes, the CMP-4-
2MB is 12% better than SEQ in terms of ED and the SMT-4 is 17%ebéhtan SEQ, which is
only 5% better than CMP-4-2MB. When we consid&D? the SMT-4’s lead increases due to

its better performance. Now the SMT-4 is 17% better than CMEVB.

86
From Fig. [E.5 we can see that though in most benchmarks SMoed detter than CMP-

4-2MB, there are some benchmarks where CMP-4-2MB doesrbitteenchmarks with good
parallelism likemcf, art, equake, sphinx3, namd, lIbm, libquantum and humtherCMP-4-
2MB does better. Also in benchmarks listar, bzip2('06), gap and parsevhere the CMP-4-
2MB has limited speedup and where the SMT-4 has increasedrpmerhead, the CMP-4-2MB
does better. In Fig.[5.6 we show the comparison of ED BB for SPEC 2000 and SPEC
2006 benchmarks classified in terms of their dependencevioehén chapter[B we classified
the benchmarks into two classes depending on the numbdeottimead dependences: Class-A
which has fewer inter-thread dependences and Class-B whigimore number of inter-thread
dependences. As we see in Fig_15.6, for Class-A benchmarkshwhve better parallelism,
the CMP-4-2MB beats SMT-4 in terms of ED by about 1%. Thouglneamong class-A
benchmarkspovray and mesauffer from limited speedup due to their limited iteraticsuat
and other factors. Due to this the SMT-4 beats CMP-4-2MB imseof ED?; though the
difference now is only 9% when compared to 50% difference les&€B benchmarks which
generally have limited parallelism due to inter-threadedetences.

From the above discussion, itis clear that overall, the SM®nfiguration is more efficient
in extracting TLS parallelism than the CMP-4-2MB configisat Though the CMP-4-2MB
does better in benchmarks with more parallelism. In the sektion, we consider different

variations in the design space of CMP and SMT.

87
5.4 Alternative Configurations

As we saw in previous section, the CMP based TLS performsenthian SMT based TLS due
to its poor performance when executing in sequential regyidn this section, we study how
the performance and power behavior change when we increasmite complexity to improve
performance in sequential regions by varying key pararasigch as the number of threads and
L2 size.

Impact of the number of threads:

In Fig. [5:2 we compare the speedup of the 4-thread and 2etlwveraions of both CMP and
SMT architectures and in Figl_%.8 we compare them in terniSf. The CMP-2-2MB can
support only two threads leading to poor parallel regiorfiggarance but its larger cores helps to
exploit instruction level parallelism inside sequentedions. In SPEC 2000 where the CMP-4-
2MB suffers significant slowdown due to sequential regidhe, CMP-2-2MB gains about 6%
speedup due to its better sequential region performanaaugrhthe CMP-2-2MB suffers from
higher power overhead due to its complex core and it slowsdavparallel regions, it gains
betterE D? of about 14% due to its better performance in benchmarksylike mesa, perlbmk,
crafty, vortex, etcWhen we consider the SPEC 2006 benchmarks which have pattdtelism
than SPEC 2000, the CMP-2-2MB slows down about 7% when cartpatMP-4-2MB. Due
to this slowdown and its higher power overhead it suffersiath@% worseE D? than CMP-4-
2MB. Overall the benchmarks the CMP-4-2MB is about 1% bettan CMP-2-2MB.

The SMT-2 configuration can only support two threads, buessifrom fewer dependence

violations. Due to its limited ability to exploit parallsin, it suffers from 9% slowdown when

88
compared to SMT-4 for SPEC 2000 and about 19% slowdown foilCSEID6 benchmarks. Due

to its lower dynamic power overhead the decrease in effigi€B®?) is lesser when compared
to its slowdown. It suffers from about 6% wordeD? for SPEC 2000 benchmarks and about
8% worserE D? for SPEC 2006 benchmarks. Across all the benchmarks the SN8E about
7% betterE D? than SMT-2.

Impact of L2 size:

Reducing the number of cores in CMP allows us to use largesoehich lead to improved
sequential region performance, but we lose performancatiallpl regions. Another possible
design choice is to reduce the L2 size, allowing the extrasspabe used for larger cores. Fig.
compares the speedup of CMP-4-2MB with that of CMP-4-1itBch uses larger cores,
but smaller L2 size and in Fid_5110 comparisorE@? is presented.

In SPEC 2000 benchmarks, the CMP-4-1MB gains about 14%rlsteedup when com-
pared to CMP-4-2MB. But due to its higher core complexitysliffers from increased power
overhead leading to 18% worsED? when compared to CMP-4-2MB. Though the CMP-4-
1MB showed betteE D? for benchmarks likerafty, mesa, perlomkhich had large slowdown
for CMP-4-2MB, it suffers in many other benchmarks due tohigher complexity. Among
SPEC 2006 benchmarks the CMP-4-1MB performs 21% better@haiR-4-2MB, but in terms
of ED? it is about 2% worse than CMP-4-2MB. Over all the benchmates CMP-4-2MB has
8% betterE D? than CMP-4-1MB.

Impact of frequency: In our study, we had assumed the same clock frequency fooal c

figurations. A simpler CMP core can be run at a higher frequehan in SEQ and SMT

89
configurations. Though increasing frequency can lead tetbperformance, it leads to large

increase in power consumption leading to WoES®?.
Among the alternative design choices considered we fouatdaMT-4 still is the best possi-
ble configuration in terms dE D? for supporting TLS. Though CMP-2-2MB and CMP-4-1MB

showed good speedup, they suffer wolg&? when compared to CMP-4-2MB.

5.5 Thermal behavior

The Superscalar and the SMT-TLS architectures use comjples avith a large number of

function units and large instruction window to exploit ingttion-level parallelism or support

the additional threads. These cores not only consume mag\erthey can also generate
thermal hotspots. On the other hand, the CMP-TLS architedtas distributed cores, and thus
can potentially have smaller and less severe thermal histspro this section, we analyze the
thermal characteristics of three processor configuratie®EQ, SMT-4 and CMP-4-2MB.

The average and hotspot temperatures for each architestustown in Tablgd.7. We have
observed that the CMP-4-2MB configuration has the lowesta@eeand hotspot temperatures,
while the SMT-4 has the highest average and hotspot temypesaflso the SMT-4 has more
severe thermal spot temperature even compared to SEQnis tfrhotspot temperature, the
CMP-4-2MB configuration is about 2.5 degrees lower than diahe SMT-4 configuration;
while SMT-4 configuration is about 0.8 degrees higher thahafthe SEQ configuration.

By observing the steady state temperature map for the SMIBLMP-4-2MB configura-

tions runningh264ref, which has the one of the highest IPC among all benchmark&uvel

90

Table 5.7: Thermal effects of TLS on three different arattitees: SEQ, SMT-4 and the CMP-
4-2MB in degree Celsius.

benchmark SEQ CMP-4-2MB SMT-4
averagehotspaqt averagehotspgt averagehotspdt
vprplace 49.41| 47.12| 51.08| 48.03| 48.74| 47.81
vprroutd 49.23 | 46.92 | 50.99 | 47.86 | 48.49| 47.55
gcc 50.16 | 47.45| 51.26 | 48.25| 49.34 | 47.44
twolf 49.37 | 47.1 | 51.02| 47.96 | 48.56 | 47.62
equake | 49.23| 46.89 | 50.93 | 47.87 | 48.49 | 47.54
ammp 49.26 | 46.91| 51.05| 47.88| 48.7 | 47.58
gzip 49,93 | 47.64 | 51.38| 48.57| 49.34 | 47.44
bzip2 50.7 | 47.59 | 53.26| 48.62| 51.59| 47.71
mcf 49.17 | 46.88 | 50.85| 47.64 | 48,5 | 47.44
vortex 4952 | 47.21| 50.99| 47.96 | 48.11| 47.03
parser | 49.42| 47 50.93| 47.81| 48.81| 46.78
perlomk| 49.91| 47.51| 51.11| 48.04 | 47.86| 46.8
crafty 50.17| 47.86| 51.22 | 48.33 | 46.83| 46.02

art 49.09| 46.81 | 50.89 | 47.7 | 48.28 | 47.27
mesa 49.93| 47.29| 51.13| 48.05| 48.99| 47.45
gap 51.86| 47.79| 52.04 | 48.32| 48.7 | 47.58

bzip26 | 50.55| 47.56 | 54.18 | 48.75 | 50.8 | 47.08
mcf6 | 49.05| 46.74 | 50.91| 47.73 | 48.42| 47.4
gobmk | 49.75| 47.35| 51.12| 48.1 | 48.3 | 47.15
namd | 49.3 | 46.99 | 51.39 | 48.55 | 49.82| 48.71
povray | 49.65| 47.32| 51.08 | 48.03 | 48.64 | 47.66
astar | 49.55| 47.21| 51.17 | 48.19 | 48.94| 47.89
Ibm 49.29 | 46.92 | 51.09| 47.92| 49.02 | 48.04
h264ref | 52.22 | 48.24 | 53.75| 49.22 | 50.61| 48.29
libquantyrd9.1 | 46.76 | 50.87 | 47.63 | 48.31| 47.34
sieng | 49.1 | 46.91| 51.21| 48.11 | 49.30 | 48.20
hummer| 49.5 | 47.21| 51.73 | 49.05| 50.21| 49.15
milc 49.23| 46.85| 51.05| 47.93| 48.88| 46.04
Average| 49.76 | 47.23| 51.42| 48.15| 48.94| 47.47

that the main source of heat in both configurations is thestegfile (circled in Fig.[511). The
temperature maps are shown in Figlire b.11. The activityl Iavibe register file of each CMP
core is lower than the activity level of the central regidtierin SMT-4, thus leading to lower
hotspot temperature. While both SMT-4 and SEQ have a caddategister file, the activity
level in SMT-4 is higher due to the execution of speculatiweeads, thus it leads to a higher

temperature.

91

n

=
o

4 =
15
3
24
2 H :
1.8 i

A
2
& & §g & P

Nonmalized EDVEDZ

% S T S
& ﬂ& & & ‘? \\g& Q‘S%

be
||:| CMP-4-2MBIED) B EMT-4(ED) O CMP-4-2MBEDY) O SMT-4(EDY) |
(a) EDED? for SPEC 2000 benchmarks.
o5 48’_11.3 4.610.0
2
15

Nonmalized EDVED 2

|EI CMP-4-2MB(ED) BSMT-4(ED) OCMP-4-2MBIEDZ) O 5MT-4(EDZ) |

(b) ED/ED? for SPEC 2006 benchmarks.

Figure 5.5: EDED? of CMP-4-2MB and SMT-4 configurations normalized to SEQ. dHre
lower value indicates better efficiency.

92

; 36 6§
’éz.s
g 2 [
w
315- - -
g 1
A ’-IH [D
= 0.57 T"I_I_T :
0] .:'l 18 : .[I_h." ! .[l_ﬂ.'
K
@Eb & & o I & &
b A & &
& F ¥ S g
&

|EI CMP-4-2MB(ED) B SMT-4(ED) O CMP-4-2WB(EDZ) O SMT-4{EDZ) |

(a) ED? for Class 'A benchmarks.

; 36 5
’éz.s
g 2 [
w
315- - -
RE
z ’-IH [D
= 0.57 T"I_I_T :
0] .:'l 18 : .[I_h." ! .[l_ﬂ.'
K
SR T S R
o & & &
& F ¥ S g
&

|EI CMP-4-2MB(ED) B SMT-4(ED) O CMP-4-2WB(EDZ) O SMT-4{EDZ) |

(b) ED? for Class 'B’ benchmarks.

Figure 5.6:E D? of CMP-4-2MB and SMT-4 configurations normalized to SEQ.édtixe lower
value indicates better efficiency.

93

3
25 T M
g m
g 1.5 i
&g
18 L8 T T
< @é @,4“* fﬂé@@ Q@‘d? L& r,:f;@:\ S G;}F
||:| ChP-4-2MB B ChP-2-2MB O SMT-4 O EMT-2 |
(a) Speedup for SPEC 2000 benchmarks.
3
25 T M
= 2
g 1.5]
&4
A
0 . -
&S S &P o
)]

|0 CMP-4-2MB B GMP-2-2MB O SMT-4 O MT-2 |

(b) Speedup for SPEC 2000 benchmarks.

Figure 5.7: Comparison of speedup for CMP-4-2MB, CMP-2-218BIT-4 and SMT-2 config-

urations.

94

HNomalized ED 2

| cMP-4-2MB B CMP-2-2MB O SMT-4 O5MT-2]

(a) ED? for SPEC 2000 benchmarks.

11.3 10.0

=~

ot

=

=

Nonmalized ED2
[
O M= Mk LN = h

| CMP-4- 2MB B CMP-2-2MB O SMT-4 O SMT-2 |

(b) ED? for SPEC 2006 benchmarks.

Figure 5.8: Comparison @& D? for CMP-4-2MB, CMP-2-2MB, SMT-4 and SMT-2 configura-
tions.

