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Abstract

Thread-Level Speculation (TLS) allows potentially dependent threads to execute

in parallel, by postponing the detection and verification of inter-thread data depen-

dences until runtime. Although TLS greatly simplifies automatic parallelization,

only moderate performance improvements have been achieved for general-purpose

applications. Thus adequate compiler techniques must be developed to fully uti-

lize the underlying TLS support. In this thesis, we address the key compiler issues

involved in the speculative parallelization and propose several optimization tech-

niques to improve the performance of general-purpose applications under TLS.

One important task of a TLS compiler is to identify speculative threads with

good performance potentials. We propose a loop selection algorithm that deter-

mines which loops to parallelize to maximize the program performance. For appli-

cations with limited loop-level parallelism, a partitioning algorithm is proposed to

extract threads from sequential codes.

To further enhance the performance of parallel threads, we propose three com-

piler optimizations: instruction scheduling, reduction transformation and iteration
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merging. Instruction scheduling improves the efficiency of synchronizing frequently

occurring memory dependences; reduction transformation reduces the impact of a

class of reduction variables whose intermediate results are used by non-reduction

operations; iteration merging improves the load balancing by dynamically combin-

ing loop iterations to achieve more balanced workloads.

All the proposed techniques are implemented in a TLS compiler framework

built on the Intel’s Open Research Compiler (ORC). We achieve an average pro-

gram speedup of 1.38 for the SPEC2000 benchmarks. Our experimental results

show that, in the context of TLS, adequate compiler support is crucial in deliver-

ing the desirable performance for general-purpose applications, and our proposed

techniques are effective in exploiting speculative parallelism.
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Chapter 1

Introduction

Due to the increasing difficulty of improving microprocessor’s performance by ex-

ploiting Instruction-Level Parallelism (ILP) within a single thread of execution,

microprocessors that support multiple threads of execution are becoming increas-

ingly common [34, 37, 32, 31, 4, 24, 30]. By allowing multiple threads to run in par-

allel, such multithreaded processors are effective in exploiting more coarse-grained

Thread-Level Parallelism (TLP). One attractive method for sequential programs

to benefit from the increasing computing resources provided by multithreaded pro-

cessors is to partition them into multiple threads of execution. However, the par-

allelization of sequential programs, either manually by a programmer or automati-

cally by a compiler, is difficult because of pointer aliasing, irregular array accesses,

and complex control flow. Thread-Level Speculation (TLS) facilitates the paral-

lelization of sequential programs [36, 2, 22, 13, 19, 57, 25, 26, 39, 44, 47, 59, 62, 14]
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by allowing potentially dependent threads to execute in parallel, while the sequen-

tial semantics of the original programs are preserved through runtime checking.

Although TLS greatly simplifies the automatic parallelization process and has

shown good performance potential [60, 47], only moderate performance improve-

ments have been achieved for general-purpose applications [18, 70, 42]. Thus ad-

equate compiler techniques must be developed to fully utilize the underlying TLS

support. This calls for a deep understanding of performance bottlenecks and a

study of compiler techniques to fully explore the optimization opportunities ex-

posed by TLS.

This dissertation addresses several important compilation issues when sequen-

tial programs are speculatively parallelized for TLS. It investigates the compiler

techniques that can identify and extract speculative threads with good perfor-

mance potentials, and the optimization techniques that can further enhance the

performance of speculative threads. With these techniques, speculative parallelism

can be effectively identified and extracted from those challenging general-purpose

applications.

1.1 Related Work

Over the last decade, TLS has become an active research area, where numerous

schemes have been proposed for exploiting such speculative parallelism in sequen-

tial programs.
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Multiscalar processor [57] was the pioneer work that introduced the idea of

TLS and provided complete hardware mechanism called Address Resolution Buffer

(ARB) [21] for dynamically enforcing memory dependences.

TLS was then popularized and has been extensively studied on both Chip

Multiprocessor (CMP) [23, 26, 60, 38, 44, 62, 59, 14, 12] and Simultaneous Multi-

threaded Processor (SMT) [2, 49, 48]. Most of these follow-up studies, especially

those on CMP processors, rely on the extended shared memory cache coherence

schemes to support memory dependence speculation. Such cache-based schemes

typically show better scalability compared to the centralized ARB, and are more

appropriate for exploiting parallelism in larger threads.

Transactional memory [28, 53, 27, 5, 54, 45] follows the similar idea of specu-

lative execution to optimistically execute parallel programs without explicitly in-

serted synchronizations. A transaction is an atomic unit of execution. It commits

if it finishes without a data conflict. Otherwise, it aborts and re-executes.

Along with these hardware innovations in supporting efficient TLS, there are

several research work done on compiler support for TLS [65, 6, 69, 70, 18, 33, 52,

42].

Multiscalar processor relies on the compiler to partition an entire sequential

program into multiple tasks (threads), each of which corresponds to a sequence of

continuous basic blocks in the Control Flow Graph (CFG) [1]. In order to maximize

the performance of resulting threads, the partitioning algorithm [65] implemented

3



in the compiler uses a variety of heuristics based on the information such as data

dependence, thread predictability, load imbalance, and so on.

This thread extraction method was later improved by Johnson et al. [33] who

modeled thread partitioning as a min-cut problem. By applying a sequence of

balanced min-cuts to the CFG annotated with weights, the improved method con-

siders all performance-related factors simultaneously and generates threads with a

better performance.

Also in the multiscalar compiler [65], several compiler-aided performance en-

hancement techniques were proposed. Among them, instruction scheduling for

improving inter-thread register value communication was one important technique

that inspired several other investigations including this thesis work.

The compiler work presented by Bhowmik et al. [6] extensively uses data and

control dependence profiling during task selection. It supports flexible thread

spawning policy such as out-of-order spawning, a feature that is later demonstrated

to be very expensive to implement in the hardware [55].

Mitosis compiler [52] extracts threads with an emphasis on thread predictability

by exploring control independence in the program. In order to deal with inefficiency

caused by inter-thread data dependences, the compiler generates pre-computation

slices that are executed ahead of speculative threads to speculatively compute

live-in values.

Du et al. [18] present a cost-driven compilation framework to select loops for

4



speculative parallelization. They build a cost graph from the control flow and

data dependence graphs to estimate the mis-speculation cost. The estimated mis-

speculation cost, along with a set of other criteria such as the size of iteration and

the number of iterations, are used to determine which loops in a program should

be speculatively parallelized.

POSH compiler [42] is designed to exploit parallelism from both loops and pro-

cedures. A large set of loops and procedures are first selected by the compiler.

A performance profiler is then invoked to execute the program. The performance

information collected by the profiler is feed back to the compiler such that any ini-

tially selected parallel threads with poor performance will be discarded. Although

some hard-to-predict runtime behaviors such as cache performance can now be

estimated by the performance profiler, it also introduces significant overheads to

thread extraction.

Zhai et al. [69, 70] showed the importance of improving inter-thread value com-

munication. In their study, they found that for frequently occurring inter-thread

data dependences, synchronizations have to be used in order to avoid excessive

speculation failures. However, synchronization may cause significant stalls in the

consumer thread for the dependent data to become available. To address this prob-

lem, instruction scheduling algorithm based on data-flow analysis was proposed to

reduce the length of critical forwarding path introduced by synchronizing accesses

to scalar variables.

5



Finally, automatic parallelization techniques have been extensively studied for

over 20 years [68, 35, 29, 7, 61]. The main limitation of these traditional com-

pilation techniques is that the compiler has always to be conservative in order

to generate the correct code that works in all cases. That is, a compiler has to

synchronize all possible inter-thread dependences, even though some of them do

not or rarely exist. Speculation allows a compiler to make optimistic assump-

tions about the ambiguous information that cannot be statically determined. By

speculating on those infrequently occurring data dependences, a TLS compiler can

exploit more parallelism beyond the dependence limitation imposed on the tradi-

tional compilers. Consequently, the amount of parallelism that can be extracted

is no longer limited by the worst-case assumption.

1.2 Background on TLS

In TLS, the compiler partitions a program into speculative threads without having

to prove that they are independent, while at runtime the underlying speculation

mechanism checks whether inter-thread data dependences are preserved and re-

executes any thread that violates the dependence constraint. By speculating on

ambiguous dependences between threads, this TLS execution model allows the

parallelization of programs that were previously non-parallelizable.

Unlike traditional non-speculative parallelization, the threads running under

TLS have to follow the sequential order imposed by the original program seman-
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tics. During execution, the earliest thread in the program order is treated as

non-speculative while the others are speculative.

Although a variety of TLS implementations exist, a typical speculative multi-

threaded processor includes the following components:

(1) Speculative buffering Since a speculative thread may be squashed due to

possible data dependence violations, all the data stored by a speculative thread

are unsafe and need to be buffered before they are allowed to be committed to the

safe storage.

(2) Violation detection In order to detect data dependence violation at runtime,

all exposed loads from a speculative thread need to be tracked by predecessor

threads. A violation is detected when a predecessor thread stores to a variable

whose value has already been loaded by a following speculative thread.

(3) Recovery support After a mis-speculation is detected, the violating thread

has to be squashed and re-executed, that is, all speculatively modified data are

invalidated and the thread restarts execution from its beginning. All successors

of the violating thread are squashed and re-executed as well, since they may also

have inconsistent states.

(4) Data commit A speculative thread is allowed to commit its modified data

to the safe storage only after the point at which all its speculatively loaded value

are verified to be correct and all its predecessor threads have committed their

data. Such in-order commit is necessary for maintaining the sequential program

7



semantics.

1.3 Dissertation Contributions

TLS makes it possible to parallelize hard-to-parallelize sequential programs, thus

exposing new opportunities to the parallelizing compiler. In this dissertation, we

identify the key issues involved when TLS support is available in parallelizing

general-purpose applications and propose several compiler techniques to exploit

the potential of TLS. To make the investigation concrete, the proposed compiler

techniques are implemented on the Intel’s Open Research Compiler (ORC) [20],

and their impacts are evaluated using the SPEC2000 benchmark suite.

