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by Venkatesan Packirisamy

ABSTRACT

The computer industry has adopted multi-threaded (Simultaneous Multi-Threading (SMT)

and multi-core (Chip Multiprocessor) architectures as theclock rate increase stalled in early

2000’s. It was hoped that the continuous improvement of single-program performance could be

achieved through these architectures. However, traditional parallelizing compilers often fail to

effectively parallelize general-purpose applications which typically have complex control flow

and excessive pointer usage. Thread-Level Speculation (TLS) have been proposed to simplify

the task of parallelization by using speculative threads. Though the performance of TLS has

been well studied in the past, its power consumption, power efficiency and thermal behavior

are not well understood. Also previous work on TLS have concentrated on multi-core based

architecture and relatively little has been done on supporting TLS on multi-threaded architec-

tures. With increasing multi-threaded/multi-core designchoices, it is important to understand

the benefits of the different type of architectures.

The goal of this disseration is to develop architecture techniques to efficiently implement

TLS in future multi-threaded/multi-core processors. The disseration proposes a novel cache-

based architecture to support TLS in multi-threaded SMT architecture. A detailed study on the

efficiency of different TLS architectures was conducted by comparing their performance, power

and thermal characteristics. Through detailed analysis, the disseration shows that depending on

the benchmark characteristics different architectures are more efficient. To improve efficiency,

the disseration proposes a novel SMT-CMP basedheterogenousarchitecture which combines

the advantages of both SMT and CMP architectures.
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The disseration also proposes novel architecture and compiler techniques to efficiently ex-

tract speculative parallelism from multiple loop levels.
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Chapter 1

Introduction

Continuous clock rate improvement on microprocessors in the past three decades has stalled

in early 2000’s because of power and thermal considerations. It prompted computer industry

to adopt multi-threaded (e.g. simultaneous multi-threading (SMT) [1],hyper-threading [2]) ,

and/or multi-core (e.g. chip multiprocessors (CMP)) [3, 4]architectures in the hope of contin-

uing the performance improvement without increasing the clock rate and its associated power

and thermal problems. With the advent of multi-threaded andmulti-core architectures, now

the challenge is to utilize these architectures to improve performance of general-purpose appli-

cations. Automatic compiler parallelization techniques have been developed and found to be

useful for many scientific applications that are floating-point intensive. However, when applied

to general-purpose integer-intensive applications that have complex control flow and excessive

pointer accesses, traditional parallelization techniques become quite ineffective, as they need

to conservatively ensure program correctness by synchronizing all potential dependences in the

1
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program. This often requires a programmer to explicitly create parallel threads and insert syn-

chronizations. This approach is often error prone and puts ahuge burden on the programmer.

There have been numerous studies on hardware support for speculative threads, which in-

tend to ease the creation of parallel threads for programmers and compilers. Recently, Hardware

Transactional Memory (HTM) has been proposed to aid the development of parallel programs;

Thread-Level Speculation (TLS) has been used to exploit parallelism in sequential applications

that are difficult to parallelize using traditional parallelization techniques. For example, a loop

that contains an inter-thread data dependence due to loads and stores through pointers cannot be

parallelized using traditional compilers; but with the help of TLS, the compiler can parallelize

this loop speculatively and relying on the underlying hardware to detect and enforce inter-thread

data dependences at run-time.

There has been a significant amount of research done on ThreadLevel Speculation (TLS) [5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] on how to automatically

extract speculative parallelism from programs and on how tosupport TLS in hardware. From the

previous work the performance behavior of multi-core (CMP)based TLS is well understood, but

very little has been done to understand other important characteristics like power consumption,

power efficiency and thermal behavior. Also the multi-threaded (SMT) based TLS has not been

well understood and the current techniques rely on complex structures that can support only

small speculative threads [26, 6].

With the current trend towards multi-threaded/multi-corearchitectures, the microprocessor

designer is now presented with a variety of multi-threaded/multi-core design choices. While
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comparitive studies [27, 28, 29, 30, 31] on the advantages ofCMP and SMT based architectures

have been conducted using various workloads, their relative behavior in the case of TLS is

not known. To efficiently implement TLS in future multi-threaded/multi-core processors it is

important to understand the relative advantages of the various design choices when supporting

TLS.

Also with the current trend towards increasing number of threads/cores supported in the

microprocessor, it is important to utilize all the available threads/cores to extract performance

in applications. To efficiently utilize the available threads/cores, it is important to extract par-

allelism from multiple loop and function levels. While mostTLS techniques have studied only

single-level parallelism, it is important to develop techniques to efficiently support multiple

levels of TLS.

This dissertation addresses some of these issues. First we propose a novel cache-based

architecture to support TLS in SMT processors. Then we perform a detailed trade-offs study

by comparing the performance, power consumption and thermal behavior of SMT based TLS

with the CMP based TLS architecture. Based on our understaning of the relative merits of SMT

and CMP based TLS architecture, we propose a SMT-CMP basedheterogeneousarchitecture

and show the potential efficiency gain. We also propose compiler and architecture techniques

to improve scalability of TLS by exploiting speculative threads from multiple loop levels.
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1.1 Related Work

Automatic parallelization techniques have been extensively studied in the past and found to

be successful in parallelizing scientific programs [32, 33]. But when applied to general pur-

pose programs that have ambiguous data dependences and complex control flow, the traditional

compiler is forced to conservatively synchronize on all potential inter-thread dependences.

One way to overcome this limitation is to use Thread-Level Speculation(TLS) where the

compiler can ignore these ambiguous or low-probability dependences and speculatively paral-

lelize the application. But such speculation requires hardware or software support to ensure

correctness in case the inter-thread dependences do occur at run-time. Software techniques

[34, 35, 36] to support TLS suffer from large overhead, leading to only limited performance.

Architecture techniques to support TLS have been extensively studied in the past and found

to be successful due to their lower overhead. Multiscalar [10] introduced the concept of hard-

ware based TLS and initially used hardware buffers called Address Resolution Buffers(ARB) [37].

Later studies relied on shared memory based cache coherenceprotocols to support TLS [8, 12,

13, 14, 16, 17, 38].

Compared to CMP based TLS design, SMT based TLS has not been extensively studied.

Current techniques use complex hardware buffers such as theexisting Load-Store queues(LSQs)

in the processor, which due to their smaller size can only support smaller threads.

While the performance aspect of the TLS architectures are well understood, their power

efficiency has not been well understood. Renauet. al [39] compared the power consumption of

CMP based TLS architecture with the Superscalar based architecture and found the TLS to be
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more power efficient. However other design choices such as SMT were not considered.

Power consumption, energy efficiency and thermal characteristics of SMT and CMP have

been well understood under various workloads: On parallel programs [27] and mobile work-

loads [28], SMT processors outperform CMP processors. However, on multimedia workloads,

CMP is more efficient [29]. In the context of multi-program workload, Li et. al [30] found

that SMT is more efficient for memory-bound applications while CMP is more efficient for

CPU-bound applications; Burnset. al [31] found that SMT can achieve a better single thread

performance, but CMP can achieve a higher throughput.

Recently there are some studies that utilize ahetergenousarchitecture to improve the energy

efficiency. In most previous studieshetergenousarchitectures [40, 41, 42], different cores with

varying complexity (or varying frequency) are combined together to for a multi-core processor.

The multi-program workloads are either statically or dynamically mapped to the various cores

to improve the overall efficiency of the workload.

Most research on TLS concentrated on exploiting TLS on a single loop level or a single

function call level. Renauet. al[43] proposed a hardware based technique to extract speculative

threads from multiple levels. Here the threads are aggressively extracted from multiple levels

and it relies on complex hardware based runtime system to efficiently utilize the available cores

and filter out non-performing loop levels.
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1.2 Dissertation Contributions

In this dissertation, we make several contributions that facilitates efficient implementation of

speculative threads in multi-threaded/multi-core processors:

1. We analyze the performance potential for TLS in the more recent SPEC 2006 bench-

marks and show the importance of supporting TLS. We also compare the performance of

SPEC 2006 with older SPEC 2000 benchmarks and show a trend towards more parallel

applications which need TLS support.

2. We propose a cache-based architecture to support TLS in SMT processors. We show

that the new technique proposed can outperform other known methods to support TLS in

SMT.

3. We perform a detailed comparison of performance, power and thermal characteristics of

both SMT based and CMP based TLS architectures. We found thatfor

4. To exploit the advantages of both SMT and CMP based TLS, we propose a novel SMT-

CMP basedheterogeneousarchitecture to efficiently support TLS. We show that this

novel architecture can lead to better efficiency than the homogeneous SMT or CMP based

TLS architecture.

5. We propose a compiler based approach to extract TLS parallelism at multiple loop levels.

With support from compiler, we show how the architecture design can be simplified.

The rest of the dissertation is organized as follows:
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• Chapter 2 describes the evaluation framework used in this thesis.

• Chapter 3 discusses the potential for TLS performance in SPEC 2006 and compares it

with the performance of SPEC 2000.

• Chapter 4 presents a novel cache-based architecture to support TLS in SMT processors.

• Chapter 5 presents a detailed comparison of SMT based TLS architecture with CMP

based TLS architecture.

• Chapter 6 shows the potential gain in efficiency by using a hetergeneous multi-core

architecture.

• Chapter 7 presents the architectural and compiler techniques to exploit multi-level TLS.

• Chapter 8 we present our conclusions and opportunities for future work.



Chapter 2

Evaluation Framework

In this chapter, we present the details on the TLS model used and a description of the our

evaluation framework.

2.1 TLS execution model

Under thread-level speculation (TLS), the compiler partitions a program into speculatively par-

allel threads without having to decide at compile time whether they are independent. At runtime,

the underlying hardware determines whether interthread data dependences are preserved, and

re-executes any thread for which they are not. The most straightforward way to parallelize a

loop is to execute multiple iterations of that loop in parallel. In our baseline execution model,

the compiler ensures that two nested loops will not be speculatively parallelized simultaneously.

In Chapter 7, we will study the potential for supporting speculative threads at multiple nesting

levels.

8
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Elements of TLS:

Thread Fork: A fork instruction is inserted by the compiler at the beginning of each iteration.

On execution of thefork instruction, a new thread is created in the next available hardware

context after a constant delay.

Speculative Buffering: When executing the speculative thread, all data created arespeculative

and should not be allowed to modify the non-speculative context of the application. To

avoid this the hardware buffers all the results from the speculative thread.

Dependence Checking:To enforce correctness of the application the hardware monitors for

any dependency violations by the speculative thread. All memory addresses loaded by

the speculative thread are tracked by the hardware and checked for dependency violations

after every store from non-speculative thread (or other earlier speculative threads).

Thread Squash: If a violation is detected, the hardware restarts the threadand all the specula-

tive data along with the special bits used to track speculation are discarded.

Sychronization: To communiate scalar values across threads, the compiler inserts special syn-

chronization instructionswait andsignal. Frequenty occuring memory dependences are

also synchronized as described in [44].

Thread Commit: When the non-speculative thread finishes execution, the next immediate

thread in fork order becomes the new non-speculative thread. When a thread becomes

non-speculative, all its speculatve state is integrated with the non-speculative state of the
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application. Also the special bits used to track dependences and buffer speculative results

are discarded.

2.1.1 TLS hardware model:

In this thesis we use both SMT and CMP based architectures to support TLS. SMT support for

TLS is described in detail in chapter 4.

For the CMP based TLS architecture, we use a cache based protocol based on STAM-

Pede [45]. When executing speculative threads, speculative stores will be buffered in the pri-

vate L1 data cache and speculative loads are marked using a special bit in the cache. When a

dependence violation is detected the violating thread and all its successors are restarted. When

the violating thread is squashed, all speculation marker bits in the L1 data cache are reset with

a gang-clear (1 cycle). When a thread commits it sends a signal to its immediate successor, and

the latter becomes the new non-speculative thread. More details on the TLS architecture model

used can be found in [45]. In this thesis, we allow memory based communication between spec-

ulative threads. So if a speculative thread does a store which finds latter versions of the same

value in the other caches, the target cache line is ’combined’ with the current value if the latter

thread had not speculatively read from the same location. For example, say thread-3 writes to

location A it creates a version in its private cache. Say now thread-2 writes to location A+1 and

it finds a version of the cache line created by thread-3 in its private cache (assuming A and A+1

map to the same cache line). Since thread-3 has not read from location A+1, the store does not

cause speculation failure. So we allow thread-3’s store to update the value in location A+1 in
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thread-3’s cache line. Now if thread-3 issues a load to location A+1, it can get the lattest value

of A+1 stored by thread-2.

Frequently occurring memory-based dependences and register-based scalar dependences

are synchronized by inserting special instructions as shown in Figure 3.1(b) similar to [20, 19].

In this thesis, we assume a fast interconnection network to communicate values between the

threads. (The values can also be communicated through the L2cache.)

2.2 TLS Compiler

Our compiler infrastructure is built on Open64 3.0 Compiler[46], an industrial-strength open-

source compiler targeting Intel.s Itanium Processor Family (IPF). To create and optimize spec-

ulative parallel threads, the compiler must perform accurate performance trade-off analysis to

determine whether the benefit of speculative parallel execution outweighs the cost of failed

speculation and then aggressively optimize loops that benefit from speculation. In our case, the

compiler performs such analysis and optimizations based onloop nesting, edge, as well as data

dependence profiling (using train input set), as shown in Fig. 2.1. The TLS compiler has two

distinct phases, as shown in Fig. 2.1, thread extraction andoptimization:

Loop Selection: In the loop selection phase, the compiler estimates the parallel performance

of each loop based on the cost of synchronizations, as well asthe probability and the

cost of speculation failures. The compiler then chooses to parallelize a set of loops that

maximize the overall program performance based on such estimations [24, 44].
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Figure 2.1: Compilation infrastructure

Code Optimization: The selected parallel loops are optimized with various compiler op-

timization techniques to enhance TLS performance: (i) all register-resident values and

memory-resident values that cause inter-thread data dependences with more than 20%

probability are synchronized [20]; (ii) instructions are scheduled to reduce the critical

forwarding path introduced by the synchronization [19, 44]; (iii) computation and usage

of reduction-like variables are transformed to avoid speculation failure [44]; and (iv) con-

secutive loop iterations are merged to balance the workloadof neighboring threads [44].

2.3 Simulator Framework

We use a trace-driven, out-of-order Superscalar processorsimulation infrastructure. Prior TLS

research typically simulated the first billion instructions in each benchmark after skipping the

initialization portion. The truncated simulation does notcover all phases in a benchmark, and

thus can potentially miss important program behavior that only appear in the later parts of
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Figure 2.2: Trace Generation Framework

the execution [47]. To improve simulation accuracy and to reduce simulation time, we have

adopted a SimPoint-based sampling technique [48].

2.3.1 Trace Generation

Before generating traces for the simulator,simpoint samples have to be selected. The sequential

binary created by the compiler is used to generate Basic Block Vectors (BBV) which are then

used to selectsimpoint samples. The selected sample points are feed in to the sequential trace

generator which creates traces for corresponding points selected. The trace generator is based on

the PIN instrumentation tool [49]. The tool instrumententsall instructions to extract information

such as instruction address, registers which are read and written to, memory address for memory

instructions, opcode, etc. The collected information is written to the output trace file which will

be used by the simulator.

The parallel trace generator is augmented so that it selectsthe exact same code regions in
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Figure 2.3: Simulator Framework

the parallel executables as that in the sequential samples.Fig. 2.2 gives a block diagram of the

trace generation framework.

2.3.2 Simulation

We use a detailed out-of-order simulator based on Simplescalar [50] to simulate both SMT and

CMP architectures. Fig. 2.3 shows a block diagram of the simulator framework.

We not only model the register renaming, the reorder buffer,branch prediction, instruction

fetching, branching penalties and the memory hierarchy performance, but also extend the infras-

tructure to model different aspects of TLS execution including explicit synchronization through

signal/wait, cost of thread commit/squash, etc.

To estimate power consumption of the processors, the simulator is integrated with the

Wattch [51] power model. The power consumption for the common bus in the CMP archi-

tectures is simulated using Orion [52]. The power traces generated by the simulator are fed to
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HotSpot [53] to evaluate the thermal behavior of the system.

2.3.3 Thermal simulation

While sampling techniques described here can significantlyreduce the simulation time without

compromising simulation accuracy for processor performance and power consumption, these

techniques cannot be applied to thermal simulation. To accurately simulate the thermal effects

of a certain benchmark on TLS, we must construct the power consumption trace for the ex-

ecution of the entire benchmark. In our study, we use the power traces corresponding to the

selected samples to reconstruct the power trace of the entire benchmark.

Let’s assume that the original full execution trace (without sampling) can be broken into a

set ofm segments,{t1, t2, . . ., tm}; we refer to this list asT. In simpointsampling, a subset of

T sayS is selected for detailed simulation. For each selected segment, there is a corresponding

power tracep. Let us refer to the set of such power traces asP. For every segmentti in the

original traceT, there is a corresponding segment saysj in the samplesS that belong to the

same phase asti. The behavior ofti is similar to that ofsj as they belong to the same phase.

So we could approximate the power behavior ofti by using the power trace ofsj in its place.

Using this method, we construct the power trace of the entireexecution sequence{t1, t2, . . .,

tm} by using the power trace of the corresponding sampled segment sj for eachti . The resulting

approximatepower trace is fed to HotSpot [53] to study the thermal behavior of the different

configurations. We found that by taking advantage of the phase behavior, such thermal estimate

is quite accurate.



16

Table 2.1: Details of Benchmarks
SPEC 2000 Benchmarks

Benchmark No of loops se-
lected

coverage of se-
lected regions

perlbmk 9 25%
art 25 99%
vpr place 3 55%
gcc 98 83%
parser 40 82%
vpr route 19 94%
mcf 13 98%
equake 9 93%
ammp 21 99%
twolf 20 47%
bzip2 19 81%
mesa 3 63%
gzip 6 99%
crafty 3 13%
vortex 8 67%
gap 8 30%

SPEC 2006 Benchmarks
bzip2 14 46%
mcf 6 97%
gobmk 13 21%
sphinx3 21 97%
namd 50 99%
povray 5 63%
astar 7 73%
lbm 2 99%
h264ref 36 79%
libquantum 5 99%
sjeng 6 40%
hmmer 5 96%
milc 22 85%

2.3.4 Benchmarks

We use the SPEC 2000 and SPEC 2006 benchmarks to evaluate our techniques. All the bench-

marks are run usingref input set. For trace generation we use 100 Million traces andcollect

maximum of 10 traces (-maxK=10) per benchmark. Table 2.1 gives the details about the loops

selected and their execution time coverage.



Chapter 3

Benchmark Analysis

Before we discuss efficient architecture techniques for supporting TLS, it is important to under-

stand the potential for TLS. In this chapter we present an analysis of benchmark behavior and

show how TLS can overcome the limitations of a traditional parallelizing compiler.

Though TLS has been extensively studied in the past, it is notclear how much TLS could

benefit more recent benchmarks such as SPEC 2006 [54], which represent a different class of

applications. Some recent studies [55] on SPEC 2006 benchmarks have shown very limited

potential for TLS (less than 1%) under very conservative assumptions. In this chapter, we re-

examine some of these issues and give a more realistic assessment of TLS on these benchmarks

using our state-of-the-art TLS compiler. Also we compare the behavior of SPEC 2000 and

SPEC 2006 benchmarks and show more potential parallelism for TLS in SPEC 2006 than in

SPEC 2000.

Our study differs in previous studies on several aspects, and thus we believe that our results

17
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are able to accurately identify more potential for TLS than those studies. Kejariwalet. al [55]

did not take into account the effect of compiler optimizations that could improve the perfor-

mance of TLS, while previous studies [25, 19, 20, 44] have shown that compiler-based loop

selection and optimizations, such as code scheduling, can significantly improve the efficiency

of TLS. Furthermore, Kejariwalet. al [55] only considered innermost loops for TLS. In this

chapter, our study is not limited to a particular loop level,rather we attempt to parallelize all

loops that can potentially benefit from TLS. More importantly, instead of a high-level study on

performance potential of TLS, we use a state-of-the-art TLScompiler to parallelize TLS loops

and study their performance using a detailed simulation infrastructure. Our results show that,

with TLS-oriented compiler optimizations and optimal selection of loops, we could achieve an

average of about 60% speedup for SPEC 2006 benchmarks over what could be achieved by a

traditional parallelizing compiler such as Intel’s ICC compiler. In comparison, the SPEC 2000

benchmarks achieve only about 32% geometric mean speedup.

3.1 Related work

There has been a large body of research work on architecturaldesign and compiler techniques

for TLS [17, 45, 19, 20, 21, 25]. But all of these papers based their studies on SPEC 2000 or

other older benchmarks, rather than the more recent SPEC 2006 benchmarks. The SPEC 2006

benchmarks represent a newer class of applications and it isimportant to examine whether the

conclusions drawn for SPEC 2000 will hold for these applications. In this chapter we address

this issue by conducting a detailed study of SPEC 2006 benchmarks using a state-of-the-art TLS
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compiler.

Oplingeret. al[15] presented a study on the limits of TLS performance on some SPECint95

benchmarks. The impact of compiler optimizations and the TLS overhead were not taken into

account in that study. Similarly, Warget. al [56] presented a limit study for module-level

parallelism in object-oriented programs. In contrast, in this study, our aim is to illustrate the

realizable performance of TLS using a state-of-the-art TLScompiler, while taking into account

various TLS overheads.

Kejariwalet. al[57] separated the speedup achievable through traditionalthread-level paral-

lelism from that of TLS using the SPEC2000 benchmarks assuming anoracleTLS mechanism.