Speadup

(@ CMP-4-20B B CMP-4-10B]

(a) Speedup for SPEC 2000 benchmarks.

[BCMP-4 2B B ChP-4-1MB |

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.9: Comparison of speedup for CMP-4-2MB and CMRVB onfigurations.

95

65 E048 153 43

L
(SRS, B

Il
in

e
in
I

Normalized EDZ
{8

—~
O inm
1
1

'
&

3 & 3 2 SR I
d}@é § FEF N0 SFSLL PP o

|3 CvE-420E BMCWE-4-1ME |

(a) ED? for SPEC 2000 benchmarks.

113 88 100

& T
Ly ke

he
]

[e%]

.
in

Nermalized EDZ

=
i
|

0 A

[ECMP-4-2ME BCMP-4-1MB |

(b) ED? for SPEC 2006 benchmarks.

Figure 5.10: Comparison of speedup for CMP-4-2MB and CMBWB configurations.

96

97

(a) Thermal map for the SEQ configura- (b) SMT configuration.
tion.

(c) CMP-4-2MB configuration.

Figure 5.11: Thermal map for various configuration (runnif@p4ref). Redcolor indicates
hottest regions.

Chapter 6

Heterogeneous TLS

In the previous chapter we studied the efficiency of SMT andRidsed TLS architectures. We
found that depending on the characteristics of the bendhndéferent architectures are more
efficient. For benchmarks with good parallelism, we fourat ttMP had better efficiency while
for more sequential programs SMT is the most efficient aechire. So if a multi-threaded
processor is designed asmogeneouSMT or CMP, it cannot exploit the parallelism with
optimal efficieny across all possible benchmarks.

As the number of transistors in a chip keep increasing, psmredesigners try to make
efficient use of the available transistors by including fiplétcores in the same chip. With ever
increasing die area, designers have a choice on the typeas tt@t can be included in the chip.
Though most of the current multi-core systems usemogeneoudesign where the same core
is replicated, there are a few systems widtterogeneousores. For example irl 4], specialized

cores calledSPEwhich specialize in SIMD computations are added in add#ido thePPE

98

99
which acts as a control processor that services requeststi@SPEs.

Several studies have examined the design of sistbrogeneoumulti-cores [40[41, -42]
and how to allocate the application into suwiterogeneousores. In most papers, different
cores with varying complexity and frequency are combinggetioer to form aheterogeneous
multi-core processor. In our case, in order to exploit TLi&fntly for all applications we need
both SMT and CMP within &eterogeneousulti-core.

In a typicalheterogeneoumulti-core, the performance of the different "threads” aren-
itored and the runtime system would decide which core to leel tis improve efficiency. In
most papers, only multi-programmed workloads are consii@rhere entire applications are
mapped into available cores. In our case, our speculatireads are fine grained and may re-
quire low-overhead runtime techniques. Detailed desigguoh hardware techniques to exploit
suchheterogeneoumulti-core is beyond the scope of this thesis. In this chapteshow the
potential for using such SMT-CMP baskdterogeneoumulti-core to efficiently exploit TLS.

The rest of the chapter is as follows: In Section] 6.1 we giveef bverview on the related
work, in section[&2 we show the potential improvement wlith ise oheterogeneoumulti-
core technique, in Sectidn_$.3 we discuss the overheadplfitng suchheterogeneousiulti-

core technique and in Sectidn16.4 we present our conclusions

6.1 Related work

Several studies have examined the problem of schedulingipteutasks on a heterogenous

multi-core. Kumaret. al [42], used a dynamic scheduling approach here the mpesfoce of

100
the different tasks are studied during periodic profile psa3he performance information col-

lected during the profile phase is used to map the differesiistto the available heterogenous
cores to optimize their efficiency. The drawback is that m pinofile phase different combina-
tions of core allocation need to be sampled to determind @@a selection. This process can
incur excessing switching overhead.

Johnet. al [40], collected different program characteristideldependency distance, data
reuse distance, etc during a profile run. Fuzzy logic is treeduo calculate the suitablity of
the different tasks for the different heterogenous coreigh Wis technique, there is no need for
the expensive runtime sampling proposed!inl [42].

Crowleyet. al [41] also avoid the expensive profile phase and instétigling different core
combinations, they use the dynamic IPC (instructions pazkctycle) to decide the suitability
for different tasks on each core.

In all the above studies multi-programmed workloads aresictamed, while in our thesis the
focus is on TLS. Also in contrast to other previous work whigpically use different cores of
varying complexity or frequency, in this chapter we consi@d&SMT-CMP based heterogenous

multi-core system.

6.2 Potential For Heterogeneous Multi-core

In the previous chapter we studied the efficiency of TLS in Séh@l CMP architectures. The
results of our study is shown again in Fi._16.1. As shown in FlgJ, depending on the

characteristics each benchmark either more efficient on @ 8Mn a CMP. Fig.[[6]1 shows

101
that the geometric meaBD? of all the best configurations for each benchmark is about 10%

better than th& D? of SMT configuration which gives the best overall efficienthis indicates
the potential efficiency that can be gained if each benchrsadble to select either SMT or

CMP configuration based on a@racle mechanism.

E3 63 138

Normalized ED2
(o]

05 -
0
Y R
& &
|ECMP-4-2MB B SMT-4 O Best |
(a) NormalizedED? for SPEC 2000 benchmarks.
5 113 1no
25
[
o 2
o2
3
& 151
5 1
=
045 A
D 4
q'
o
[B CMP-4-2ME B SMT-4 O Fest]

(b) NormalizedE D? for SPEC 2006 benchmarks.

Figure 6.1: Comparison of Normaliz&D? of CMP, SMT configurations with the best config-
uration for each benchmark.

This shows that to extract TLS in the most efficient way, wednesupport for both SMT

102

and CMP. Such an heterogeneous multi-core is shown in[EE. Véith this design, the bench-

mark can choose either SMT or CMP based on its characteristiachieve optimal efficiency.

CMP cores

53

L2 cache

Figure 6.2: Heterogeneous multi-core architecture.

In Fig. [, we showed the potential of mapping either apfiims to the best configu-
ration. But within each benchmark different regions of cadeld perform better in different
architectures. Thus we could further improve the efficieghaydividual regions in each bench-
mark are able to choose the most suitable architecture.

To understand the potential of such fine grained choosingref; we simulated each bench-

mark in three different configurations:

e SMT-TLS Here the parallelized benchmark is run on the SMEaaith TLS enabled.

e CMP-TLS Here the parallelized benchmark is run on CMP coth WLS enabled.

e SMT-noTLS Here the parallelized benchmark is run on the SBY€ avith TLS disabled.
This configuration is useful when the CMP and SMT based TLSigorations suffer

from frequent squashes.

Here we compare the performance with the SEQ configuratied imschapter15, running the

103
non-parallelized benchmark.

Say a benchmark contains three regioRs,R, andR3. Let SMT-TLS be the most efficient
configuration forRy, CMP be the best configuration f8 and SMT-noTLS be the best config-
uration forR3. In an ideal heterogeneous multi-core architecture theleark would execute
the different regions in their best configuration. To catelthe best efficiency obtained by such
ideal switching between cores, the number of cycles and poagsumed for each region in
the benchmark which executing in their corresponding basfiguration are added and overall
ED? is calculated. For example |€; andPy; be the time taken and the power consumed by
region R; when running on its best configuration SMT-TLS. Similarly &, andP., be the
time taken and the power consumed by redirand letCy andPg be the time taken and the
power consumed by regidRs. Now the total cycles taken by choosing the ideal configuraio
for each region i€; + C» + Cg and the corresponding power consumptioRyis + P + Pg.
From this the idealE D? for the benchmark calculated.

Fig. [6.3 compares the estimate®d? calculated for an ideal heterogeneous multi-core with
the SMT-TLS and CMP-TLS configurations. Fig._6.3 shows thattteterogeneous multi-core
is about 16% more efficient than the SMT-TLS configurationalihis the most efficient homo-
geneous configuration. When compared to results in Eigl fiés-.grained switching between
cores to optimizeE D? results in about 6% additional speedup when compared to imgyipe
entire benchmark to a particular configuration.

The efficiency obtained by using the heterogeneous mulé-can be classified into three-

categories based on its source:

104

€
Lo o
]

Normalized EDZ

(3 CVP-TLS B SMT-TLS O Heterogenous |

(a) NormalizedE D? for SPEC 2000 benchmarks.

4 113

Normalized EDZ

l_._||l—l—\l- B i Sl mi
& & ¢ & @
5 = +

R

|[ECMP-TLS B SMT-TLS OHeteragenous|

(b) NormalizedE D? for SPEC 2006 benchmarks.

Figure 6.3: Comparison of NormalizéeD? of CMP, SMT configurations with the predicted
E D? of heterogeneous multi-core.

105
Efficiency from core selection: In benchmaikd, bzip2, crafty, gap, mcf, mesa, parser, twolf,

vpr_place, vprroute, astar, gobmk, hummer, lbom, libquantum, namd, pogjengthe ef-

ficiency of heterogeneous configuration is the same as thé@bewgenous configuration
(either SMT-TLS or CMP-TLS). For these benchmarks, basethem characteristics, a
compiler or an advanced user can potentially assign the duitstble core. A simple
hardware technique that can decide which configurationediased on an initial profile

phase can also be used.

Efficiency from speculative thread prunning: In benchmaaks gzip, perlbmk and sphinx3
some of the loops suffer from frequent squashes leadingdopgf@iciency in both SMT-
TLS and CMP-TLS configurations. The efficiency gain due tetmjenous multi-core
for these benchmarks shown in Fi§._16.3 is mainly achievediggbling TLS for such
loops. To obtain this benefit, we need a runtime monitorirgfesy that can prevent in-
efficient TLS. But these benchmarks still need heterogemeuuiti-core as they need to

choose the best suitable configuration (Efficiency from catection).

Efficiency from core switching: For benchmarBmmp, equake, gcc, h264ref and miliif-
ferent loops need to be assigned to different configuratiombtain the ideal efficiency.
To exploit this efficiency, we need to develop low-overheaddivare techniques that can
monitor the performance of each region of code and dynalypiozp them to different

configurations based on their predicted efficiency on diffieconfigurations.

From the discussion above we can see that the efficiency fovenswitching is the hardest

106

to extract as it requires complex runtime monitoring supplr the next section we study the

overhead involved in extracting this efficiency.

6.3 Overhead In Using Heterogeneous Multi-core

Cache emptying phase Switching off phase
Region R1

SMT core

Region R2

CMP core

Switching on phase

Wil suffer L1 cold-
cacha missas

Figure 6.4: Different phases of execution when switchintyveen cores.

Fig. [64 shows the overhead involved in the execution of ®gians Region R1 and R2
which require a switching between the two configurationse diiferent phases on execution

when switching between cores are:

e Run Phase in SMT: Region R1 is mapped to SMT configuration twimmiae its effi-
ciency. When executing in the SMT configuration the CMP cafigion is in power-off

phase.

e Cache emptying phase: After executing Region R1 in the SMifigoration, we need
to switch to the CMP configuration to obtain the best efficjefor Region R2. When

switching from the SMT configuration to the CMP configuratiare need to power-off

107
(or put in a low power state) the un-used SMT configuratiorettuce power wastage in

the un-used core. But the L1 data cacheiige-back(as discussed in chaptEl 4) and can

containdirty data that need to be written to the L2 cache.

e Switching-off phase: After theache-emptying phasthe SMT core can now be safely
switched off. Switching off a core (or putting in a low powéate) may require several

cycles.

e Switching-on phase: To use the CMP cores, they need to berpdvem. Similar to the
Switching off phase, switching on the cores require seveyeles. The Switching-on
phase of CMP can be overlaped with the Switching-off phaseMT as shown in Fig.

0.4.

e Run Phase in CMP: Now the Region R2 starts executing in the €dviRguration. Since
the caches in the CMP cores are initialy empty, the CMP cordigan would suffer from

cold cache misses when executing Region R2.

From the above discussion, it is clear that switching betwamres involves several over-
heads. To understand the impact of the switching overheadijrst present the results when

assumingdeal switching.

108
6.3.1 ideal switching:

Here we assume that the the L1 cache can be emptied and tiseceorée switched on or off
instantaenously. So the different overheads shown in [Eid.dé not occur indeal switching.
Nevertheless when the Region R2 starts executing in the Givifiguration it would still suffer
from cold cache misses as shown in Fif_16.4. Consider 3 reditaii®, andR;. Lets assume
thatR; andR3; are mapped to SMT configuration and ketbe mapped to CMP configuration.
In our heterogenous multi-core mechanism, we need two bagte SMT to CMP to execuf®
and then from CMP back to SMT to execuURg If the size ofR, is small, the efficiency gain by
using CMP to rurR, may not be high enough to offset the overhead dusotd cache misses
that occur after each switch. In this case it may be benefiwiabt switch to CMP and ld®, run

in SMT configuration. To reduce such un-beneficial switchimg use thd~ormLargerRegions

algorithm shown below.