In the area of compiler support for TLS, this dissertation makes the following

contributions:

1. We propose a loop selection algorithm that determines which loops to paral-

lelize in a program that contains a larger number of nested loops. Based on a

complete set of information to estimate expected performance, this selection

algorithm can identify a set of loops with good performance potentials, and

the parallelization of those selected loops could maximize the overall program

performance.

2. We propose a program partitioning algorithm to extract non-loop threads

from sequential codes. For general-purpose applications, extracting loop

8



threads may not achieve adequate amount of parallelism due to complex

control flow and hard-to-optimize data dependences. It is desirable to search

for parallelism beyond loop threads. This partitioning algorithm allows us

to exploit parallelism from those applications that have limited loop-level

parallelism.

3. We extend the instruction scheduling algorithm proposed by Zhai et al. [69]

to improve the efficiency of synchronizing frequently occurring memory de-

pendences. Both intra-thread data and control speculation are used to en-

able more aggressive instruction scheduling. The scheduling algorithm is

further enhanced by generating intra-thread recovery code to reduce the

mis-speculation cost. Our experiments show that instruction scheduling is

effective in reducing the length of critical forwarding path introduced by

the synchronization of memory dependences, and the parallel performance is

greatly improved for most of benchmark programs.

4. We propose an aggressive reduction transformation algorithm to reduce the

length of critical forwarding path caused by a class of reduction variables.

Such variables are defined in the loop body through reduction operations, but

there also exist uses of their intermediate results, thus it is impossible to apply

traditional reduction optimization [35] to eliminate the inter-thread data

dependences caused by those variables. Through aggressive transformation,

our proposed algorithm is effective in reducing the impact of such reduction

9



variables and greatly improves speedup for the loops whose performances are

limited by those reduction variables.

5. We propose a loop transformation technique called iteration merging to im-

prove the load balancing for speculative threads. Workload imbalance could

cause significant performance degradation in TLS, since a speculative thread

cannot commit until all its predecessors finish, even if its execution has com-

pleted a long time back. The proposed technique solves the load imbalance

problem by dynamically combining multiple short loop iterations with a long

one to achieve more balanced workloads during parallel execution.

The rest of dissertation is organized as follows. In Chapter 2, we describe our

TLS compilation framework. Chapter 3 and Chapter 4 discuss the loop selection

algorithm and the non-loop partitioning algorithm respectively. Chapter 5 de-

scribes three thread optimization techniques. Chapter 6 presents the performance

evaluation. The conclusions and possible future work are presented in Chapter 7.
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Chapter 2

TLS Compilation Framework

In this chapter, we present the compiler framework that we have derived for paral-

lelizing general-purpose applications under TLS. This framework is built on Intel’s

ORC compiler. Using the ORC compiler allows us to take advantage of the state-of-

the-art compilation technology to generate high-quality multithreaded code. Most

passes in our framework are implemented in the Code Generation (CG) phase,

the last phase in the ORC compiler, to avoid the interference with other existing

optimizations.

Figure 2.1 shows the overall structure of the framework. It is composed of

three major parts: Thread Extraction, Thread Optimization, and Profiling Sup-

port. The thread extraction phase is responsible for identifying potential sources

of parallelism in sequential programs and breaking them into multiple threads.

The resulting threads are then optimized in the thread optimization phase to en-

11
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Figure 2.1: A TLS compiler framework.

hance the parallel performance. Both the thread extraction phase and the thread

optimization phase rely on the profiling support to gather information that is hard

to obtain from the static compiler analysis, such as data dependence probability.

2.1 Thread Extraction

One of the most important tasks of a TLS compiler is thread extraction, that

is, to identify potential sources of speculative parallelism in programs and break

them into multiple threads. The parallel performance is largely determined by how

threads are extracted. For instance, extracting threads that have too many inter-

thread data dependences may lead to significant performance degradation due to

12



(a) Loop threads. (b) Non-loop threads.

Figure 2.2: Examples of loop threads and non-loop threads.

frequent inter-thread data communication.

Loops are the traditional targets for creating threads where each loop iteration

is executed as a separate thread. We call such loop iteration-based threads loop

threads. Figure 2.2(a) shows the CFG of a typical loop and the corresponding

loop threads. A fork instruction is inserted at the beginning of the loop thread.

When it executes, a new thread is spawned for the next loop iteration. A commit

instruction is inserted at the end of the loop thread. Note that, since a speculative

thread is not allowed to commit its modified data, the execution of a commit

instruction by a speculative thread will stall the current thread until it becomes

non-speculative.

Loop threads works well for those scientific applications where loops with sim-
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ple control flow and regular data access have significant coverage. However, in

general-purpose applications, the loops often have complex control flow and hard-

to-optimize data dependences, so that extracting loop threads from those appli-

cations alone may not deliver sufficient amount of parallelism. To further exploit

parallelism beyond loops, we examine the remaining parts of the program to iden-

tify good code portions that can be further partitioned into threads. Since those

threads are not created from loop iterations, we call them non-loop threads. Fig-

ure 2.2(b) shows the CFG for a piece of sequential code that contains a loop

followed by a procedure call foo(). Assume that parallelizing the loop does not

achieves good performance. An alternative choice for parallelizing this piece of

code is to partition it into two threads, one contains the loop and the other one

contains the procedure call, as shown in Figure 2.2(b). If these two threads are

highly independent, good performance can be achieved by running them in parallel.

Consequently, our thread extraction phase is divided into two parts: Loop Se-

lection and Non-loop Partitioning. As shown in Figure 2.1, loop selection is invoked

first to identify loops with good performance potential and decompose them into

loop threads. Non-loop partitioning is then invoked to search for parallelism in

the rest of the program and partition them into non-loop threads. We consider

loop threads as the first priority during thread extraction since loops are the es-

sential sources of parallelism and their iterative structures are amenable to parallel

threads by nature. In contrast, extracting non-loop threads requires more sophis-
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ticated partitioning algorithms and is applied when loop threads are not adequate

to achieve good performance.

Loop selection and non-loop partitioning will be further discussed in Chapter 3

and Chapter 4 respectively.

2.2 Thread Optimization

The goal of the thread optimization phase is to improve the parallel performance

of the extracted threads. It contains three optimizations: Instruction Scheduling,

Reduction Transformation, and Iteration Merging, as shown in Figure 2.1.

The first two techniques, instruction scheduling and reduction transformation,

are used to improve inter-thread communication caused by data dependences. In-

struction scheduling is a general technique targeting those data dependences that

limit the parallel performance, while reduction transformation is a more specific

technique targeting those data dependences caused by reduction variables.

The last technique, iteration merging, is aimed to improve load balance among

loop threads. Due to complex control flow in general-purpose applications, different

loop threads extracted from the same loop may take different execution paths

at runtime. This may result in dramatic variation in the thread size. Those

loop threads with severe load imbalance problem are further transformed during

iteration merging in order to achieve more balanced workloads.

The details about these three optimization techniques will be discussed in Chap-
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ter 5.

2.3 Profiling Support

TLS, like other speculative mechanism, is only beneficial only when it is highly

likely to succeed. This requires the compiler to have precise knowledge about

programs to apply speculation wisely. Such knowledge, however, is often difficult

to obtain at compiler time. Although it is possible to design complicated compiler

analysis to obtain more precise information, profiling is a more efficient approach

to collect those information at runtime. Therefore, it is extensively used in our

compiler. As shown in Figure 2.1, there are three types of profiling supports: Loop

Nesting Profiling, Data Dependence Profiling, and Edge Profiling. The collected

profiles are used in both thread extraction phase and thread optimization phase.

2.3.1 Loop Nesting Profiling

Loop nesting profiling is used to aid loop selection. In order to avoid selecting loops

that are nested, our loop selection needs to know whether any two loops are nested

or not. While the loop nesting relation can be easily determined locally within a

procedure, it is difficult to determine nesting relation globally at the program level

since two loops may become nested through procedure call.

Loop nesting profiling provides precise loop nesting information by dynamically

tracking the execution sequence of all loops in a program. Anytime a loop is invoked
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while another loop is still active, a nesting relation is detected. The profiling results

are summarized in a graph called loop graph, where each static loop is represented

as a node, and the nesting relation between two loops is represented as an edge.

Two loops are directly nested if there is no other loop levels in between. For

simplicity, only direct nesting relations are represented in the loop graph. Any

indirect nesting relation can be identified by computing the transitive closure of

the loop graph. More details about loop graph will be discussed when the loop

selection algorithm is presented in Chapter 3.

2.3.2 Data Dependence Profiling

Data dependence profiling is used to collect more precise dependence informa-

tion. Compiler static analysis usually only tells us whether a data dependence

between two memory operations exists or not. Without knowing how frequently a

dependence will occur at runtime, the compiler may speculate on a frequent data

dependence resulting in excessive mis-speculations. Such mis-speculation is very

costly in TLS because the violating thread and all the following threads need to

be squashed and re-executed.

As a result, the most important information gathered by dependence profiling

is dependence probability. There are two types of dependence profilings supported

in our framework. One is procedure-level dependence profiling, that is, given a spe-

cific procedure is executed, we want to know how likely a dependence between two
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memory operations will occur. Here, the probability is approximated as the num-

ber of procedure invocations in which the dependence occurs divided by the total

number of invocations of that procedure. The other one is loop-level dependence

profiling, that is, given a loop iteration is executed, we want to know how likely

a dependence between two memory operations will occur. In this case, the prob-

ability is approximated as the number of loop iterations in which the dependence

occurs divided by the total number of iterations of that loop.

Along with dependence probability, we also collect dependence distance in-

formation in the loop-level dependence profiling. The dependence distance is the

number of iterations between two dependent memory operations. The dependences

with distance greater than the number of targeting processors are discarded since

threads with such distance will not be executed simultaneously due to resource

constraints and those dependences are always satisfied during execution.