They [55] later extended their study to the SPEC 2006 benchmarks. It is worth pointing out

that they concentrated on only inner-most loops and used probabilistic analysis to predict TLS

performance. We also separate the speedup achievable through traditional non-speculative com-

pilation techniques from that requires TLS support; however, we consider all loop-levels instead

of just the inner-most or the outer-most loops. Furthermore, they manually intervened to force

the compiler to parallelize loops that were not automatically parallelized due to ambiguous de-

pendences. In this chapter, we utilize an automatic parallelizing compiler that performs trade-off

analysis using profiling information to identify parallel threads—no programmer intervention

needed.
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3.2 Dependence analysis of SPEC 2006 loops

Consider the example loop shown in Figure 3.1(a) with two cross-iteration dependences: a

register-based dependence through registerr2 and a potential memory-based dependence through

pointer p andq. In each iteration of the loop, the value ofr2 from the previous iteration is re-

quired, thus the compiler must insert synchronization operations (thewait/signal pair) to en-

sure correct execution (shown in Figure 3.1(b)). In the caseof the memory-based dependence,

the cross-iteration dependence only occurs when the load through pointerp accesses the same

memory location as the store through pointerq from a previous iteration. Since the compiler is

unable to determine the address pointed to byp andq at compile time, it must insert synchro-

nization operations (thewait mem/signal mem pair) as shown Figure 3.1(b). However, such

synchronization can potentially serialize execution unnecessarily, as shown in Figure 3.1(c).

With the help of TLS, the compiler can parallelize this loop by ignoring ambiguous data de-

pendences and relying on the underlying hardware to detect and enforce all data dependences

to ensure correctness at runtime. Figure 3.1(d) shows the loop executing in TLS mode: when

the store through pointerq in thread1 accesses the same memory location as the load through

pointer p in thread3, the hardware detects the dependence violation and restarts the violating

thread.Thread2, which does not contain the destination of any inter-thread data dependence, is

able to execute in parallel withthread1. This parallelism cannot be exploited without the help

of TLS. However, if the dependence betweenstore∗q and load∗ p occurs frequently causing

speculation to fail often, it can potentially degrade performance. In such cases, it is desirable

for the compiler to insert explicit synchronization to avoid mis-speculation.
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Understanding the inter-thread data dependence patterns in an application is critical for es-

timating its TLS performance potential. In this section, weanalyze the dependence information

collected through data dependence profiling, and estimate the importance of TLS hardware sup-

port in exploiting parallelism in the SPEC 2006 benchmarks.

do {
...

load *p;

...

r3 = r2 + 2;

...

r2 = r1 + 1;

...

store *q;

} while (condition)

(a) A loop with loop-carried register-based and
memory-based data dependences.

do {
...

wait mem()

load *p;

...

wait()

r3 = r2 + 2;

...

r2 = r1 + 1;

signal()

...

store *q;

signal mem()

} while (condition)

(b) Loop parallelized with synchronization.

(c) Execution serialized due to synchronization. (d) Parallel execution in TLS mode.

Figure 3.1: Using synchronization and speculation to satisfy inter-iteration data dependences.

The weight of each loop in an application is summarized as thecombined execution time

coverage, which is defined as the fraction of total execution time of the program spent on a
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Figure 3.2: An example loop tree showing nesting relationship between loops. Each loop is
annotated with four numbers: coverage, number of inter-thread register-based dependences,
number of inter-thread memory-based dependences, and the probability of the most probable
loop.
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particular loop. In this chapter, this weight is estimated using hardware performance coun-

ters. To accurately estimate thecombinedcoverage of a set of loops, the nesting relationship

of these loops must be determined—this is done with the help of a loop tree (for example,

Figure 3.2). An example program and its corresponding loop structure along with profile infor-

mation is shown in Figure 3.2. In the example,loop4, loop5 andloop5’ have no inter-thread

memory-based data dependence. Thecombined coverageof loops with no memory-based data

dependence is the cumulative coverage ofloop4 andloop5’, which is 40%. (Coverage of

loop5 is not included since it is nested insideloop4). The loop tree structure used in this

chapter is similar to the loop graph described by Wanget. al [44], except for loops that can

be invoked through different calling paths are replicated in loop tree. For example,loop5 in

Figure 3.2 is replicated, since two different call paths canboth lead to the invocation ofloop5.

Table 3.1: SPEC 2006 benchmarks.
Benchmark No. of Loops No. of dynamic

loop nesting levels
bzip2 232 11
mcf 52 5
gobmk 1265 22
hmmer 851 5
sjeng 254 10
libquantum 94 4
h264ref 1870 15
astar 116 6
milc 421 11
namd 619 4
povray 1311 15
lbm 23 3
sphinx3 609 8

In this chapter, we consider the SPEC CPU 2006 benchmarks written in C or C++ (shown

in Table 3.1). Also we consider the SPEC CPU 2000 benchmarks written in C 3.2. We ignore



24

Table 3.2: SPEC 2000 benchmarks.
Benchmark No. of Loops No. of dynamic

loop nesting levels
gzip 191 6
vpr place 416 5
vpr route 416 6
gcc 2429 10
mesa 903 6
art 74 6
mcf 53 5
equake 91 5
crafty 405 9
ammp 358 10
parser 537 10
perlbmk 751 8
gap 1659 10
vortex 230 7
bzip2 159 9
twolf 888 7

the programs written in FORTRAN since they tend to be parallel scientific programs that can

be successfully parallelized using traditional parallelizing compilers and do not require TLS

support.

3.2.1 Inter-thread register-based data dependences

We first focus on the relatively straightforward register-based value dependences. For these de-

pendences, the compiler is responsible for identifying instructions that produce and consume

these value and generate synchronization to ensure correctexecution. For example, in the loop

shown in Figure 3.1(a), the compiler identifies the cross-iteration register-based dependence due

to registerr2 and inserts explicit synchronization, as shown in Figure 3.1(b). We count the num-

ber of inter-thread register-based dependences (true dependences) for each loop; and estimate

thecombinedcoverage of the set of loops with certain number of register-based dependences.
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(a) The combined execution time coverage for SPEC 2006 benchmarks.

(b) The combined execution time coverage for SPEC 2000 benchmarks.

Figure 3.3: The combined execution time coverage of loops with inter-thread register-based
dependences
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The results for SPEC 2006 are presented in Figure 3.3(a) and corresponding results for SPEC

2000 are shown in Figure 3.3(b). Thex-axis represents the number of register dependences

and the y-axis represents the correspondingcombinedcoverage estimated for a certain set of

loops. If a benchmark has a combined coverage ofC for x number of dependences, it indicates

that loops with less thanx dependences have a combined coverage ofC%. For example, for

the loop in Figure 3.2, the combined coverage of loops with 2 or lesser register dependences is

60%.(coverage of loop2+loop4+loop5). The benchmarks withhigh combined coverage (C) for

a small number of dependences (x), potentially exhibit high degree of parallelism. We found

that the high coverage loops in most benchmarks have inter-thread register-based dependences.

Thus, an effective TLS compiler that is capable of synchronizing a few inter-thread register

dependences is essential. Zhaiet. al [19] have described how such a compiler can be im-

plemented; and further shown that aggressive compiler scheduling techniques can reduce the

critical forwarding path introduced by such synchronizations.

3.2.2 Inter-thread memory-based data dependences

Unlike register-based dependences, memory-based dependences are difficult to identify using

a compiler due to potential aliasing. To ensure correctness, traditional parallelizing compilers

insert synchronizations on all possible dependences. WithTM or TLS support, the compiler

is able to aggressively parallelize loops by speculating onambiguous data dependences. How-

ever, the performance of such execution depends on the likelihood of such data dependences

occurring at runtime. If a data dependence does occur, a thread can potentially violate data
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(a) The combined execution time coverage for benchmarks
with few inter-thread memory dependences. (Class ’A’).

(b) The combined execution time coverage for benchmarks
with inter-thread dependences. (Class ’B’)

Figure 3.4: The combined execution time coverage of loops asa function of the number of
inter-thread memory-based data dependences.
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Figure 3.5: The coverage of loops with inter-thread memory-based data dependences less than
a certain probability.

dependence constraints, and thus must be squashed and re-executed; recovery codes can be ex-

ecuted to restore correct state. For example, there is an ambiguous cross-iteration dependence,

shown in Figure 3.1(a), due to load through pointer∗p and store through pointer∗q. Although

the compiler cannot determine whether there is a dependencebetween∗p and∗q, it can obtain

probabilistic information through data dependence profile. In this section, we conduct detailed

analysis on inter-thread memory-based dependence using profiling information.

We classify benchmarks based on the combined coverage of loops with different number of

memory-based dependences. First we present the results forSPEC 2006. Figure 3.4(a) shows

the results of benchmarks (points corresponding to 433.MILC , 453.POVRAY, 462.LIBQUAN -

TUM and 470.LBM in Figure 3.4(a) overlap) that can achieve a high combined coverage with

only a few inter-thread memory-based data dependences (class ’A’); Figure 3.4(b) shows the

rest of the benchmarks (class ’B’). For benchmarks in class ’A’, 90% or more of the total execu-

tion can potentially be parallelized by only considering loops with no inter-thread dependences.
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These benchmarks can be parallelized without hardware support for speculative execution, if

the compiler is able to prove independence between threads.

In class ’B’ benchmarks, the speculative hardware support are potentially useful, since inter-

thread data dependences do occur. Figure 3.5 shows the probability of such data dependences

and their corresponding coverage for class ’B’ benchmarks.The x-axis represents the proba-

bility of inter-thread memory-based dependences and they-axis represents the corresponding

combinedcoverage estimated for a certain set of loops. If a benchmarkhas a combined cov-

erage ofC for x probability of inter-thread dependence, it indicates the loops that only have

inter-thread dependences with probability of less thanx have a combined coverage ofC%., For

example, for the loop in Figure 3.2, the combined coverage ofloops with only 10% or lesser

probability memory dependences is 80%.(coverage of loop2+loop3. Other loops are nested

inside loop3). Benchmarks 401.BZIP2, 429.MCF, 445.GOBMK and 473.ASTAR can achieve

a large combined coverage, if all loops that only contain data dependences that occur in less

than 20% of iterations are speculatively parallelized. These are the loops that could potentially

benefit from TLS support.

Some benchmarks, such as 456.HUMMER, 458.SJENGand 444.NAMD , can only achieve a

high combined coverage, if loops containing frequently-occurring memory-based dependences

are parallelized. These dependences potentially require synchronization. Previous studies has

shown that frequently occurring memory-based data dependences could be synchronized by the

compiler with profiling data [20]; and aggressive code scheduling could reduce critical-path

length introduced by such synchronization [58].
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(a) The coverage for benchmarks with fewer inter-thread
memory dependences. (Class ’A’)

(b) The coverage for benchmarks with significant inter-thread
dependences. (Class ’B’)

Figure 3.6: The coverage of loops with certain number of inter-thread memory-based data de-
pendences in SPEC 2000
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Figure 3.7: The coverage of loops with inter-thread memory-based data dependences less than
a certain probability in SPEC 2000.

Figure 3.6(a) shows class ’A’ benchmarks in SPEC 2000—benchmarks with few inter-

thread data dependences; Figure 3.6(b) shows class ’B’ benchmarks—benchmarks with several

cross-iteration dependences. Comparing against SPEC 2006results, shown in Figure 3.4(a) and

in Figure 3.4(b), we found that SPEC 2000 suite has fewer class ’A’ benchmarks. Also the

class ’B’ benchmarks in SPEC 2000 can only achieve high combined coverage by parallelizing

loops with several cross-iteration dependences. Furthermore, by examining Figure 3.7, which

presents the frequency of data dependences that must be speculated during parallel execution,

we found that with the exception ofAMMP, MCF, VPR PLACE AND BZIP2, class ’B’ benchmarks

in SPEC 2000 must speculate on high-probability cross-iteration dependences to achieve a high

combined coverage. This is consistent with results reported by previous studies: in SPEC 2000,

only a few benchmarks,AMMP, MCF, VPR PLACE, demonstrated high degree of parallelism

under TLS. The data dependences characteristics in SPEC2000 and SPEC2006 illustrate that

SPEC 2006 can potentially achieve a higher degree of parallelism under the context of TLS.
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3.2.3 Pitfalls

Even though profiling inter-thread data dependences is crucial in determining the suitability of

using TLS to parallelize a loop, TLS performance cannot be directly inferred from this infor-

mation. In fact, TLS performance depends on many other factors such as the size of the threads,

thread spawning overhead, loop iteration counts, and etc. Aggressive code scheduling can re-

duce the impact of synchronization for inter-thread dependences [19, 20, 44]. Furthermore,

library calls can also cause inter-thread data dependences, which is not taken into account here.

A common example is the call tomalloc, which could potentially cause inter-thread depen-

dences due to its internal data structures. Such dependences can potentially be eliminated using

parallel libraries.

From the data presented in the earlier sections, we can see that both SPEC 2006 and SPEC

2000 benchmarks have numerous inter-thread dependences which could benefit from TLS hard-

ware support. Such TLS hardware support could help to parallelize benchmarks in class ’B’

with low-frequency data dependences and could also help thecompiler in handling those am-

biguous inter-thread data dependences (in class ’A’ benchmarks). Also, many benchmarks have

frequent register and memory dependences which could benefit from aggressive code schedul-

ing by the compiler to reduce critical-path lengths introduced by synchronizations and increase

execution overlap between threads.
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Table 3.3: Architectural parameters.
Parameter
Fetch/Issue/Retire width 6/4/4
Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports
Register Update Unit 128 entries
(ROB,issue queue)
LSQ size 64 entries
L1I Cache 64K, 4 way 32B
L1D Cache 64K, 4 way 32B

Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk,

18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize
Physical registers/thread 128 Integer and 128 Floating point registers
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4

3.3 Compilation and Evaluation Infrastructure

To evaluate the amount of parallelism that can be exploited with hardware support for coarse-

grain speculation and advanced compiler optimization technology in the SPEC 2006 and SPEC

2000 benchmark suites, we simulate the execution of these benchmarks with our detailed archi-

tectural simulator discussed in chapter 2.

In this study, we use the reference input to simulate all benchmarks. In case of benchmarks

with multiple input sets, the first input set is used. To get anaccurate estimate of TLS per-

formance, we parallelize and simulate all loops (with at least 0.05% dynamic execution time

coverage) in each of the benchmarks. Based on the simulated speedup of each loop, we use

our loop selection algorithm to select the best set of loops which maximizes the performance
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of the entire benchmark. To report the speedup achieved by the entire benchmark, the aver-

age speedup of all the selected loops is calculated and weighted by the coverage of the loops.

For each simulation run, several billion instructions are fast-forwarded to reach the loops and

different samples of 500 million instructions are simulated to cover all the loops.

3.4 Exploiting Parallelism in SPEC2006

In this section, we evaluate the amount of parallelism available in SPEC 2006 benchmarks using

the framework described in Section 3.3. To isolate the parallelism that cannot be exploited

without the help of TLS, we take three increasingly aggressive attempts to parallelize loops in

SPEC 2006 benchmarks:

Type I: Loops that are identified as parallel by a traditional compiler;

Type II: Loops that have no inter-thread data dependence at runtime (for the particularref

input set used), but are not identified as parallel by the compiler, a.k.a.,Probably Parallel

Loops;

Type III: Loops that contain inter-thread data dependences, thus require TLS support to

parallelize, a.k.a.,True Speculative Loops.

Table 3.4 shows the percentage of total execution that can beparallelized when loops of

different types become parallelizable.

To determine the performance impact associated with parallelizing a particular type of

loops, the set of loops belong to that type are selected to maximize overall performance. The
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Table 3.4: Coverage of loops parallelized.
Benchmark Coverage (%) No. of loops

I I + II I + II + III 1 I + II I + II + III
milc 13 79 79 5 22 22
lbm 0 100 100 0 1 2
h264ref 0 53 83 2 32 36
libquantum 0 98 98 1 5 5
sphinx3 40 83 91 11 19 21
povray 0 3 63 0 4 5
bzip2 2 3 31 4 6 14
mcf 0 85 93 0 6 6
namd 1 8 96 7 22 50
gobmk 0 6 13 0 1 5
hmmer 0 0 79 2 1 6
sjeng 0 0 1 0 0 6
astar 0 5 99 0 2 8

overall program speedup is then calculated by considering the speedup and coverage of the

selected loops. For example, let the selected set of loops be{L1, L2, L3, ... Ln}. Let their

corresponding coverage be{ C1, C2, C3, ... Cn } and their corresponding speedup be{ S1, S2,

S3, ... Sn }. The overall program speedup is then calculated asSpeedup= 1/((1-(C1 + C2 + ..

Cn)) + C1/S1 + C1/S2 + .. C1/Sn). In this experiment, we assume it is always possible to identify

the optimal set of loops that maximize overall performance,however, in reality, the compiler

can potentially select sub-optimal loops due to performance estimation error [58].

3.4.1 Type I Loops

We applied the Intel C++ compiler [59] to the SPEC 2006 benchmarks to select parallel loops.

The benchmarks are compiled with-O3 -ipo -parallel -par -threshold0 options. The

option-par-threshold0 allows the compiler to parallelize loops without taking into consid-

eration thread overhead. The loops selected by the Intel compiler are then parallelized using our
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Figure 3.8: Shows the program speedup when different types of loops are parallelized using 4
cores.

TLS compiler and simulated. The speedup achieved by the selected loops over sequential exe-

cution is shown as the first set of bars in Figure 3.8. With the exception ofMILC , which achieved

a speedup of 11%, andSPHINX3, which achieved a speedup of 7%, none of the benchmarks is

able to speedup over sequential application. Overall, the geometric mean of the speedup is only

1%.

This result is anticipated, since the complex control flow and ambiguous data dependence

patterns prohibit the traditional compiler from parallelizing large loops. We have found that in

most benchmarks the compiler has only chosen to parallelizesimple inner loops with known

iteration count. It is worth pointing out that, although many classA benchmarks, such asMILC

andLBM , contain loops with no inter-thread data dependences, the compiler is unable to identify

these loops as being parallel.
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Figure 3.9: Shows the breakdown of execution time while executing the selected loops normal-
ized to sequential execution time

3.4.2 Type I + II Loops

With the addition ofProbably Parallel Loops, classA benchmarks achieve significant perfor-

mance gain, however, classB benchmarks remain sequential. The classA benchmarks gain

68% speedup due to theseProbably Parallel Loopswhile classB benchmarks gain only 4%.

If the compiler is able to determine that these loops are parallel, we can potentially parallelize

these loops without TLS support. Among the classA benchmarks, significant portion of the

loops inSPHINX3 andH264REF areProbably Parallel Loops; and all loops inMILC , LBM and

LIBQUANTUM areProbably Parallel Loops.

3.4.3 Type I + II + III Loops

With the addition ofTrue Speculative Loops, we find that many classB benchmarks are able to

achieve speedup. With only theseTrue Speculative LoopsclassB benchmarks gain a speedup

of 42% giving them an overall speedup of 46%.

To examine TLS performance in detail, Figure 3.9 shows the execution time breakdown of
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parallel execution with TLS support (only selected loops) and sequential execution. TheSEQ

bars show the normalized execution time of the sequential execution running on one core. The

CMP bars show the normalized execution time of the parallel program executing on four cores.

Each bar is divided into six segments:Busyrepresents the amount of time spent in executing

useful instructions and the delay due to lack of instructionlevel parallelism inside each thread;

Lack of threadsrepresents the amount of time wasted due to the lack of parallel threads (prob-

ably due to low iteration count in a loop);Synchronizationrepresents the amount of time spent

in synchronizing frequently occurring memory dependencesand register dependences;Cache

missesrepresents the amount of time the processor stalled due to cache misses;Squashrepre-

sents the amount of time wasted executing instruction that are eventually thrown away due to

failed speculation;Othercorresponds to everything else. In particular, it includestime wasted

due to speculative buffer overflow and load imbalance between consecutive threads.

We first will focus on the classB benchmarks. InHMMER, the loop atfast-algorithms.c:133

is selected for parallelization, however it has many inter-thread dependences that require syn-

chronizations. These synchronizations create a critical forwarding path between the threads and

serialize execution. Thus, by performing speculative instruction scheduling to move the produc-

ers of these dependences as early as possible in the execution [19, 44], the parallel overlap is

significantly increased; and the benchmark achieves a 90% program speedup. Similar behav-

ior is observed inNAMD , where synchronization and instruction scheduling leads to a 164%

program speedup.
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For ASTAR, the important loop is atway2 .cpp:100, which has a few inter-thread de-

pendences. Some of these dependences are frequent, and thusare synchronized; others are

infrequent, and thus are speculated on. Without TLS support, these infrequent occurring depen-

dences must be synchronized, and can lead to serialization of the execution. With the help of

TLS, this loop achieves a 17% speedup.

POVRAY, although a classA benchmark, is able to benefit from speculation. The important

loop incsg.cpp:248 is atrue speculative loopwith a few mispeculations, thus it is non-parallel

for a traditional compiler. Unfortunately, the selected loops have small trip counts, and the cores

are often idle; thus the benchmark is only able to achieve a moderate program speedup of 9%.

Not all benchmarks are able to benefit from TLS.GOBMK has many loops with low trip

counts, thus many execution cycles are wasted as the cores are idling. Loops with large trip

counts are not able to achieve the desired speedup for two reasons: first of all, the amount

of work in consecutive iterations is often unbalanced; secondly, many iterations have large

memory footprints that lead to buffer overflow of the speculative states. The geometric mean

of the thread size for the top 50 loops (in terms of coverage) is 800,000 instructions. Overall,

GOBMK only achieves 1% performance improvement with TLS support.

Loops in SJENG have many inter-thread dependences that occur in 70% of all iterations,

and thus need synchronization. However, the critical forwarding path introduced by these syn-

chronization cannot be reduced through instruction scheduling due to intra-thread dependences.

Thus,SJENGwas unable to benefit from TLS.