109

Input: List of regionsR; in the order of execution, EfficiendyD? for each region under
SMT-TLS, CMP-TLS and SMT-noTLS configurationsem;, E¢i andEg;
respectively. Lower bound of the region size

Output: Ideal allocation for each region

forall Region Rdo
/*Find the best allocation.*/ Best Efficiency f& = min(Emi,Eci,Es);

Best allocation folR; = configuration corresponding to the Best Efficiency;

end
SizeNewRegion[0] = size dRy;
foreach Region Rdo

if CurrentNewRegion>size< LowerBoundhen
/*Include current Regioilr; into the CurrentNewRegion*/

CurrentNewRegion>size += size oR;;

CurrentNewRegiory = R;;

end

else
[*CurrentNewRegion is large enough. It could contain nplétiR;s*/ foreach

Region R, Rj € CurrentNewRegiodo
totalSeq += size oR; if Best allocation forR; is SMT-noTLS;

totalSmt += size oR; if Best allocation forR; is SMT-TLS;

totalCmp += size oR; if Best allocation foiR, is CMP-TLS;
end
CurrentNewRegion>bestAllocation = configuration of

max(totalSeq,totalSmt,totalCmp);

CurrentNewRegion = create new region;
end
end

return the list of new regions created ;
Algorithm 1: The FormLargerRegions to get combine regions with smaller size into larger regions.

110
The algorithm basically combines the smaller regions inkarger region and allocate the

best possible configuration based on the efficiency infaonaif the smaller sub-regions. The
list of larger regions formed is feedback to the simulatdre Bimulator allocates the different
code regions to specific configurations as determined biahalLargerRegionglgorithm.

In Fig. [63, the efficiency of different benchmarks when asisg ideal switching under
different lower bounds are compared with the efficiency d@tl®mogeneous configuration in

each benchmark. Also we compare the efficiencidetl switching with predicted efficiency

calculated in Sectiofi_8.2.

16
1.4 7
121

Normalized ED2
o 0o o9
L T NS N < o 1 R]
L

ammp eguake goo h264ref rmilc G

|EI Best hormogeneous B Predicted heterogenous 0100 cycle regions 010K cycle regions B 100k cycle regions |

Figure 6.5: Comparison afleal switching based heterogeneous multi-core architectutie wi
best homogenous configuration.

The impact of fine-grained core switching is shown in bargesgonding to 100-cycle
regions. With the region size lower bound of 100 cycles, thigching is frequent leading to
cold cache misses. For benchmankmp the impact is less due to its large region size. But in
other benchmarks the fine-grained switching leads to pdigiexfcy. Ingcc and h264refvhich
have many regions with small size, the overhead leads EQfrwhich is worse than that of the

best homogeneous configuration. Overall the 100-cycleonagieal switching does not gain

111
any efficiency and it approximately has the same efficiencihasof the best homogeneous

configuration.

The impact due to fine-grained switching is reduced when veetlus 10,000 cycle lower
bound for region size. It performs about 10% better than #s bomogeneous configuration
and comes within 4% of the predicted efficiency calculatetthanprevious section.

When we further increase the lower bound for region size @@ cycles, the efficiency
becomes worse. When allocating at a larger granularityyrofithe smaller sub-regions within
the larger region are not allocated in the most optimal waigh kicreased region size of 100K
cycles, significant number of smaller sub-regions are atkxt to sub-optimal configurations
leading to worser efficiency than the 10K case by about 1%s &ffect is significant irgcc
while in h264refthe larger region size has a small positive effect due toaedioold cache
misses. Overall the lower bound region size of 10K cyclebésmost optimal size leading to

best efficiency.

6.3.2 Impact of switching overhead:

In the above study, we assumielgal switching and studied the impact obld cache misses.
Here we include all the overhead involved in switching asashim Fig. [6.4. We assume that
the number of cycles to write back tlaérty lines in the L1 data cache is equal to the number
of dirty lines in the cache. The number of cycles to switch on/off digaration is assumed
to be 1000 cycles. Similar to thdeal switching study, we feedback the best allocation for

each region to the simulator, which assigns the differedeaegions to different configurations

112
based on the feedback information. For each benchmark, ethasegion size that lead to the

best efficiency withideal switching.

Normalized ED2

ammp equake gee hZ2B4 ref milc: G

|D Best homogeneous B No switching averhead OWith switching overhead

Figure 6.6: Impact of switching overhead.

Fig. [686 compares the efficiency of the heterogeneous aothie when all overheads are
included with the efficiency undeédeal switching. Also the comparison with the best homoge-
neous configuration is shown. From Fig_16.6 it is clear thatdberhead due to core switching
is significant and leads to about 24% worser efficiency whenpawe to the efficiency with

ideal switching. Even the best homogeneous configuration odbipes the heterogeneous ar-

chitecture by 13%.

6.3.3 Reducing switching overhead:

From the discussion above, it is clear that the overheadaliedad switching is significant and
need to be reduced. One possible way of reducing overheadoigetlap some of the phases

involved in switching. The hardware can start the writekyaocess and the switching-on phase

113
ahead in time by predicting the imminent end of the curregiore Also compiler generated

warm-up instructions could be used to warm-up the cacherdéefwitching. Design of such

techniques targeted at reducing the switching overheaglyisria the scope of this thesis.

6.4 Conclusions

In this chapter we presented the SMT-CMP based hetereogem@echitecture. We showed the
potential improvement in efficiency that can be achievedleyuise of such heterogeneous archi-
tecture. We showed an overall potential of about 16% wherpemed to the SMT configuration
and 51% potential when compared to the CMP configuration.

We classified the efficiency improvement obtained accorttintpe source of the improve-
ment. For the increase in efficiency that requires fine-gchiswitching between cores, we
studied the impact of switching. Using &teal switching strategy we showed a potential of
about 10% when compared to the best homogeneous configuratio

Though, when we include all the switching overheads, theieffy drops to a negative 13%
when compared to the homogeneous configuration. This shmvssed to develop techniques

that can reduce the switching overhead.

Chapter 7

Increasing scalability with multi-level

speculative threads

In previous chapters we explored the efficiency of TLS aectitres. As we saw in chaptél 5,
the main factor that leads to inefficiency in TLS is the laclpafallelism in the loops selected.
When parallelism is limited, not all cores are utilized ladto poor efficiency. With increasing

number of cores in future multi-core processors it is impeeao develop techniques that can
utilize all the available cores. Most TLS techniques focagxiracting speculative threads from
single loop level or a single function continuation. But tdize all the cores available we need
to extract parallelism available at all levels of loops andctions. Consider a high-coverage
loop in benchmarlpovray,

/*csg.cpp*x/

330: static int Al1 CSG Merge_Intersections (OBJECT *0Object, RAY *Ray,

114

115

ISTACK *Depth_Stack)

350: for (Sibl = ((CSG *)0Object)->Children; Sibl != NULL;

Sibl = Sibl->Sibling) { //Loop-1

364: for (Sib2 = ((CSG *)0Object)->Children; Sib2 != NULL &&

inside flag == true; Sib2 = Sib2->Sibling){ //Loop-2

Here, loop-1 has an average iteration count of approximateVhile the average iteration
count of loop-2 is 2. Both these loops are possible candidfeparallelization, but if we
parallelize only at one loop level all cores in a 8-core CMRnzd be utilized. Apart from low
iteration count, loops could also suffer from large synaimation delay, large number of mis-
speculations, etc which lead to poor utilization of avdagatores. So to maximize performance
we need to extract TLS at multiple levels.

Extending TLS to multiple levels introduces several arattilre and compiler challenges.
Compared to single-level TLS, architecture and compilehtéues to support mutli-level TLS
have not been well understood. Supporting TLS at multiplelfeoften requires complex hard-
ware support[]43]. This chapter addresses this issue bypimgp novel compiler and architec-
ture techniques that can efficiently extract parallelismaltiple levels with minimal hardware
cost. To support multi-level TLS, any TLS system should additwo key challenges: 1. main-

taining the sequential order and 2. efficient allocatidmsitiling of threads to available cores.

116
To ensure correctness of the application, the TLS threadd teebe committed in the se-

guential program order. Unlike single-level TLS, spedutathreads in multi-level TLS could
be committed in a different order than they were forked. Reztaal [43] proposed timestamp
based architecture to support out-of-order threads. Taelmck of this approach is that ev-
ery TLS thread (eg. every iteration of an inner loop) creategw version of data and all the
speculative versions need to be maintained till the thresnaits. Since the L1 data cache’s
associativity is used to maintain the different versions,rhany versions cannot be maintained
leading to stalling/squashing of speculative threads. dimtrast in this chapter we propose a
novel SpecMerge architecture where, when an inner leveathcompletes, its state is merged
with the state of the outer level thread similar to the "ctiseested Transactional Memory
(TM) [74]). This reduces the number of versions that need tmbatained, thus reducing the
stalling/squashing effect and it also reduces hardwareptmqity.

If the TLS threads from multiple levels are not efficientlyieduled it is possible that a low-
performing loop/function could consume all the availaldees leading to overall degradation
of performance. Scheduling and loop allocation for nestegd have been well studied in the
context of conventional parallel loops. We use an apprommaifes to the OPTAL algorithm used
by Polychronopoulo®t. al[75] to parallelize arbitrary DOACROSS loops. The SpecOPTA
algorithm proposed in our chapter uses the predicted pedoce of each level to schedule
speculative threads from nested regions to maximize tHenpeance of the entire application.
Renauet. al [43] used Dynamic Task Merging, an ad-hoc techniqgue whematls which

causes too many squashes are disabled at runtime. But tioaddithe rate of mis-speculation

117
the TLS performance is affected by other factors such adsgnization delay, iteration count

of loops and cache behavior. The SpecOPTAL algorithm preghgsnsiders all these factors at
compile time and appropriately allocates the availablesdo maximize performance. Since
the allocation is done statically, our technique greatuces the hardware complexity.

Using our detailed out-of-order simulator compiler franoeky we show the effectiveness
of our compiler and architecture techniques to exploit Tt &altiple levels. Though in this
chapter we apply our technigues to nested loops, the sateiqee can be applied to extract
other types of multi-level TLS.

The rest of the chapter is organized as follows: In Seclidhwe present a description of
related work. In sectiod_4.2 we motivate the need for mekiel TLS by showing the limita-
tions of single-level TLS. Sectioh 1.3 describes our coergilased loop allocation framework
and Sectiorl_714 describes our SpecMerge architecture.clio8&.% we present our evaluation

results and in Sectiof 1.6 we conclude the chapter.

7.1 Related work

Compared to single-level TLS, the architecture/compiksigin for supporting TLS at multiple
loop levels (or function levels) have not been well undeydtoSeveral papers using ideal ma-
chine models [115, 56] have shown the potential of differgpes of TLS. Oplingest. al [15]
show that by exploiting TLS from inner loops, the harmonicamgerformance can increase
from 1.6 to 2.6.

Renawet. al[43] proposed architecture modifications to support outoler TLS threads.

118
In [43], all potentially parallel loops are parallelizeddatine architecture design relies on run-

time hardware tracking mechanisms to dynamically allocaseurces. Using hardware tables,
the rate of mis-speculation for each loop is tracked and baplsquashes more often, the
threads from the loop are merged, thus freeing the resodocesther potential loops. Such
runtime tracking mechanisms require complex hardware @ap@lso we saw that the per-
formance of the loop depends on various other factors sushrahronization delay, iteration
count and cache performance.

In our chapter the compiler statically allocates resoutnesonsidering all the loop char-
acteristics. Our approach of static allocation of resasiisesimilar to the approach used in
scheduling nested loops in traditional DOACROSS/DOALLgliatism [75]. The main differ-
ence is that in our approach we have to consider the impagteaiuation failure in addition to
factors like initiation interval (synchronization delagid iteration count.

In our SpecMerge architecture the inner thread mergestis with outer-thread on comple-
tion to avoid maintaining too many versions in the cache sHpmproach of "merging” of state
with outer loop is similar to "closed-nest” Transaction magn(TM). In [[74], the cache tags
are augmented with Read and Write bits for each loop nestive to track the dependences
and a stack of log frames hold the undo logs for each nestirg. Ilstead of using undo logs,
we use the level-1 data cache to maintain the speculativesaimilar to other cache based

TLS approaches[[45]. Also we use fewer bits per cache lineattktdependences.

119
7.2 Limitations of single-level TLS

Lets say the program contains an arbitrary loop niegL§, ... L; ... Ly) wherely is the inner
most loop. Let the coverage of the loops Bg,Co, ... G ... C\) and let the estimated speedup
be Gip,Sp, .- Sp ... Sup) usingp cores. For single-level TLS, the compiler loop selection

algorithm should select a lodp such that it satisfies:

C Ci...
(1—ci+§')g(1—c,-+§_’)w:1toN (7.1)
)

When we introduce multi-level TLS, say for example 2-levelST the objective is to find

two loopsLmy andL,, (sayLn, is the outer loopm < n) with allocationpy, and p, such that:

G
Son) <(1-GCG+<o) (7.2)

(1-Cp) + 5

Following scenarios could occur:

1. Condition in (2) is never satisfied. This indicates eithat the performance df is hard

to beat or there are no good loops other thaim the loop nest.