Since collecting profiles for each procedure and loop is a very time-consuming

process, we only focus on true dependence during profiling. Both anti and output

dependences are ignored because they can often be removed by various renaming

techniques. Moreover, sampling techniques are used to further reduce the profiling

cost [11]. The details of these techniques are beyond the scope of this study and

will not be discussed in this thesis.

18



2.3.3 Edge Profiling

Edge profiling provides detailed information about how often an control flow edge

in CFG is executed. These information is used frequently in almost all compila-

tion phases. For instance, our non-loop partitioning is applied to the frequently

executed paths that are identified by using edge profile. Our instruction schedul-

ing also relies on edge profile to speculatively schedule instructions along frequent

paths.

Edge profiling has already been supported by the ORC compiler for aggressive

optimizations. It can be easily extended to our TLS compiler framework.
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Chapter 3

Loop Selection

Loops are attractive candidates for extracting parallel threads, as programs spend

a significant amount of time executing instructions within loops, and the regular

structure of loops makes it relatively easy to determine (i) the beginning and the

end of a thread (i.e., each iteration corresponds to a single thread of execution)

and (ii) the inter-thread data dependences. Thus it is not surprising that most

previous research on TLS has focused on exploiting loop-level parallelism [63, 44,

10, 18, 69, 70, 66, 42].

However, general-purpose applications typically contain a large number of po-

tentially nested loops, and thus deciding which loops should be parallelized for

the best program performance is not always clear. We have found 10, 612 loops

from 15 benchmarks in the SPEC2000 benchmark suite; among these, gcc contains

more than 2, 500 loops. Thus it is necessary to derive a systematic approach to
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automatically select loops from these applications for parallelization.

It is difficult for a compiler to determine whether a loop can speed up un-

der TLS, as the performance of the loop depends on (i) the characteristics of the

underlying hardware, such as thread creation overhead, inter-thread value com-

munication latency, and mis-speculation penalties, and (ii) the characteristics of

the parallelized loops, such as the size of iterations, the number of iterations, and

the inter-thread data dependences. While detailed profiling information and com-

plex estimations can potentially improve the accuracy of estimation, it is not clear

whether these techniques will lead to an overall better selection of loops.

Furthermore, loop selection is limited by the constraints that two loops cannot

be parallelized simultaneously if they become nested during execution. We say that

loop B is nested within loop A when loop B is syntactically nested within loop A,

or when A invokes a procedure that contains loop B. On average, we observe that

the SPEC2000 benchmarks have a nesting depth of 7.5. Therefore a judicious

decision must be made in order to select the proper loops for parallelization.

3.1 Related Work

A number of studies on TLS use loops as the primary source of speculative TLP.

Some of them extract loop threads dynamically at runtime [63, 44, 10], while others

rely on the compiler to statically extract loop threads [18, 69, 70, 42].

Due to the high cost at runtime, some studies of dynamic thread extrac-
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tion [63, 44] only focued on inner loops, which typically have low coverage for

general purpose applications.

Chen et al. [10] have proposed a dynamic loop selection framework for the Java

program. They use hardware to extract useful information such as dependence

timing and speculative buffering requirements and then estimate the speedup for

loops based on these dynamically collected information. The main limitation of

dynamic thread extraction is the lack of high level knowledge of programs.

Liu et al. [42] propose a selection method that relies on a performance profiler to

estimate the parallelism of pre-selected loops, and the loops with poor performance

are discarded by the compiler during final thread generation. The performance

profiler is mainly used for estimating the impact of cache performance that is hard

to predict at compiler time. However, the cost associated with such profiler is still

the major concern during loop selection.

Du et al. [18] use a cost graph to estimated the impact of mis-speculation, and

the loops are statically selected based on the estimated mis-speculation cost along

with other simple selection criteria such as the size of iterations and the number

of iterations. Those simple selection criteria are also commonly used by other

studies [69, 70].
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main() {
while(cond1) {

while(cond2) {
foo();

goo();

}
}

}

foo() {
while(cond3) {
goo();

}
}

goo() {
while(cond4) {
}

}
(a) Source code.

(b) Loop graph.

Figure 3.1: Example of loop graph.

3.2 Loop Selection Algorithm

In this section, we present a loop selection algorithm that chooses a set of loops

to parallelize while maximizing overall program performance. The algorithm takes

as input the speedup and coverage of all the loops in a program and outputs an

optimal set of loops for parallelization.

3.2.1 Loop Graph

The main constraint in loop selection is that there should be no nesting relation

between any two selected loops. To capture the nesting relation between loops, we
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main() {
while(cond1) {

while(cond2) {
foo();

goo();

}
}

}

foo() {
while(cond3) {
goo();

}
}

goo() {
while(cond4) {
foo();

}
}

(a) Source code.

(b) Loop graph.

Figure 3.2: Example of loop graph with recursion.

construct a Directed Acyclic Graph (DAG) called a loop graph. Each node in the

loop graph represents a static loop in the original program, and a directed edge

represents the nesting relation between two loops.

Figure 3.1(a) shows an example source code and its corresponding loop graph

is shown in Figure 3.1(b). Two loops in main procedure are represented by nodes

main loop1 (for outer loop) and main loop2 (for inner loop) respectively, while the

loops in procedure foo and goo are represented by nodes foo loop1 and goo loop1.

The edge from main loop1 to main loop2 indicates the syntactical nesting, while

the edge from main loop2 to foo loop1 indicates nesting through procedure call
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foo().

A recursive call introduces a cycle in the loop graph that violates the acyclic

property. Figure 3.2 shows a similar example as the previous one except that

procedure goo also calls foo. The dash edge from goo loop1 to foo loop1 represents

this nesting relation and causes cycle in the loop graph. A cycle can usually be

broken if we can identify back edge [1]. An edge from node s to node t is a back

edge if every path that reaches s from the root passes through t. However, in

Figure 3.2(b), no back edge is detected even though there is a cycle. In such case,

we favor the nesting relation from foo loop1 to goo loop1 since foo loop1 is invoked

before goo loop1 in terms of the time when they are first invoked. Consequently

the edge from goo loop1 to goo loop1 is deleted.

A loop graph, like a call graph [46], can be constructed through runtime pro-

filing or compiler static analysis. In our current implementation, it is built upon

efficiently collected runtime profiles.

3.2.2 Selection Criterion

Since speculatively parallelizing nested loops usually requires complicated hard-

ware support [55], our target thread execution model allows at most one active

loop at any time during execution. As a result, we do not simultaneously select

any two loops that have nesting relation. In the case of nested loops, we have to

rely on some criterion to decide which loops we want to parallelize. Both speedup
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and coverage are commonly used ones. However, only considering either one of

them may not achieve desirable performance. For example, a loop with high cov-

erage may not have good performance, and a loop with good performance may not

have high coverage.

Therefore, we use a criterion called benefit that considers both speedup and

coverage of a loop. It is defined as follows:

benefit = coverage × (1 −
1

speedup
) (3.1)

The benefit value represents the percentage of overall program execution time that

can be reduced by parallelizing that loop. Thus a loop with a larger benefit value

is more likely to be selected. The benfit values of two loops are additive if they

are not nested. For example, loop 1 has a benefit value of 0.15, and loop 2 has a

benefit value of 0.2. If they are not nested, their execution will not be overlapped.

So overall we can save 0.35 percent of total execution time by parallelizing both

of them. The speedup for the whole program can be computed directly from the

benefit value as follows:

program speedup =
1

1 − benefit
(3.2)

3.2.3 Loop Selection Problem

The general loop selection problem can be stated as follows: given a loop graph

with benefit value attached to each node, find a set of nodes that maximizes the
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loop3

loop4 loop5 loop6

loop7 loop8

loop2

loop1

Figure 3.3: Loop graph before pruning.

overall benefits such that there is no path between any two selected nodes. We

transform this loop selection problem into a well-known NP-complete problem,

weighted maximum independent set problem [17], by computing the transitive clo-

sure of the loop graph. A set of nodes is called an independent set if there is no

edge between any two of them.

3.2.4 Graph Pruning

The general loop selection problem is NP-complete, so that an exhaustive search

algorithm only works for a graph with few nodes. For a graph with hundreds

or thousands of nodes, which is common for most of the benchmarks that we

are studying, a more efficient heuristic has to be used. Because a heuristic-based

algorithm only gives a sub-optimal solution, we must use it wisely.
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By applying a technique called graph pruning, we can find a reasonable approx-

imation more efficiently. Graph pruning simplifies the loop graph by eliminating

those loops that will not be selected as speculative threads. These would include

such loops as: (i) loops that have less than 100 dynamic instructions on average, as

they are more appropriate for ILP; (ii) loops that have no more than 2 iterations

on average, as they are more likely to underutilize multiple processor resources;

and (iii) other loops that are predicted to slow down the program execution if par-

allelized. While the first two types of loops can be easily identifid by using profiles,

the third one requires accurate performance estimation, which will be discussed in

Section 3.3.

In the loop graph shown in Figure 3.3, assume loop 2 has poor parallel perfor-

mance, we can remove this loop from the graph since it will not be considered for

selection. After it is removed, we have to maintain the nesting relation among the

remaining loops. The edges from loop 1 to loop 4, loop 5, and loop 7 are added,

and the resulting loop graph is shown in Figure 3.4(a). Moreover, if loop 1 is also

removed due to its poor performance, the single connected graph is split into two

sub-graphs, and each of them has smaller size than the original one, as shown in

Figure 3.4(b).

Graph pruning reduces the size of a loop graph by eliminating unsuitable loops.

After we delete those unnecessary nodes, one single connected graph is split into

multiple smaller disjointed sub-graphs. Then we can apply selection algorithm to
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loop3
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loop1loop1

(a) Loop 2 is removed.

loop3loop3

loop5loop5 loop6loop6

loop8loop8

loop4

loop7

(b) Loop 1 is removed.

Figure 3.4: Loop graph after pruning.

each sub-graph independently. It is efficient to use exhaustive searching algorithm

for small sub-graphs. For larger sub-graphs, heuristic-based searching algorithm

usually gives a reasonable approximation.