To summarize, TLS is effective in parallelizing both classA and classB loops. Overall, if
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Table 3.5: Coverage of loops parallelized in SPEC 2000.
Benchmark Coverage (%) No. of loops

I I + II I + II + III 1 I + II I + II + III
mesa 0 4 37 0 6 7
art 7 79 79 2 7 7
equake 14 90 90 4 9 10
gzip 0 9 59 0 1 5
vpr place 1 2 80 0 1 7
vpr route 0 25 74 0 3 7
gcc 7 9 27 2 11 25
mcf 0 0 91 0 2 6
crafty 0 0 1 0 0 3
ammp 0 15 48 0 3 7
parser 0 23 51 0 21 33
perlbmk 0 7 57 0 2 9
gap 0 0 30 0 0 2
vortex 0 8 20 0 2 2
bzip2 0 0 81 0 0 19
twolf 0 17 26 0 5 5

we select the optimal set of loops, we can achieve a program speedup of about 60% (geometrical

mean) , in contrast to a traditional compiler, which only achieves a 1% program speedup.

3.5 Comparison with SPEC2000

In this section, we evaluate the amount of parallelism available in SPEC 2000 and contrast it

with results from SPEC 2006.

Table 3.5 shows the percentage of total execution that can beparallelized when loops of dif-

ferent types become parallelizable for SPEC 2000 benchmarks. Figure 3.10 shows the speedup

for SPEC 2000 benchmarks due to different types of loops.

As in the case of SPEC 2006 the compiler fails to identify parallel loops, leading to only

2% overall performance due to Type-I loops. Except in Class-A benchmarksART andEQUAKE

the compiler could not identify any parallel loops.
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Figure 3.10: Shows the program speedup when different typesof loops are parallelized using 4
cores for SPEC 2000.

From Figure 3.10, we can see that theProbably Parallel Loopshave a geometric mean

speedup of 10%. Among the Class-A benchmarks, almost all theloops do not suffer from any

mis-speculations and thus areProbably Parallel Loops. But among Class-B benchmarks which

have inter-thread dependences, the geometric mean speedupdue toProbably Parallel Loopsis

only 3%. T With the addition ofTruely Speculative Loops, the speedup for Class-B increases

to 19%. This shows the importance of supporting TLS to exploit all the potential parallelism in

SPEC 2000 benchmarks.

When compared to SPEC 2006 benchmarks the overall speedup isonly 24% where the

SPEC 2006 achieved 60%. This clearly shows the trend towardsmore parallelism in more

recent class of applications in SPEC 2006 suite.
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3.6 Conclusions

Previous studies of SPEC 2006 based on high level analysis have shown only a limited potential

for TLS. These studies did not taken into account the benefitsof compiler-based optimizations.

In this chapter, using a state-of-the-art TLS compiler, we show that SPEC 2006 applications can

be successfully parallelized speculatively with TLS.

We show that often the traditional parallelizing compiler cannot prove independence due to

the existence of complex control flow and ambiguous data accesses, even if many benchmarks

contain parallel loops. With the help of TLS, thesepotentially parallel loopscan be parallelized,

and thus potentially allowing six benchmarks,MILC , LBM , H264REF, LIBQUANTUM , SPHINX

andPOVRAY, to achieve a speedup of 78%, if the best set of loops are selected. Furthermore,

TLS can parallelize loops that cannot be parallelized by traditional compilers due to infrequent

inter-thread dependences (truly speculative loops). With TLS, benchmarksBZIP2, MCF, NAMD ,

GOBMK, HMMER, SJENGandASTAR can potentially achieve an additional 46% speedup. Over-

all, with four cores we can achieve a speedup of 60% on all benchmarks (geometric mean) and

with eight cores the speedup can reach 91% when compared to sequential execution.

When compared to SPEC 2006, the SPEC 2000 benchmarks have more inter-thread de-

pendences leading to fewer class ’A’ benchmarks and overallperformance of only 26% when

compared to 60% in SPEC 2006. This shows a trend towards more parallel applications and the

need to support TLS in future multi-threaded/multi-core architectures to exploit this available

parallelism.



Chapter 4

Efficient TLS support in SMT

Most previous work on TLS assumed CMP based architectures while only a few have con-

centrated on SMT based multi-threaded architectures. Existing SMT based speculative multi-

threading approaches either use complex hardware [60] or use limited resources like Load-Store

Queues(LSQs) [6, 26] to buffer speculative results, and to record load addresses to check for

dependence violations. The advantage of LSQ-based method is that the LSQs are already avail-

able to the processor, so the technique does not need any major modifications to the processor

architecture as in the case of [60]. The main disadvantage inusing LSQs is their limited size

since it is not cost effective (or power efficient) to have large LSQs. Due to this consideration,

LSQ based architectures can support only small threads. Butour research [44] shows that if

we need to consider a more realistic overhead of forking a thread, it becomes more difficult to

justify at small granularities. Hence, it is important to support larger threads.

43
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In this chapter, we propose a novel cache-based architecture to implement speculative mul-

tithreading in SMT processors that only requires a few extrabits to each cache line in existing

L1 cache in SMT. Also our approach can handle large threads since now the entire cache can

be used to buffer results and to check for dependences.

4.1 Related Work

Speculative multithreading architectures have been studied intensely during the past decade.

Earlier architectures were based on special hardware structures for dependence checking like

the address resolution buffer (ARB) in [37], and the memory disambiguation table (MDT) in

[61]. These special hardware structures are of limited sizeand need extra cycles to access them.

To avoid these limitations cache-based architectures likespeculative versioning cache (SVC)

[38] and STAMPede [16] were proposed.

When compared to speculative multithreading on chip multiprocessors (CMPs), there are

very few studies on supporting speculative multithreadingfor SMTs. In [62], private L1 cache

for each context is used to buffer speculative values and do dependence checking. In DMT [6]

and in IMT [26] an enhanced LSQ is used.

The main limitation of the LSQ-based approach is the limitedsize of the queue. To over-

come this limitation we propose a cache-based scheme in thischapter. We draw many ideas

from the cache architectures proposed for CMPs. The difference is that the CMP-based ar-

chitectures have private L1 cache for each core and is used tobuffer results. The dependence
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checking hardware is also distributed among different L1 caches. In our approach, all the con-

texts in the SMT share the same cache.

Concurrent to our work, STAMPede [63] has extended the cacheprotocol described in

[16], to support shared cache architectures. Their technique was studied in the context of multi-

core processors using shared cache. In [64], shared L2 cachebased technique was used to

speculatively parallelize database applications. Thoughthey mention that it could be applied to

SMT processors all their results and conclusions are for CMPs, while our scheme is specifically

aimed at SMT processors.

4.2 SMT model

We consider a SMT architecture where many resources like fetch queue and issue queue are

fully shared [65]. Figure 4.1 gives a block diagram of the SMTarchitecture. When more then

one thread are actively executing, we need to choose which thread to fetch intructions from

at every cycle. We use the ICOUNT policy shown in [65] to decide on the thread to fetch

from. Also when instructions from multiple threads are ready to commit, the instructions from

non-speculative thread is given more priority.

To implement speculative multithreading, we need hardwaresupport to buffer results from

speculative threads and detect dependence violation between threads. In section 4.3, we first

present a simplified scheme that supports only one speculative thread, and in section 4.4 we

extend this scheme to four (or more) threads.
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Figure 4.1: SMT Block Diagram

4.3 Simplified Two-Thread Scheme

In this section, we consider a SMT processor with only two threads. As there are only two

threads, at least one of the threads has to be non-speculative, i.e. there will be at most one

speculative thread. In such a two-thread SMT, we only need tointroduce two extra states to each

cache line -Speculative Valid (SV) and Speculative Dirty (SD). Each cache line also needs two

extra bits -Speculative Load (SL) and Speculative Modified (SM)to support data dependence

checking. In the proposed scheme, all of speculative data are kept only in the shared L1 cache,

and all of the data stored in L2 cache are non-speculative. Figure 4.2 presents the cache-line

state transitions in this scheme. In Figure 4.2 the transitions are of the form ’Command from

processor / Action taken’. The processor can issue load, store, speculative load and speculative

store commands to the L1 cache.

Speculative value buffering When a speculative thread writes, the value is stored in the shared

L1 data cache with the SM bit of the cache line set and the cacheline transitions to the



47

Figure 4.2: Two Thread Scheme - Cache State Transitions

SD state. The value stays in the cache till the thread is committed or squashed. Thus, the

L1 D-cache acts as astore bufferthat stores speculative updates.

Dependence Violation DetectionWhen a speculative thread issues a load operation, it first

checks if a speculative thread has already written the value. However, by having just

one SM (speculative modified) bit for each cache line, we cannot be sure which word

in a particular cache line was written by the speculative thread. To allow more precise

dependence information, we could maintain one SM bit (SMi) for each word in the cache

line. If the SMi bit is not set, the SL (speculative load) bit will be set and the cache line

transitions to SV (speculative valid) state, as this load could cause a possible dependence

violation, when a non-speculative write arrives later.

Here, when a non-speculative thread writes into a cache line, if the SL bit is already set,

it indicates that the speculative thread has read a stale value. The speculative thread will

be squashed and restarted.
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Non-speculative thread executionIf the state of the cache line being written to is SD (spec-

ulatively dirty), the non-speculative thread writes the value directly to L2 cache. Also, it

writes the portion of the data non-overlapped with the speculatively modified data (indi-

cated by SMi bits) into the L1 cache. This merging is done, so that the speculative thread

can get the most recent non-speculative value from L1 cache.Also this simplifies the

commit operation.

Reads by a non-speculative thread to a speculatively modified line (SD) are treated as a

cache miss. While handling this cache miss the non-speculative threadtakes the value

directly from the L2 cache.

Replacement policy Speculatively modified cache lines or the lines with the SL bit set cannot

be evicted from the cache. If evicted, we lose information which can lead to incorrect

execution. When we have to replace a line, a line which has none of the SL and SM bits

set is selected.

If a non-speculative thread needs to replace a line and couldn’t find a clean line, it avoid

replacing the speculative line by directly sending the request to L2 cache. In case of

speculative thread, the thread is suspended. Once the speculative thread becomes non-

speculative, the SL and SM bits are cleared to allow it to continue its execution.

Commit and Squash When a thread commits, both the SL and SMi bits are cleared. This

can be easily implemented as a gang-clear operation. Unlikeother schemes where every

speculative value needs to be written to the cache at the point of commit (which could
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potentially take hundreds of cycles), the commit operationcan be done in just one cycle

in our scheme by gang-clearing both SL and SMi bits.

When a thread squashes, the SL bit in all cache lines is cleared (gang-clear). The valid bit

for a cache line is also cleared if the SM bit is set. This is like the conditional gang-clear

operation used in Cherry[66]. It was shown that this operation can be easily implemented

in only a few cycles.

4.4 Four-Thread Scheme

When executing more than one speculative thread, the L1 D-cache needs to buffer results from

two or more threads, so the two-thread scheme cannot be directly applied. In this section we

propose a scheme which can efficiently handle more than one speculative thread. The basic idea

is to use the entire set in the cache to buffer different versions of the same line created by the

different threads. We will use a 4-thread system to simplifyour explanation. The scheme could

be similarly extended to systems with more than 4 threads.

Speculative Buffering The L1 D-cache has to buffer results from multiple threads, so we need

to maintain different versions of the same cache line. All ofthe versions are kept on

the same set in the cache. We introduceOwnerbits (OW) which keep the speculative

thread-id that wrote into the cache line. We need four OW bitsfor the four threads. For

a non-speculative cache line, the OW bits are cleared. Buffering of speculative values is

explained in Figure 4.3(a). Figure 4.3(b) shows an example where thread 2 tries to write
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a new version of A to a set which already contain versions fromthread 1 and thread 3.

(a) Method

(b) Example

Figure 4.3: Speculative Store Handling

Speculative Load ExecutionA cache line can be read by any of the four threads, so a single

SL bit is not sufficient to indicate which thread has caused dependence violation. We

introduce a SL bit for each thread on each line of cache (4 bitsfor 4 threads). The

execution of aspeculative loadinstruction is explained in Fig 7.9(a). We can see that

the speculative loadcan either load from its own version (i.e., a hit), from predecessor

thread’s version (i.e., a partial hit) and from L2 cache (i.e., miss - Figure 4.5(b)).

Dependence DetectionWhen a store executes, it checks whether the versions of the cache line
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Figure 4.4: Speculative Load Handling

belong to any of its own successor threads. If SL bit is set forany of the successor threads,

the successor thread is squashed along with its successors.The oldest squashed thread is

then restarted. In case if the SL bit is not set, the store updates the latter thread’s version

if the corresponding SMi bit is not set. This is done so that the latter thread would get the

lattest version of the value stored.

Non-Speculative Thread ExecutionExecution of a load in a non-speculative thread is very

similar to the speculative load shown in Figure 7.9(a). But the non-speculative load does

not set any SL bit, and also the partial hit scenario does not occur. The execution of a

non-speculative store is also similar to the speculative thread shown in Figure 4.5(a),

except that the non-speculative store does not set the OW andSMi bits. Also, the non-

speculative store merges its value with all versions in the cache. This is done so that the

speculative threads will get the most recent non-speculative version of the cache line.

Commit and Squash To squash a thread, the SL[threadid] is cleared for all of the lines in the

cache. This can be done as a gang-clear operation. Also the line is invalidated if any
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(a) Partial Hit

(b) Example

Figure 4.5: Speculative Load Handling Example

of the SMi bit is set. This is accomplished by a conditional gang-clear operation as in

two-thread scheme.

To commit a thread, the SL [threadid] bit and the SMi bits of the thread are cleared. The

commit operation must ensure that there is only one non-speculative version present in

L1 cache. If a cache line to which the current thread wrote hasanother version which

is earlier than that of the current thread, then that versionneeds to be written back and

invalidated. To speedup the commit process, a list of blocksthat needed to be committed

is maintained in a special hardware buffer calledownerbuffer. Theownerbuffer used is
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similar to theownerbuffer assumed in [45] to assist the commit process. In addition to

usingownerbuffer, we can potentially overlap the commit process with the execution of

the next thread. Our simulation shows that this overhead causes no potential performance

degradation.

Speculative State OverflowAs we see in the two-thread case, we cannot replace a line with

SL or SM bit set. If a speculative thread encounters a cache miss and if it is not able to

find a clean line to replace from the cache, it can either suspend and wait till it becomes

non-speculative or it can squash the successor threads and consume its cache lines. In this

thesis we avoid frequent squashes due to suchoverflowby forcing the speculative thread

to stall till it becomes non-speculative. While waiting, a thread occupies shared resources

like fetch queue, RUU and LSQ. There may be a situation where all the resources are

occupied by the suspended thread and the non-speculation thread is unable to proceed,

thus, causing a deadlock. To avoid this scenario, the speculative thread will give up its

resources when it is stalled.

Speculative Victim Buffer In our approach, we use the different cache lines in the same set

to buffer the speculative values. When two or more data locations are mapped to the

same set, all the speculative versions (from 4 or more threads) cannot be buffered in the

same set leading to overflow. As we saw above such speculativestate overflow can lead

to stalling of speculative threads. To reduce the impact of such overflow due to conflict

cache misses, we introduce aSpeculative Victim Buffer. Similar to a traditional victim
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buffer [67] theSpeculative Victim Bufferbuffers the cache blocks which are replaced

from the cache. Unlike traditional victim buffers, the blocks evicted could contain spec-

ulative bits which need to be maintained till the corresponding speculative thread is com-

mitted. Every speculative load, in addition to the cache setin the L1 cache, also checks

theSpeculative Victim Bufferto get the most recent version. If the version is found in the

victime buffer, the corresponding SL bit is set. Every storerequest searches theSpecula-

tive Victim Bufferto check for any dependence violations. Also during commit process,

the speculative versions of the committing thread found in theSpeculative Victim Buffer

are also committed.

To further reduce the stalling due to speculative state overflow, when a non-speculative

thread misses in L1 data cache and all the versions availablein the set are speculative, we

force the non-speculative thread’s request to directly go to the L2 cache.

Implementation Issues While executing aspeculative load, we may have to search the entire

set in the cache to get the predecessor thread’s cache line. Also, while detecting mis-

speculation, we need to search the entire set to find if any successor thread has set the

SL bit. These operations can be implemented by adding more logic to the tag matching

hardware but it could increase cache hit time. In our scheme,we assume there is special

hardware that does these ”whole-set” operations, which is kept separate from the tag

matching hardware. We need only one instance of this hardware and the whole cache set

is copied into it when we have to perform such whole-set operations. We assume such

special operations take 3 cycles.
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4.5 Performance evaluation

In this section we compare the performance of LSQ based TLS architecture with the cache

based two-thread and four-thread schemes proposed in the previous sections.

4.5.1 Experimental Methodology

We used the simulation framework described in Chapter 2. Thespecific processor parameters

used are described in Table 4.1.

Table 4.1: Architectural parameters.
Parameter
Fetch/Issue/Retire width 6/4/4
Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports
Register Update Unit 128 entries
(ROB,issue queue)
LSQ size 64 entries
Memory ports 2 read and 1 write ports
L1I Cache 64K, 4 way associative, 32B blocksize
L1D Cache 64K, 4 way associative, 32B blocksize
Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk,

18 cycles subsequent chunks
Branch predictor Bimod, 2K entries
Unified L2 4MB, 8 way associative, 64B blocksize
Branch mis-prediction penalty 6 cycles
Physical registers/thread 128 Integer and 128 Floating point registers
Thread overhead 5 cycles for fork/commit and

1 cycle for inter-thread communication
No. of cores 4

4.5.2 Results

We consider the following configurations:
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SEQ: This is an out-of-order superscalar processor with parameters described in Table 5.1.

SMT-2: This is an out-of-order SMT processor which can support twothreads at a time using

the two-thread scheme described in Section 4.3. This configuration has the same number

of functional units as in the superscalar.Each line of cachehas 9 extra bits (8 SMi and 1

SL).

SMT-4: This SMT processor can support four threads using the four-thread scheme described

in Section 4.4. It also has the same number of functional units as in SEQ. Each line of

cache is augmented with 8 SMi bits, 4 OW bits and 32 SL bits (8 bits for each thread to

avoid thread violations due to aliasing).

LSQ-32: This SMT processor supports 4 threads and uses the LSQ-based mechanism as in

[26][6]. It has the same number of functional units, but usesextra space for enhanced

LSQs that support speculation. Each thread has 32 LSQ entries. This is similar to the

configuration used in previous studies [26, 6].

LSQ-64: This SMT configuration is similar to LSQ-32 except that it has 64 LSQ entries for

each thrad. We use this configuration to show the impact of using very large LSQs to

implement TLS.

Figure 4.6(a) shows the speedup of all the four TLS architectures over the SEQ architecture

for SPEC 2000 benchmarks. Figure 4.6(b) shows the speedup results for SPEC 2006 bench-

marks. We see that the SMT-2 architecture performs about 8% and 18% worse than the LSQ-32
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(a) Speedup for SPEC 2000 benchmarks.

(b) Speedup for SPEC 2006 benchmarks.

Figure 4.6: Speedup of LSQ-32, SMT-2, SMT-4 and LSQ-64 configurations over SEQ.
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architecture for SPEC 2000 and SPEC 2006 benchmarks correspondingly. Over all the bench-

marks it performs about 12% worse than the LSQ-32 architecture. The SMT-4 performs about

4% and 5% better than LSQ-32 architecture correspondingly for SPEC 2000 and SPEC 2006

benchmarks. Over all the benchmarks it performs 4% better than LSQ-32 architecture. The

LSQ-64 architecture matches the performance of the SMT-4 architecture in all the benchmarks.

To better understand the performance and understand the merits of each of the architecture

we present the execution time breakdown for parallel regionexecution in Figure 4.7(a) for

SPEC 2000 and Figure 4.7(b) for SPEC 2006 benchmarks. In Figure 4.7(b) each bar is divided

into six segments:Busyrepresents the amount of time spent in executing useful instructions

and the delay due to lack of instruction level parallelism inside each thread;Lack of threads

represents the amount of time wasted due to the lack of parallel threads (probably due to low

iteration count in a loop);Synchronizationrepresents the amount of time spent in synchronizing

frequently occurring memory dependences and register dependences;Cache missesrepresents

the amount of time the processor stalled due to cache misses;Squashrepresents the amount

of time wasted executing instruction that are eventually thrown away due to failed speculation;

Overflowcorresponds to the amount of time wasted due to speculative state overflow andOther

corresponds to everything else. In particular, it includestime wasted due to instruction cache

misses, branch mis-predictions and load imbalance betweenconsecutive threads.

The SMT-2 architecture which uses only two threads performsworse than other architec-

tures in most benchmarks due to its reduced ability to exploit parallelism. For example inMILC

SMT-4 is almost 2 times faster than the SMT-2. Similar slowdown due to reduced parallelism is
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(a) Breakdown for SPEC 2000 benchmarks.

(b) Breakdown for SPEC 2006 benchmarks.

Figure 4.7: Execution time breakdown for parallel region execution of LSQ-32, SMT-2, SMT-4
and LSQ-64 configurations normalized to the SEQ configuration.
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significant in benchmarks likeLBM ,NAMD ,MCF,HMMER,EQUAKE AND GCC. Also we can see

that the SMT-2 architecture has more wastage due to thread violations than other architectures

in benchmarksART,VPR ROUTE,VPR PLACE, PERLBMK, GZIP, LIBQUANTUM AND GOBMK .

These additional violations are caused due tofalse violationsas the SMT-2 uses just one SL bit

for the entire cache block. If the non-speculative thread writes to the same cache block which

was read by the speculative thread, the speculative thread is restarted even if the speculative

thread had read from a different word in the same cache block than the location written by the

non-speculative thread.