2. Ly is outer loop ofL;. (m < i). SinceLy was not selected for single-level TLS (1), it
shows thaGyp < Sp, butSyp, > Sp,, asLm was selected for 2-level TLS. This indicates

that the performance df,, does not scale with increase in processors.

3. L is inner loop ofL;. (m >=1). This shows that the two inner loops have good perfor-
mance that in combination are able to beat the performanbébér coveragéd;. This

implies poor scalability of loojh;.

120
Thus the important factor that requires support of multelerLS (in scenario 2 and 3) is

the presence of loops that have poor TLS performance. Thihge loops have some speedup,

the performance is not high enough to use all the availabiescefficiently.

7.2.1 Scalability in SPEC 2006:

In Chapter[B we saw studied the performance of SPEC 2006 bexkk using four cores. In
Fig. [Z2 we vary the number of cores and show the effect oéaging the cores for thes SPEC

2006 benchmarks.

Speedup
= = [S T E = 5 [=7]

|

3 foe o % :
PO &
§ " c}""‘rﬂ% o

|E|2 cores 4 cores 08 cores|

Figure 7.1: Effect of increasing number of cores

When the number of cores is increased from two to four, thengdac mean of the speedup
increases by about 35%; when increased further to eighs ctre performance increase is 33%.
Among classA benchmarksLBM,SPHINX3, H264REF and LIBQUANTUM contain important
loops that have large iteration count and substantial atafyrarallelism, thus the performance
of these benchmakrs is able to scale with the number of coressQUANTUM, the super-linear
performance gain is due to cache prefetching effect betweespeculative threads.

Among classB benchmarksNAMD shows good scalability andcF benefits from cache

121
prefetching effect as the number of threads increases. rtuinfately, none of the other bench-

marks are scalableiMMER suffers from frequent synchronizationpvRAY andBzipP2 suffers
from small trip countsASTAR not only suffers from frequently synchronization, but aies
guent squashes; FaoBMK andsSJENGthe performance improvement for TLS is negligible in
all configurations.

To summarize, with our existing single-level TLS executinadel, only a few benchmarks
are able to scale with the number of cores; and even for thehipearks that do scale, most of
them scale sub-linearly. While the reasons for the lack aladglity differ from benchmark to

benchmark, it is obvious that the amount of parallelismmnstid.

7.2.2 Factors affecting scalability:

We show the breakdown of execution time for SPEC 2006 in[EB)(Same as shown in chapter
B, Fig. [52). We can see that in many benchmarks, significaritop of the execution time
of TLS is wasted due to mis-speculations and idling of comssed by synchronization and
lack of threads. Several architecture and compiler teclasidhave been developed to reduce
the impact of these TLS overheads. Inspite of this, the pedioce of TLS has been limited.
Several program characteristics could limit the TLS penfance of loops:

Data-dependence violations

Since the loops selected for single-level TLS are based auraie performance estimation,
it will not have too many squashes. But the probability of#ll being squashed due to data-

dependence violation increases as the number of threadsage Say, the probability of a

122

Nomualized execution time
[}
(a2}
1

= E

a 1 j
[| [(i [[[| [(i |
zel gkl kel BE| 22| | BE| EE| BE| EE| BE| BE|
[¥x] (sLmR [l } (o D) (oL I o} LR] [[} [B [} s [l } (o D) (oL P} [[[u ()
mile Il |h2E4refpquantumephins3| povray | bzip2 et narmd | gobmk | himmer | sjieng astar

|E.| Busy B Cache misses O Lack of thread O Synchronization B Squash 3@ Otherl

Figure 7.2: Shows the breakdown of execution time while etieg the selected loops normal-
ized to sequential execution time

inter-thread dependence occurring between iteratamdi-1 is B. The probability of a thread
getting squashed due to inter thread dependenBe But this threadi] can also be squashed
if any of its predecessor threads get squashed. So the grakability of squash i€;.P..P;

... B. Hence if the number of active threads increase, the prlityabf mis-speculation also
increases.

Also some loops could have inter-iteration dependencedistfance> 1. If the dependence
distance igd, the loops will not have any squash if there are at ndektactive threads. But the
dth thread will have a dependence with the first thread. Fdn samps, increasing the number
of threads increases mis-speculations with no improveineygeedup.

Control violations (Iteration count) When the loop iteration count is small, the number
of iterations yet to be executed could be smaller than thebeurof available cores. This leads
to idle cores or thread violations if the loop "breaks” whilgecuting an iteration. The same
performance can be extracted by using a smaller number e§cor

Synchronization delay

123

— Indicates fork 4]

Figure 7.3: Effect of synchronization

In our TLS model inter-iteration register dependences atet-iteration memory depen-
dences that always happen are synchronized to avoid frequierspeculations. Led be the
synchronization delay anfl be the average execution time of the iteration. As showngn Fi
[Z3, there are two cases on how the dalaffects the performance. In casell < S/p where
p (p=4 in Fig[Z.3) is the number of processors. Here, after thedatof forks, all the cores are
always busy executing the iterations till loop terminatidn case 2D > S/p the large delay
causes some cores to be idle waiting for value from the pueviteration. In case 1, there is
minimal impact on performance due to synchronization délatyin case 2, synchronization
limits performance. Here the same performance could berguatdy using a smaller number
of cores.

Apart from these three major bottlenecks other factorsdiehe performance, speculative
buffer overflow can limit the performance of single level TLSuch loops with limited TLS
performance cannot efficiently use all the available cdrethese cases, we could compliment
these loops by simultaneously executing its inner or oateps. Here each of these individual

loops cannot fully utilize all the cores (scenario 1), buaasombination can better utilize the

124
cores and improve performance (scenario 2 and 3).

7.3 Multi-level TLS loop scheduling

One of the key challenges in supporting multi-level TLS isiltocate the available cores to the
speculative threads from different loop levels to maxinogerall performance. In this section

we discuss in detail our compiler based loop schedulingnigcie.

7.3.1 Static vs Dynamic loop selection

For multi-level TLS, the loop selection process, in additio selecting a set of loops we also
need to assign specific number of cores to each loop. Withatt sore allocation the loop
which executes first (outermost loop) could monopolize lal available cores and thus pre-
venting the later inner loops from forking any threads.

Renauet. al[43] proposed an architectural technique referred tDwasamic Task Merging
Hardware counters are used to identify threads that suffguént squashes; and these threads
are prohibited from spawning new threads. Other than remguaomplex hardware support, the
proposed approach has the following limitations. Firstlofwsing number of squashes as a
measurement of TLS efficiency is inaccurate. As we have se€edctior ZR, the performance
of TLS loops is also determined by synchronization, iteratiount, load balancedness, and etc.
Secondly, the hardware is unable to pre-determine the Ttéhfial of inner loops. As long as
the outer loop does not show performance degradation, linvasihopolize the cores. The inner

loops will never be attempted for parallelization even Hlidts more parallelism. This will lead

125
to a suboptimal allocation of cores.

On the other hand, the compiler has full knowledge of the Inepting structure of the
program. With the knowledge of estimated performance ohdaap level, the compiler can
potentially allocate the available cores to the differep levels to extract near optimal per-

formance.

7.3.2 Predicting performance for each loop

The first step in static compiler based loop selection is ¢aligt the performance of each loop.
In the case of a DOACROSS loop, the time required for the [gtecution can be calculated
by its initiation delayd as shown in [[/5]. A similar method to estimate the perforneaot
a TLS loop has been studied in_[24, 44]. In this study, we usinglse simulator model to
measure the performance of loops udiragn input set.

The model simulates an eight core in-order processor widinrentary TLS support and
each instruction is assumed to take 1 cycle. The model mestioe important TLS overhead
like cycles wasted in mis-speculations, cycles where threscare idle (due to low iteration
count), synchronization overhead, etc. To reduce sinandiime, only the first 500 invocations
of the loop are simulated.

For multi-level loop selection, we also need the perforneamidoops when smaller number
of cores were used. To avoid re-simulating the loops, thellsition model derives the various
overheads for smaller number of cores while simulating fghtecores. For example, if the

inter-iteration dependence causing violation has depawldistance of more thanthen the

126
violation would not have happened if we had used less xtrammber of cores. So, the resulting

overhead due to violation will not be included in calculgtthe performance for using less than
x number of cores. Similarly overheads due to synchronigatielay and low iteration count
are calculated for smaller number of cores. We validatecesitienated performance using the
simplified model with the simulation results using our dethisimulator and found that the
simplified model accurately predicted the relative perfanae of the different loops in loop

nests.

7.3.3 Loop selection for single-level TLS

Let SingleSpeeduyp represent the estimated speedup achieved by paralletiznfpoploop
usingj cores, wherg € 20,2122 X | This estimated per-loop speedup calculated is used
for both single-level and multi-level loop selection. Oingde-level loop selection algorithm
is based on [124]. Let us consider a loop nest shown and itegmonding loop-tree[[44] as
shown in Fig[7:4(@).

The number of cycles spent on each loop and the estimatedgpéesing 2 and 4 cores)
are shown for each loop node. The number of cycles spent dnleag is measured during the
loop-tree instrumentation phase of our compiler (ChaplerTRe loop selection algorithm has
to select a set of loops that don't overlap each other andhadsamizes the total performance of
the program. Candidate loop sets which do not cause loopapver Fig. [7.4(d) argloopl},
{loop 2, loop 3, {loop2, loop4, loop5, {loop2, loop3 and{loop2, loop5, loop 5. Of these

possible selection§loop2, loop3 would give the maximum performance for the benchmark.

main{) {

}
process(;
}
1

while {..) {ifloop 1
while { ..) { Moop 2

process() {

while (..) {illoop 3
while (..) { floop 4

foo();

}

foo();

}
1
foo() {

while (.) { Moop 5 Loop tree
} } [:loopnode

(> :function node

Source code

— : nesting relationship

(a) Example loop-tree

Cores 2 4
BestSpeedup 116 [133
200 ChildAll 2 4
cycles i ocate
I 1.05 1.4
BestSpeedup 125 147
@ ChildAllocate 1 2
SingleSpeedup 126 | 135
BestSpeedup 1.1 112
SingleSpeedup | 1.1 | 1.2
200 BestSpeedup 129 152
ChildAllocate 2 &4
@ | loop4
SingleSpeedup 1.0 10
BestSpeedup
SingleSpeed 18
[sresieease [18] S — T
100 SingleSpeedup | 18 | 32

Figure 7.4: Loop-tree based single-level and multi-lewebl selection

(b) Ilustration of SpecOPTAL algorithm

127

128
This set would be selected by the compiler and parallelized.

In this example, the loop 3 has speedup of only 1.35 when ubiogres and its speedup
reduces to only 1.25 when using 2 cores. This indicates twgt 8 does not efficiently use
all the 4 cores. So it is possible to allocate fewer cores dp ® without a large performance
penalty and use the freed cores to parallelize loop 5 or loop 1

With multi-level TLS we have more choices on how to use thelabke 4 cores {(loop
3)} —allocate all 4 cores to loop3(loop 3), (loop 5, loop 5’) — allocate 2 cores to loop 3 and 2
cores to loop 5 andl(loop1l),(loop3} —allocate 2 cores to loop 1 and 2 cores to loop 3. Selecting
the optimal allocation is NP-hard and we adapt a polynorima tdynamic-programming based
OPTAL algorithm [7%] to allocate cores to maximize performoa. The OPTAL algorithm[]75]

was originally used for loop allocation in nested DOACROS8 BOALL loops.

7.3.4 SpecOPTAL

The algorithm uses a dynamic programming based "bottomapptoach to select the loops for
multi-level TLS and decide on the number of cores to allofateach TLS loop so that entire
benchmark with multiple nested loops achieves the besbpeence. Due to the "bottom-up”
nature of the algorithm, when allocating cores to a pamictliLS loop level, only its immediate
inner loops need to be considered.

The input to the algorithm is’2the maximum number of cores available for the benchmark.
The algorithm operates on a loop tree generated during tyerest profiling phase of our

compiler. The loop-tree (as shown in fiff._7.4(b)) is augme:niéh SingleSpeedyp and the

129
execution time coverage of the loop. The output is the listedécted loops and the best core

allocation for each TLS loop level. L&estSpeedup(i,pepresent the best speedup achievable
by parallelizing the multi-level TLS loop nest starting bitqp) usingj cores.