3.2.5 Exhaustive Searching Algorithm

In this simple algorithm, we exhaustively try every set of independent loops to find

the one that provides the maximum benefit. For each computed independent loop

set, we track all loops that have nesting relations to any loop in this independent

set and record them in a bit vector called a conflict vector, where each bit represents

a static loop. A bit is set if the corresponding loop has nesting relation to any

loop that has been selected. By using a conflict vector, it is easy to find a new

independent loop to add into the current set. After a new loop is added, the
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conflict vector is updated as well.

An exhaustive searching algorithm gives an accurate solution for the loop se-

lection problem, but is very inefficient. Graph pruning creates smaller sub-graphs

that are suitable for exhaustive searching. Exhaustive searching works efficiently

for sub-graphs with less than 50 nodes in our experiments.

3.2.6 Heuristic-based Searching Algorithm

Even after graph pruning, some sub-graphs are still very big. For those, we use a

heuristic-based algorithm. Here is how a simple heuristic works. We first sort all

the nodes in a sub-graph according to their benefit values. Then we pick one node

at a time and add it into the independent set such that this node has the maximal

benefit value among the unselected nodes and it does not conflict with already

selected nodes. Similarly to the exhaustive searching algorithm, we maintain a

conflict vector for the selected independent set and update it whenever a new node

is added.

Although this simple greedy algorithm gives a sub-optimal solution, it can

select a set of independent loops from a large graph in polynomial time. In our

experiments, the sizes of most sub-graphs are less than 200 nodes after graph

pruning, so the inaccuracy introduced by this algorithm is negligible.
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(a) D ≤ S

4
(b) D > S

4

Figure 3.5: Impace of delay D assuming 4 processors.

3.3 Loop Speedup Estimation

Our goal in loop selection is to maximize the overall program performance, which

is represented as the benefit value of the selected loops. In order to calculate the

benefit value for each loop, we have to estimate both the coverage and speedup

of each loop. Coverage can be estimated using a runtime profile. To estimate

speedup, we have to estimate both sequential and parallel execution time.

We assume that each processor executes one instruction per cycle, i.e., each

instruction takes one cycle to finish. It is relatively easy to estimate sequential

execution time Tseq of a loop. We can determine the average size of a thread

(average number of instructions executed per iteration) and the average number of

parallel threads (average number of times a loop iterates) by using a profile. Tseq
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can be approximated by using equation (3.3), where S is the average thread size

and N is the average number of threads.

Tseq = S × N (3.3)

On the other hand, the parallel execution time depends on other factors such

as the thread creation overhead, the cost of inter-thread value communication,

and the cost of mis-speculation. We simplify the calculation by dividing the total

parallel execution time Tpar into two parts: perfect execution time Tperfect and

mis-speculation time Tmisspec. Tperfect is the parallel execution time on p processors

assuming that there is no mis-speculation, while Tmisspec is the wasted execution

time due to mis-speculation.

Tpar = Tperfect + Tmisspec (3.4)

In the perfect execution model, the main overheads for the parallel execution

are caused by the synchronization of frequently occurring dependences and the

thread creation overhead. We model these overheads as the delay D between two

consecutive threads. It is estimated by equation (3.5).

D = max(Tsyn, Ocreate) (3.5)

where Tsyn is the synchronization cost and Ocreate is the thread creation overhead.

Depending on the delay D, we use different equations to estimate Tperfect. If

D ≤ S
p
, we can have a perfect pipelined execution of threads, as shown in Figure

32



3.5(a), and use equation (3.6) for estimation.

Tperfect = (
N − 1

p
+ 1) × S + ((N − 1) mod p) × D (3.6)

If D > S
p
, delay D causes bubbles in the pipelined execution of threads and has

a higher impact on the overall execution time, as shown in Figure 3.5(b). In this

case, we use equation (3.7) for estimation.

Tperfect = (N − 1) × D + S (3.7)

The key to accurately predicting speedup is how to estimate Tsyn and Tmisspec.

Tsyn is caused by the synchronization of frequently occurring data dependences,

while Tmisspec is caused by the mis-speculation of unlikely occurring data depen-

dences. We describe techniques to estimate Tsyn and Tmisspec in the following

sections.

3.3.1 Tmisspec Estimation

When a mis-speculation is detected, the violating thread will be squashed and

all the work done by this thread becomes useless. We use the amount of work

thrown away in a mis-speculation to quantify the impact of the mis-speculation

on the overall parallel execution. The amount of work wasted depends on when

a mis-speculation is detected. For instance, if a speculative thread starts at cycle

cstart and mis-speculation is detected at cycle cdetect, we have (cdetect−cstart) wasted

cycles. This is illustrated in Figure 3.3.1, where a mis-speculation caused by load1

in thread T2 is detected by store1 in thread T1.
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Figure 3.6: Cost of mis-speculation.

In our thread execution model, a mis-speculation is detected only when the

consumer load is executed before the producer store. Assume that we speculate

on a data dependence from instruction i1 to i2. Also assume c1 and c2 are the

cycles at which i1 and i2 are executed within a thread. A mis-speculation only

occurs when D × d + c2 < c1, where D is the delay between consecutive threads

defined in equation (3.5), and d is the dependence distance. The amount of wasted

work due to a mis-speculation is c1 − D × d. Finally, the dependence probability

prob(i1, i2) between i1 and i2 is considered, and the impact of this mis-speculation

is estimated by:

Tmisspec = (c1 − D × d + Osquash) × prob(i1, i2) (3.8)

where Osquash is the overhead of thread squashing. If there are more than one

data dependence that we decide to speculate, the one with the maximal Tmisspec is

selected to estimate the overall impact of mis-speculation. Also, how to estimate
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(a) Two inter-thread data de-

pendences.
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(b) The stall caused by syn-

chronizing load2 and store2.

Figure 3.7: Cost of synchronization.

the cycle at which a particular instruction is executed within a thread will be

discussed in Section 3.3.3.

3.3.2 Tsyn Estimation I

One way to estimate the amount of time that parallel threads spend on synchro-

nization is to identify all the instructions that are either the producers or the con-

sumers of frequent inter-thread data dependences, and estimate the cost of synchro-

nization as the total cost of executing all such instructions. In Figure 3.7(a), there

are two data dependences between thread T1 and T2 and four load/store instruc-

tions are involved, so the overall synchronization cost is estimated as (4 + Ocomm)

cycles, where Ocomm is the communication cost between threads.

35



The intuition behind this simple estimation is that the more instructions are

involved in the inter-thread data dependences, the worse the parallel performance

is. One drawback of this approach is that we treat all dependences equally during

estimation. In fact, some data dependences could have higher impact on the per-

formance than others. For the example in Figure 3.7(a), the dependence between

store2 and load2 results in a higher synchronization cost than the dependence

between store1 and load1 since it causes the longer stall in the consumer thread

T2. In order to quantify the impact of each dependence, we have to consider the

timing of executing each producer and consumer instruction. This leads to our

next estimation technique described in Section 3.3.3.

3.3.3 Tsyn Estimation II

To take into consideration the impact of synchronizing each dependence, we pro-

pose estimation technique II. Assuming that load1, the consumer instruction in

thread T2, is executed at cycle c2 and that store1, the producer instruction in

thread T1, is executed at cycle c1, the cost of synchronization between these two

instructions is estimated as (c1 − c2).

If the data dependence does not occur between two consecutive threads but

rather has a dependence distance of d, the impact on the execution time of a

particular thread should be averaged out over the dependence distance. Thus

the impact of synchronizing the dependence between two threads is estimated as
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follows:

Tsyn =
c1 − c2 + Ocomm

d
(3.9)

There is one more missing piece if this estimation technique is to be success-

ful, which is how to determine which cycle of a particular instruction should be

executed. Since it is not possible to perfectly predict the dynamic execution of a

thread, we made a simplification assuming each instruction will take one cycle to

execute; thus the start cycle is simply an instruction count of the total number of

instructions between the beginning of the thread and the instruction in question.

However, due to complex control flows that are inherent to general-purpose ap-

plications, there can be multiple execution paths, each with different path length,

that reach the same instruction. Thus the start time of a particular instruction is

the average path length weighted by path taken probability, as shown in equation

(3.10).

c =
∑

pi∈{all paths}

length(pi) × prob(pi) (3.10)

After we compute the cost for each dependence, the overall cost of synchroniza-

tion is determined by the most costly one, since the cost of others can be hidden.

As shown in Figure 3.7(b), load1 does not have to wait since the value has already

been generated by store1.
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3.3.4 Tsyn Estimation III

Previous work has shown that the compiler can effectively reduce the cost of syn-

chronization through instruction scheduling and that such optimizations are partic-

ularly useful for improving the efficiency of communicating register-resident scalars

[69]. Unfortunately, the estimation technique described in Section 3.3.3 does not

take such optimization into consideration and tends to over-estimate the cost of

synchronization. It is desirable to find an estimation technique that considers the

impact of instruction scheduling on reducing the synchronization cost. Thus, we

use a third technique, in which the start time of an instruction is computed from

the data dependence graph. When there are multiple paths that can reach an in-

struction in the data dependence graph, the average start time of this instruction

can be measured by equation (3.11), assuming that the average length of a path

pi that reaches this instruction in the data dependence graph is length(pi).

c = max(length(pi)) (3.11)
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Chapter 4

Non-Loop Partitioning

For general-purpose applications, extracting loop threads may not achieve ade-

quate amount of parallelism due to complex control flow and hard-to-optimize

data dependences. In such cases, it is desirable to search for TLP beyond loop

threads. We call the process of extracting non-loop threads from a sequential

program non-loop partitioning. In this chapter, we will describe an efficient non-

loop partitioning algorithm. By using both loop threads and non-loop threads, we

exploit as much parallelism as possible from those hard-to-paralelize applications.