We overcome these limitations in the SMT-4 architecture which uses 4 threads as in the

LSQ-32 configuration and also it uses additional SL bits per cache block to do fine-grained de-

pendence checking and thus avoidfalse violations. In LSQ-32 configuration all the speculative

state is buffered in LSQs of only 32 entries in size. When the LSQ is full, the thread is stalled

till it becomes non-speculative. This stall due to such speculative overflow is shown inOver-

flow bars in Figure 4.7. We can see this effect is significant in benchmarksART VPR PLACE,

EQUAKE, AMMP, TWOLF, PARSER, MILC , LBM AND H 264REF. When compared to LSQ-32,

the SMT-4 configuration uses the larger L1 data cache to buffer its results as seen in Section

4.4. Due to this we dont see overflow in SMT-4 in most benchmarks. In addition to increased

stalling, the LSQ-32 also looses performance due to secondary effects that occur because of

stalling. For example in benchmarkVPR PLACE the LSQ-32 suffers from increased delay due

to cache misses than the SMT-4 architecture. These secondary effects cause more slowdown in

VPR PLACE than the actual stalling due to overflow. In benchmarkART which has very large
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threads (on the order of 100,000 instructions) SMT-4 also overflows.

In benchmarkBZIP2 in SPEC 2006, the SMT-4 performs worse than LSQ-32 configuration.

Here the LSQ-32 (also LSQ-64 suffer) from overflow and the speculative threads are stalled. In

the SMT-4 configuration though the threads are not stalled, they eventually are squashed due to

dependence violations. Due to increased violations in SMT-4 it performs worse than LSQ-32

configuration. Similar effect was also seen in benchmarkASTAR.

When we consider LSQ-64 configuration which has larger LSQs,the overflow effect is

reduced leading to better performance. In almost all benchmarks, the LSQ-64 configuration

matches the performance of SMT-4 configuration leading to equal overall performance in both

SPEC 2000 and SPEC 2006 benchmarks.

We can see that eventhough the LSQ-32 architecture suffers from speculative state overflow

in many benchmarks, the overall improvement due to the SMT-4architecture is only 4.5% over

all benchmarks. This is because many benchmarks do not suffer from overflow due to their

smaller thread size. To highlight the effectiveness of our SMT-4 architecture, we show the

performance of only the benchmarks which suffer from speculative state overflow in Figure

4.8.

From Figure 4.8. we can see that the SMT-4 configuration performs about 19% better than

the LSQ-32 configuration and about 5% better than the LSQ-64 configuration. Even the SMT-2

configuration performs about 1% better than the LSQ-32 configuration due to reduced overflow

in SMT-2.
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Figure 4.8: Speedup of LSQ-32,SMT-2,SMT-4 and LSQ-64 architectures over SEQ for selected
benchmarks withoverflowproblem

4.6 Conclusions

In this chapter we proposed novel cache-based schemes to support TLS in SMT processors.

We showed how our cache-based schemes can support TLS without using large associative

structures like LSQs used in previous approaches. Also due to larger size of L1 data cache,

we showed that our cache based design can support larger threads without suffering from stall

due to speculative state overflow. Our novel two-thread scheme requires only few bits to be

added to each cache line and with this simple modification we can achieve about 10% speedup

over the superscalar processors. Our four-thread scheme with slightly more complex hardware

outperforms LSQ based SMT design by about 4.5%. It outperforms LSQ based design by 19%

if we consider only selected benchmarks which suffer speculative state overflow. In the next

chapter we will study the efficiency of our cache based designand compare it with existing

CMP based TLS designs.



Chapter 5

Performance/Power/Thermal

comparison

Even though there have been numerous studies on the performance aspects of CMP based TLS

(CMP-TLS) and SMT based TLS (SMT-TLS) architectures [5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17] , there has not been a detailed comparative study on their performance, power

and thermal effectswhen compared to Superscalar architectureunder the constraint of same

chip area. Such detailed study is essential to identify the issues in the different multithreaded

architectures which in turn would help in efficient TLS architecture design. In this chapter we

present a detailed comparison of SMT and CMP based TLS architectures in terms performance,

power consumption, energy efficiency and thermal behavior.

The power and performance characteristics of both the SMT and the CMP architectures

have been studied extensively under different workloads: while Lo et. al [27] show that SMT

63
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achieves better speedup for explicitly parallel workloads(from SPLASH-2), Kaxiraset. al [28]

conclude that SMT is more power efficient. Sasankaet. al show that CMP is more power ef-

ficient for multimedia workload and Burnset. al [31] show CMP to have higher throughput.

However, it is difficult, if not impossible, to determine which architecture is more efficient to

support TLS based on previous work, since the characteristics of TLS workload is fundamen-

tally different from those of other multi-threaded workloads:

Available parallelism vary during execution:Unlike multi-threaded workloads, the amount

of parallelism that can be exploited by TLS may vary during execution of a program.

In particular, different loops can have different amounts of parallelism; for significant

portion of execution, efficient speculation threads cannotbe extracted. When available

speculative threads are insufficient for utilizing all hardware threads, some of the cores

will idle in a CMP-based architectures, while resources canbe dynamically reallocated

to exploit instruction level parallelism in SMT.

Resource competition and sharing between speculative and non-speculative threads:In SMT,

the non-speculative thread competes and shares resources with speculative threads. Such

competition can degrade the performance of the non-speculative thread. On the other

hand, resource sharing can also benefit the performance of TLS. E.g., a speculative thread

fetches data into the cache during it execution, even if the speculative thread is eventually

squashed, the data it brought into the cache can potentiallybe used by the non-speculative

thread or other speculative threads. In a CMP architecture,threads only share data that

are located in the L2 cache, while in a SMT architecture, datain the L1 can be shared as
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well.

Power consumption due to speculation failure:When data dependence is violated, the thread

that contains the consumer of the dependence must be re-executed. Such re-executions

can cause additional power consumption.

To conduct a detailed study comparing the two architectures, and to understand the relative

merits of each architecture, we must identify two architectures with the samecost. In this

chapter, we choose to compare two architectures with the same die area. A wide spectrum of

design choices and tradeoffs are studied using commonly used simulation techniques.

The rest of the chapter is organized as follows: Section 5.1 describes the related work. Sec-

tion 5.2 considers various trade-offs and configures the three architectures, Superscalar, SMT

and CMP, with equal die area; Section 5.3 evaluates the performance and energy-delay-product

of each architecture under TLS workload; Section 5.4 studies the sensitivity of these results

with several key architectural parameters; Section 5.5 presents the thermal effects of the TLS-

workload on the three architectures; and in Section?? we present our conclusions.

5.1 Related work

While the discussions on TLS performance have mostly been under the context of CMP [19,

20, 24], SMT processors can also be extended to support TLS [26, 68]. However, given the

characteristics of TLS workload described earlier, it is not clear which architecture can achieve

a higher performance and a better power efficiency while creating less thermal stress.
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Renauet. al [39] compared the power efficiency of a CMP processor with TLSsupport

against an equal-area, wide-issue Superscalar processor.They concluded that the CMP pro-

cessor with TLS support can be more power efficient on general-purpose applications. Their

selection of equal-area configurations is based on a rough assumption that a 6-issue Superscalar

has the same area as a 4-core 3-issue CMP. In this chapter we conduct a detailed study of area

overhead to identify equal area configurations. Also we include SMT based TLS in our com-

parison. Warget. al [69], compared speedup of SMT and CMP using simple assumptions to

choose the configurations. In this chapter, we study severalequal area configurations based on

detailed area estimation. Also we present a detailed comparison which includes performance,

power and thermal effects.

Numerous studies have compared the SMT and CMP performance and power efficiency un-

der different workloads. On parallel programs [27] and mobile workloads [28], SMT processors

outperform CMP processors. However, on multimedia workloads, CMP is more efficient [29].

In the context of multi-program workload, Liet. al [30] found that SMT is more efficient for

memory-bound applications while CMP is more efficient for CPU-bound applications; Burns

et. al [31] found that SMT can achieve a better single thread performance, but CMP can achieve

a higher throughput.

In terms of thermal effects of CMP and SMT processors, Donaldet. al [70] found that SMT

produces more thermal stress than CMP; while Liet. al [30] show that the two architectures

have similar peak operating temperatures but SMT processors have more localized heating. In

contrast to these studies which used multi-programmed workloads, we use TLS workloads to
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study the thermal behavior.

Recently, there are many studies which perform design spaceexploration for CMP proces-

sors both using multi-programmed workloads [71] and parallel workloads [72]. In this chapter,

we study the design space for TLS workloads.

5.2 Processor Configurations

For fair power and performance comparisons among Superscalar, CMP-TLS and SMT-TLS

architectures, we maintain the same chip area for the three different processor configurations.

We use a detailed area estimation tool presented in [73]. While the original tool only targets

SimpleScalar-based architectures, we have extended this tool to estimate area of SMT and CMP

architectures.

However, even for a fixed chip area, many processor configurations are possible by varying

the size of the cores and the caches; and it is not possible to exhaustively evaluate the entire

design space. In this section, we describe how equal-area processor configurations are selected

for fair comparisons in this study.

5.2.1 Superscalar configuration

Our base configuration is a SimpleScalar-based Superscalararchitecture. The architectural pa-

rameter of this processor can be found in Table 5.1. The die area occupied by each component of

this processor can be found in Table 5.2, estimated by the die-area estimation tool [73] (assum-

ing 70nm technology). We refer to this architecture as theSEQ architecture, since it executes
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Table 5.1: Architectural parameters for the Superscalar (SEQ) configuration and the SMT con-
figurations with 2 and 4 threads

Parameter Superscalar SMT-4 SMT-2
Fetch/Decode/Issue/Retire Width12/12/8/8 12/12/8/8 12/12/8/8
Integer units 8 units / 1 cycle latency 7 units 7 units
Floating point units 5 units / 12 cycle latency 4 units 5 units
Memory ports 2Read, 1Write ports 2R,1W 1R and 1W
Register Update Unit 256 entries 196 234
(ROB,issue queue)
LSQ size 128 entries 96 110
L1I Cache 64K, 4 way 32B 64K, 4 way 32B 16K, 4 way 32B
L1D Cache 64K, 4 way 32B 64K, 4 way 32B 16K, 4 way 32B

Common to Superscalar and SMT
Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk, 18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize
Branch predictor 2K Pattern history table (PHT), 2K Branch target buffer (BTB)
Branch mis-prediction penalty 6 cycles
Physical registers per thread 128 Integer, 128 Floating point and 64 predicate registers
Thread overhead 5 cycles fork, 5 cycles commit and 1 cycle inter-thread communication

sequential programs.

5.2.2 SMT configuration

We use the SMT architecture discussed in chapter 4. When compared to the Superscalar archi-

tecture, the SMT architecture incurs additional overhead to support threads. To configure a SMT

processor with an equal area, we need to reduce the complexity of the processor to compensate

for the area increase due to threads. First, we show the estimated overhead of different compo-

nents and then we show how we reduce the processor complexityto get the desired equal-area

configuration.
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Table 5.2: Die area estimation for (1) Superscalar (SEQ), (2) SMT processor with reduced
complexity occupying an equal area and (3) CMP processor with an equal area as SEQ.

Hardware structures Area effect due to Area in Mλ 2

Issue width (d) SMT Threads(t) Function units(f) Superscalar SMT with overhead adjusted SMT
Function units
Integer units None None O(f) 1,057.96 1,057.96 925.71
Floating point units None None O(f) 1,436.73 1,436.73 1,149.39
Load store units None None O(f) 450.00 450.00 450.00

2,944.69 2,944.69 2,525.10

Pipeline logic:
Fetch unit O(d) O(t) None 390.00 487.50 487.50
Decode unit (dispatch) O(d) 20% overhead None 360.00 396.00 396.00
Issue (scheduler) O(d) None None 320.00 352.00 352.00
Write back unit None None O(f) 320.00 352.00 308.00
Commit unit O(d) 20% overhead None 176.00 202.40 202.40

1,566.00 1,789.90 1,745.90

Register File O(min (f,d))2 O(t) O(min (f,d))2 1,111.46 4,445.83 4,128.83
LSQ None None O(f2) 1,446.30 1,473.33 954.99
RUU None None O(f2) 15,215.25 16,911.31 11,515.58
BTB, ALAT, IFQ 740.00 2113.00 1,320.10
Caches
TLBS No change Extra port No change 105.46 116.00 116.00
Level 1 i-cache No change Extra port No change 1426.72 1956.64 1,956.64
Level 1 d-cache No change Extra TLS bits O(ports) 1956.64 2,257.07 2,257.07
Level 2 cache No change No change No change 41397.78 41397.78
Total Area without L2 26,512.04 34,007.61 26,520.22
Total Area 67,909.83 75,405.39 67,918.00
Total chip area in mm2 83.2 92.4 83.2
f or70nmtechnology

SMT overhead due to threads

In Table 5.2, using the die-area estimation tool [73], the area overhead of the SMT architecture

with the same configuration as a Superscalar architecture isshown. Estimated area overhead

for different components are discussed below:

Register Update Unit (RUU): The RUU occupied 57% of the core area and is the central

hardware support for out-of-order execution. In SMT, the RUU is shared by several
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threads, thus a thread identifier is needed to distinguish the entries. This leads to about

10% increase in area.

Register file: Each thread needs its own register file. This leads to 4 times increase in the area

of register file.

Fetch logic: The area cost for the instruction fetching stage is increased by approximately 25%

to support theicount fetch policy. The branch predictor, I-cache and I-TLB need extra

port to support fetching from multiple threads. The return address stack is replicated for

each thread.

Data cache: The area for the first level data cache increases approximately 15% for storing

the extra bits required for supporting TLS [68].

Out-of-order logic: If we consider the different components that constitute theout-of-order

like the RUU, LSQ, create vector and pipeline stages, the overhead due to 4 threads is 11%

in our estimation. In [31] it is estimated to be about 68% mainly due to the duplication of

larger remap-tables for supporting 8 threads.

The overall area cost for supporting a SMT processor of the same configuration as Super-

scalar (SEQ) is approximately 28%. When taking into consideration the L2 cache, the area

overhead of the entire chip is approximately 11%.
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Configuring equal-area SMT processor

The complexity of the core can be reduced by reducing many parameters, but our main target

is the RUU(Register Update Unit) since it occupies a significant die area (about 56% of SEQ).

However, if we simply reduce the number of RUU and LSQ (Load Store Queue) entries while

holding other parameters constant, we must reduce the number of RUU entries by 40%. This

approach clearly creates a performance bottleneck, and thus produces a sub-optimal design.

RUU requires many ports, since it is the central structure accessed by almost all pipeline stages.

By reducing the number of function units, we can reduce the number ports in RUU, in turn,

reduce the area cost of RUU.

In this chapter, we reduce both the number of function units and the number of RUU and

LSQ entries to achieve the desired area cost. The exact configuration chosen for SMT configu-

ration is shown in Table 5.1. In Table 5.2, the area of each component in this equal area SMT

configuration is shown.

To study the impact of the reduction in the number of TLS threads, we include a configu-

ration called SMT-2 which supports 2 threads (equal area as SEQ and SMT-4). Reducing the

number of threads reduced the area overhead by about 13%, andwe follow a similar strategy of

reducing the number of RUU entries and function units to compensate for the SMT overhead.

The configuration for SMT-2 is shown in Table 5.1.
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Table 5.3: Architecture Parameters for the CMP configurations with: 4 cores + 2MB L2 cache;
2 cores + 2MB L2 cache; 4 cores + 1MB L2 cache;

Parameter CMP-4-2MB CMP-2-2MB CMP-4-1MB
Fetch/Decode/Issue/Retire Width6/6/4/4 9/9/6/6 9/9/6/6
Integer units 4 units 6 units 6 units
Floating point units 2 units 4 units 3 units
Register Update Unit 106 entries 148 entries 122 entries
LSQ size 44 entries 74 entries 64 entries
L1 D-cache size 16K 32K 32K
L1 I-cache size 16K 32K 32K
Unified L2 2MB, 8 way associative, 64B blocksize1MB, 8 way associative, 64B

blocksize
Branch predictor 1K Pattern history table (PHT), 1K Branch target buffer (BTB)

5.2.3 CMP configurations

In choosing the area-equivalent CMP configurations we have two design choices. One way is

to hold the L2 size the same as in SEQ and allocate less area foreach core, so the total area for

the multiple cores is the same as that of the Superscalar core(as in [31]). Another choice is to

reduce L2 cache size and use the area for allocating more areafor each core (as in [30]). Also,

we could reduce the number of cores supported, which will allow us to use larger cores. To

cover all these design choices, we consider three differentconfigurations of CMP architecture -

CMP-4-2MB(CMP-4cores-2MB L2 cache), CMP-4-1MB, and CMP-2-2MB.

The specifics of each of configuration are shown in Table 5.3. We estimated the area of each

configuration and made sure they have the same area (shown in Table 5.4).
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Table 5.4: Die area estimation for CMP variants.Hardware structures CMP-4-2MB CMP-4-1MB CMP-2-2MB
area (mm2) area (mm2) area (mm2)

Function units
Integer units 0.648 0.972 0.972
Floating point units 0.704 1.056 1.408
Load Store units 0.367 0.551 0.551

1.719 2.579 2.931

Pipeline logic
Fetch unit 0.239 0.358 0.358
Decode unit 0.220 0.330 0.330
Issue unit 0.196 0.294 0.294
Writeback unit 0.196 0.294 0.319
Commit unit 0.108 0.161 0.161

Caches
TLBs 0.104 0.129 0.129
L1 I-cache 0.439 0.877 0.877
L1 D-cache 0.503 1.362 1.330
Register file 0.414 0.802 0.874
RUU 1.943 4.73 6.1
LSQ 0.194 0.574 0.710
Misc 0.344 0.463 0.458
Core Size 6.6 12.95 14.76
Bus area 5.95 2.975
L2 cache 50.71 25.35 50.71
Chip size 83.2 83.2 83.2

5.3 Performance and Power Comparisons

We compare the three different architectures - CMP-based TLS, SMT-based TLS and Super-

scalar in terms of performance in Section 5.3.1. In Section 5.3.2, we compare their power con-

sumption, and in Section 5.3.3, we useenergy-delay product(ED) andenergy-delay-squared

product (ED2) to compare energy efficiency. We use the evaluation framework describe in

chapter 2 to compare the different architectures.
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5.3.1 Performance

Fig. 5.1 shows the speedup of the entire benchmark suite using Superscalar (SEQ) performance

as the base and Fig. 5.2 shows the breakdown of execution timewhen executing loops selected

by the compiler. In this section, we only show the TLS configurations: CMP-4-2MB and SMT-

4. We will discuss other possible configurations in Section 5.4.

For SPEC 2000 benchmarks, the CMP-4-2MB slows down inperlbmk, gcc, twolf, mesa,

gzip, vortex, vpr route andcrafty, leading to ageometric mean(GM) slowdown of 8% when

compared to SEQ. Due to its dynamic sharing of resources, SMT-4 is able to extract good per-

formance even in benchmarks with limited parallelism except in mesaandperlbmk, leading to

about 21% speedup over SEQ. In SPEC 2006 benchmarks, the CMP-4-2MB achieves speedup

in most benchmarks except ingobmk, povray, h264refandsjeng, leading to ageometric mean

(GM) speedup of 18% when compared to SEQ. SMT-4 gains speedupin all benchmarks and

achieves an overall performance of 39% better than SEQ.

Each benchmark benefits from specific architecture depending on its characteristics. A

comparison of the impact of different benchmark characteristics on the TLS performance in

CMP and SMT architectures is presented in Table 5.5.

Large sequential non-parallelized code regions:The CMP-4-2MB slows down about 8%

compared to SEQ in SPEC 2000 benchmarks but if we consider theentire benchmark (Fig. 5.1),

while it achieved about 13% speedup if we consider only the parallel regions (in Fig. 5.2). Sim-

ilarly it achieves about 40% speedup if we consider the parallel regions in SPEC 2006, but the

speedup is only 18% if we consider the entire benchmark. Manyof the benchmarks considered
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(a) Speedup for SPEC 2000 benchmarks.

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.1: Speedup of CMP-4-2MB and SMT-4 configurations over SEQ.
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(a) Breakdown for SPEC 2000 benchmarks.

(b) Breakdown for SPEC 2006 benchmarks.

Figure 5.2: Execution time breakdown for parallel region execution of CMP-4-2MB and SMT-4
configurations normalized to the SEQ configuration.
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Table 5.5: Comparison of the impact of benchmark behaviors on the performance of SMT-TLS
vs CMP-TLS.

Benchmark
characteristics

Impact on
Reasons

CMP SMT
Large sequential regions X X SMT could use all resources to extract ILP inside sequentialregions.
Low TLP inside parallel regions X X SMT effectively uses all its resources while many cores in CMP could

be idle
High cache miss rates X X Both can hide memory latency and speculative threads can prefetch

data. SMT has more advantage due to shared L1.
Threads with a large working set X X SMT L1 cache overflows more often as it is shared by all threads.
Frequent mis-speculations X X Mis-speculations wastes resources and affects non-speculative thread

performance.

have significant sequential (non-parallelized) regions which suffer poor performance on CMP-

4-2MB due to its static partitioning of resources. Theperlbmkshows more than 50% slowdown

for CMP-4-2MB configuration. The coverage of sequential regions in perlbmkis about 75%.

Due to this very low parallel-region coverage, we see a huge decrease in overall performance for

perlbmk. In benchmarktwolf, the CMP performs about 29% better than SEQ when we consider

parallel regions. But when we consider the entire benchmark, the CMP performs about 8%

worse than SEQ due to only 47% coverage of non-parallelized regions. Similarly inh264ref

CMP-4-2MB achieves about 17% speedup inside parallel regions but slows down by about

10% when we consider the entire benchmark. Similarly,crafty, vpr place, gobmk, sjeng and

bzip2(SPEC 2006)suffer from poor sequential region performance.

On the other hand, the SMT configuration was able to dynamically reallocate its resources

to exploit ILP when executing in sequential regions. Even though there is a slight slowdown in

some benchmarks for SMT, the impact is much less when compared to CMP. For example, in

h264refSMT-4 performs 19% better than SEQ while CMP-4-2MB slows down by about 10%,

inspite of both achieving similar speedup inside parallel regions. Overall, SMT-4 performs
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about 44% better than SEQ if we consider only the parallel regions in SPEC 2000 benchmarks

while its performance reduces to 21% when we consider the entire benchmark. In SPEC 2006

benchmarks the parallel region speedup is about 58% while the overall benchmark performance

is 44%.