Combining speedup

The basic step in the algorithm is to find the speedup of arr éae when its inner loops
are also parallelized. Lets call the function to calculais asGetCombinedSpeedup(M,N).
GetCombinedSpeedup(M,N) returns the speedup of lodpwhen we allocate M cores to par-

allelizeL; and N cores to parallelize its child loops in the loop ttee GetCombinedSpeedup(M,N)

130

is shown in Algorithm[R.
Input: Outer loopL;, M cores allocated tb;, N cores allocated to the next levél’s

child loops)
Output: Speedup of; with the specified allocation
Read Cycled() - the number of cycles spent in lodpfrom the profile;

foreach Child of loop L, L; j do
[*Find total sequential cycless for all inner loops.*/ Read Cycleks(;) - the number

of cycles spent in looj; ; when invoked fromi; from the profile;
SumBefPar += Cyclek();
[*Find total Ty, for all inner loops after parallelization.*/ ParCycles() =

Cycles(, j) + BestSpeedup(l,N);

SumAfterPar += ParCyclels(;);

end

[*Ts of outer loop after inner loops are parallelized.*/
CycleslnnerPar = Cyclds() - SumBefPar + SumAfterPar;
[*Calculate combined speedup.*/

ParCycled(;) = CyclesinnerPax SingleSpeeduf;

return (Cycled(;) = ParCycled()) ;
Algorithm 2: The GetCombinedSpeedup(M,N) to get the speedup of outer lodp when

its inner loops are parallelized.

Recursive algorithm

The SpecOPTAL algorithm starts from the leaf level in thepldmee and calculates the

131
speedup of parent nodes based on the child loops’ speedup.SpécOPTAL algorithm is

shown in Algorithm[3B. The exact allocation to the inner loapgiven in the vector ChildAllocaté(,p).

This would be used by the compiler to statically allocateesor An example application of

132

SpecOPTAL algorithm is shown in Fig._7.2(b).

Input: LoopL; and X the number of cores to allocate.

Output: Estimated speedup of the entire benchmark - BestSpeegdui?<) and a
vector ChildAllocatel(j,p) which indicates for each loop, how many cores need
to be allocated to its child loops.

if L is leafthen

foreachp € { 20, 21,22, .. 2K } do
| BestSpeedup(i,;5) SingleSpeeduyp;

end

return;

end

Allocate child loops first./ foreach L; j child of L; do
| SDECOPTAL(.LJ');

end
[*Inner loop’s best allocation already known. Try all pddsiallocations for the outer
loop*/ foreachp e {0,1,..K} do

foreachqe { 0,1,.p } do
CurSpeedup(,q) = GetCombinedSpeedup(29,2P/29); if CurSpeedup(lLg) <

MaxSpeedughen
MaxSpeedup = CurSpeedup); /*Record the best allocation*/

ChildAllocate(,p) = q;

end

end

BestSpeedup(i,p) = MaxSpeedup;

end
Algorithm 3: The SpecOPTAL algorithm.

133

In the example in Fid_7-4(p), at the first step the BestSpe@g) is calculated for loop5,
loop5’ and loop2. Loop4’s BestSpeedup is calculated baseBestSpeedup of loop5’. The
ChildAllocate for loop4 indicates that to achieve best perfance for loop4, all of its allocated
cores should be allocated to its child (loop5’). ChildAkde of loop3 shows that to achieve best
speedup using 4 cores, we need to allocate 2 cores to itgemi(tbop5 and loop4). Finally
the ChildAllocate of loopl shows that it should allocateitlicores to its children (loop2 and
loop3). So the best allocation of the loop nest in Fig. 7]#&k)loop2 can have 4 threads, loop3
can use only 2 threads and loop3’s children loop5 and loogh’use 2 threads.

Complexity analysis

The SpecOPTAL is called for every node in the loop tree. Adte the number of nodes
in the tree (including both loops and functions). In Spec@®BTthe outer loop iterates for
K times and the inner loop iterates on the average of K/2 tinfes, total number of times
GetCombinedSpeedup is calleckid/2. The loop inside GetCombinedSpeedup iterates over all
the children of the node. The average number of children pée iis a constantCq) for a tree.

Therefore, the total complexity of SpecOPTAL isX¥(?/2).

7.4 SpecMerge architecture

In the previous section we saw how the SpecOPTAL efficientycates the available cores
to the different loops. In this section we discuss the detilr SpecMerge architecture which

supports multi-level TLS in hardware.

134
7.4.1 Maintaining state of inner loops
In [43], Renawet. al proposed a multi-versioned cache based architecasigmito support out-
of-order threads. Here each speculative thread is assanadique timestamp. The cache lines
read or written by this speculative thread will be taggedwlis unique timestamp and these
cache lines are buffered in the cache till the speculativeath commits. If multiple threads
access the same data, a new version is created for each, tbreatihg a multi-versioned cache
[38]. In a multi-versioned cache all versions of the datamaintained in the same cache "set”
of the set-associative cache. Thus the number of versiais#m be maintained is limited by
the associatively of the cache. For example, a 8-core psocegth 4-way associative level-1

data cache can buffer 4*8= 32 unique versions.

Let us consider a 3-level nested loop:

for(i=0;i<X;i++) {// loop L1
for(j=0;j<Y;j++) {// loop L2

for(k=0;k<Z;k++) {// loop L3

335

Let us assume that all three levels are TLS-parallelizedy tBa outer loop creates one
speculative thread. This outer-speculative thread (idllveateY speculative threads from L2
and Y*Z inner speculative threads from L3. Also the non-specudativead (i=0) will create
(Y-1) L2 speculative threads arfif-1)*Z + Z-1 L3 speculative threads. If all these speculative

threads access the same data in cache, we(YegdZ + Z-1 + (Y-1) + Y + Y*Z If we assume

135
Z==Y, Z (the iteration count of the inner loops) can be at most 3.dfitbration count is larger,

some threads need to be stalled and can also lead to preveragtiashing of later speculative
threads. Due to the large number of versions that need to beaimed, this method is useful
only when the iteration count of the inner loops are small.

Another disadvantage of multi-version cache is the in@éasche access time. When a
cache-set is accessed, in addition to address taggasidd need to be compared to access
the correct version. Also the method used linl [43], requisasilvare indirection tables to map
real Taskldsto local Tasklds This leads to increased hardware complexity and increceeie
access time.

To counter the dis-advantages of this method, we progpezMergearchitecture. Here
when the speculative thread belonging to the inner loopsptete its speculative state is
merged with the state of the outer loop iteration. So the tmianber of versions is limited
by the number of speculative threads executing at a timeghwikiequal to the number of cores.
Also since the number of versions is equal to the number @fscae can use a single-versioned
cache and avoid the drawbacks due to multi-versioned cache.

Before describing the details of the SpecMerge architectue first briefly discuss the

single-level TLS model used in this chapter.

136

SPrRdMiss/S il
SBusRdflush
SPIRAMissiS Busrd(S)SL SBusRdflush e
Busrd(1S),SL SPIRAISL
SBusRdflush(it
SPHWHSMD SBuskdfush

SPrRd/SL

Privr/SBu
SUp(s) @

SBusUpfupd /sq —
(if later) SBusUp(ear)
SPrWSBusUp; SM D d.SMm

SBusUp/upd fsq
if LBy

i)
& SBusUp(ean)w
SpM [=) Bupd, SM
-y) \

g \

SPrRdicSL

SPrRAMWEB SL [RAWE: SL SBusRdfflush(if sf%r\J)SRdﬁ\ush(\l
\ SBusRdfflus.

SPrn D))
SMD A

SPrNis SBusrd(S), @ Sm

siISBusrd(! SMD SBusRdfflush

S)SMD o

(a) Cache transitions on processor requests. (b) Cache transitions on bus requests.

Figure 7.5: Speculative dragon protocol to support sitglet TLS.

Cache states Bus messages
E Exclusive SBuslp Spec. bus update
il MWodified SBusRd Spec. bus read
Sc shared-clean OverRd Overflow read
Sm shared-modified Overir Overflow write
SpE Speculative Exclusive SBusUplear) |Spec. update from earlier thread
Sphd Spec. Modified
SpSc Spec, shared-clean Actions/effects
SpSm Spec. shared-modified SLEMD zet 5L, SM, D bit
=] conditionally set SL bit {if ISh)

Processor commands WB wirite back data
SPiRd Spec. read flush send the cache line to bus
SPiRdMiss |Spec. read that misses upd. update value
SPY Spec. write = Squash if current thread is "later”
SPrIMiss |Spec write that misses

Conditions

S(15) Present (not present) in another cache
ear. the thread is eatlier in sequential order
later the thread is later in seguential order

Figure 7.6: Description of cache states/coherence message
7.4.2 Single-level TLS model

In our TLS model as we saw in previous chapters, the threadfodwed at the beginning of the
iteration and any inter-iteration register dependencesammunicated explicitly through spe-
cial instructions as in[[19]. Also the inter-iteration memadependences that occur frequently
are synchronized[[[%8]. After inserting synchronizatiostinctions instruction-scheduling is

performed to increase the overlap between threads. Thisderitrast with the model used in

137
[43], where the fork is placed after the last inter-iterataependence to avoid special handling

of register dependences. Though this approach [43] simplifardware, it sacrifices perfor-
mance that can be gained through compiler optimizationstzoen in [19]44].

In contrast to previous chapters, in this chapter we extaeddragon protocol [{6], an
update-based cache coherence protocol to support TLSaBtmi[45], SLbits are used to track
speculative reads arf8iM bits are set to track speculative modifications. The cadmesitions
are shown in Figl_7]5. For the sake of clarity, only the tramss related to TLS are shown.

Explanation on the different cache states and messagebawe in Fig[7.6

7.4.3 SpecMerge micro-architecture

Core allocation

L1-Thread - 0 L1-1 |rhr. - 1,0,0

e e e fe e e

loopstart (2)
Fork

e S

/] Fork
;

/
‘
Wait
;

/
allF
Commit)/

Thr. - 1,0,0
Becomes head
0 g thread
A e R o e BRI N
(a) Core allocation (b) Thread management

Figure 7.7: Allocation of cores and thread fork

The compiler inserts loop start instruction at the begignif each loop selected by the
SpecOPTAlalgorithm. The number of cores allocated to the particudaplis passed as an
operand. Say the loop is allocatethreads, and there are N cores available. An allocation of

implies that the loop can have utmost "X’ number of threadscé&we haveN cores, the cores

138
are equally partitioned among the threads and each thredldeatedN/x cores. The allocated

cores would be used exclusively by the thread and its deaocersgpeculative threads created
from inner loops. Say an inner loop is encountered witds the allocated number of threads,
the N/x available cores (allocated for the outer loop thread) ake partitioned so that each
inner loop thread now getd/x*y cores. This allocation of cores continues until each thread
gets only one core. An example allocation for our triply redbop is shown in Fi§. 7-7(a).

As the loop allocation algorithm described in sectibn] 745 full knowledge of the loop
structure, all the loops that have been parallelized willtgeir allocated share of cores. In
some cases due to recursion or difference between the grlafdp structure and the actual loop
structure, an inner loop’s request for cores may not befiatiall cores already allocated). In
this case, the inner loop’s request is ignored and no sp@a@ulreads are created from the

inner loop.

Taskld

Let 2 be the number of cores. Now k is the number of loop levels thatte supported (each
loop level would get 2 threads). THeaskldin our design is represented as a distance vector
(do,ds,.. d), wheredi is the distance from thkeadthread in the loop leval Theheadthread

of a loop is the earliest thread in sequential order that iseotly executing. Examples: If
number of cores is 8, we could support 3 loop levels. The paTdative thread would have

a Taskld(0,0,0) as it is the earliest thread in sequential order. rAat with Taskld (0,1,2) is

executing the earliest iteration in loop level O (outer mosp), 2nd earliest iteration in level

139
1 and 3rd earliest iteration in level 2. A Taskld (1,0,0) egamts a thread executing the 2nd

earliest iteration in level 0 and the earliest iterationewdl 1 and level 2.
Relative sequential order between the threads can beandfdry comparing their corre-
sponding distance vectors. A threXdwith Taskld (%,x1,.. %) is earlier than the thread

(Yo,Y1,.- Yk), if the following condition is satisfied:

Ji <k|x <yiandx =y;Vj <i (7.3)

For example, the thread (0,1,2) is earlier than the thregjQ}las it has a lesser distance at level

0.

Managing Taskld

Taskldfor a thread is assigned during thread fork and changed ohgnwhere is a thread
commit. When a thread forks a speculative thread, the nesattsTaskldis calculated based
on the current thread$askldand loop level. If the current Taskld i%i(X»,%3) and if the loop
level is 1 (second level), the next thread’s Taskld wouldaex{+1x3). The next free core
allocated to the current loop level is assigned to the newathr If no free core is available, the
speculative thread waits for theadthread to complete. An example is shown in [fig. 7J7(b).
When a thread commits, the immediate successor thread lescihreheadthread of the
loop level and itsTaskldchanges accordingly as shown in Hig. 7. (b). Note that thentibin
the example is not the same as the non-speculative comntg #ie outer-loop thread (1,0,0)

is still speculative. More details on commit operation Wil discussed later.