Generally speaking, non-loop threads refer to any threads that do not corre-

spond to loop iterations. Although any set of connected basic blocks in CFG can

be treated as a non-loop thread, a non-loop thread typically has a unique entry

block that can reach all other blocks in this set. A non-loop thread could have

multiple exit blocks. However, the more exits it has, the more difficult to predict
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its successor thread. To exploit TLP in an even large scope, a non-loop thread is

allowed to contain nested loops or procedure calls.

4.1 Related Work

Realizing that loop-level parallelism is limited in general-purpose applications, re-

searchers have been searching for parallelism in non-loop threads over the years.

The Multiscalar compiler [64] extracts non-loop threads by walking through

the CFG of a procedure and forming threads from consecutive basic blocks. Since

partitioning a program into multiple threads to achieve optimal parallel perfor-

mance in general is NP-complete [56], a variety of heuristics that consider key

performance factors are used to approximate the optimal solution. Since a thread

typically terminates at the loop boundary or procedure call, the average size of

threads extracted by this compiler is only around 20 instructions. The parallelism

within such small scope can usually be exploited by superscalar processors.

Johnson et al. [33] later improve this partitioning algorithm by modeling pro-

gram partitioning as a min-cut problem. They consider several key performance

factors simultaneously during partitioning, so that better performance trade-off

can be achieved. However, due to the complexity of their graph-based partitioning

algorithm, it is inefficient to handle large CFG with thousands of basic blocks.

The Mitosis compiler [52] uses a spawning pair to describe the creation point

and execution point of a speculative thread. So the goal of their algorithm is
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to find the best set of spawning pairs to maximize the performance. The main

feature of their thread execution model is that they use a pre-compuatation slice to

compute live-in values for a speculative thread. Since they are primarily interested

in understanding the performance limits, complicated performance analysis and

exhaustive search are used in their partitioning algorithm.

Since program partitioning in general is a complicated process, some studies

focus on more specific types of non-loop threads. Oplinger et al. [47] study the po-

tential of exploiting procedure-level parallelism. By executing a procedure with the

continuation code in its caller procedure, their study shows significant performance

improvement. Since procedures are well-defined program structures, extracting

non-loop threads targeting procedure-level parallelism is relatively straightforward.

So that such non-loop threads is also exploited by POSH compiler [42].

4.2 Algorithm Features

Compared to the previous partitioning algorithms, our algorithm has the following

features:

First, when partitioning sequential code, we rely on the loop structure in a

program and partition each individual loop one at a time in an inner-loop-first

order. As a result, before an outer loop is partitioned, all its inner loops have

already been considered for partitioning. If an inner loop has been partitioned

into non-loop threads, it will be excluded when the outer loop is partitioned.
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Nonloop Partition(Procedure P) {

process each loop in inner-loop-first order {

if (loop is not parallelized) {

contruct compact CFG;

find frequent execution path;

initialize path set S;

while (!Empty(S)) {

P = Pop(S);

if (BiPartition(P, P1, P2)) {

Push(S, P1);

Push(S, P2);

}

}

extend partitioned sub-paths;

}

}

}

Figure 4.1: Non-loop partitioning algorithm applied to each procedure.

Otherwise, it will be considered as part of a non-loop thread in the outer loop.

Similarly, if an inner loop has been partitioned into loop threads, it will be excluded

as well. In the end, the procedure itself is partitioned, and it is handled in the

same way as we partition a loop. Leveraging loop structure and partitioning each

loop separately greatly improve efficiency of the partitioning algorithm, especially

when a procedure has complex nested loops.

Second, our partitioning algorithm is based on frequent execution path. Instead
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BiPartition(P, P1, P2) {

for each BB b on the path P {

weight = Performance Estimation(P, b);

if (weight > max weight) {

max weight = weight;

cut point = b;

}

}

if (max weight > PERFORMANCE THRESHOLD)

P1 = all BBs from the head of P to the cut point;

P2 = all remainign BBs on P;

return TRUE;

}

else

return FALSE;

}

Figure 4.2: Bipartition algorithm.

of partitioning a CFG directly, we first identify frequent execution path in the CFG.

This path is then partitioned into multiple sub-paths. The partitioned sub-paths

are finally expanded to include other basic blocks in the CFG to form non-loop

threads. This path-based partitioning algorithm is much simpler to implement

than a graph-based algorithm while still achieving comparable performance along

the frequent execution path.
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4.3 Partitioning Algorithm

Figure 4.1 illustrates our algorithm that partitions a procedure into non-loop

threads. It iterates through all loops in that procedure from the inner most one to

the outer most one. Each time an un-parallelized loop is processed, its body will

be partitioned into multiple disjointed non-loop threads only if executing them in

parallel can improve performance. Note that the procedure is treated as a special

outer most loop (i.e., a loop that iterates only once when invoked) and is handled

uniformly with other loops. The following discussion on loops is applicable to

procedures as well.

4.3.1 Compact CFG

For each loop under consideration, a compact CFG is first created where all inner

loops are represented as super nodes. If any inner loop has been parallelized by loop

threads or non-loop threads, it is excluded from current partitioning, otherwise,

it is included in a thread created by current partitioning. All back edges of the

current loop under partitioning are ignored since they will not be included by any

non-loop threads extracted from the loop body. As a result, a compact CFG is a

DAG, and this simplifies the partitioning process.

Figure 4.3 shows a CFG and how it is compacted. The original CFG of a

procedure is shown in Figure 4.3(a). It contains a double-nested loop. The com-

pact CFG for this procedure is shown in Figure 4.3(b), where the nested loop is
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(a) The CFG of a procedure.

(b) The compact CFG

of the procedure.

(c) The compact CFG

of the outer loop.

(d) The compact CFG

of the inner loop.

Figure 4.3: Examples of compact CFG.
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represented as super node B*. The compact CFG for the outer loop is shown in

Figure 4.3(c), where the inner loop is represented as super node C*. The compact

CFG for the inner loop is shown in Figure 4.3(d). For both the inner loop and the

outer loop, the back edges are not represented in their compact CFGs.

4.3.2 Frequent Execution Path

Before we partition a loop into non-loop threads, we identify the frequent execution

path in its compact CFG. Due to complex control flow, there are usually multiple

paths from the entry to the exit in compact CFG. The frequent execution path is

the one that a loop spends most of its execution time. A path pi is identified as a

frequent execution path if it has the maximal value of prob(pi)× length(pi), where

prob(pi) is path probability, and length(pi) is the path length. In our implementa-

tion, path probability prob(pi) is estimated by using edge profiles, and path length

length(pi) is approximated by the number of instructions along path pi.

A frequent execution path is computed by topologically traversing the compact

CFG. For each node ni, the frequent execution path, freq path(ni) is the most

time consuming path that reaches this node from the entry. It is calculated by

examining the frequent path of each predecessor np. The one with maximal value

of prob(freq path(np))×length(freq path(np)) is selected and extended to include

current node ni. The probability of freq path(ni) is computed by:

prob(freq path(ni)) = prob(freq path(np)) × prob(ep,i)
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where prob(ep,i) is the probability of edge ep,i from np to ni. And the length of

freq path(ni) is computed by:

length(freq path(ni)) = length(freq path(np)) + length(ni)

where length(ni) is the estimated number of instructions in node ni.

The frequent execution path for a compact CFG is the one computed for its

exit node. If there are multiple exit nodes, the maximal one is selected.

The identified frequent execution path is then used to initialize the path set, a

set that contains all paths that need to be further partitioned. Note that, there

could be some inner loops on this path that have already been parallelized. In such

cases, their corresponding supper nodes are excluded from the frequent execution

path. Consequently, the path is divided into multiple sub-paths, and those sub-

paths are added into the path set for further partitioning.

4.3.3 Recursive Partitioning

After the path set is initialized, the main partitioning process starts. When a path

is chosen for partitioning, it will be bi-partitioned into two sub-paths if the overall

performance can be further improved based on the performance estimation, which

will be discussed in Section 4.3.4. These two sub-paths are then added into the path

set for further partitioning. If partitioning a path does not improve performance,

this path will not be considered by future partitioning and is simply discarded

from the path set. This recursive partitioning process continues until the path set
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is empty.

4.3.4 Performance Estimation

When partitioning a particular path p into two sub-paths, the most difficult task

is to find the right partitioning point to maximize performance. In our algorithm,

we try every basic block on path p as the potential partitioning point and estimate

the performance of resulting sub-paths. The basic block with the best estimated

performance is selected as the final partitioning point for path p.

During performance estimation of sub-paths, the impacts of several key per-

formance factors such as data dependence, control predictability, and load imbal-

ance have to be taken into consideration. To simplify discussion, other machine-

dependent parameters such as thread creation overhead, squash overhead, and

communication delay are ignored. It is straightforward to include them in the

final performance estimation model.

Control Predictability

Assume path p is partitioned into p1 and p2. We first consider the impact of control

predictability. Assume the probability of executing p2 given p1 is executed is P ,

the overall parallel execution time Tpar is approximated by:

Tpar = Tsucc × P + Tfail × (1 − P )
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where Tsucc is the execution time when p2 is correctly predicted, and Tfail is the

execution time when p2 is mis predicted.

If p2 is mis-predicted, another path should be taken during execution. However,

it is difficult to know which path is really taken during estimation, we assume that

the same path p2 is re-executed. Since the mis-prediction is usually detected at

the end of p1, Tfail is approximated by:

Tfail = length(p1) + length(p2)

If p2 is correctly predicted, both data dependence and load imbalance are the

primary factors determining the parallel performance. Their impacts are consid-

ered when we estimate Tsucc.

Load Imbalance

When estimating Tsucc, we first consider the impact of load imbalance. Let T1 be

the time taken for executing all instructions in p1, and T2 be the time taken for

executing all instructions in p2. When load imbalance is considered, the parallel

execution time is determined by the longer one:

Tsucc = max(T1, T2)

For simplicity, we assume the execution of p1 is not affected by its predecessor

paths, so that T1 is approximated by:

T1 = length(p1)
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although some instructions on p1 may depend on instructions on the predecessor

paths and cause stalls when p1 is executed.