Low TLS parallelism inside parallelized regions: Even in benchmarks with high parallel

region coverage, the CMP-4-2MB can do worse due to limited parallelism inside the parallelized

regions. For example in benchmarkpovray, the parallel region coverage is 63%, but the loops

selected have very poor iteation count leading to many threads being idle (indicated aslack

of threads). Due to the limited parallelism available, the CMP did not get good performance,

while SMT due to its dynamic resource allocation, uses the resources to extract ILP within the

threads, resulting in a better performance than CMP. Here the SMT-4 is able to dynamically re-

allocate its resources to exploit instruction-level parallelism inside the available threads leading

to about 5% speedup. Similarly incrafty the CMP-4-2MB suffers due to synchronization and

poor iteration count. Similar effect can be seen ingcc, mesa, perlbmk, crafty, gzip, vortex and

vpr route. In all these cases the SMT-4 is able to dynamically re-allocate its resources to exploit

instruction-level parallelism in the remaining threads.

Large number of cache misses:In benchmarkequakeand inmcf, the SEQ configuration

spends most of the execution time waiting for memory due to a large number of cache misses.

Both CMP-4-2MB and SMT-4 are able to better hide the memory latency through sharing of

the common working set. Such sharing of the working set allows some data needed by one

thread to bepre-fetchedby another thread. The benchmarksequakeand mcf have excellent
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TLS parallelism, consequently, there are very few squashes. Due to the combined effect of par-

allelism and prefetching, both CMP-4-2MB and SMT-4 achievegood performance. Similarly,

benchmarksmilc, libquantum, twolf andvpr placegain from good TLS parallelism and cache

prefetching leading to performance gain for both SMT and CMP.

In SMT, both L1 cache and L2 cache are shared by all the threads, leading to better prefetch-

ing when compared to CMP where the threads share only the L2 cache. Intwolf, vpr place and

vpr route, SMT-4 performs better than CMP-4-2MB due to prefetching effect in L1 cache.

Effect of frequent squashes:Frequent dependence violations hurts the performance of

both SMT-4 and CMP-4-2MB configurations as seen in benchmarks gcc, vortex, gzip, mesa,

sphinx3, astar and bzip2(SPEC 2006). But in the case of SMT-4, since the processor resources

are shared, speculative threads compete for resources withthe non-speculative thread. If the

speculative work done is eventually wasted due to dependence violations we do not gain any

thread-level parallelism while we also hurt the performance of non-speculative thread. Due to

this there is a slowdown in SMT-4 when compared to CMP-4-2MB when there are frequent

squashes as shown in Figure 5.2 for benchmarksbzip2 and sphinx3in SPEC 2006.

5.3.2 Power

To understand the power behavior of the two architectures, we compare the breakdown of dy-

namic power consumption in Fig. 5.3. The power consumption is normalized to the total power

consumption of SEQ configuration. We used ideal clock gating(cc2) in theWattchsimulator to

get dynamic power consumption.
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Dynamic power is proportional toαC.V2 f , whereα is the activity factor,C is the capaci-

tance of the transistor,V the supply voltage, andf the frequency of the circuit. In our simulation,

we keptV and f the same for all three configurations. So dynamic power differences among

the three configurations are mainly due to theactivity factor or thecapacitance of the circuit.

Core complexity: The Superscalar uses the most complex core and has the highest C value

while SMT core is also complex. But the CMP configuration usessmaller cores and, hence, has

a smallerC value than that in Superscalar and SMT. The largest component of dynamic power,

we call it thewindow power, combines the power consumption of function blocks relatedto

out-of-order execution including RUU, LSQ, result bus, etc. The CMP configuration uses a

smaller instruction window leading to lower window power consumption across all bench-

marks. Similarly, it consumes less power in the cache since it uses a smaller cache than in

other configurations as shown in Fig. 5.3.

Activity factor: SMT and CMP both execute the same parallel TLS code so their activity

factor is very similar. However, SEQ runs the sequential code which does not have any special

TLS instructions, leading to a smaller activity factor thanSMT and CMP. Another factor which

affects the activity is the amount of speculation. Both SMT and CMP suffer from frequent

dependence violations, but the power wasted due to squashesin SMT is higher due to its higher

complexity. This effect can be seen in benchmarksammp, mesa, gzip, vortex, astar, sphinx3

and bzip2(SPEC 2006)The SEQ has a more complex core than both SMT and CMP, and thus

consumes higher power. But due to its lower activity factor its power consumption is lower than

SMT.
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Extra hardware: The TLS architectures have extra power overhead due to the extra hard-

ware needed to implement TLS. The extra hardware used by SMT is minimal, but CMP uses a

common bus to connect the cores. The power overhead due to this common bus is significant,

and not present in SEQ and SMT configurations.

(a) Dynamic power consumption for SPEC 2000 benchmarks.

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.3: Normalized dynamic power consumption of CMP-4-2MB and SMT-4 configura-
tions normalized to the power consumption of SEQ.

Overall, due to the combined effect of complex cores and speculative wastage, SMT on

average consumes about 17% more dynamic power than SEQ for SPEC 2000 and 22% more
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dynamic power for SPEC 2006 benchmarks. CMP, due to its smaller cores, consumes about

11% less dynamic power than SEQ in SPEC 2000 and 3% lesser for SPEC 2006 benchmarks.

Total power: Total power consumption of the processor includes leakage/static power in

addition to the dynamic power considered above. To get totalpower consumption, we use

aggressive clock gating inWattch simulator (cc3).

The static power consumption depends on the program execution time and on the number

of components that have leakage power (i.e. number of transistors). If the configuration

Both SMT-4 and CMP-4-2MB achieve good speedup in many benchmarks which leads to

lesser static power than SEQ. Also SMT-4 consumes lesser static power than CMP-4-2MB due

to its higher speedup.

The CMP-4-2MB configuration due to its lower complexity can pack more resources in the

same chip area. For example, the CMP-4-2MB uses two times thenumber of function units,

RUU entries, etc. Due to the use of a larger number of components, the CMP has more leakage

power than SMT. The SMT-4 also uses more resources when compared to SEQ. The register

file is four times larger in SMT-4 when compared SEQ and also ituses additional bits in the L1

data cache. Due to additional resources both SMT-4 and CMP-4-2MB can consume additional

leakage power when compared SEQ.

Fig. 5.4 shows the total power overhead for SMT and CMP over SEQ. The SMT-4 due to

its good speedup in benchmarksmcf, ammp, equake, sphinx3, namd, lbm, hummer, milcis able

to makeup for its increase in dynamic power. For example inammp, the total power overhead
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(a) Overhead for SPEC 2000 benchmarks.

(b) Overhead for SPEC 2006 benchmarks.

Figure 5.4: Total power overhead CMP-4-2MB and SMT-4 configurations over SEQ.
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of SMT is only 82% when compared to 291% overhead for dynamic power. Whereas in bench-

marks such asparser, gcc, gap, crafty, perlbmk, gobmk, povray, astarwhere the speedup of

SMT-4 is limited, the SMT-4 configuration suffers from more leakage due to its larger register

file and other resources.

Similar to SMT-4, the CMP-4-2MB due to its good speedup inmcf, equake, namd, lbm,

hummer, milcsuffers from lower leakage power. But in other benchmarks due to its limited

speedup and its larger resources incuring leakage power, itsuffers from increased leakage.

Overall, the CMP-4-2MB inspite of its lower dynamic power consumption suffers from

20% total power overhead when compared to SEQ due to increased static power caused by

lower performance and larger resources. The SMT-4 due to itsdynamic power overhead due

to dependence violations and static power overhead due to its register file leads to about 30%

power overhead. The CMP-4-2MB due to its higher speedup among SPEC 2006 benchmarks

suffers only 4% overhead when compared SEQ. The SMT-4 configuration due to its higher

dynamic power overhead caused from higher number of mis-speculations in SPEC 2006 bench-

marks leads to about 19% overhead when compared to SEQ. Overall all the benchmarks the

CMP-4-2MB consumes 12% lesser power than the SMT-4 configuration.

A summary of how the various factors affect power consumption in SMT and CMP is pre-

sented in Table 5.6.
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Table 5.6: Comparison of the impact of various factors on thepower consumption of SMT-TLS
vs CMP-TLS.

Different factors
Impact on

Reasons
CMP SMT

Core complexity X X CMP with simpler cores consumes lesser dynamic power as seenin Fig. 5.3
Execution time X X SMT has lower execution time than SEQ leading to lower leakage. But CMP

slowsdown in some benchmarks leading to more leakage.
Frequent squashes X X Squashing leads to additional dynamic power in both SMT and CMP.
Number of transistors X X More transistors in CMP cause more leakage than in SMT.

5.3.3 ED andED2

From the previous sections, we see that SMT and CMP have a verydifferent behavior in power

consumption and performance. To combine their effects we useenergy-delay product(ED) and

energy-delay-squared product(ED2).

Fig. 5.5 shows the ED andED2 when we consider the entire program execution. As

discussed before, the CMP-4-2MB configuration suffers frompoor performance in SPEC 2000

benchmarks. Due to the poor performance the ED for CMP-4-2MBis about 24% worse than

SMT-4 and 31% worse than SEQ. When we considerED2 the effect of poor performance further

worsens leading to 55% worseED2 than SMT-4. The SMT-4 configuration due to its higher

power overhead suffers from 7% worser ED than SEQ. When we considerED2, it gains 11%

betterED2 when compared to SEQ.

When we consider SPEC 2006 benchmarks, where the CMP-4-2MB gains better perfor-

mance and SMT-4 suffers from extra power overhead due to frequent squashes, the CMP-4-

2MB is 12% better than SEQ in terms of ED and the SMT-4 is 17% better than SEQ, which is

only 5% better than CMP-4-2MB. When we considerED2 the SMT-4’s lead increases due to

its better performance. Now the SMT-4 is 17% better than CMP-4-2MB.
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From Fig. 5.5 we can see that though in most benchmarks SMT-4 does better than CMP-

4-2MB, there are some benchmarks where CMP-4-2MB does better. In benchmarks with good

parallelism likemcf, art, equake, sphinx3, namd, lbm, libquantum and hummer, the CMP-4-

2MB does better. Also in benchmarks likeastar, bzip2(’06), gap and parserwhere the CMP-4-

2MB has limited speedup and where the SMT-4 has increased power overhead, the CMP-4-2MB

does better. In Fig. 5.6 we show the comparison of ED andED2 for SPEC 2000 and SPEC

2006 benchmarks classified in terms of their dependence behavior. In chapter 3 we classified

the benchmarks into two classes depending on the number of inter-thread dependences: Class-A

which has fewer inter-thread dependences and Class-B whichhas more number of inter-thread

dependences. As we see in Fig. 5.6, for Class-A benchmarks which have better parallelism,

the CMP-4-2MB beats SMT-4 in terms of ED by about 1%. Though even among class-A

benchmarks,povray and mesasuffer from limited speedup due to their limited iteration count

and other factors. Due to this the SMT-4 beats CMP-4-2MB in terms of ED2; though the

difference now is only 9% when compared to 50% difference in Class-B benchmarks which

generally have limited parallelism due to inter-thread dependences.

From the above discussion, it is clear that overall, the SMT-4 configuration is more efficient

in extracting TLS parallelism than the CMP-4-2MB configuration. Though the CMP-4-2MB

does better in benchmarks with more parallelism. In the nextsection, we consider different

variations in the design space of CMP and SMT.
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5.4 Alternative Configurations

As we saw in previous section, the CMP based TLS performs worse than SMT based TLS due

to its poor performance when executing in sequential regions. In this section, we study how

the performance and power behavior change when we increase the core complexity to improve

performance in sequential regions by varying key parameters such as the number of threads and

L2 size.

Impact of the number of threads:

In Fig. 5.7 we compare the speedup of the 4-thread and 2-thread versions of both CMP and

SMT architectures and in Fig. 5.8 we compare them in terms ofED2. The CMP-2-2MB can

support only two threads leading to poor parallel region performance but its larger cores helps to

exploit instruction level parallelism inside sequential regions. In SPEC 2000 where the CMP-4-

2MB suffers significant slowdown due to sequential regions,the CMP-2-2MB gains about 6%

speedup due to its better sequential region performance. Though the CMP-2-2MB suffers from

higher power overhead due to its complex core and it slows down in parallel regions, it gains

betterED2 of about 14% due to its better performance in benchmarks likegcc, mesa, perlbmk,

crafty, vortex, etc. When we consider the SPEC 2006 benchmarks which have betterparallelism

than SPEC 2000, the CMP-2-2MB slows down about 7% when compare to CMP-4-2MB. Due

to this slowdown and its higher power overhead it suffers about 12% worserED2 than CMP-4-

2MB. Overall the benchmarks the CMP-4-2MB is about 1% betterthan CMP-2-2MB.

The SMT-2 configuration can only support two threads, but suffers from fewer dependence

violations. Due to its limited ability to exploit parallelism, it suffers from 9% slowdown when
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compared to SMT-4 for SPEC 2000 and about 19% slowdown for SPEC 2006 benchmarks. Due

to its lower dynamic power overhead the decrease in efficiency (ED2) is lesser when compared

to its slowdown. It suffers from about 6% worserED2 for SPEC 2000 benchmarks and about

8% worserED2 for SPEC 2006 benchmarks. Across all the benchmarks the SMT-4 has about

7% betterED2 than SMT-2.

Impact of L2 size:

Reducing the number of cores in CMP allows us to use larger cores which lead to improved

sequential region performance, but we lose performance in parallel regions. Another possible

design choice is to reduce the L2 size, allowing the extra space to be used for larger cores. Fig.

5.9 compares the speedup of CMP-4-2MB with that of CMP-4-1MBwhich uses larger cores,

but smaller L2 size and in Fig. 5.10 comparison ofED2 is presented.

In SPEC 2000 benchmarks, the CMP-4-1MB gains about 14% better speedup when com-

pared to CMP-4-2MB. But due to its higher core complexity, itsuffers from increased power

overhead leading to 18% worserED2 when compared to CMP-4-2MB. Though the CMP-4-

1MB showed betterED2 for benchmarks likecrafty, mesa, perlbmkwhich had large slowdown

for CMP-4-2MB, it suffers in many other benchmarks due to itshigher complexity. Among

SPEC 2006 benchmarks the CMP-4-1MB performs 21% better thanCMP-4-2MB, but in terms

of ED2 it is about 2% worse than CMP-4-2MB. Over all the benchmarks,the CMP-4-2MB has

8% betterED2 than CMP-4-1MB.

Impact of frequency: In our study, we had assumed the same clock frequency for all con-

figurations. A simpler CMP core can be run at a higher frequency than in SEQ and SMT
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configurations. Though increasing frequency can lead to better performance, it leads to large

increase in power consumption leading to worseED2.

Among the alternative design choices considered we found that SMT-4 still is the best possi-

ble configuration in terms ofED2 for supporting TLS. Though CMP-2-2MB and CMP-4-1MB

showed good speedup, they suffer worserED2 when compared to CMP-4-2MB.

5.5 Thermal behavior

The Superscalar and the SMT-TLS architectures use complex cores with a large number of

function units and large instruction window to exploit instruction-level parallelism or support

the additional threads. These cores not only consume more energy, they can also generate

thermal hotspots. On the other hand, the CMP-TLS architecture has distributed cores, and thus

can potentially have smaller and less severe thermal hotspots. In this section, we analyze the

thermal characteristics of three processor configurations—SEQ, SMT-4 and CMP-4-2MB.

The average and hotspot temperatures for each architectureare shown in Table 5.7. We have

observed that the CMP-4-2MB configuration has the lowest average and hotspot temperatures,

while the SMT-4 has the highest average and hotspot temperatures Also the SMT-4 has more

severe thermal spot temperature even compared to SEQ. In terms of hotspot temperature, the

CMP-4-2MB configuration is about 2.5 degrees lower than thatof the SMT-4 configuration;

while SMT-4 configuration is about 0.8 degrees higher than that of the SEQ configuration.

By observing the steady state temperature map for the SMT-4 and CMP-4-2MB configura-

tions runningh264ref, which has the one of the highest IPC among all benchmarks, wefound
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Table 5.7: Thermal effects of TLS on three different architectures: SEQ, SMT-4 and the CMP-
4-2MB in degree Celsius.

benchmark SEQ CMP-4-2MB SMT-4
averagehotspot averagehotspot averagehotspot

vpr place 49.41 47.12 51.08 48.03 48.74 47.81
vpr route 49.23 46.92 50.99 47.86 48.49 47.55
gcc 50.16 47.45 51.26 48.25 49.34 47.44
twolf 49.37 47.1 51.02 47.96 48.56 47.62
equake 49.23 46.89 50.93 47.87 48.49 47.54
ammp 49.26 46.91 51.05 47.88 48.7 47.58
gzip 49.93 47.64 51.38 48.57 49.34 47.44
bzip2 50.7 47.59 53.26 48.62 51.59 47.71
mcf 49.17 46.88 50.85 47.64 48.5 47.44
vortex 49.52 47.21 50.99 47.96 48.11 47.03
parser 49.42 47 50.93 47.81 48.81 46.78
perlbmk 49.91 47.51 51.11 48.04 47.86 46.8
crafty 50.17 47.86 51.22 48.33 46.83 46.02
art 49.09 46.81 50.89 47.7 48.28 47.27
mesa 49.93 47.29 51.13 48.05 48.99 47.45
gap 51.86 47.79 52.04 48.32 48.7 47.58
bzip26 50.55 47.56 54.18 48.75 50.8 47.08
mcf6 49.05 46.74 50.91 47.73 48.42 47.4
gobmk 49.75 47.35 51.12 48.1 48.3 47.15
namd 49.3 46.99 51.39 48.55 49.82 48.71
povray 49.65 47.32 51.08 48.03 48.64 47.66
astar 49.55 47.21 51.17 48.19 48.94 47.89
lbm 49.29 46.92 51.09 47.92 49.02 48.04
h264ref 52.22 48.24 53.75 49.22 50.61 48.29
libquantum49.1 46.76 50.87 47.63 48.31 47.34
sjeng 49.1 46.91 51.21 48.11 49.30 48.20
hummer 49.5 47.21 51.73 49.05 50.21 49.15
milc 49.23 46.85 51.05 47.93 48.88 46.04
Average 49.76 47.23 51.42 48.15 48.94 47.47

that the main source of heat in both configurations is the register file (circled in Fig. 5.11). The

temperature maps are shown in Figure 5.11. The activity level in the register file of each CMP

core is lower than the activity level of the central registerfile in SMT-4, thus leading to lower

hotspot temperature. While both SMT-4 and SEQ have a centralized register file, the activity

level in SMT-4 is higher due to the execution of speculative threads, thus it leads to a higher

temperature.
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(a) ED/ED2 for SPEC 2000 benchmarks.

(b) ED/ED2 for SPEC 2006 benchmarks.

Figure 5.5: ED/ED2 of CMP-4-2MB and SMT-4 configurations normalized to SEQ. Here the
lower value indicates better efficiency.
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(a) ED2 for Class ’A’ benchmarks.

(b) ED2 for Class ’B’ benchmarks.

Figure 5.6:ED2 of CMP-4-2MB and SMT-4 configurations normalized to SEQ. Here the lower
value indicates better efficiency.
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(a) Speedup for SPEC 2000 benchmarks.

(b) Speedup for SPEC 2000 benchmarks.

Figure 5.7: Comparison of speedup for CMP-4-2MB, CMP-2-2MB, SMT-4 and SMT-2 config-
urations.



94

(a) ED2 for SPEC 2000 benchmarks.

(b) ED2 for SPEC 2006 benchmarks.

Figure 5.8: Comparison ofED2 for CMP-4-2MB, CMP-2-2MB, SMT-4 and SMT-2 configura-
tions.
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(a) Speedup for SPEC 2000 benchmarks.

(b) Speedup for SPEC 2006 benchmarks.

Figure 5.9: Comparison of speedup for CMP-4-2MB and CMP-4-1MB configurations.
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(a) ED2 for SPEC 2000 benchmarks.

(b) ED2 for SPEC 2006 benchmarks.

Figure 5.10: Comparison of speedup for CMP-4-2MB and CMP-4-1MB configurations.
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(a) Thermal map for the SEQ configura-
tion.

(b) SMT configuration.

(c) CMP-4-2MB configuration.

Figure 5.11: Thermal map for various configuration (runningh264ref). Redcolor indicates
hottest regions.



Chapter 6

Heterogeneous TLS

In the previous chapter we studied the efficiency of SMT and CMP based TLS architectures. We

found that depending on the characteristics of the benchmark, different architectures are more

efficient. For benchmarks with good parallelism, we found that CMP had better efficiency while

for more sequential programs SMT is the most efficient architecture. So if a multi-threaded

processor is designed ashomogeneousSMT or CMP, it cannot exploit the parallelism with

optimal efficieny across all possible benchmarks.

As the number of transistors in a chip keep increasing, processor designers try to make

efficient use of the available transistors by including multiple cores in the same chip. With ever

increasing die area, designers have a choice on the type of cores that can be included in the chip.

Though most of the current multi-core systems use ahomogeneousdesign where the same core

is replicated, there are a few systems withheterogeneouscores. For example in [4], specialized

cores calledSPEwhich specialize in SIMD computations are added in additional to thePPE

98
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which acts as a control processor that services requests from theSPEs.

Several studies have examined the design of suchheterogeneousmulti-cores [40, 41, 42]

and how to allocate the application into suchheterogeneouscores. In most papers, different

cores with varying complexity and frequency are combined together to form aheterogeneous

multi-core processor. In our case, in order to exploit TLS efficiently for all applications we need

both SMT and CMP within aheterogeneousmulti-core.