140

SPrRdMiss/
SBusrd(S)

SPrRdMiss!
SBusrd(IS)

SPrRA/SL

SPrnFOver
RdSMD

SPIRAISM.D ‘ SPrRd/Over
WS,
(:?z.)
Pri ‘ g
Up;SMBL

SPrdrMiss! PO
SBusrd(S) AHOver
SPTWiMis WESMD

s/SBusrd(!
$)

SPIWrOver
Rd.SMD

SPRdfOver
Wi SM,SL

SPrwrOver

(a) Cache transitions caused by processor requests.

SBusRd/fflus h{if
SBusRdfflush ear)

SBusRdfflush(if SBusU £
il 151
QverRd

SBusUp(ear)iup
disq

SBusRdflush(if

(b) Cache transitions caused by bus requests.
Figure 7.8: Modifications to support Multi-level TLS.

Speculative Load

Like in [45], speculative loads are tracked usiBfbits. As shown in Fig_7.9(h), when the
speculative thread (1,0,0) performs a load operationSthbit is set in the cache. When the
inner loop iteration finishes execution it causes a commitublike a non-speculative commit
it does not clear the SL bit as there is still a possible depeoel violation caused by a stores in

earlier threads, eg. (0,0,0). The commit of (1,0,0) onlyidatks that the next thread (1,1,0) is

the newheadthread.

141
After the commit, a new speculative thread (1,1,0) from tiveer loop (the original thread

(1,1,0) is now theneadthread with Taskld (1,0,0)) could be using the same corehaws in
Fig.[7.9(a) When the new speculative thread execla@d A it has to record this speculative
load. If we have just on&L bit, we would not be able to differentiate between the spamd
loads performed by thread (1,0,0) and by the thread (1,1,0).

To differentiate between the speculative loads by the ifowrs from the speculative loads
of the outer loop, d.oopTagfield is introduced. Thd.oopTagfield usesk bits to suppork-
nested loops. (With 8 cores we can support 3 levels whichavaguire a 3 bit LoopTag field).
A speculative load from a particular loop level, would set torresponding bit in theoopTag
as shown in fig[_7.9(h).

Fig. [Z8 shows all the cache state transitions due to spe@iteads and speculative writes.
For the sake of clarity, only the transitions related to iHeltel TLS are shown. Double-circled
state in Fig[CZB indicates that the cache line containsrahtead’s informationl{oopTagin-
dicate the loop level) and a triple-circled state indicdkes the cache line contains both inner-

thread and outer-thread’s information.

Dependence checking

Dependence checking is done similar [01[45] as shown inf[Egyaiid in FigCZb. The relative
order between between threads is determined by checkiivgdib&ance vectors as shown be-
fore. In addition toTaskldsthe LoopTagneeds to be considered. Consider the example shown

in Fig.[7-9(B). Store in thread (1,0,0) in core-1 causes alcbédependence in core-0. Core-0

142

loopstart

Load A_|

LoopTag ={100)

CcCommit
S = |Thr.-1,0,0
—r Becomes head
- 1,1.0 hread

hr. 1.1.0
Load A

SL Set SL
LoopTag= {110}

A I

(a) Speculative load.

Thr. - 1,00
loopstart
E

Load A_|

LoopTag = (100}

Commit
— .

i Thr. - 1,0,0
r. - 1,1.0
Store A
Cheglk—

LoopTag = (100}

MNo mis-

eachsO speculation

(b) Dependence checking.
has a cache line containing addrésand itsTaskldis (1,1,0) which makes it more speculative
than the thread (1,0,0). But since theopTag(100) indicates that this line was read by an outer

thread, no mis-speculation is caused.

Speculative Store

As in [45], SMbits are used to track speculative stores. As shown i F¥CcY .when thread
(1,0,0) executes a store, the speculative value is bufferéide data cache, thBM bit is set
and also thd.oopTagis set. Let us consider the case when, after thread (1,0rBjnits and

the next speculative (1,1,0) executing in the same coree{@pexecutes a store to the same

143
locationA. This new value needs to be buffered, but the cache alreattgins a version oA.

One option is to create a new version and tag the new versitnTaskld But this creates a
multi-version cache and additional hardware cost (more toitrecordTaskld. To avoid this
we need taeplacethe old version ofA belonging to thread (1,0,0). But this versionffs a
speculative value and cannot Wwetten-backto L2 cache.

From the Fig[7.9(¢), we see that when thread (1,0,0) comimitere0, the thread (1,1,0)
in corel becomes thHeeadthread and it§askldbecomes (1,0,0). Since, core-1 holds the state
for thread (1,0,0), we can transfédyerflow the version ofA belonging to thread (1,0,0) from
core-0 to core-1. This ensures that the speculative valddrain the thread (1,0,0) is buffered.
Since suchDverflowoperations occur only duringtore operation, the additional delay caused
can be easily tolerated using a write-buffer.

Lets consider a scenario when the thread (1,1,0) storesetsame locatiorA that was
speculatively read by thread (1,0,0) as shown iffig. 7] 9(el) us assume that we use the same
cache line to record this new value along with Siebit set by (1,0,0). If the thread (1,1,0)
mis-speculates, all its speculative cache lines would aidated. If we invalidate the cache
line holdingA, we would lose th&L bit set by (1,0,0). To avoid this we transfé&\(erflow the
cache line (along witlsLbits) to core-1 which holds the current state of (1,0,0) eAverflow

the LoopTagis cleared and the line would be used exclusively by the th(gd,0).

144

Thr. - 1,0,0

loopstart
Fork

Store A

- Thr. - 1,0,0
Becomes head
Thr. - 1,1,0) thread
Store A |

[SM |)SetSM —
AT A |

AN it I R

Overflow

(c) Scenario-1.

Thr. - 1,0,0

loopstart

Fork s e
/| Fork
Load A
— Load A
Set SL
LoopTag = ({00}
Commit
- Thr. - 10,0
- Becomes head
.- 1.9.0 thread
Store A

LoopTag = (010}

O verflovwvr

(d) Scenario-2.
Figure 7.9: Speculative store handling

Commit;

In single-level TLS architectures, when a thread commiits,immediate next thread in made
the non-speculative thread and all its speculative statecitache is committed. In multi-level
the state of the next thread could be spread on multiple saéto example consider Fig._7110.
The head thread (1,0,0) shifts between core-2 and coreA3geqoently the state of the thread
(1,0,0) is spread on cache-2 and cache-3. In the examplee dmes A,C and B belong to

(2,0,0).So when the thread (0,0,0) finishes execution abtiter most loop, instead of sending

145

“frhr. -00,0

Thr.-1,0,0

==l —-LoopTag. __
SL
A T {100) (100} I

c [(100) (010} | D
cache2 cache3

Figure 7.10: Commit operation

the COMMIT token ("home-free” token in[[45]) to one partianlsuccessor core, the token
is sent to all cores containing state of (1,0,0). This is aquished by aprefix-compareof
the destinationTaskld (1,0,0) — the threads (1,0,0) and (1,1,0) both have samextef,0)
corresponding to the outer-most loop. Both core-2 and 8onesuld receive the COMMIT
token from (0,0,0) and commit the state corresponding @),

Non-speculative commit occurs when the non-speculativeath finishes and sends the
COMMIT token to its successors (Example shown in Eig.]7.1Dhe non-speculative com-
mit operation is similar to [[45], where on receiving the tokall the speculative bitsS{,
SM LoopTag are cleared. In Fig_Z10 th®L bits andLoopTagof A, C and B are cleared
(conditional-gangcleay. Another type of commit operation callé&®peculative Mergeoccurs
when theheadthread of a loop finishes (eg. (1,0,0)) and the next threadrbeshead(eg.
(1,1,0)). Now the state of the nelaeadthread is merged with the outer-loop’s thread. For
example in Fig[_Z0, theoopTagof B which was originally (010) is changed to (100) since it

now belongs the outer-loop thread (1,0,0). This operatiwolves conditionallygang-clearing

146

Table 7.1: Architectural parameters.

Parameter

Fetch/Decode/Issue/Retire Width6/6/4/4

Integer units 6 units / 1 cycle latency

Floating point units 4 units / 12 cycle latency

Memory ports 2Read, 1Write ports

Register Update Unit 128 entries

(ROB,issue queue)

LSQ size 64 entries

L1l Cache 64K, 4 way 32B

L1D Cache 64K, 4 way 32B

Cache Latency L1 1 cycle, L2 18 cycles

Memory latency 150 cycles for 1st chunk, 18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize

Physical registers per thread 128 Integer, 128 Floating point and 64 predicate registers
Thread overhead 5 cycles fork, 5 cycles commit and 1 cycle inter-thread comigation

andgang-settingof LoopTagbits.

Hardware cost;

When compared to[_[43], the hardware cost of the SpecMergarselis minimal. Apart from
the per cache lind_oopTagbits (3 bits for 8 core CMP) no other additional hardware iedesl
when compared to single-level TLS. Other requirements tikeditional gang-clear gang-
setetc are already part of single-level TLS. Only significamstdn our scheme is the additional

complexity in the cache controller logic (due to additiooathe state transitions).

7.5 Evaluation

In this chapter we use our experimental framework detailechapter[R. The exact processor

configuration used is shown in Tahle]7.1.

147
7.5.1 Results

We applied our allocation algorithm to extract speculativeads for all benchmarks, but many
benchmarks did not show any potential for multi-level TL® ¢iithe following reasongzip2,
GOBMK and SJENG are omitted due to the lack of TLS parallelism overaliBQUANTUM
andHUMMER are omitted due to the lack of nested parallelizable loapss, NAMD, MILC,
SPHINX3, H264REF andMCF are omitted due to the fact that the Speculative-OPTAL algor
is unable to identify multiple levels of loops that can penfidoetter than the single level TLS.
For benchmark®oVvRAY andASTAR the multi-level TLS showed good potential. We also
added results for MediaBench-2 benchmark to demonstrateftbctiveness of our multi-level

TLS methodology.

7.5.2 Benchmarks

povray

POV-ray (SPEC 2006 - floating point) is a ray-tracing techeighat calculates an image of a
scene by simulating the way light rays travel in the real dioiThe benchmark iterates over
all the pixels in the screen and sends out fixed number of @ysdch pixel. When the rays
intersect the different objects in the scene the color obthject is calculated. Apart from the
outer loops that iterate over the pixels, all the major lobage very low iteration count. The
median iteration count of the top 60 high coverage loop& iFhe loops iterate over a fixed
number of textures, number of entries in a light tree, nunabéntersections, etc and in each

case the iteration count is very low. Due to this, the benchrhas only limited potential for

148
single-level TLS. With multi-level TLS itis possible to suttaneously parallelize some of these

low iteration count loops to better utilize the availableas

jpegdec

JPEG 2000 (MediaBench|l) is a wavelet-based image compression standard. Aftéalinit
color transformation, the image is split intikes. All further operations are performed at the
granularity oftiles and the loops that iterate over the different componentstile &ave very
low iteration count. The median iteration count of the todd@&tps in jpegdec i8. Similar low
iteration count loops are common in many media and netwqgpkagtions that operate on fixed
frame or fixed packet of data. In these cases single-levelWdusd not be sufficient to extract
all the available parallelism. With multi-level TLS some thiese loops can be parallelized

together to extract performance.

astar

Astar (SPEC 2006 - integer) is derived from a portable 2D {iiatting library used in game
Al. The library implements three different path finding aiigfoms. Unlike the other two bench-
marks, in astar the median iteration count of the top 60 las@round186. But the loops
are have large number of inter-thread data dependencesaise frequent mis-speculations.
For some of the loops, frequent dependences are synchdol@iading to large synchroniza-
tion delay. Such frequent squash/synchronization behévicommon in many SPEC integer

benchmarks, which limits their single level TLS performaniVith multi-level TLS, we could

L hitp://euler.slu.edul/ fritts/mediabench/

149
reduce the cores allocated to these low performing loopsealtbcate them to their inner or

outer loops. With this combined parallelism it is possilddimit the wastage of resources due

to mis-speculations and synchronization.

7.5.3 Results

Fig.[7.T1(d) shows the speedup of both single-level andi+ievkt] TLS over the sequential ex-
ecution. The single-level TLS has a geometric mean perfocemaf 45% when compared
to sequential execution while multi-level TLS has a geoimatiean performance of 57%.
Fig. [7-II{B) shows the normalized execution time breakdofvine three different architec-

tures (sequential, single-level TLS and multi-level TLS).

Discussion:

As shown in Fig[7-I1{b), in the benchmapkvrayas significant portion of execution time is
spentin idling due to lack of threads. Single-level TLS std¢he loop in filecsg.cppatline 248
that has a coverage of 60% of the entire benchmark’s exectitie (code snippets for this loop
were shown in the introduction). The average number oftitama per invocation of the loop
is less than 4. This low iteration count leads to "idling” afres and a limited speedup of only
9%. The loop inline 248has an inner loop dine 258whose average count is approximately
2. When this loop is also parallelized using multi-level Tit® performance increases to 13%.
As we can see, each looplate 248andline 258cannot by themselves utilize all the available

cores, but together they can lead to better performance. lifitiled improvement (4%) in

150

3.5
3
235
‘E 2 mSeqy
g mSirgledewel
e OMuttiderel
1 4
0.5 - — I —
0 T T T
poway jpegdec astar G
(a) Speedup
2 e
': o Others
=
= B Souash
§ O Synchronization
= = O Lack ofthreads
A i matting for memory
1":' ﬂ‘ O Busy
1=
= B
=
58|53 |5|383|3 8|23
w|E|IE|(m|E|E|w]|E|E
ow o o
povray jpegdec astar

(b) Execution time breakdown

Figure 7.11: Comparing between single-level TLS and neltel TLS

performance is because, the inner loop forms only 16% of xkewgion of the outer loop and

has a very low iteration count.