Now, T2 is the last parameter we need to estimate. The impact of data depen-

dences between p1 and p2 is considered when we estimate T2.

Data Dependence

As we discussed in in Section 3, there are two ways to handle an inter-thread data

dependence. One is synchronization, which is used for frequently occurring depen-

dences to avoid excessive mis-speculations. The other one is speculation, which

is used for infrequently occurring dependences to exploit speculative parallelism.

The impact of both synchronization and speculation is modeled as delay between

two threads.

Assume there is a data dependence between instruction i1 on path p1 and

instruction i2 on path p2, and c1 and c2 are the cycles at which i1 and i1 are

executed in p1 and p2. If it is a frequent dependence, synchronization is used, and

the delay caused by this synchronization is estimated by:

d = c1 − c2

If it is a infrequent dependence, speculation is used, and the delay caused by a

mis-speculation is estimated by:

d = c1 × prob(i1, i2)
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where prob(i1, i2) is the dependence probability between i1 and i2, and it equals

to the probability that a mis-speculation occurs.

We examine all dependences between p1 and p2, and select the one with maxi-

mal delay d to approximate the overall impact of data dependence. The execution

time of p2 is estimated by:

T2 = length(p2) + d

4.3.5 Sub-Path Expansion

The partitioned sub-paths are expanded to cover all remaining basic blocks in

the compact CFG. Finally dis-jointed sub-graphs are formed, and each of them

corresponds to a non-loop thread. A basic block can be included in a sub-path

if it can be reached from that sub-path. However, a basic block may be reached

by multiple sub-paths. In such case, the probability of reachability needs to be

considered, and the basic block is included in the sub-path from which it is most

likely to be reached.
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Chapter 5

Thread Optimizations

In this chapter, three thread optimization techniques are presented to improve

the performance of parallel threads extracted using the techniques decribed in

Chapter 3 and Chapter 4.

For general-purpose applications, one of the main constraints that limit the par-

allel performance is inter-thread data dependence. While infrequently occurring

dependences can be optimistically handled by TLS, frequently occurring depen-

dences often serialize the parallel execution and become the performance bottle-

neck. The first two techniques, instruction scheduling and reduction transformation

are proposed to improve the inter-thread communication due to frequently occur-

ring data dependences.

Load imbalance is another performance bottleneck in the parallel execution.

The complex control flow in general-purpose applications often causes dramatic
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variations in the thread size. Our third technique, iteration merging, is proposed

to achieve more balance workloads across loop threads.

5.1 Related Work

Instruction scheduling is an effective technique to reduce the impact of inter-thread

data dependence. It has been exploited in both the traditional parallelizing com-

pilers [15, 9] and TLS compilers [65]. It also has been extensively used in software

pipelining to minimize the the delay of executing consecutive loop iterations [40, 3].

All these scheduling techniques are conservative in the sense that they have to

follow all possible intra-thread dependences during scheduling. In contrast, our

scheduling technique, based on the algorithm developed by Zhai et al. [69], per-

forms more aggressive scheduling by using both intra-thread data and control spec-

ulation. We extend their algorithm to do aggressive scheduling for memory depen-

dence. Furthermore, recovery code is used to reduce the mis-speculation cost.

The Mitosis compiler [52] uses a pre-computation slice to speculatively com-

pute live-in values for a thread, so it can be regarded as a complex value predic-

tion. There are two major differences between that approach and our instruction

scheduling: i) extra cost is introduced due to the execution of the pre-computation

slice, while instruction scheduling does not introduce so many additional instruc-

tions (control speculation may introduce more dynamically executed instructions,

but such overhead is often negligible); ii) a mis-prediction caused by the pre-
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computation slice can be detected only when the producer thread finishes, while

in our scheme, a mis-prediction is detected much earlier by the producer thread

through the intra-thread speculation mechanism.

In traditional compiler [35], the dependence caused by a reduction variable is

removed by a transformation called reduction elimination. However, the applica-

tion of reduction elimination requires that there is no use of intermediate results of

reduction variable in the parallelized loop. Our proposed reduction transformation

is not limited by this constraint, and it also takes advantage of the usage pattern

of the reduction variable to perform aggressive transformation.

Prabhu et al. [50, 51] propose a complex manual transformation technique

called speculative pipelining to transform the loop to achieve balanced workloads.

However, our iteration merging technique is proposed in the context of automatic

compilation and thus can be integrated into an optimizing compiler.

5.2 Speculative Scheduling for Memory Depen-

dence

In order to avoid excessive failures under TLS, synchronizations are required for

frequently occurring memory dependences [70]. In Figure 5.1(a), there is a frequent

data dependence between store *p and load *q in consecutive threads. To avoid

mis-speculation, synchronization is used to delay load *q until store *p finishes
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its execution. Here the synchronization is implemented by a pair of signal and

wait instructions. signal is used by the producer thread to forward the data, while

wait is used by the consumer thread to wait for the expected data. A pair of

communicating signal and wait are assigned the same synchronization id (sid). sid

is forwarded by signal along with data, while wait only receives data with the

matching sid.

Although synchronization avoids frequent failures, it may cause stalls in the

consumer thread if the expected data has not been produced. In Figure 5.1(a),

such stalls causes severe serialization in parallel execution. The execution path

between store *p and load *q is referred as critical forwarding path [69]. The

impact of synchronization can be measured by the length of critical forwarding

path. The longer the path is, the more impact the synchronization has.

Instruction scheduling can potentially reduce the stall time caused by synchro-

nization. As shown in Figure 5.1(b), store *p is scheduled to be executed earlier

so that load *q can access the produced data earlier. Therefore, the stall time of

the consumer thread is reduced, and increased overlap between threads leads to a

better parallel performance.

While instruction scheduling for register dependence has been shown effective

for many applications [69], the benefit of scheduling for memory dependence is still

unknown. Due to the facts that memory dependences are prevalent in general-

purpose applications, it is important to investigate the performance impact of
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Figure 5.1: Impact of instruction scheduling.

scheduling techniques for memory dependence.

5.2.1 Intra-Thread Speculation

Our thread execution model supports a synchronization mechanism similar to the

one described by Zhai et al. [70]. When a frequently occurring memory dependence

is synchronized, both the address and the value of the producer store instruction

are forwarded by the signal instruction. Therefore, the purpose of instruction

scheduling is to hoist instructions such that both the store address and the store

value can be computed and forwarded as early as possible. Note that, the store

instruction itself does not need to be scheduled (the scheduling of *p shown in

Figure 5.1(b) is only for illustration purpose). This greatly simplify the scheduling
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(a) Before scheduling. (b) After scheduling. (c) Recovery code.

Figure 5.2: Data speculation used in scheduling for memory dependence.

process since the possible write-after-write and write-after-read hazards due to the

scheduling of a store instruction are avoided.

The main constraints during instruction scheduling are the data and control

dependences. Data and control speculation are commonly used methods to over-

come the dependence limitation during aggressive scheduling [41, 16]. In our thread

execution model, both intra-thread data and control speculation similar to those

on IA-64 architecture [32] are supported. However, in our scheme, intra-thread

speculation is mainly used for improving the efficiency of inter-thread data com-

munication.

Data Speculation

Data speculation allows a load instruction to be aggressively scheduled across

a possible aliasing store instruction. Not only can it be used to improve the
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single thread performance [16], it can also be used to improve the inter-thread

communication.

In Figure 5.2(a), there is a store instruction store [r1], r2 that causes frequent

inter-thread dependence. The store address is kept in register r1, and the value to

be stored is kept in register r2. Synchronization is used and a signal instruction

signal r1, r2 is inserted after this store. This signal instruction will forward both

the address and the value of store to the consumer thread. In order to forward the

data earlier, instruction scheduling is used to hoist this signal instruction. Since

the value of r2 used by signal r1, r2 is loaded by load r2, [r3], this load is also

hoisted along with the signal. Now assume there is a store instruction store [r4],

r5 that load r2, [r3] may depend on along the scheduling path. If the probability

of this dependence is low, it is beneficial to schedule the load across the store so

that the signal can be executed much earlier, as shown in Figure 5.2(b). Different

from an ordinary load, this load may cause potential dependence violation if it

accesses the same memory location as the store. Consequently, it is changed into

a data speculative load ld.a. The potential dependence violation is checked by

a chk.a instruction inserted to the home location of the speculative load. If a

violation is detected, a piece of recovery code shown in Figure 5.2(c) is invoked. In

that recovery code, the value of r2 is reloaded and re-forwarded to the consumer

thread.

If the speculative load succeeds, the consumer thread receives the corresponding
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signal only once during its execution. However, if the speculative load fails, the

consumer thread will receive the signal twice. In our thread execution model, the

consumer thread, upon receiving the same signal again (marked by the same sid),

knows that a mis-speculation is detected by the producer thread and the previously

received data (either address or value) is wrong. If the data has already been

accessed, the consumer thread and all the following threads need to be squashed

and re-executed.

With the recovery code support, the producer thread does not need to be

squashed when an intra-thread mis-speculation is detected. The consumer thread

and the following threads have to be squashed only when the speculatively for-

warded value has been consumed. The presence of the recovery code minimizes

the impact of an intra-thread mis-speculation, thus more aggressive instruction

scheduling are allowed.

Control Speculation

Control speculation is used to speculatively move instructions across dependent

branch instructions. An example of intra-thread control speculation is shown in

Figure 5.3. The store instruction store [r1], r2 in Figure 5.3(a) is synchronized

and a signal instruction is inserted. Note that a signal instruction signal r0, r0 is

also inserted on the alternative path. Register r0 has the value of zero, and the

execution of this instruction simply informs the consumer thread that no data is
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(a) Before scheduling. (b) After scheduling.

Figure 5.3: Control speculation used in scheduling for memory dependence.

forwarded, so that the consumer thread no longer has to wait for it.