In a typicalheterogeneousmulti-core, the performance of the different ”threads” aremon-

itored and the runtime system would decide which core to be used to improve efficiency. In

most papers, only multi-programmed workloads are considered where entire applications are

mapped into available cores. In our case, our speculative threads are fine grained and may re-

quire low-overhead runtime techniques. Detailed design ofsuch hardware techniques to exploit

suchheterogeneousmulti-core is beyond the scope of this thesis. In this chapter we show the

potential for using such SMT-CMP basedheterogeneousmulti-core to efficiently exploit TLS.

The rest of the chapter is as follows: In Section 6.1 we give a brief overview on the related

work, in section 6.2 we show the potential improvement with the use ofheterogeneousmulti-

core technique, in Section 6.3 we discuss the overheads of exploiting suchheterogeneousmulti-

core technique and in Section 6.4 we present our conclusions.

6.1 Related work

Several studies have examined the problem of scheduling multiple tasks on a heterogenous

multi-core. Kumaret. al [42], used a dynamic scheduling approach here the performance of
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the different tasks are studied during periodic profile phases. The performance information col-

lected during the profile phase is used to map the different tasks to the available heterogenous

cores to optimize their efficiency. The drawback is that in the profile phase different combina-

tions of core allocation need to be sampled to determine ideal core selection. This process can

incur excessing switching overhead.

Johnet. al [40], collected different program characteristics like dependency distance, data

reuse distance, etc during a profile run. Fuzzy logic is then used to calculate the suitablity of

the different tasks for the different heterogenous cores. With this technique, there is no need for

the expensive runtime sampling proposed in [42].

Crowleyet. al [41] also avoid the expensive profile phase and instead of trying different core

combinations, they use the dynamic IPC (instructions per clock cycle) to decide the suitability

for different tasks on each core.

In all the above studies multi-programmed workloads are considered, while in our thesis the

focus is on TLS. Also in contrast to other previous work whichtypically use different cores of

varying complexity or frequency, in this chapter we consider a SMT-CMP based heterogenous

multi-core system.

6.2 Potential For Heterogeneous Multi-core

In the previous chapter we studied the efficiency of TLS in SMTand CMP architectures. The

results of our study is shown again in Fig. 6.1. As shown in Fig. 6.1, depending on the

characteristics each benchmark either more efficient on a SMT or on a CMP. Fig. 6.1 shows
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that the geometric meanED2 of all the best configurations for each benchmark is about 10%

better than theED2 of SMT configuration which gives the best overall efficiency.This indicates

the potential efficiency that can be gained if each benchmarkis able to select either SMT or

CMP configuration based on anOraclemechanism.

(a) NormalizedED2 for SPEC 2000 benchmarks.

(b) NormalizedED2 for SPEC 2006 benchmarks.

Figure 6.1: Comparison of NormalizedED2 of CMP, SMT configurations with the best config-
uration for each benchmark.

This shows that to extract TLS in the most efficient way, we need to support for both SMT
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and CMP. Such an heterogeneous multi-core is shown in Fig. 6.2. With this design, the bench-

mark can choose either SMT or CMP based on its characteristics to achieve optimal efficiency.

Figure 6.2: Heterogeneous multi-core architecture.

In Fig. 6.1, we showed the potential of mapping either applications to the best configu-

ration. But within each benchmark different regions of codecould perform better in different

architectures. Thus we could further improve the efficiencyif individual regions in each bench-

mark are able to choose the most suitable architecture.

To understand the potential of such fine grained choosing of cores, we simulated each bench-

mark in three different configurations:

• SMT-TLS Here the parallelized benchmark is run on the SMT core with TLS enabled.

• CMP-TLS Here the parallelized benchmark is run on CMP core with TLS enabled.

• SMT-noTLS Here the parallelized benchmark is run on the SMT core with TLS disabled.

This configuration is useful when the CMP and SMT based TLS configurations suffer

from frequent squashes.

Here we compare the performance with the SEQ configuration used in chapter 5, running the
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non-parallelized benchmark.

Say a benchmark contains three regions -R1,R2 andR3. Let SMT-TLS be the most efficient

configuration forR1, CMP be the best configuration forR2 and SMT-noTLS be the best config-

uration forR3. In an ideal heterogeneous multi-core architecture the benchmark would execute

the different regions in their best configuration. To calculate the best efficiency obtained by such

ideal switching between cores, the number of cycles and power consumed for each region in

the benchmark which executing in their corresponding best configuration are added and overall

ED2 is calculated. For example letCm1 andPm1 be the time taken and the power consumed by

regionR1 when running on its best configuration SMT-TLS. Similarly let Cc2 andPc2 be the

time taken and the power consumed by regionR2 and letCs3 andPs3 be the time taken and the

power consumed by regionR3. Now the total cycles taken by choosing the ideal configuraion

for each region isCm1 + Cc2 + Cs3 and the corresponding power consumption isPm1 + Pc2 + Ps3.

From this the idealED2 for the benchmark calculated.

Fig. 6.3 compares the estimatedED2 calculated for an ideal heterogeneous multi-core with

the SMT-TLS and CMP-TLS configurations. Fig. 6.3 shows that the heterogeneous multi-core

is about 16% more efficient than the SMT-TLS configuration which is the most efficient homo-

geneous configuration. When compared to results in Fig. 6.3,fine-grained switching between

cores to optimizeED2 results in about 6% additional speedup when compared to mapping the

entire benchmark to a particular configuration.

The efficiency obtained by using the heterogeneous multi-core can be classified into three-

categories based on its source:
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(a) NormalizedED2 for SPEC 2000 benchmarks.

(b) NormalizedED2 for SPEC 2006 benchmarks.

Figure 6.3: Comparison of NormalizedED2 of CMP, SMT configurations with the predicted
ED2 of heterogeneous multi-core.
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Efficiency from core selection: In benchmarksart, bzip2, crafty, gap, mcf, mesa, parser, twolf,

vpr place, vprroute, astar, gobmk, hummer, lbm, libquantum, namd, povray, sjengthe ef-

ficiency of heterogeneous configuration is the same as the best homogenous configuration

(either SMT-TLS or CMP-TLS). For these benchmarks, based ontheir characteristics, a

compiler or an advanced user can potentially assign the bestsuitable core. A simple

hardware technique that can decide which configuration to use based on an initial profile

phase can also be used.

Efficiency from speculative thread prunning: In benchmarksart, gzip, perlbmk and sphinx3

some of the loops suffer from frequent squashes leading to poor efficiency in both SMT-

TLS and CMP-TLS configurations. The efficiency gain due to heterogenous multi-core

for these benchmarks shown in Fig. 6.3 is mainly achieved by disabling TLS for such

loops. To obtain this benefit, we need a runtime monitoring system that can prevent in-

efficient TLS. But these benchmarks still need heterogeneous multi-core as they need to

choose the best suitable configuration (Efficiency from coreselection).

Efficiency from core switching: For benchmarksammp, equake, gcc, h264ref and milc, dif-

ferent loops need to be assigned to different configurationsto obtain the ideal efficiency.

To exploit this efficiency, we need to develop low-overhead hardware techniques that can

monitor the performance of each region of code and dynamically map them to different

configurations based on their predicted efficiency on different configurations.

From the discussion above we can see that the efficiency from core switching is the hardest
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to extract as it requires complex runtime monitoring support. In the next section we study the

overhead involved in extracting this efficiency.

6.3 Overhead In Using Heterogeneous Multi-core

Figure 6.4: Different phases of execution when switching between cores.

Fig. 6.4 shows the overhead involved in the execution of two regions Region R1 and R2

which require a switching between the two configurations. The different phases on execution

when switching between cores are:

• Run Phase in SMT: Region R1 is mapped to SMT configuration to maximize its effi-

ciency. When executing in the SMT configuration the CMP configuration is in power-off

phase.

• Cache emptying phase: After executing Region R1 in the SMT configuration, we need

to switch to the CMP configuration to obtain the best efficiency for Region R2. When

switching from the SMT configuration to the CMP configuration, we need to power-off
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(or put in a low power state) the un-used SMT configuration to reduce power wastage in

the un-used core. But the L1 data cache iswrite-back(as discussed in chapter 4) and can

containdirty data that need to be written to the L2 cache.

• Switching-off phase: After thecache-emptying phase, the SMT core can now be safely

switched off. Switching off a core (or putting in a low power state) may require several

cycles.

• Switching-on phase: To use the CMP cores, they need to be powered-on. Similar to the

Switching off phase, switching on the cores require severalcycles. The Switching-on

phase of CMP can be overlaped with the Switching-off phase ofSMT as shown in Fig.

6.4.

• Run Phase in CMP: Now the Region R2 starts executing in the CMPconfiguration. Since

the caches in the CMP cores are initialy empty, the CMP configuration would suffer from

cold cache misses when executing Region R2.

From the above discussion, it is clear that switching between cores involves several over-

heads. To understand the impact of the switching overhead, we first present the results when

assumingideal switching.
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6.3.1 ideal switching:

Here we assume that the the L1 cache can be emptied and the cores can be switched on or off

instantaenously. So the different overheads shown in Fig. 6.4 do not occur inideal switching.

Nevertheless when the Region R2 starts executing in the CMP configuration it would still suffer

from cold cache misses as shown in Fig. 6.4. Consider 3 regionsR1,R2 andR3. Lets assume

thatR1 andR3 are mapped to SMT configuration and letR2 be mapped to CMP configuration.

In our heterogenous multi-core mechanism, we need two switches – SMT to CMP to executeR2

and then from CMP back to SMT to executeR3. If the size ofR2 is small, the efficiency gain by

using CMP to runR2 may not be high enough to offset the overhead due tocold cache misses

that occur after each switch. In this case it may be beneficialto not switch to CMP and letR2 run

in SMT configuration. To reduce such un-beneficial switching, we use theFormLargerRegions

algorithm shown below.
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Input : List of regionsRi in the order of execution, EfficiencyED2 for each region under

SMT-TLS, CMP-TLS and SMT-noTLS configurations –Emi, Eci andEsi

respectively. Lower bound of the region size

Output : Ideal allocation for each region

forall Region Ri do
/*Find the best allocation.*/ Best Efficiency forRi = min(Emi,Eci,Esi);

Best allocation forRi = configuration corresponding to the Best Efficiency;

end

SizeNewRegion[0] = size ofR0;

foreach Region Ri do

if CurrentNewRegion->size≤ LowerBoundthen
/*Include current RegionRi into the CurrentNewRegion*/

CurrentNewRegion->size += size ofRi;

CurrentNewRegion∑= Ri;

end

else
/*CurrentNewRegion is large enough. It could contain multiple Ris*/ foreach

Region Rj , Rj ∈ CurrentNewRegiondo
totalSeq += size ofRj if Best allocation forRi is SMT-noTLS;

totalSmt += size ofRj if Best allocation forRi is SMT-TLS;

totalCmp += size ofRj if Best allocation forRi is CMP-TLS;

end

CurrentNewRegion->bestAllocation = configuration of

max(totalSeq,totalSmt,totalCmp);

CurrentNewRegion = create new region;

end

end

return the list of new regions created ;
Algorithm 1: The FormLargerRegions to get combine regions with smaller size into larger regions.
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The algorithm basically combines the smaller regions into alarger region and allocate the

best possible configuration based on the efficiency information of the smaller sub-regions. The

list of larger regions formed is feedback to the simulator. The simulator allocates the different

code regions to specific configurations as determined by theFormLargerRegionsalgorithm.

In Fig. 6.5, the efficiency of different benchmarks when assuming ideal switching under

different lower bounds are compared with the efficiency of best homogeneous configuration in

each benchmark. Also we compare the efficiency ofideal switching with predicted efficiency

calculated in Section 6.2.

Figure 6.5: Comparison ofideal switching based heterogeneous multi-core architecture with
best homogenous configuration.

The impact of fine-grained core switching is shown in bars corresponding to 100-cycle

regions. With the region size lower bound of 100 cycles, the switching is frequent leading to

cold cache misses. For benchmarkammp, the impact is less due to its large region size. But in

other benchmarks the fine-grained switching leads to poor efficiency. Ingcc and h264refwhich

have many regions with small size, the overhead leads to anED2 which is worse than that of the

best homogeneous configuration. Overall the 100-cycle region ideal switching does not gain
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any efficiency and it approximately has the same efficiency asthat of the best homogeneous

configuration.

The impact due to fine-grained switching is reduced when we use the 10,000 cycle lower

bound for region size. It performs about 10% better than the best homogeneous configuration

and comes within 4% of the predicted efficiency calculated inthe previous section.

When we further increase the lower bound for region size to 100,000 cycles, the efficiency

becomes worse. When allocating at a larger granularity, many of the smaller sub-regions within

the larger region are not allocated in the most optimal way. With increased region size of 100K

cycles, significant number of smaller sub-regions are allocated to sub-optimal configurations

leading to worser efficiency than the 10K case by about 1%. This effect is significant ingcc

while in h264ref the larger region size has a small positive effect due to reduced cold cache

misses. Overall the lower bound region size of 10K cycles is the most optimal size leading to

best efficiency.

6.3.2 Impact of switching overhead:

In the above study, we assumedideal switching and studied the impact ofcold cache misses.

Here we include all the overhead involved in switching as shown in Fig. 6.4. We assume that

the number of cycles to write back thedirty lines in the L1 data cache is equal to the number

of dirty lines in the cache. The number of cycles to switch on/off a configuration is assumed

to be 1000 cycles. Similar to theideal switching study, we feedback the best allocation for

each region to the simulator, which assigns the different code regions to different configurations
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based on the feedback information. For each benchmark, we use the region size that lead to the

best efficiency withideal switching.

Figure 6.6: Impact of switching overhead.

Fig. 6.6 compares the efficiency of the heterogeneous architecture when all overheads are

included with the efficiency underideal switching. Also the comparison with the best homoge-

neous configuration is shown. From Fig. 6.6 it is clear that the overhead due to core switching

is significant and leads to about 24% worser efficiency when compare to the efficiency with

ideal switching. Even the best homogeneous configuration out-performs the heterogeneous ar-

chitecture by 13%.

6.3.3 Reducing switching overhead:

From the discussion above, it is clear that the overhead due to thread switching is significant and

need to be reduced. One possible way of reducing overhead is to overlap some of the phases

involved in switching. The hardware can start the write-back process and the switching-on phase
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ahead in time by predicting the imminent end of the current region. Also compiler generated

warm-up instructions could be used to warm-up the cache before switching. Design of such

techniques targeted at reducing the switching overhead is beyond the scope of this thesis.

6.4 Conclusions

In this chapter we presented the SMT-CMP based hetereogeneous architecture. We showed the

potential improvement in efficiency that can be achieved by the use of such heterogeneous archi-

tecture. We showed an overall potential of about 16% when compared to the SMT configuration

and 51% potential when compared to the CMP configuration.

We classified the efficiency improvement obtained accordingto the source of the improve-

ment. For the increase in efficiency that requires fine-grained switching between cores, we

studied the impact of switching. Using anideal switching strategy we showed a potential of

about 10% when compared to the best homogeneous configuration.

Though, when we include all the switching overheads, the efficieny drops to a negative 13%

when compared to the homogeneous configuration. This shows the need to develop techniques

that can reduce the switching overhead.



Chapter 7

Increasing scalability with multi-level

speculative threads

In previous chapters we explored the efficiency of TLS architectures. As we saw in chapter 5,

the main factor that leads to inefficiency in TLS is the lack ofparallelism in the loops selected.

When parallelism is limited, not all cores are utilized leading to poor efficiency. With increasing

number of cores in future multi-core processors it is imperative to develop techniques that can

utilize all the available cores. Most TLS techniques focus on extracting speculative threads from

single loop level or a single function continuation. But to utilize all the cores available we need

to extract parallelism available at all levels of loops and functions. Consider a high-coverage

loop in benchmarkpovray,

/*csg.cpp*/

330: static int All CSG Merge Intersections (OBJECT *Object, RAY *Ray,

114
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ISTACK *Depth Stack)

...

350: for (Sib1 = ((CSG *)Object)->Children; Sib1 != NULL;

Sib1 = Sib1->Sibling) { //Loop-1

...

364: for (Sib2 = ((CSG *)Object)->Children; Sib2 != NULL &&

inside flag == true; Sib2 = Sib2->Sibling){ //Loop-2

Here, loop-1 has an average iteration count of approximately 4 while the average iteration

count of loop-2 is 2. Both these loops are possible candidates for parallelization, but if we

parallelize only at one loop level all cores in a 8-core CMP cannot be utilized. Apart from low

iteration count, loops could also suffer from large synchronization delay, large number of mis-

speculations, etc which lead to poor utilization of available cores. So to maximize performance

we need to extract TLS at multiple levels.

Extending TLS to multiple levels introduces several architecture and compiler challenges.

Compared to single-level TLS, architecture and compiler techniques to support mutli-level TLS

have not been well understood. Supporting TLS at multiple levels often requires complex hard-

ware support [43]. This chapter addresses this issue by proposing novel compiler and architec-

ture techniques that can efficiently extract parallelism atmultiple levels with minimal hardware

cost. To support multi-level TLS, any TLS system should address two key challenges: 1. main-

taining the sequential order and 2. efficient allocation/scheduling of threads to available cores.
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To ensure correctness of the application, the TLS threads need to be committed in the se-

quential program order. Unlike single-level TLS, speculative threads in multi-level TLS could

be committed in a different order than they were forked. Renau et. al [43] proposed timestamp

based architecture to support out-of-order threads. The drawback of this approach is that ev-

ery TLS thread (eg. every iteration of an inner loop) createsa new version of data and all the

speculative versions need to be maintained till the thread commits. Since the L1 data cache’s

associativity is used to maintain the different versions, too many versions cannot be maintained

leading to stalling/squashing of speculative threads. In contrast in this chapter we propose a

novel SpecMerge architecture where, when an inner level thread completes, its state is merged

with the state of the outer level thread similar to the ”closed” nested Transactional Memory

(TM) [74]. This reduces the number of versions that need to bemaintained, thus reducing the

stalling/squashing effect and it also reduces hardware complexity.

If the TLS threads from multiple levels are not efficiently scheduled it is possible that a low-

performing loop/function could consume all the available cores leading to overall degradation

of performance. Scheduling and loop allocation for nested loops have been well studied in the

context of conventional parallel loops. We use an approach similar to the OPTAL algorithm used

by Polychronopouloset. al [75] to parallelize arbitrary DOACROSS loops. The SpecOPTAL

algorithm proposed in our chapter uses the predicted performance of each level to schedule

speculative threads from nested regions to maximize the performance of the entire application.

Renauet. al [43] used Dynamic Task Merging, an ad-hoc technique where threads which

causes too many squashes are disabled at runtime. But in addition to the rate of mis-speculation
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the TLS performance is affected by other factors such as synchronization delay, iteration count

of loops and cache behavior. The SpecOPTAL algorithm proposed considers all these factors at

compile time and appropriately allocates the available cores to maximize performance. Since

the allocation is done statically, our technique greatly reduces the hardware complexity.

Using our detailed out-of-order simulator compiler framework, we show the effectiveness

of our compiler and architecture techniques to exploit TLS at multiple levels. Though in this

chapter we apply our techniques to nested loops, the same technique can be applied to extract

other types of multi-level TLS.

The rest of the chapter is organized as follows: In Section 7.1 we present a description of

related work. In section 7.2 we motivate the need for multi-level TLS by showing the limita-

tions of single-level TLS. Section 7.3 describes our compiler based loop allocation framework

and Section 7.4 describes our SpecMerge architecture. In Section 7.5 we present our evaluation

results and in Section 7.6 we conclude the chapter.

7.1 Related work

Compared to single-level TLS, the architecture/compiler design for supporting TLS at multiple

loop levels (or function levels) have not been well understood. Several papers using ideal ma-

chine models [15, 56] have shown the potential of different types of TLS. Oplingeret. al [15]

show that by exploiting TLS from inner loops, the harmonic mean performance can increase

from 1.6 to 2.6.

Renauet. al [43] proposed architecture modifications to support out-of-order TLS threads.
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In [43], all potentially parallel loops are parallelized and the architecture design relies on run-

time hardware tracking mechanisms to dynamically allocateresources. Using hardware tables,

the rate of mis-speculation for each loop is tracked and if a loop squashes more often, the

threads from the loop are merged, thus freeing the resourcesfor other potential loops. Such

runtime tracking mechanisms require complex hardware support. Also we saw that the per-

formance of the loop depends on various other factors such assynchronization delay, iteration

count and cache performance.

In our chapter the compiler statically allocates resourcesby considering all the loop char-

acteristics. Our approach of static allocation of resources is similar to the approach used in

scheduling nested loops in traditional DOACROSS/DOALL parallelism [75]. The main differ-

ence is that in our approach we have to consider the impact of speculation failure in addition to

factors like initiation interval (synchronization delay)and iteration count.

In our SpecMerge architecture the inner thread merges its state with outer-thread on comple-

tion to avoid maintaining too many versions in the cache. This approach of ”merging” of state

with outer loop is similar to ”closed-nest” Transaction memory (TM). In [74], the cache tags

are augmented with Read and Write bits for each loop nesting level to track the dependences

and a stack of log frames hold the undo logs for each nesting level. Instead of using undo logs,

we use the level-1 data cache to maintain the speculative values similar to other cache based

TLS approaches [45]. Also we use fewer bits per cache line to track dependences.
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7.2 Limitations of single-level TLS

Lets say the program contains an arbitrary loop nest (L1,L2, ... Li ... LN) whereLN is the inner

most loop. Let the coverage of the loops be (C1,C2, ... Ci ... CN) and let the estimated speedup

be (S1p,S2p, ... Sip ... SNp) usingp cores. For single-level TLS, the compiler loop selection

algorithm should select a loopLi such that it satisfies:

(1−Ci +
Ci

Si
) ≤ (1−Cj +

Cj

Sj
)∀ j = 1toN (7.1)

When we introduce multi-level TLS, say for example 2-level TLS, the objective is to find

two loopsLm andLn (sayLm is the outer loop,m< n) with allocationpm andpn such that:

(1−Cm)+
Cm−Cn+( Cn

Snpn)

(Smpm)
≤ (1−Ci +

Ci

Si
) (7.2)

Following scenarios could occur:

1. Condition in (2) is never satisfied. This indicates eitherthat the performance ofLi is hard

to beat or there are no good loops other thanLi in the loop nest.