For benchmarkpegdecwe see a large portion of execution time is wasted due to lack o
threads (Fig_7.I1(b)). As we discussgibgdec’ssuffer from low iteration count. For example

the single-level TLS selects the loop in fpamenc.¢ line 345

344: for (y = 0; y < hdr->height; ++y) {

345: for (cmptno = 0; cmptno < numcmpts; ++cmptno) { //Selected by single-level TLS

The average iteration count of this loop is only 3 (indicgtihree color components RGB),

151
leading to idle cores. The outer loopline 344suffers from large synchronization delay (inter-

thread dependences) and also stalling due to speculatifiex buerflow since the iteration size
is large (about 1 Million instructions per iteration). Dweits limited performance, it was not
selected for single-level TLS. With smaller number of cothe impact due to synchronization
delay can be reduced and with multi-level TLS the state obtiter loop is buffered on multiple
cores (similar to example shown in F[g.7.10) leading to ceduspeculative buffer overflow
effect. With mutli-level TLS, when both the loops line 344andline 345are parallelized, we
achieve a 43% increase in speedup.

In benchmarkastar the loop selected for single-level TLS is in fiday2.cppatline 10Q
As we seen in Fid_7.11(b), the single-level TLS suffers flange synchronization delay and
frequent squashes. Due to the limited performance of lodmatl0Q the cores are not ef-
fectively used. With multi-level TLS, an inner loop lixte 65is selected, which by itself has
limited potential due to low iteration count (approx. 3).el¢tombined performance of loops in
line 100andline 65leads to an additional overall performance of 2% comparesinigle-level
TLS. The low performance increase is because the inner Imopdmes not efficiently utilize

the available cores as it also suffers frequent squashes.

Impact on bus traffic:

According to our discussion in Secti@nl7.4 the multi-levelSTcould potentially cause an in-

crease the amount of traffic in the common bus between cotbs @MP. The multi-level TLS

152

0.06

0.04

0oz

mP ortion due to owerdow)
Oincrease intrafic

% increase

panray ipeadec
0.0z

004

.06

Figure 7.12: Increase in traffic in multi-level TLS

causeverflowmessages which where not present in single-level TLS. Alstetcan poten-
tially be more sharing of data between threads in inner lolo@s in outer loops which can also
lead to more traffic. On the other hand, if the single-levemailti-level causes more squashes
it can also induce more traffic in the bus due to re-executiditise same thread.

Fig. [ZI2 shows the percentage increase in the traffic ofitientt] TLS when compared to
single-level TLS. For benchmagovraythere is almost no change in the amount of traffic. Here
the average iteration count of the inner loop is 2 and therifowp is only 16% of the outer-
loop execution time. Due to this there is no significant inseein sharing of data between cores
and consequently no increase in bus traffic. Similarly thechmarkjpegdecshows only 5%
increase in traffic due to its small inner loop. In benchmastar the single-level TLS suffers
frequent squashes at the outer loop. Due to the frequentemstion of the larger outer loop
iteration, it causes more traffic than the multi-level TLS.

Impact of Overflowmessage#\s described in Sectidn_1.4, tl@verflowmessages occur
in multi-level TLS which do not appear in single-level TLIgF [Z12 shows the percentage

of traffic increase in multi-level TLS that is due to tRverflowmessages. As we discussed

153
above, there is no significant increase in sharing of datad®st threads which also leads to

fewerOverflowmessages.

Summary:

Our results clearly show that due to various benchmark chexiatics - low iteration count
(povray,jpegdel synchronization delayaétar, jpegdel; mis-speculationsastar), the perfor-
mance of single-level TLS can be limited. With multi-levelS, more threads could be ex-
tracted from other loops (both inner and outer) leading titamhal performance. Also we
show that theSpecMergarchitecture is efficient and does not lead to significantgiase in bus

traffic.

7.6 Conclusions

With increasing number of cores available, it is importantkpose parallelism at multiple
granularity to fully utilize all the available cores. To daip speculative parallelism at multiple
levels, two key challenges need to be addressed - resolmcatain among threads and enforc-
ing sequential commit order. Existing techniques use cermpardware monitoring to allocate
cores and complex multi-versioned cache to implement Aeuél speculative threads.

In this chapter we proposespecOPTALa novel compiler based static resource allocation
scheme which allocates cores statically without need fangtex hardware based monitoring
schemes. Also we propoSpecMergerchitecture which uses single versioned cache to sup-

port multi-level speculative threads. We show that our sahean achieve a geometric mean

154
speedup of 15% over the single-level scheme on selectedhimamks. The SpecMerge scheme

could potentially cause increase in bus traffic due to aoliti cache transitions that were not
applicable for the single-level scheme. Our results shaat the increase in traffic is only

minimal showing the effectiveness of our scheme.

Chapter 8

Conclusion and Future Work

With the current trend towards multi-core/multi-threada@dcessors it is important to extract
parallelism in applications to utilize these architecsute improve performance of programs.
Thread Level Speculation (TLS) has been used to extractiglégan in applications that are
harder to extract using traditional compiler techniques ttuambiguous dependences. With
the different kinds of multi-threaded or multi-core desioices it is important to understand
the relative advantages of different architectures ancetldpvtechniques that can efficiently
extract speculative parallelism.

In this thesis, we showed the performance potential for TLSPEC 2006 benchmarks to
be about 60% compared to only 26% in SPEC 2000 benchmarksorBgaring the dependence
behavior and performance characteristics of the more t&eEC 2006 with the older SPEC
2000 benchmarks, we show a clear trend towards more pdpaltehmarks which can benefit

from speculation support. Given this trend, it is importangupport efficient TLS architectures

155

156
in future multi-core/multithreaded processors.

We propose a novel cache-based architecture to supportiT&SIT processors. Unlike the
previous approaches that use the Load-Store Queues (LS ate fully-associative struc-
tures based approaches, we utilize the cache to supportVWeShow that for selected bench-
marks that have larger threads, our cache based TLS appoaacbutperform the existing
techniques by 19%.

We perform a detailed comparison of our SMT based TLS approéth the existing CMP
based approach in terms of performance, power consumginergy effciency and thermal
behavior. We show that the efficiency of TLS in each of thesechmarks depend on the
characteristics of each benchmark. For programs that haited potential for TLS, SMT
based TLS is more efficient. While for the more parallel benatks, the CMP based TLS is
shown to be more efficient.

To extract the TLS available in the most efficient way, we psmpa SMT-CMP based
heterogeneoumulti-core architecture. We show that potential this applois about 16% when
compared to the best homogeneous configuration. We studynthact of different overheads
on energy efficiency and suggest potential ways to reduce theerheads.

One important challenge in future multi-core/multi-thdled architectures is to fully utilize
all the available cores/threads. We propose compiler atdtacture techniques that can exploit
TLS parallelism at multiple levels. When compared to oth&vipus approaches that rely on
complex hardware structures, we used compiler to allocatesc We show that for selected

benchmarks, our technique can achieve a speedup of ovéz-tingl TLS.

157
8.1 Future Work

The research presented in this thesis can be extended@sdoll

¢ In this thesis, we showed the potential for improving efficie by utilizing aheteroge-
neousmulti-core architecture. Realizing the potentiahieterogeneoumulti-core archi-
tecture would involve developing techniques the overhaaolved in switching between
configurations. Also techniques need to be developed tagirdte performance and

performance of different loop regions at runtime.

e Eventhough we concentrated on TLS workloads, some of timigges proposed can be

utilized for non-speculative parallel workloads.

¢ In this thesis, we concentrated on improve the efficiencyhefaéxecution of a single
benchmark. When we consider a multi-programmed envirohm&ch of the simultane-
ously executing benchmarks could have TLS threads. In sigdem@ario it is important
to develop techniques that can efficiently share the aJeiladres/threads in the proces-
sor among all the specualtive threads from different appiias to improve the overall

efficiency of the entire workload currently executing.

References

[1] J. Emer. EV8: The Post-ultimat&lpha(Keynote address). Imternational Conference

on Parallel Architectures and Compilation Techniqu2801.

[2] Intel Corportation. Intel Pentium 4 Processor with HT chiaology.

http://www.intel.com/personal/products /pentium4/festpreading.htm.

[3] Intel Corporation. Intel's Dual-Core Processor for Rep PCs.

http://www.intel.com/personal/desktopcomputer/doate/, 2005.

[4] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, and T. éaaki Y. Watanabe. A novel
SIMD architecture for the Cell heterogeneous chip-muitggssor. IrHot Chips 17 Au-

gust 2005.

[5] T. Knight. An Architecture for Mostly Functional Langges. InProceedings of the ACM

Lisp and Functional Programming Conferengages 500-519, August 1986.

[6] H. Akkary and M. Driscoll. A Dynamic Multithreading Pressor. In31st Annual

IEEE/ACM International Symposium on Microarchitecturei¢id-31), December 1998.

158

159
[7] Manoj Franklin and Gurindar S. Sohi. The expandabletspindow paradigm for ex-

ploiting fine-grain parallelsim. [ri9th Annual International Symposium on Computer

Architecture (ISCA '92)pages 58-67, May 1992.

[8] M. Cintraand J. Torrellas. Learning Cross-Thread Miolas in Speculative Parallelization
for Multiprocessors. I8th International Symposium on High-Performance Computer

Architecture (HPCA-8)2002.

[9] Pradeep Dubey, Kelvin O'Brien, Kathryn O’'Brien, and Clea Barton. Single-Program
Speculative Multithreading (SPSM) Architecture: Comp#ssisted Fine-Grained Multi-
threading. Ininternational Conference on Parallel Architectures andn@mlation Tech-

niques (PACT 1995)une 1995.

[10] G. S. Sohi, S. Breach, and T. N. Vijaykumar. MultiscaPapcessors. |1@2nd Annual In-

ternational Symposium on Computer Architecture (ISCA,’payes 414-425, June 1995.

[11] M. Gupta and R. Nim. Techniques for Speculative Run-darallelization of Loops. In

Supercomputing '98November 1998.

[12] L. Hammond, M. Willey, and K. Olukotun. Data SpeculatiSupport for a Chip Multi-

processor. IiProceedings of ASPLOS-V|IDctober 1998.

[13] V. Krishnan and J. Torrellas. The Need for Fast Commation in Hardware-Based Spec-
ulative Chip Multiprocessors. Imternational Conference on Parallel Architectures and

Compilation Techniques (PACT 1999)ctober 1999.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

160
P. Marcuello and A. Gonzalez. Clustered Speculativdtithueaded Processors. IiBth

Annual ACM International Conference on SupercompytiRigodes, Greece, June 1999.

J. Oplinger, D. Heine, and M. Lam. In Search of Specuéalihread-Level Parallelism. In

Proceedings PACT 9®ctober 1999.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Aafable Approach to Thread-
Level Speculation. Ir27th Annual International Symposium on Computer Architiect

(ISCA *00) June 2000.

J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. YeWwhe Superthreaded Processor
Architecture.lEEE Transactions on Computers, Special Issue on Multiitheel Architec-

tures 48(9), September 1999.

Anasua Bhowmik and Manoj Franklin. A Fast Approximatéerprocedural Analysis for
Speculative Multithreading Compiler. th7th Annual ACM International Conference on

Supercomputing2003.

A. Zhai, C. B. Colohan, J. Steffan, and T. C. Mowry. ColapiOptimization of Scalar
Value Communication Between Speculative Thread4.0th International Conference on
Architectural Support for Programming Languages and OfiataSystems (ASPLOS;X)

Oct 2002.

Antonia Zhai, C. B. Colohan, J. G. Steffan, and T. C. MawCompilerx Optimization

of Memory-Resident Value Communication Between Speadalfihreads. IriThe 2004

[21]

[22]

[23]

[24]

[25]

[26]

161
International Symposium on Code Generation and Optinaraar 2004.
Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.4Rgai. A Cost-Driven Compila-
tion Framework for Speculative Parallelization of Seqisfrograms. IIACM SIGPLAN
04 Conference on Programming Language Design and Impletient(PLDI'04), June

2004.

T.A. Johnson, R. Eigenmann, and T.N. Vijaykumar. Mint®rogram Decomposition for
Thread-Level Speculation. IKCM SIGPLAN 04 Conference on Programming Language

Design and Implementation (PLDI'04)June 2004.

T. N. Vijaykumar and Gurindar S. Sohi. Task Selectiondd/ultiscalar Processor. Bilst
Annual IEEE/ACM International Symposium on Microarchitee (Micro-31) November

1998.