When we schedule the signal instruction across the branch instruction, the load

instruction load r2, [r3] it depends on also needs to be scheduled. In such case, the

load is changed into ld.s, and a check instruction chk.s is inserted accordingly, as

shown in Figure 5.3(b). The similar recovery code as the one used in data specu-

lation (in Figure 5.2(c)) is invoked when the speculative load causes an exception.

If the alternative path is taken, signal r0, r0 will be executed, so that the con-

sumer thread will receive the same signal again and know that the data received

previously is wrong.
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(a) Before scheduling. (b) After scheduling. (c) Recovery code.

Figure 5.4: Cascaded speculation with recovery support.

Cascaded Speculation

During aggressive instruction scheduling, it is common that a signal depends on

multiple loads. So that multiple loads need to be scheduled along with the signal.

When multiple loads are speculatively scheduled, it is possible that there are de-

pendences among them. In Figure 5.4(a), there are two loads that signal depends

on: load r2 [r3] and load r3 [r4]. The second load also depends on the first load

since the first load needs the value of r3 that is loaded by the first load. These two

loads are scheduled along with signal and are changed into speculative loads due

to possible dependence, as shown in Figure 5.4(b).

Two pieces of recovery codes are generated accordingly in Figure 5.4(c). Recov-

ery 1 is for the first speculative load, while recovery 2 is for the second speculative

load. Since the second load depends on the first load, it is executed speculatively
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in recovery 1. If the second load fails, either in the place where it is scheduled to,

or in recovery 1, recovery 2 is invoked to reload the value of r2. Signals are inserted

into both recovery codes. In the worst case, both speculative loads fail and both

recovery codes are invoked. The data will be forwarded three times, and only the

one forwarded by the last signal is correct.

As described previously, the consumer thread knows that a mis-speculation is

detected by the producer thread each time it receives a signal with the same sid as

the one received earlier. Squash is only required when the incorrectly forwarded

data has been consumed.

5.2.2 Working with TLS

Unlike the scheduling for register dependence, the scheduling of memory depen-

dence may interact with the underlying TLS support. The details of how scheduling

and TLS work together need a closer examination.

We use the example in Figure 5.5 to demonstrate the potential problem. In

Figure 5.5(a), there is a strong data dependence between the store of *p and the

load from *q. The signal instruction used to synchronize this dependence is hoisted

to an earlier point. The forwarded data by the signal is read by the load if (p ==

q). Assume another store instruction, store of *s, is executed between the signal

and the store of *p, and (s == q), as shown in Figure 5.5(b). Under TLS, this

store will check possible dependence violations caused by the following threads.
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i i+1

(a) *p is speculatively for-

warded.

i i+1

no checking

(b) *s should not check *q.

i i+1

checking

(c) *t should check *q.

Figure 5.5: Speculative forwarding.

However, in this case, the load of *q should not cause a mis-speculation although

it accesses the same memory location as the store of *s. The reason is that the

data loaded by *q is newer than the one stored by *s. On the other hand, assume

there is another store, store of *t, which is executed after the store of *p, as shown

in Figure 5.5(c). If (t == q ), this store should detect a mis-speculation since it

provides a newer version of data than the one used by the load of *q.

To summarize, the lifetime of a forwarded data is divided into two distinct

stages after instruction scheduling. The first stage starts when the speculatively

scheduled signal instruction is executed. It ends when the store instruction that

needs to be synchronized is executed. In this stage, a forwarded data is only ex-

posed for the intra-thread dependence checking performed by the producer thread.

If an intra-thread mis-speculation is detected, either the forwarded value or address

is wrong. If the forwarded data has already been accessed by the consumer thread,
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an inter-thread mis-speculation is detected as well, and the consumer thread has to

be squashed. The second stage starts right after the execution of the synchronized

store instruction, and it ends when the consumer thread becomes non-speculative.

In this stage, the forwarded data is exposed for the inter-thread dependence check-

ing just as the same as an ordinary inter-thread data speculation. And this de-

pendence checking is performed by the underlying TLS hardware.

Distinguishing these two stages in the lifetime of a forwarded data is the key for

instruction scheduling of memory dependence to work properly under TLS. In our

thread execution model, the compiler explicitly inserts an instruction called expose

after the synchronized store. Before expose is executed, the forwarded data is kept

in a buffer on the consumer thread side so that it will not be checked for inter-thread

dependence violation. The execution of expose will inform the consumer thread to

explicitly expose the forwarded data for inter-thread dependence checking.

5.3 Reduction Transformation

A reduction operation iteratively summarizes information into a single variable

called the reduction variable [35]. The presence of reduction variables causes

inter-thread dependences, and serializes parallel execution. Such serialization can

become potential performance bottlenecks when nested loops are involved. The

example in Figure 5.6(a) shows a reduction variable sum defined in a nested loop.

During the parallel execution of the outer loop, in thread i, the definition in the
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while(cond1) {

while(cond2) {

sum++;

}

}

(a) A reduction

variable

while(cond1) {

wait(sum);

while(cond2) {

sum++;

}

signal(sum);

}

(b) Synchronizing the

reduction variable

while(cond1) {

sum[i]=0;

while(cond2) {

sum[i]++;

}

}

while(cond1) {

sum+=sum[i];

}

(c) Traditional

reduction elimination

Figure 5.6: Reduction elimination.

last iteration of the inner loop is used by thread i + 1 in the first iteration of the

inner loop. This creates an inter-thread data dependence that must be synchro-

nized as shown in Figure 5.6(b). However, such synchronization can potentially

serialize parallel execution, since only after the inner loop in thread i finishes, can

the inner loop in thread i + 1 start.

5.3.1 Reduction Elimination

In traditional parallelizing compilers [35], reduction variables are eliminated through

a process called reduction elimination, in which multiple independent variables are

created and stored in an array as shown in Figure 5.6(c). Because each thread

stores reduction variable in a private location sum[i], inter-thread data depen-

dences caused by sum are eliminated, thus the threads can be executed completely

in parallel without any synchronization required. The final result of the reduction
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while(cond1) {

while(cond2) {

sum++;

}

. . .

=sum;

. . .

}

(a) Using intermediate

result of reduction

variable

while(cond1) {

while(cond2) {

sum[i]++;

}

. . .

wait(sum);

=sum+sum[i];

. . .

sum+=sum[i];

signal(sum);

}

(b) Reduction transformation

with explicit forwarding

while(cond1) {

while(cond2) {

sum0++;

}

. . .

wait(sum);

=sum+sum0;

. . .

sum+=sum0;

signal(sum);

}

(c) Replacing sum[]

with sum0

Figure 5.7: Reduction variable with an additional use.

operation is computed after parallel execution ends.

In practice, it is not necessary that each thread needs to be assigned a distinct

private variable. The number of private variables created usually equals to the

number of active threads, so that each of them can access a different variable, and

the same variable can be shared by multiple threads as long as they are not active

simultaneously.

5.3.2 Partial Reduction Elimination

Although reduction elimination is effective in removing inter-thread dependences,

the application of this technique is limited due to one important constraint—

intermediate results of the reduction operation cannot be used anywhere in the

parallelized loop.
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In the example shown in Figure 5.7(a), the intermediate result of the reduction

variable sum is used in the outer loop. In order to retrieve the intermediate

result, the reduction variable must be communicated between the parallel threads.

Fortunately, we can perform partial reduction elimination and update the value of

sum only once in the outer loop, as shown in Figure 5.7(b), where all uses of the

reduction variable sum in the outer loop is replaced with sum+ sum[i]. Although

the reduction variable is not eliminated, its impact on the parallel performance

is greatly reduced, as we can see that the critical forwarding path between the

update of sum in a thread and use of it in the successor thread becomes relatively

small.

Another benefit of this transformation is that the summation step can be elim-

inated. Since the reduction variable is explicitly communicated between threads

during the parallel execution, its final value is immediately available after the

parallel execution.

Furthermore, because TLS provides implicitly renaming for the same variable

used in different threads, we can avoid the creation of the array sum[ ] and use a

single scalar variable sum0 to hold the partial result of the reduction operation,

as shown in Figure 5.7(c).

Just like any other variables that are communicated through synchronization,

communication of such reduction variables can be further improved with instruc-

tion scheduling that is described in Section 5.2. For instance, signal(sum) can
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be hoisted to an earlier point, so that the critical path length due to sum can be

further reduced.

5.3.3 Aggressive Reduction Transformation I

Reduction transformation described in Section 5.3.2 effectively reduces the length

of critical forwarding path. However, not all usage patterns of reduction variables

can be optimized with this transformation. In the example shown in Figure 5.8(a),

the signal instruction cannot be scheduled before the inner loop because it depends

on the value of sum0 that is computed by the inner loop, and wait instruction can-

not be scheduled after the inner loop because it is used to guard a branch instruc-

tion. As a result, the critical forwarding path introduced by the communication

of sum is still very long after reduction transformation.

However, the outcome of the branch instruction guarded by the reduction vari-

able is often predictable, and we can exploit this predictability to postpone the

use of the reduction variable till after the completion of the inner loop. In the

example shown in Figure 5.8(b), the branch is predicted as not-taken, and it is

moved across the inner loop and executed as a verification. In the original location

of this branch, both sum0 and x are saved, so that they can be used later in the

verification. The use of sum is delayed so that the critical forwarding path is re-

duced. When the value of sum becomes available, and the branch is proved to be

mis-predicted, the thread must be squashed and an un-optimized version of code

68



while(cond1) {

wait(sum);

if(sum+sum0>x)

work1;

else

work2;

. . .

while(cond2) {

sum0++;

}

. . .

sum+=sum0;

signal(sum);

}

(a) Used to determine

a branch outcome

while(cond1) {

sum0’=sum0;

x’=x;

work2;

. . .

while(cond2) {

sum0++;

}

. . .

wait(sum);

if(sum+sum0’>x’)

recovery;

sum+=sum0;

signal(sum);

}

(b) Predicting

branch outcome

then verifying

while(cond1) {

wait(sum);

while(cond2) {

sum0++;

if(sum+sum0>100)

return;

work1;

}

. . .

sum+=sum0;

signal(sum);

}

(c) Used in the

inner loop

while(cond1) {

while(cond2) {

sum0++;

work1;

}

. . .

wait(sum);

if(sum+sum0>100)

recovery;

sum+=sum0;

signal(sum);

}

(d) Predicting

branch outcome

then verifying

in the outer loop

Figure 5.8: Using the intermediate result of a reduction variable to determine a

branch outcome.

must be executed [58]. The squash/recovery mechanism that enables this aggres-

sive optimization is already available in TLS, thus no extra hardware support is

required.