2. Lm is outer loop ofLi. (m < i). SinceLm was not selected for single-level TLS (1), it

shows thatSmp < Sip, butSmpm > Sipm asLm was selected for 2-level TLS. This indicates

that the performance ofLm does not scale with increase in processors.

3. Lm is inner loop ofLi. (m >= i). This shows that the two inner loops have good perfor-

mance that in combination are able to beat the performance ofhigher coverageLi. This

implies poor scalability of loopLi .
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Thus the important factor that requires support of multi-level TLS (in scenario 2 and 3) is

the presence of loops that have poor TLS performance. Thoughthese loops have some speedup,

the performance is not high enough to use all the available cores efficiently.

7.2.1 Scalability in SPEC 2006:

In Chapter 3 we saw studied the performance of SPEC 2006 benchmarks using four cores. In

Fig. 7.1 we vary the number of cores and show the effect of increasing the cores for thes SPEC

2006 benchmarks.

Figure 7.1: Effect of increasing number of cores

When the number of cores is increased from two to four, the geometric mean of the speedup

increases by about 35%; when increased further to eight cores, the performance increase is 33%.

Among classA benchmarks,LBM ,SPHINX3, H264REF and LIBQUANTUM contain important

loops that have large iteration count and substantial amount of parallelism, thus the performance

of these benchmakrs is able to scale with the number of cores.In LIBQUANTUM , the super-linear

performance gain is due to cache prefetching effect betweenthe speculative threads.

Among classB benchmarks,NAMD shows good scalability andMCF benefits from cache
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prefetching effect as the number of threads increases. Unfortunately, none of the other bench-

marks are scalable:HMMER suffers from frequent synchronization;POVRAY andBZIP2 suffers

from small trip counts;ASTAR not only suffers from frequently synchronization, but alsofre-

quent squashes; ForGOBMK andSJENGthe performance improvement for TLS is negligible in

all configurations.

To summarize, with our existing single-level TLS executionmodel, only a few benchmarks

are able to scale with the number of cores; and even for the benchmarks that do scale, most of

them scale sub-linearly. While the reasons for the lack of scalability differ from benchmark to

benchmark, it is obvious that the amount of parallelism is limited.

7.2.2 Factors affecting scalability:

We show the breakdown of execution time for SPEC 2006 in Fig. 7.2 (same as shown in chapter

3, Fig. 5.2). We can see that in many benchmarks, significant portion of the execution time

of TLS is wasted due to mis-speculations and idling of cores caused by synchronization and

lack of threads. Several architecture and compiler techniques have been developed to reduce

the impact of these TLS overheads. Inspite of this, the performance of TLS has been limited.

Several program characteristics could limit the TLS performance of loops:

Data-dependence violations

Since the loops selected for single-level TLS are based on accurate performance estimation,

it will not have too many squashes. But the probability of a thread being squashed due to data-

dependence violation increases as the number of threads increase. Say, the probability of a
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Figure 7.2: Shows the breakdown of execution time while executing the selected loops normal-
ized to sequential execution time

inter-thread dependence occurring between iterationi andi-1 is Pi. The probability of a thread

getting squashed due to inter thread dependence isPi. But this thread (i) can also be squashed

if any of its predecessor threads get squashed. So the actualprobability of squash isP1.P2.P3

... Pi. Hence if the number of active threads increase, the probability of mis-speculation also

increases.

Also some loops could have inter-iteration dependence withdistance> 1. If the dependence

distance isd, the loops will not have any squash if there are at mostd-1 active threads. But the

dth thread will have a dependence with the first thread. For such loops, increasing the number

of threads increases mis-speculations with no improvementin speedup.

Control violations (Iteration count) When the loop iteration count is small, the number

of iterations yet to be executed could be smaller than the number of available cores. This leads

to idle cores or thread violations if the loop ”breaks” whileexecuting an iteration. The same

performance can be extracted by using a smaller number of cores.

Synchronization delay
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Figure 7.3: Effect of synchronization

In our TLS model inter-iteration register dependences and inter-iteration memory depen-

dences that always happen are synchronized to avoid frequent mis-speculations. Letd be the

synchronization delay andS be the average execution time of the iteration. As shown in Fig.

7.3, there are two cases on how the delayd affects the performance. In case 1,D ≤ S/p, where

p (p=4 in Fig 7.3) is the number of processors. Here, after the first set of forks, all the cores are

always busy executing the iterations till loop termination. In case 2,D > S/p, the large delay

causes some cores to be idle waiting for value from the previous iteration. In case 1, there is

minimal impact on performance due to synchronization delaybut in case 2, synchronization

limits performance. Here the same performance could be obtained by using a smaller number

of cores.

Apart from these three major bottlenecks other factors likecache performance, speculative

buffer overflow can limit the performance of single level TLS. Such loops with limited TLS

performance cannot efficiently use all the available cores.In these cases, we could compliment

these loops by simultaneously executing its inner or outer loops. Here each of these individual

loops cannot fully utilize all the cores (scenario 1), but asa combination can better utilize the
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cores and improve performance (scenario 2 and 3).

7.3 Multi-level TLS loop scheduling

One of the key challenges in supporting multi-level TLS is toallocate the available cores to the

speculative threads from different loop levels to maximizeoverall performance. In this section

we discuss in detail our compiler based loop scheduling technique.

7.3.1 Static vs Dynamic loop selection

For multi-level TLS, the loop selection process, in addition to selecting a set of loops we also

need to assign specific number of cores to each loop. Without such core allocation the loop

which executes first (outermost loop) could monopolize all the available cores and thus pre-

venting the later inner loops from forking any threads.

Renauet. al [43] proposed an architectural technique referred to asDynamic Task Merging.

Hardware counters are used to identify threads that suffer frequent squashes; and these threads

are prohibited from spawning new threads. Other than requiring complex hardware support, the

proposed approach has the following limitations. First of all, using number of squashes as a

measurement of TLS efficiency is inaccurate. As we have seen in Section 7.2, the performance

of TLS loops is also determined by synchronization, iteration count, load balancedness, and etc.

Secondly, the hardware is unable to pre-determine the TLS potential of inner loops. As long as

the outer loop does not show performance degradation, it will monopolize the cores. The inner

loops will never be attempted for parallelization even if ithas more parallelism. This will lead
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to a suboptimal allocation of cores.

On the other hand, the compiler has full knowledge of the loopnesting structure of the

program. With the knowledge of estimated performance of each loop level, the compiler can

potentially allocate the available cores to the different loop levels to extract near optimal per-

formance.

7.3.2 Predicting performance for each loop

The first step in static compiler based loop selection is to predict the performance of each loop.

In the case of a DOACROSS loop, the time required for the parallel execution can be calculated

by its initiation delayd as shown in [75]. A similar method to estimate the performance of

a TLS loop has been studied in [24, 44]. In this study, we use a simple simulator model to

measure the performance of loops usingtrain input set.

The model simulates an eight core in-order processor with rudimentary TLS support and

each instruction is assumed to take 1 cycle. The model measures the important TLS overhead

like cycles wasted in mis-speculations, cycles where the cores are idle (due to low iteration

count), synchronization overhead, etc. To reduce simulation time, only the first 500 invocations

of the loop are simulated.

For multi-level loop selection, we also need the performance of loops when smaller number

of cores were used. To avoid re-simulating the loops, the simulation model derives the various

overheads for smaller number of cores while simulating for eight-cores. For example, if the

inter-iteration dependence causing violation has dependence distance of more thanx then the
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violation would not have happened if we had used less thanx number of cores. So, the resulting

overhead due to violation will not be included in calculating the performance for using less than

x number of cores. Similarly overheads due to synchronization delay and low iteration count

are calculated for smaller number of cores. We validated theestimated performance using the

simplified model with the simulation results using our detailed simulator and found that the

simplified model accurately predicted the relative performance of the different loops in loop

nests.

7.3.3 Loop selection for single-level TLS

Let SingleSpeedupi, j represent the estimated speedup achieved by parallelizingthe looploopi

using j cores, wherej ∈ 20,21,22, ... 2K . This estimated per-loop speedup calculated is used

for both single-level and multi-level loop selection. Our single-level loop selection algorithm

is based on [24]. Let us consider a loop nest shown and its corresponding loop-tree [44] as

shown in Fig. 7.4(a).

The number of cycles spent on each loop and the estimated speedup (using 2 and 4 cores)

are shown for each loop node. The number of cycles spent on each loop is measured during the

loop-tree instrumentation phase of our compiler (Chapter 2). The loop selection algorithm has

to select a set of loops that don’t overlap each other and alsomaximizes the total performance of

the program. Candidate loop sets which do not cause loop overlap in Fig. 7.4(a) are{loop1},

{loop 2, loop 3}, {loop2, loop4, loop5}, {loop2, loop3} and{loop2, loop5, loop 5’}. Of these

possible selections{loop2, loop3} would give the maximum performance for the benchmark.
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(a) Example loop-tree

(b) Illustration of SpecOPTAL algorithm

Figure 7.4: Loop-tree based single-level and multi-level loop selection
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This set would be selected by the compiler and parallelized.

In this example, the loop 3 has speedup of only 1.35 when using4 cores and its speedup

reduces to only 1.25 when using 2 cores. This indicates that loop 3 does not efficiently use

all the 4 cores. So it is possible to allocate fewer cores to loop 3 without a large performance

penalty and use the freed cores to parallelize loop 5 or loop 1.

With multi-level TLS we have more choices on how to use the available 4 cores –{(loop

3)} – allocate all 4 cores to loop3,{(loop 3), (loop 5, loop 5’)} – allocate 2 cores to loop 3 and 2

cores to loop 5 and{(loop1),(loop3)} – allocate 2 cores to loop 1 and 2 cores to loop 3. Selecting

the optimal allocation is NP-hard and we adapt a polynomial time, dynamic-programming based

OPTAL algorithm [75] to allocate cores to maximize performance. The OPTAL algorithm [75]

was originally used for loop allocation in nested DOACROSS and DOALL loops.

7.3.4 SpecOPTAL

The algorithm uses a dynamic programming based ”bottom-up”approach to select the loops for

multi-level TLS and decide on the number of cores to allocatefor each TLS loop so that entire

benchmark with multiple nested loops achieves the best performance. Due to the ”bottom-up”

nature of the algorithm, when allocating cores to a particular TLS loop level, only its immediate

inner loops need to be considered.

The input to the algorithm is 2K the maximum number of cores available for the benchmark.

The algorithm operates on a loop tree generated during the loop-nest profiling phase of our

compiler. The loop-tree (as shown in fig. 7.4(b)) is augmented with SingleSpeedupi, j and the
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execution time coverage of the loop. The output is the list ofselected loops and the best core

allocation for each TLS loop level. LetBestSpeedup(i,j)represent the best speedup achievable

by parallelizing the multi-level TLS loop nest starting at (loopi ) usingj cores.

Combining speedup

The basic step in the algorithm is to find the speedup of an outer loop when its inner loops

are also parallelized. Lets call the function to calculate this asGetCombinedSpeedup(Li ,M,N).

GetCombinedSpeedup(Li ,M,N) returns the speedup of loopLi when we allocate M cores to par-

allelizeLi and N cores to parallelize its child loops in the loop treeLi, j . GetCombinedSpeedup(Li ,M,N)
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is shown in Algorithm 2.
Input : Outer loopLi, M cores allocated toLi, N cores allocated to the next level (Li ’s

child loops)

Output : Speedup ofLi with the specified allocation

Read Cycles(Li ) - the number of cycles spent in loopLi from the profile;

foreach Child of loop Li , Li, j do
/*Find total sequential cyclesTs for all inner loops.*/ Read Cycles(Li, j ) - the number

of cycles spent in loopLi, j when invoked fromLi from the profile;

SumBefPar += Cycles(Li, j );

/*Find total Tp for all inner loops after parallelization.*/ ParCycles(Li, j ) =

Cycles(Li, j ) ÷ BestSpeedup(Li, j ,N);

SumAfterPar += ParCycles(Li, j );

end

/*Ts of outer loop after inner loops are parallelized.*/

CyclesInnerPar = Cycles(Li ) - SumBefPar + SumAfterPar;

/*Calculate combined speedup.*/

ParCycles(Li ) = CyclesInnerPar÷ SingleSpeedupi,M ;

return (Cycles(Li ) ÷ ParCycles(Li )) ;
Algorithm 2 : TheGetCombinedSpeedup(Li ,M,N) to get the speedup of outer loopLi when

its inner loops are parallelized.

Recursive algorithm

The SpecOPTAL algorithm starts from the leaf level in the loop tree and calculates the
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speedup of parent nodes based on the child loops’ speedup. The SpecOPTAL algorithm is

shown in Algorithm 3. The exact allocation to the inner loopsis given in the vector ChildAllocate(Li ,p).

This would be used by the compiler to statically allocate cores. An example application of
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SpecOPTAL algorithm is shown in Fig. 7.4(b).

Input : LoopLi and 2K the number of cores to allocate.

Output : Estimated speedup of the entire benchmark - BestSpeedup(Lroot ,2K) and a

vector ChildAllocate(Li ,p) which indicates for each loop, how many cores need

to be allocated to its child loops.

if Li is leaf then

foreach p ∈ { 20, 21, 22, .. 2K } do
BestSpeedup(i,p)= SingleSpeedupi,p;

end

return;

end

/*Allocate child loops first.*/ foreach Li, j child of Li do
SpecOPTAL(Li, j);

end

/*Inner loop’s best allocation already known. Try all possible allocations for the outer

loop*/ foreach p∈ { 0,1,..K} do

foreach q ∈ { 0,1,..p } do
CurSpeedup(Li ,q) = GetCombinedSpeedup(Li ,2q,2p/2q); if CurSpeedup(Li ,q) ≤

MaxSpeedupthen
MaxSpeedup = CurSpeedup(Li ,q); /*Record the best allocation*/

ChildAllocate(Li ,p) = q;

end

end

BestSpeedup(i,p) = MaxSpeedup;

end

Algorithm 3 : TheSpecOPTAL algorithm.
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In the example in Fig. 7.4(b), at the first step the BestSpeedup(i,p) is calculated for loop5,

loop5’ and loop2. Loop4’s BestSpeedup is calculated based on BestSpeedup of loop5’. The

ChildAllocate for loop4 indicates that to achieve best performance for loop4, all of its allocated

cores should be allocated to its child (loop5’). ChildAllocate of loop3 shows that to achieve best

speedup using 4 cores, we need to allocate 2 cores to its children (loop5 and loop4). Finally

the ChildAllocate of loop1 shows that it should allocate allits cores to its children (loop2 and

loop3). So the best allocation of the loop nest in Fig. 7.4(b)is – loop2 can have 4 threads, loop3

can use only 2 threads and loop3’s children loop5 and loop5’ can use 2 threads.

Complexity analysis

The SpecOPTAL is called for every node in the loop tree. Letλ be the number of nodes

in the tree (including both loops and functions). In SpecOPTAL, the outer loop iterates for

K times and the inner loop iterates on the average of K/2 times. So, total number of times

GetCombinedSpeedup is called isK2/2. The loop inside GetCombinedSpeedup iterates over all

the children of the node. The average number of children per node is a constant (C1) for a tree.

Therefore, the total complexity of SpecOPTAL is O(λK2/2).

7.4 SpecMerge architecture

In the previous section we saw how the SpecOPTAL efficiently allocates the available cores

to the different loops. In this section we discuss the details our SpecMerge architecture which

supports multi-level TLS in hardware.
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7.4.1 Maintaining state of inner loops

In [43], Renauet. al proposed a multi-versioned cache based architecture design to support out-

of-order threads. Here each speculative thread is assignedan unique timestamp. The cache lines

read or written by this speculative thread will be tagged with this unique timestamp and these

cache lines are buffered in the cache till the speculative thread commits. If multiple threads

access the same data, a new version is created for each thread, creating a multi-versioned cache

[38]. In a multi-versioned cache all versions of the data aremaintained in the same cache ”set”

of the set-associative cache. Thus the number of versions that can be maintained is limited by

the associatively of the cache. For example, a 8-core processor with 4-way associative level-1

data cache can buffer 4*8= 32 unique versions.

Let us consider a 3-level nested loop:

for(i=0;i<X;i++) {// loop L1

for(j=0;j<Y;j++) {// loop L2

for(k=0;k<Z;k++) {// loop L3

...

}}}

Let us assume that all three levels are TLS-parallelized. Say the outer loop creates one

speculative thread. This outer-speculative thread (i=1) will createYspeculative threads from L2

andY*Z inner speculative threads from L3. Also the non-speculative thread (i=0) will create

(Y-1)L2 speculative threads and(Y-1)*Z + Z-1 L3 speculative threads. If all these speculative

threads access the same data in cache, we need(Y-1)*Z + Z-1 + (Y-1) + Y + Y*Z. If we assume
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Z==Y, Z (the iteration count of the inner loops) can be at most 3. If the iteration count is larger,

some threads need to be stalled and can also lead to pre-emptive squashing of later speculative

threads. Due to the large number of versions that need to be maintained, this method is useful

only when the iteration count of the inner loops are small.

Another disadvantage of multi-version cache is the increased cache access time. When a

cache-set is accessed, in addition to address tags, theTaskIdneed to be compared to access

the correct version. Also the method used in [43], requires hardware indirection tables to map

realTaskIdsto localTaskIds. This leads to increased hardware complexity and increasedcache

access time.

To counter the dis-advantages of this method, we proposeSpecMergearchitecture. Here

when the speculative thread belonging to the inner loops complete, its speculative state is

merged with the state of the outer loop iteration. So the total number of versions is limited

by the number of speculative threads executing at a time, which is equal to the number of cores.

Also since the number of versions is equal to the number of cores we can use a single-versioned

cache and avoid the drawbacks due to multi-versioned cache.

Before describing the details of the SpecMerge architecture, we first briefly discuss the

single-level TLS model used in this chapter.
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(a) Cache transitions on processor requests. (b) Cache transitions on bus requests.

Figure 7.5: Speculative dragon protocol to support single-level TLS.

Figure 7.6: Description of cache states/coherence messages

7.4.2 Single-level TLS model

In our TLS model as we saw in previous chapters, the threads are forked at the beginning of the

iteration and any inter-iteration register dependences are communicated explicitly through spe-

cial instructions as in [19]. Also the inter-iteration memory dependences that occur frequently

are synchronized [58]. After inserting synchronization instructions instruction-scheduling is

performed to increase the overlap between threads. This is in contrast with the model used in
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[43], where the fork is placed after the last inter-iteration dependence to avoid special handling

of register dependences. Though this approach [43] simplifies hardware, it sacrifices perfor-

mance that can be gained through compiler optimizations areshown in [19, 44].

In contrast to previous chapters, in this chapter we extend the dragon protocol [76], an

update-based cache coherence protocol to support TLS. Similar to [45],SLbits are used to track

speculative reads andSM bits are set to track speculative modifications. The cache transitions

are shown in Fig. 7.5. For the sake of clarity, only the transitions related to TLS are shown.

Explanation on the different cache states and messages are shown in Fig. 7.6

7.4.3 SpecMerge micro-architecture

Core allocation

(a) Core allocation (b) Thread management

Figure 7.7: Allocation of cores and thread fork

The compiler inserts loop start instruction at the beginning of each loop selected by the

SpecOPTALalgorithm. The number of cores allocated to the particular loop is passed as an

operand. Say the loop is allocatedx threads, and there are N cores available. An allocation ofx

implies that the loop can have utmost ”x” number of threads. Since we haveN cores, the cores
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are equally partitioned among the threads and each thread isallocatedN/x cores. The allocated

cores would be used exclusively by the thread and its descendant speculative threads created

from inner loops. Say an inner loop is encountered withy as the allocated number of threads,

the N/x available cores (allocated for the outer loop thread) are now partitioned so that each

inner loop thread now getsN/x*y cores. This allocation of cores continues until each thread

gets only one core. An example allocation for our triply nested loop is shown in Fig. 7.7(a).

As the loop allocation algorithm described in section 7.3, has full knowledge of the loop

structure, all the loops that have been parallelized will get their allocated share of cores. In

some cases due to recursion or difference between the profiled loop structure and the actual loop

structure, an inner loop’s request for cores may not be satisfied (all cores already allocated). In

this case, the inner loop’s request is ignored and no speculative threads are created from the

inner loop.

TaskId

Let 2k be the number of cores. Now k is the number of loop levels that can be supported (each

loop level would get 2 threads). TheTaskId in our design is represented as a distance vector

(d0,d1,.. dk), wheredi is the distance from theheadthread in the loop leveli. Theheadthread

of a loop is the earliest thread in sequential order that is currently executing. Examples: If

number of cores is 8, we could support 3 loop levels. The non-speculative thread would have

a TaskId(0,0,0) as it is the earliest thread in sequential order. A thread with TaskId (0,1,2) is

executing the earliest iteration in loop level 0 (outer mostloop), 2nd earliest iteration in level
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1 and 3rd earliest iteration in level 2. A TaskId (1,0,0) represents a thread executing the 2nd

earliest iteration in level 0 and the earliest iteration in level 1 and level 2.

Relative sequential order between the threads can be inferred by comparing their corre-

sponding distance vectors. A threadX with TaskId (x0,x1,.. xk) is earlier than the threadY

(y0,y1,.. yk), if the following condition is satisfied:

∃i ≤ k|xi < yiandxj = y j∀ j < i (7.3)

For example, the thread (0,1,2) is earlier than the thread (1,0,0) as it has a lesser distance at level

0.