S. Wang, K. S. Yellajyosula, A. Zhai, and P.-C. Yew. LoBplection for Thread-Level
Speculation. Inhe 18th International Workshop on Languages and CompiterBaral-

lel Computing Oct 2005.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, dndorrellas. POSH: A
TLS Compiler that Exploits Program Structure. ACM SIGPLAN 2006 Symposium on

Principles and Practice of Parallel Programminiylarch 2006.

I. Park, B. Falsafi, and T.N. Vijaykumar. Implicitly-ritithreaded processors. BOth

Annual International Symposium on Computer Architecti®CA '03) June 2003.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

162
Jack Lo, Susan Eggers, Joel Emer, Henry Levy, Rebecamr8i and Dean Tullsen.

Converting Thread-Level Parallelism Into InstructionvkeParallelism via Simultaneous

Multithreading. ACM Computing Surveypages 322—-354, August 1997.

Stefanos Kaxiras, Girija J. Narlikar, Alan D. Berenbguand Zhigang Hu. Comparing
power consumption of an smt and a cmp dsp for mobile phoneloantk. INCASES

2001.

Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, aidBgbes. The energy efficiency
of cmp vs. smt for multimedia workloads. Ii8th Annual ACM International Conference

on Supercomputingages 196—206, 2004.

Yingmin Li, David Brooks, Zhigang Hu, and Kevin SkadroRerformance, energy, and
thermal considerations for smt and cmp architectureslith International Symposium

on High-Performance Computer Architecture (HPCA;12005.

James Burns and Jean-Luc Gaudiot. Area and system eféats on smt/cmp through-

put. IEEE Trans. Computer$4(2):141-152, 2005.

Michael Wolfe. High Performance Compilers for Parallel Computingddison Wesley,

1996.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Ruati@ompilation Methods for
Multicomputers. Ininternational Conference on Parallel Processinglume 2, pages

26-30, 1991.

[34]

[35]

[36]

[37]

[38]

[39]

163
Cosmin E. Oancea and Alan Mycroft. Software threackllespeculation: an optimistic

library implementation. IfWMSE '08: Proceedings of the 1st international workshop on

Multicore software engineerindNew York, NY, USA, 2008. ACM.

Marcelo Cintra and Diego R. Llanos. Toward efficient anfust software speculative
parallelization on multiprocessors. FPoPP '03: Proceedings of the ninth ACM SIG-
PLAN symposium on Principles and practice of parallel peogming New York, NY,

USA, 2003. ACM.

Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. Titpertest: Speculative paral-
lelization of partially parallel loops. ItPDPS '02: Proceedings of the 16th International
Parallel and Distributed Processing Symposjymge 318, Washington, DC, USA, 2002.

IEEE Computer Society.

M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism Eynamic Reordering of

Memory ReferencedEEE Transactions on Compute#5(5), May 1996.

T.N. Vijaykumar, S. Gopal, J.E. Smith, and G. Sohi. Spative versioning cache. In
IEEE Transactions on Parallel and Distributed Systemslume 12, pages 1305-1317,

December 2001.

Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smru8dRangi, James Tuck, and Josep

Torrellas. Energy-efficient thread-level speculatitEE Micro, 26(1):80-91, 2006.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

164
J.Chen and L.K. John. Energy-aware application sclglon a heterogeneous multi-

core system. IhISWC '08: Proceedings of the IEEE International Symposam\\ork-

load Characterization2008.

Michela Becchi and Patrick Crowley. Dynamic thread@ssient on heterogeneous mul-
tiprocessor architectures. [DF '06: Proceedings of the 3rd conference on Computing

frontiers, New York, NY, USA, 2006. ACM.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy RanganatNorman P. Jouppi, and
Keith I. Farkas. Single-isa heterogeneous multi-coreigrctures for multithreaded work-

load performanceSIGARCH Comput. Archit. Newd2(2), 2004.

J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J.€llas. Tasking with Out-of-Order
Spawn in TLS Chip Multiprocessors: Microarchitecture ammrpilation. In19th Annual

ACM International Conference on Supercomputidigne 2005.

S. Wang. Compiler Techniques for Thread-Level Speculati®D thesis, University of

Minnesota, 2007.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Bt@mpede approach to thread-
level speculation. IMCM Trans. on Computer Systemolume 23, pages 253-300, August

2005.

Open64 the open research compiler. http://www.operdi

165
[47] Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag, daviilja, and Douglas M.

Hawkins. Characterizing and comparing prevailing simafatechniques. Irllth In-

ternational Symposium on High-Performance Computer Aechirre (HPCA-11,)2005.

[48] E. Perelman, M. Polito, B. Calder, J. Sampson, J. Y. Betgand C. Dulong. Detecting
phases in parallel applications on shared memory archrest Inthe 20th International

Parallel and Distributed Processing Symposiuiypril 2006.

[49] C-K Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowne$. Wallace, V.J. Redd,i,
and K. Hazelwood. Pin: building customized program analysols with dynamic in-
strumentation. IIACM SIGPLAN 05 Conference on Programming Language Design an

Implementation (PLDI'05)June 2005.

[50] D. Burger and T. M. Austin. The simplescalar tool setrsien 2.0. ACM SIGARCH

Computer Architecture Newsgune 1997.

[51] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wh: a framework for
architectural-level power analysis and optimizations.2Tth Annual International Sym-

posium on Computer Architecture (ISCA '0@P00.

[52] H. Wang. Orion: A power-performance simulator for imtennection networks, 2002.

[53] W. Huang, K. Sankaranarayanan, R. J. Ribando, M. R.,Stad Kevin Skadron. An

improved block-based thermal model in hotspot 4.0 with glaity considerations. In

166
Workshop on Duplicating, Deconstructing, and Debunkimgganjunction with the 34th

International Symposium on Computer Architecture (ISQAP7.

[54] Standard Performance Evaluation Corporation. TheGEEBU 2006 Benchmark Suite.

http://www.specbench.org.

[55] Arun Kejariwal, Xinmin Tian, Milind Girkar, Wei Li, Sagey Kozhukhov, Utpal Banerjee,
Alexandru Nicolau, Alexander V. Veidenbaum, and ConstentD. Polychronopoulos.
Tight analysis of the performance potential of thread sjaicun using spec cpu 2006. In
ACM SIGPLAN 2007 Symposium on Principles and Practice ohlfdrProgramming

2007.

[56] F. Warg and P. om. Limits on speculative module-levelapalism in imperative and
object-oriented programs on cmp platforms.Iternational Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT 2001)

[57] Arun Kejariwal, Xinmin Tian, Wei Li, Milind Girkar, Sagey Kozhukhov, Hideki Saito,
Utpal Banerjee, Alexandru Nicolau, Alexander V. Veideninaand Constantine D. Poly-
chronopoulos. On the performance potential of differepesy/of speculative thread-level

parallelism. In20th Annual ACM International Conference on Supercomgu@006.

[58] S. Wang, A. Zhai, and P.-C. Yew. Exploiting SpeculatiMeread-Level Parallelism in
Data Compression Applications. Trhe 19th International Workshop on Languages and

Compilers for Parallel ComputingOct 2006.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

167
Intel c++ compiler. http://www.intel.com/cd/softnelproducts/asmo-na/eng/277618.htm.
P. Marcuello and A. Gonzalez. Exploiting speculatitieetaid-level parallelism on a smt
processor. liProceedings of the 7th International Conference on Highféd?Pmance Com-

puting and NetworkingApril 1999.

V. Krishnan and J. Torrellas. A Chip Multiprocessor Aitecture with Speculative Multi-
threading.IEEE Transactions on Computers, Special Issue on Multitheel Architecture

September 1999.

Pedro Marcuello and Antonio Gonzalez. Exploiting ayative thread-level parallelism
on asmt processor. HPCN Europe '99: Proceedings of the 7th International Coerfiee
on High-Performance Computing and Networkimpges 754-763, London, UK, 1999.

Springer-Verlag.

J. Gregory Steffan, Christopher B. Colohan, AntoniaaiZtand Todd C. Mowry. The
STAMPede Approach to Thread-Level SpeculatiohCM Trans. on Computer System

23, Aug 2005.

Christopher B. Colohan, Anastassia Ailamaki, J. Grgdgdteffan, and Todd C. Mowry.
Hardware Support for Large Speculative Threads33rd Annual International Sympo-

sium on Computer Architecture (ISCA '08un 2006.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Maximizing ©@hip Parallelism. Ir22nd

Annual International Symposium on Computer Architecti®CA '95) June 1995.

[66]

[67]

[68]

[69]

[70]

[71]

168
Jose F. Martnez, Jose Renau, Michael C. Huang, MilosIBvic, and Josep Torrellass.

Cherry: checkpointed early resource recycling in out4afeo microprocessors. Istanbul,

Turkey, 2002.

Norman P. Jouppi. Improving direct-mapped cache parémce by the addition of a small

fully-associative cache and prefetch buffersl3&CA pages 364-373, 1990.

V. Packirisamy, S. Wang, A.Zhai, W-C Hsu, and P-C Yewpgarting speculative multi-
threading on simultaneous multithreaded processor&2tim International Conference on

High Performance Computing HiPC'200Bengaluru. India, December 2006.

Fredrik Warg and Per Stenstrom. Dual-thread speiomatTwo threads in the machine
are worth eight in the bush. I18BAC-PAD '06: Proceedings of the 18th International
Symposium on Computer Architecture and High Performanampiing pages 91-98,

2006.

J.Donald and M.Martonosi. Temperature-aware dessgods for smt and cmp architec-
tures. InFifth Workshop on Complexity-Effective Design (WCED) injanction with

ISCA-31 June 2004.

Yingmin Li, Lee B., David Brooks, Zhigang Hu, and Kevik&lron. Cmp design space
exploration subject to physical constraints. 12th International Symposium on High-

Performance Computer Architecture (HPCA-12006.

[72]

[73]

[74]

[75]

[76]

169
Matteo Monchiero, Ramon Canal, and Antonio Gonzaleesign space exploration for

multicore architectures: a power/performance/thermaivviln 20th ACM International

Conference on Supercomputing (ICS’'0B)ne, 2006.

S. Marc, K. Reiner, L.P. Josep L., U. Theo, and V. Mate@nEistor count and chip-space
estimation of simplescalar-based microprocessor modelsNorkshop on Complexity-
Effective Design, in conjunction with the 28th InternaibBymposium on Computer Ar-

chitecture June 2001.

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, € en, Mark D. Hill, Ben
Liblit, Michael M. Swift, and David A. Wood. Supporting nest transactional memory
in logtm. In 12th International Conference on Architectural Support Rsogramming

Languages and Operating Systems (ASPLOS-XII)

Constantine D. Polychronopoulos, David J. Kuck, andiBa. Padua. Utilizing mul-
tidimensional loop parallelism on large-scale paralle@gassor systemslEEE Trans.

Computers38(9), 1989.

D.E.Culler, J.P.Singh, and Anoop GuptaParallel Computer Architecture: A Hard-
ware/software Approach The Morgan Kaufman Series in Computer Architecture and

Design, San Francisco, CA, 1999.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Related Work
	Dissertation Contributions

	Evaluation Framework
	TLS execution model
	TLS hardware model:

	TLS Compiler
	Simulator Framework
	Trace Generation
	Simulation
	Thermal simulation
	Benchmarks

	Benchmark Analysis
	Related work
	Dependence analysis of SPEC 2006 loops
	Inter-thread register-based data dependences
	Inter-thread memory-based data dependences
	Pitfalls

	Compilation and Evaluation Infrastructure
	Exploiting Parallelism in SPEC2006
	Type I Loops
	Type I + II Loops
	Type I + II + III Loops

	Comparison with SPEC2000
	Conclusions

	Efficient TLS support in SMT
	Related Work
	SMT model
	Simplified Two-Thread Scheme
	Four-Thread Scheme
	Performance evaluation
	Experimental Methodology
	Results

	Conclusions

	Performance/Power/Thermal comparison
	Related work
	Processor Configurations
	Superscalar configuration
	SMT configuration
	CMP configurations

	Performance and Power Comparisons
	Performance
	Power
	ED and ED2

	Alternative Configurations
	Thermal behavior

	Heterogeneous TLS
	Related work
	Potential For Heterogeneous Multi-core
	Overhead In Using Heterogeneous Multi-core
	ideal switching:
	Impact of switching overhead:
	Reducing switching overhead:

	Conclusions

	Increasing scalability with multi-level speculative threads
	Related work
	Limitations of single-level TLS
	Scalability in SPEC 2006:
	Factors affecting scalability:

	Multi-level TLS loop scheduling
	Static vs Dynamic loop selection
	Predicting performance for each loop
	Loop selection for single-level TLS
	SpecOPTAL

	SpecMerge architecture
	Maintaining state of inner loops
	Single-level TLS model
	SpecMerge micro-architecture

	Evaluation
	Results
	Benchmarks
	Results

	Conclusions

	Conclusion and Future Work
	Future Work