Managing TaskId

TaskId for a thread is assigned during thread fork and changed only when there is a thread

commit. When a thread forks a speculative thread, the next thread’sTaskIdis calculated based

on the current thread’sTaskIdand loop level. If the current TaskId is (x1,x2,x3) and if the loop

level is 1 (second level), the next thread’s TaskId would be (x1,x2+1,x3). The next free core

allocated to the current loop level is assigned to the new thread. If no free core is available, the

speculative thread waits for theheadthread to complete. An example is shown in Fig. 7.7(b).

When a thread commits, the immediate successor thread becomes thehead thread of the

loop level and itsTaskIdchanges accordingly as shown in Fig. 7.7(b). Note that the commit in

the example is not the same as the non-speculative commit, since the outer-loop thread (1,0,0)

is still speculative. More details on commit operation willbe discussed later.
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(a) Cache transitions caused by processor requests.

(b) Cache transitions caused by bus requests.

Figure 7.8: Modifications to support Multi-level TLS.

Speculative Load

Like in [45], speculative loads are tracked usingSL bits. As shown in Fig. 7.9(a), when the

speculative thread (1,0,0) performs a load operation, theSL bit is set in the cache. When the

inner loop iteration finishes execution it causes a commit, but unlike a non-speculative commit

it does not clear the SL bit as there is still a possible dependence violation caused by a stores in

earlier threads, eg. (0,0,0). The commit of (1,0,0) only indicates that the next thread (1,1,0) is

the newheadthread.
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After the commit, a new speculative thread (1,1,0) from the inner loop (the original thread

(1,1,0) is now theheadthread with TaskId (1,0,0)) could be using the same core, as shown in

Fig. 7.9(a) When the new speculative thread executesload A, it has to record this speculative

load. If we have just oneSLbit, we would not be able to differentiate between the speculative

loads performed by thread (1,0,0) and by the thread (1,1,0).

To differentiate between the speculative loads by the innerloops from the speculative loads

of the outer loop, aLoopTagfield is introduced. TheLoopTagfield usesk bits to supportk-

nested loops. (With 8 cores we can support 3 levels which would require a 3 bit LoopTag field).

A speculative load from a particular loop level, would set the corresponding bit in theLoopTag

as shown in fig. 7.9(a).

Fig. 7.8 shows all the cache state transitions due to speculative reads and speculative writes.

For the sake of clarity, only the transitions related to multi-level TLS are shown. Double-circled

state in Fig. 7.8 indicates that the cache line contains outer-thread’s information (LoopTagin-

dicate the loop level) and a triple-circled state indicatesthat the cache line contains both inner-

thread and outer-thread’s information.

Dependence checking

Dependence checking is done similar to [45] as shown in Fig. 7.8 and in Fig. 7.5. The relative

order between between threads is determined by checking their distance vectors as shown be-

fore. In addition toTaskIdstheLoopTagneeds to be considered. Consider the example shown

in Fig. 7.9(b). Store in thread (1,0,0) in core-1 causes a check of dependence in core-0. Core-0
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(a) Speculative load.

(b) Dependence checking.

has a cache line containing addressA and itsTaskIdis (1,1,0) which makes it more speculative

than the thread (1,0,0). But since theLoopTag(100) indicates that this line was read by an outer

thread, no mis-speculation is caused.

Speculative Store

As in [45], SM bits are used to track speculative stores. As shown in Fig. 7.9(c), when thread

(1,0,0) executes a store, the speculative value is bufferedin the data cache, theSM bit is set

and also theLoopTagis set. Let us consider the case when, after thread (1,0,0) commits and

the next speculative (1,1,0) executing in the same core (core-0) executes a store to the same
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locationA. This new value needs to be buffered, but the cache already contains a version ofA.

One option is to create a new version and tag the new version with TaskId. But this creates a

multi-version cache and additional hardware cost (more bits to recordTaskId). To avoid this

we need toreplacethe old version ofA belonging to thread (1,0,0). But this version ofA is a

speculative value and cannot bewritten-backto L2 cache.

From the Fig. 7.9(c), we see that when thread (1,0,0) commitsin core0, the thread (1,1,0)

in core1 becomes theheadthread and itsTaskIdbecomes (1,0,0). Since, core-1 holds the state

for thread (1,0,0), we can transfer (Overflow) the version ofA belonging to thread (1,0,0) from

core-0 to core-1. This ensures that the speculative value ofA from the thread (1,0,0) is buffered.

Since suchOverflowoperations occur only duringstoreoperation, the additional delay caused

can be easily tolerated using a write-buffer.

Lets consider a scenario when the thread (1,1,0) stores to the same locationA that was

speculatively read by thread (1,0,0) as shown in fig. 7.9(d).Let us assume that we use the same

cache line to record this new value along with theSL bit set by (1,0,0). If the thread (1,1,0)

mis-speculates, all its speculative cache lines would be invalidated. If we invalidate the cache

line holdingA, we would lose theSLbit set by (1,0,0). To avoid this we transfer (Overflow) the

cache line (along withSLbits) to core-1 which holds the current state of (1,0,0). AfterOverflow

theLoopTagis cleared and the line would be used exclusively by the thread (1,1,0).
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(c) Scenario-1.

(d) Scenario-2.

Figure 7.9: Speculative store handling

Commit:

In single-level TLS architectures, when a thread commits, the immediate next thread in made

the non-speculative thread and all its speculative state inthe cache is committed. In multi-level

the state of the next thread could be spread on multiple caches. For example consider Fig. 7.10.

The head thread (1,0,0) shifts between core-2 and core-3, consequently the state of the thread

(1,0,0) is spread on cache-2 and cache-3. In the example, cache lines A,C and B belong to

(1,0,0).So when the thread (0,0,0) finishes execution at theouter most loop, instead of sending
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Figure 7.10: Commit operation

the COMMIT token (”home-free” token in [45]) to one particular successor core, the token

is sent to all cores containing state of (1,0,0). This is accomplished by aprefix-compareof

the destinationTaskId (1,0,0) – the threads (1,0,0) and (1,1,0) both have same prefix (1,0,0)

corresponding to the outer-most loop. Both core-2 and core-3 would receive the COMMIT

token from (0,0,0) and commit the state corresponding to (1,0,0).

Non-speculative commit occurs when the non-speculative thread finishes and sends the

COMMIT token to its successors (Example shown in Fig. 7.10).The non-speculative com-

mit operation is similar to [45], where on receiving the token all the speculative bits (SL,

SM, LoopTag) are cleared. In Fig. 7.10 theSL bits andLoopTagof A, C and B are cleared

(conditional-gangclear). Another type of commit operation calledSpeculative Merge, occurs

when thehead thread of a loop finishes (eg. (1,0,0)) and the next thread becomeshead(eg.

(1,1,0)). Now the state of the newhead thread is merged with the outer-loop’s thread. For

example in Fig. 7.10, theLoopTagof B which was originally (010) is changed to (100) since it

now belongs the outer-loop thread (1,0,0). This operation involves conditionallygang-clearing
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Table 7.1: Architectural parameters.
Parameter
Fetch/Decode/Issue/Retire Width6/6/4/4
Integer units 6 units / 1 cycle latency
Floating point units 4 units / 12 cycle latency
Memory ports 2Read, 1Write ports
Register Update Unit 128 entries
(ROB,issue queue)
LSQ size 64 entries
L1I Cache 64K, 4 way 32B
L1D Cache 64K, 4 way 32B

Cache Latency L1 1 cycle, L2 18 cycles
Memory latency 150 cycles for 1st chunk, 18 cycles subsequent chunks
Unified L2 2MB, 8 way associative, 64B blocksize
Physical registers per thread 128 Integer, 128 Floating point and 64 predicate registers
Thread overhead 5 cycles fork, 5 cycles commit and 1 cycle inter-thread communication

andgang-settingof LoopTagbits.

Hardware cost:

When compared to [43], the hardware cost of the SpecMerge scheme is minimal. Apart from

the per cache lineLoopTagbits (3 bits for 8 core CMP) no other additional hardware is needed

when compared to single-level TLS. Other requirements likeconditional gang-clear, gang-

set,etc are already part of single-level TLS. Only significant cost in our scheme is the additional

complexity in the cache controller logic (due to additionalcache state transitions).

7.5 Evaluation

In this chapter we use our experimental framework detailed in chapter 2. The exact processor

configuration used is shown in Table 7.1.
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7.5.1 Results

We applied our allocation algorithm to extract speculativethreads for all benchmarks, but many

benchmarks did not show any potential for multi-level TLS due to the following reasons:BZIP2,

GOBMK and SJENG are omitted due to the lack of TLS parallelism overall;LIBQUANTUM

andHUMMER are omitted due to the lack of nested parallelizable loops;LBM , NAMD , MILC ,

SPHINX3, H264REF andMCF are omitted due to the fact that the Speculative-OPTAL algorithm

is unable to identify multiple levels of loops that can perform better than the single level TLS.

For benchmarksPOVRAY andASTAR the multi-level TLS showed good potential. We also

added results for MediaBench-2 benchmark to demonstrate the effectiveness of our multi-level

TLS methodology.

7.5.2 Benchmarks

povray

POV-ray (SPEC 2006 - floating point) is a ray-tracing technique that calculates an image of a

scene by simulating the way light rays travel in the real world. The benchmark iterates over

all the pixels in the screen and sends out fixed number of rays for each pixel. When the rays

intersect the different objects in the scene the color of theobject is calculated. Apart from the

outer loops that iterate over the pixels, all the major loopshave very low iteration count. The

median iteration count of the top 60 high coverage loops is6. The loops iterate over a fixed

number of textures, number of entries in a light tree, numberof intersections, etc and in each

case the iteration count is very low. Due to this, the benchmark has only limited potential for
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single-level TLS. With multi-level TLS it is possible to simultaneously parallelize some of these

low iteration count loops to better utilize the available cores.

jpegdec

JPEG 2000 (MediaBench-21 ) is a wavelet-based image compression standard. After initial

color transformation, the image is split intotiles. All further operations are performed at the

granularity oftiles and the loops that iterate over the different components in atile have very

low iteration count. The median iteration count of the top 60loops in jpegdec is8. Similar low

iteration count loops are common in many media and network applications that operate on fixed

frame or fixed packet of data. In these cases single-level TLSwould not be sufficient to extract

all the available parallelism. With multi-level TLS some ofthese loops can be parallelized

together to extract performance.

astar

Astar (SPEC 2006 - integer) is derived from a portable 2D path-finding library used in game

AI. The library implements three different path finding algorithms. Unlike the other two bench-

marks, in astar the median iteration count of the top 60 loopsis around186. But the loops

are have large number of inter-thread data dependences thatcause frequent mis-speculations.

For some of the loops, frequent dependences are synchronized leading to large synchroniza-

tion delay. Such frequent squash/synchronization behavior is common in many SPEC integer

benchmarks, which limits their single level TLS performance. With multi-level TLS, we could

1 http://euler.slu.edu/ fritts/mediabench/
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reduce the cores allocated to these low performing loops andreallocate them to their inner or

outer loops. With this combined parallelism it is possible to limit the wastage of resources due

to mis-speculations and synchronization.

7.5.3 Results

Fig. 7.11(a) shows the speedup of both single-level and multi-level TLS over the sequential ex-

ecution. The single-level TLS has a geometric mean performance of 45% when compared

to sequential execution while multi-level TLS has a geometric mean performance of 57%.

Fig. 7.11(b) shows the normalized execution time breakdownof the three different architec-

tures (sequential, single-level TLS and multi-level TLS).

Discussion:

As shown in Fig. 7.11(b), in the benchmarkpovrayas significant portion of execution time is

spent in idling due to lack of threads. Single-level TLS selects the loop in filecsg.cppat line 248

that has a coverage of 60% of the entire benchmark’s execution time (code snippets for this loop

were shown in the introduction). The average number of iterations per invocation of the loop

is less than 4. This low iteration count leads to ”idling” of cores and a limited speedup of only

9%. The loop inline 248has an inner loop atline 258whose average count is approximately

2. When this loop is also parallelized using multi-level TLS, the performance increases to 13%.

As we can see, each loop atline 248andline 258cannot by themselves utilize all the available

cores, but together they can lead to better performance. Thelimited improvement (4%) in
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(a) Speedup

(b) Execution time breakdown

Figure 7.11: Comparing between single-level TLS and multi-level TLS

performance is because, the inner loop forms only 16% of the execution of the outer loop and

has a very low iteration count.

For benchmarkjpegdecwe see a large portion of execution time is wasted due to lack of

threads (Fig. 7.11(b)). As we discussed,jpegdec’ssuffer from low iteration count. For example

the single-level TLS selects the loop in filepnm enc.c, line 345:

344: for (y = 0; y < hdr->height; ++y) {

345: for (cmptno = 0; cmptno < numcmpts; ++cmptno) { //Selected by single-level TLS

The average iteration count of this loop is only 3 (indicating three color components RGB),



151

leading to idle cores. The outer loop inline 344suffers from large synchronization delay (inter-

thread dependences) and also stalling due to speculative buffer overflow since the iteration size

is large (about 1 Million instructions per iteration). Due to its limited performance, it was not

selected for single-level TLS. With smaller number of cores, the impact due to synchronization

delay can be reduced and with multi-level TLS the state of theouter loop is buffered on multiple

cores (similar to example shown in Fig. 7.10) leading to reduced speculative buffer overflow

effect. With mutli-level TLS, when both the loops inline 344andline 345are parallelized, we

achieve a 43% increase in speedup.

In benchmarkastar the loop selected for single-level TLS is in fileWay2.cppat line 100.

As we seen in Fig. 7.11(b), the single-level TLS suffers fromlarge synchronization delay and

frequent squashes. Due to the limited performance of loop atline 100, the cores are not ef-

fectively used. With multi-level TLS, an inner loop atline 65 is selected, which by itself has

limited potential due to low iteration count (approx. 3). The combined performance of loops in

line 100andline 65 leads to an additional overall performance of 2% compared tosingle-level

TLS. The low performance increase is because the inner loop also does not efficiently utilize

the available cores as it also suffers frequent squashes.

Impact on bus traffic:

According to our discussion in Section 7.4 the multi-level TLS could potentially cause an in-

crease the amount of traffic in the common bus between cores inthe CMP. The multi-level TLS



152

Figure 7.12: Increase in traffic in multi-level TLS

causesOverflowmessages which where not present in single-level TLS. Also there can poten-

tially be more sharing of data between threads in inner loopsthan in outer loops which can also

lead to more traffic. On the other hand, if the single-level ormulti-level causes more squashes

it can also induce more traffic in the bus due to re-executionsof the same thread.

Fig. 7.12 shows the percentage increase in the traffic of multi-level TLS when compared to

single-level TLS. For benchmarkpovraythere is almost no change in the amount of traffic. Here

the average iteration count of the inner loop is 2 and the inner loop is only 16% of the outer-

loop execution time. Due to this there is no significant increase in sharing of data between cores

and consequently no increase in bus traffic. Similarly the benchmarkjpegdecshows only 5%

increase in traffic due to its small inner loop. In benchmarkastar the single-level TLS suffers

frequent squashes at the outer loop. Due to the frequent re-execution of the larger outer loop

iteration, it causes more traffic than the multi-level TLS.

Impact of OverflowmessagesAs described in Section 7.4, theOverflowmessages occur

in multi-level TLS which do not appear in single-level TLS. Fig. 7.12 shows the percentage

of traffic increase in multi-level TLS that is due to theOverflowmessages. As we discussed
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above, there is no significant increase in sharing of data between threads which also leads to

fewerOverflowmessages.

Summary:

Our results clearly show that due to various benchmark characteristics - low iteration count

(povray,jpegdec), synchronization delay (astar, jpegdec), mis-speculations (astar), the perfor-

mance of single-level TLS can be limited. With multi-level TLS, more threads could be ex-

tracted from other loops (both inner and outer) leading to additional performance. Also we

show that theSpecMergearchitecture is efficient and does not lead to significant increase in bus

traffic.

7.6 Conclusions

With increasing number of cores available, it is important to expose parallelism at multiple

granularity to fully utilize all the available cores. To exploit speculative parallelism at multiple

levels, two key challenges need to be addressed - resource allocation among threads and enforc-

ing sequential commit order. Existing techniques use complex hardware monitoring to allocate

cores and complex multi-versioned cache to implement mutli-level speculative threads.

In this chapter we proposedSpecOPTAL, a novel compiler based static resource allocation

scheme which allocates cores statically without need for complex hardware based monitoring

schemes. Also we proposeSpecMergearchitecture which uses single versioned cache to sup-

port multi-level speculative threads. We show that our scheme can achieve a geometric mean
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speedup of 15% over the single-level scheme on selected benchmarks. The SpecMerge scheme

could potentially cause increase in bus traffic due to additional cache transitions that were not

applicable for the single-level scheme. Our results show that the increase in traffic is only

minimal showing the effectiveness of our scheme.
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Conclusion and Future Work

With the current trend towards multi-core/multi-threadedprocessors it is important to extract

parallelism in applications to utilize these architectures to improve performance of programs.

Thread Level Speculation (TLS) has been used to extract parallelism in applications that are

harder to extract using traditional compiler techniques due to ambiguous dependences. With

the different kinds of multi-threaded or multi-core designchoices it is important to understand

the relative advantages of different architectures and develop techniques that can efficiently

extract speculative parallelism.

In this thesis, we showed the performance potential for TLS in SPEC 2006 benchmarks to

be about 60% compared to only 26% in SPEC 2000 benchmarks. By comparing the dependence

behavior and performance characteristics of the more recent SPEC 2006 with the older SPEC

2000 benchmarks, we show a clear trend towards more parallelbenchmarks which can benefit

from speculation support. Given this trend, it is importantto support efficient TLS architectures

155
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in future multi-core/multithreaded processors.

We propose a novel cache-based architecture to support TLS in SMT processors. Unlike the

previous approaches that use the Load-Store Queues (LSQ) which are fully-associative struc-

tures based approaches, we utilize the cache to support TLS.We show that for selected bench-

marks that have larger threads, our cache based TLS approachcan outperform the existing

techniques by 19%.

We perform a detailed comparison of our SMT based TLS approach with the existing CMP

based approach in terms of performance, power consumption,energy effciency and thermal

behavior. We show that the efficiency of TLS in each of these benchmarks depend on the

characteristics of each benchmark. For programs that have limited potential for TLS, SMT

based TLS is more efficient. While for the more parallel benchmarks, the CMP based TLS is

shown to be more efficient.

To extract the TLS available in the most efficient way, we propose a SMT-CMP based

heterogeneousmulti-core architecture. We show that potential this approach is about 16% when

compared to the best homogeneous configuration. We study theimpact of different overheads

on energy efficiency and suggest potential ways to reduce these overheads.

One important challenge in future multi-core/multi-threaded architectures is to fully utilize

all the available cores/threads. We propose compiler and architecture techniques that can exploit

TLS parallelism at multiple levels. When compared to other previous approaches that rely on

complex hardware structures, we used compiler to allocate cores. We show that for selected

benchmarks, our technique can achieve a speedup of over single-level TLS.
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8.1 Future Work

The research presented in this thesis can be extended as follows:

• In this thesis, we showed the potential for improving efficiency by utilizing aheteroge-

neousmulti-core architecture. Realizing the potential inheterogeneousmulti-core archi-

tecture would involve developing techniques the overhead involved in switching between

configurations. Also techniques need to be developed to predict the performance and

performance of different loop regions at runtime.

• Eventhough we concentrated on TLS workloads, some of the techniques proposed can be

utilized for non-speculative parallel workloads.

• In this thesis, we concentrated on improve the efficiency of the execution of a single

benchmark. When we consider a multi-programmed environment each of the simultane-

ously executing benchmarks could have TLS threads. In such ascenario it is important

to develop techniques that can efficiently share the available cores/threads in the proces-

sor among all the specualtive threads from different applications to improve the overall

efficiency of the entire workload currently executing.
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[62] Pedro Marcuello and Antonio González. Exploiting speculative thread-level parallelism

on a smt processor. InHPCN Europe ’99: Proceedings of the 7th International Conference

on High-Performance Computing and Networking, pages 754–763, London, UK, 1999.

Springer-Verlag.

[63] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. The

STAMPede Approach to Thread-Level Speculation.ACM Trans. on Computer System,

23, Aug 2005.

[64] Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry.

Hardware Support for Large Speculative Threads. In33rd Annual International Sympo-

sium on Computer Architecture (ISCA ’06), Jun 2006.

[65] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Maximizing On-Chip Parallelism. In22nd

Annual International Symposium on Computer Architecture (ISCA ’95), June 1995.



168

[66] Jose F. Martnez, Jose Renau, Michael C. Huang, Milos Prvulovic, and Josep Torrellass.

Cherry: checkpointed early resource recycling in out-of-order microprocessors. Istanbul,

Turkey, 2002.

[67] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers. InISCA, pages 364–373, 1990.

[68] V. Packirisamy, S. Wang, A.Zhai, W-C Hsu, and P-C Yew. Supporting speculative multi-

threading on simultaneous multithreaded processors. In12th International Conference on

High Performance Computing HiPC’2006, Bengaluru. India, December 2006.

[69] Fredrik Warg and Per Stenström. Dual-thread speculation: Two threads in the machine

are worth eight in the bush. InSBAC-PAD ’06: Proceedings of the 18th International

Symposium on Computer Architecture and High Performance Computing, pages 91–98,

2006.

[70] J.Donald and M.Martonosi. Temperature-aware design issues for smt and cmp architec-

tures. InFifth Workshop on Complexity-Effective Design (WCED) in conjunction with

ISCA-31, June 2004.

[71] Yingmin Li, Lee B., David Brooks, Zhigang Hu, and Kevin Skadron. Cmp design space

exploration subject to physical constraints. In12th International Symposium on High-

Performance Computer Architecture (HPCA-12), 2006.



169

[72] Matteo Monchiero, Ramon Canal, and Antonio González.Design space exploration for
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