5.3.4 Aggressive Reduction Transformation II

The aggressive transformation described in Section 5.3.3 does not handle all usage

patterns of sum within the loop: the reduction variable can be used in the inner

loop, as shown in Figure 5.8(c). In order to reduce the critical forwarding path

introduced by such usage, the branch in the inner loop has to be moved to the
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outer loop. Is it possible to make such a code transformation and to guarantee

that all mis-predictions are detected? The answer is yes, and the key to this

transformation is that most reduction operations are monotonic. If the reduction

variable is monotonically increasing or decreasing and the branch is to test whether

it is greater or less than a certain loop invariant, the verification can be delayed

until the inner loop is complete. In our example, if the condition sum+sum0 > 100

is true in the inner loop, it must also be true for the test in the outer loop. So

that mis-predictions can always be detected by the delayed verification in the outer

loop, as shown in Figure 5.8(d).

5.3.5 Transformation Algorithm

Figure 5.9 shows the algorithm for the reduction transformation of a particular

loop. An operation with a form of var = var opr x is recognized as a reduction

operation, where the operator opr is limited to be an addition or subtraction under

current implementation, and the second operand x can be either a variable or

a constant. The variable var used in the reduction operation is recognized as

a reduction variable. All reduction variables in the loop are identified through

pattern matching. In addition, each of identified reduction variable has to satisfy

the following requirements:

1. There is no additional definition of a reduction variable in the loop besides

the reduction operation.
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2. The reduction variable is not alias with any other variables or procedure calls

in the loop.

The partial reduction elimination is applied first. For each particular reduction

variable var, a new variable var0 is created to hold the partial result of var in

each loop iteration. The result of var is accumulated at the end of each loop

iteration, either before a loop continuation or a loop break. An additional use of

the intermediate result of var is replaced with the use of var+var0, and var used

and defined in a reduction operation is replaced with r0. Note that there could be

multiple additional uses and reduction operations, and all of them are transformed

uniformly with this algorithm.

After partial reduction elimination is applied, aggressive reduction transfor-

mation is performed. The targets of aggressive transformation are those highly

predictable conditional branches that use the reduction variable var. Either ag-

gressive transformation I or II is applied depending on whether a branch is in the

current loop or in an inner loop.

If a branch is in the current loop, it is replaced with a goto to the predicted

target, and all variables used to compute the branch outcome are saved to tem-

poraries. The verification code is generated by copying the original branch and

replacing all variables with the saved temporaries. A special recovery instruction

is inserted into the verification code on the alternative path that is predicted not

to taken. If the verification detects a mis-prediction, that is, the alternative path
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R <- find all reduction variables in the loop;

for each reduction variable var in R {

\* 1. partial reduction elimination *\

create a new variable var0;

for each reduction operation of var

replace var with var0;

for each additional use of var

replace var with var + var0;

insert var0 < −0 to the beginning of the loop;

insert var < −var + var0 before any continuation/break in the loop;

\* 2. aggressive reduction transformation *\

for each highly predictable conditional branch that uses var {

if (the branch is in the current loop nest) {

insert var0′ < −var0, x′
1

< −x1, x′
2

< −x2, ..., x′
n < −xn before

the branch, where x1, x2, ..., xn are the variables used

to compute the branch outcome;

insert a prediction verification before each var < −var + var0,

where each verification test is a copy of the branch

with all variables replaced with the saved ones;

replace the branch with a goto to the predicted target;

}

else if (var is monotonically increased or decreased and

it is compared with a loop invariant) {

replace the branch with a goto to the predicted target;

insert a prediction verification before each var < −var + var0,

where each verification test is a copy of the branch;

}

}

}

Figure 5.9: Algorithm for reduction transformation.
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is actually taken, this recovery instruction will be executed and causes the squash

of the current thread. A verification code will be inserted before var<-var+var0

(inserted by the partial reduction elimination) in each loop continuation/break

point that can be reached by this branch.

If a branch is in an inner loop, the transformation is applied when the reduction

variable is monotonically increasing or decreasing. However, there is one additional

requirement for the branch to be correctly transformed, that is, a mis-prediction

of that branch in the inner loop should always be detected by the verification code

in the outer loop.

Let’s first examine the case where the reduction variable is monotonically in-

creasing. In such a case, the reduction variable has the following property: the

value of var at the prediction point in the inner loop is always no greater than the

value of var in the outer loop. Now assume that the prediction in the inner loop

is (var <= y), where y is the loop invariant. If a mis-prediction happens, that

is, (var > y), the outer loop will also detect that var is greater than y since the

value of var observed by the outer loop is no smaller than the value of var in the

prediction point. As a result, such a mis-prediction can be always detected in the

outer loop. Now let’s assume that the prediction in the inner loop is (var >= y).

A mis-prediction happens when (var < y). However, such mis-prediction may not

be detected in the outer loop since the value of var in the outer loop is no smaller

than the value of var in the prediction point, and it is possible that (var >= y)
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is true in the outer loop. In summary, when a reduction variable is monotonically

increasing, a failure of the prediction of (var <= y) or (var <= y) in the inner

loop is guaranteed to be detected in the outer loop. So the additional requirement

for the branch is that it should has one of the following tests: (var <= y), (var

< y), (var >= y), or (var > y), and the corresponding prediction should be: (var

<= y), (var < y), (var < y), or (var <= y).

Similarly, when the reduction variable is monotonically decreasing, the branch

should also has one of the following tests: (var <= y), (var < y), (var >= y), or

(var > y). However, in contrast to the prediction that is made for a monotonically

increased reduction variable, here the prediction should be: (var > y), (var >=

y), (var >= y), or (var > y) accordingly.

Such branch prediction is often highly accurate. The reason is that when a

reduction variable is monotonically increasing, most of time it is less than a loop

invariant, while when a reduction variable is monotonically decreasing, most of

time it is greater than a loop invariant. Consequently, the branch outcome is

highly predictable.

5.4 Iteration Merging for Load Balancing

In TLS, to preserve the sequential semantics, speculative threads must be commit-

ted in order. Thus, if a short thread that follows a long thread completes before

the long thread, it must stall until the long thread completes. When the workload
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(a) CFG of a nested loop. (b) Parallel execution.

Figure 5.10: Load imbalance.

is not balanced between parallel threads, such waiting time can be significant to

cause the performance degradation.

Figure 5.10(a) shows the CFG of a doubly nested loop. Assume the outer loop

is selected for parallelization. A thread can take two possible paths: the path

A → B → D on the left, and the path A → C → ... → C → D on the right.

However, a thread that takes the right path is much longer than a thread that takes

the left path due to the execution of the inner loop on the right path. This causes

the load imbalance problem during parallel execution as shown in Figure 5.10(b).

Thread T1, T4, T7 and T8 take the long path, while thread T2, T3, T5, T6 take

the short path. The short thread T2 and T3 finish their execution much earlier

than the long thread T1, however, they have to wait until thread T1 commits its

results in order to preserve the correct sequential semantics.

75



(a) CFG after iteration merging. (b) Parallel execution.

Figure 5.11: Iteration merging.

5.4.1 Iteration Merging

The load imbalance becomes a severe problem when there are variations in the

thread size among consecutively executed threads. One possible way to solve this

problem is to combine multiple consecutive short iterations with a long iteration

to make the workload more balanced. However, it is often difficult to statically

determine how many consecutive short iterations should be merged. Instead, we

propose a compiler transformation technique called iteration merging to transform

the loop in such a way that the number of iterations to be merged are determined

dynamically.

The transformation is illustrated in Figure 5.11(a). In order to merge multiple

short iterations with a long iteration shown in Figure 5.10(a), a new inner loop is
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constructed for the path A → B → D, which is marked by the shadowed blocks.

For all basic blocks that can be reached from the outside of this inner loop, tail

duplications are needed in order to eliminate side entries. In this example, block

D′ is tail duplicated and inserted in the outer loop. A new block E is also inserted

to the beginning of the outer loop, and only contains a trivial unconditional branch

that transfers the control flow to A. Later a fork instruction will be inserted to E

in order to spawn a new thread at runtime.

After iteration merging, the execution of a thread always starts with the short

iteration, and multiple short iterations could be executed by the newly formed inner

loop until the control transfers from block A to block C, that is, a long iteration

is encountered. This long iteration is executed by the same thread right after the

execution of multiple short iterations. As a result, more balanced workloads can

be achieved after merging, as shown in Figure 5.11(b).

5.4.2 Transformation Algorithm

Figure 5.12 show the algorithm for iteration merging of a particular loop. Before

iteration merging is applied, we have to determine whether a loop has unbalanced

workloads. A typical loop that has load imbalance problem often has time consum-

ing inner loops or procedure calls that leads to long iterations. The ratio between

the size of long iteration and short iteration is estimated by the following equation:

ratio =
coverage × (1 − p)

(1 − coverage) × p
(5.1)
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L <- find the inner loop or procedure call with the maximal ratio;

bb set <- find all basic blocks that can be reached by L;

for each basic block bb in bb set that has a side entry {

bb set <- tail duplicate(bb set, bb);

}

create a new loop head H for the outer loop;

for each loop tail tb in bb set {

re-direct tb to H;

}

Figure 5.12: Algorithm for iteration merging

where coverage is the coverage of the inner loop or procedure call in the outer

loop that needs to be transformed, and p is the probability that the inner loop or

procedure call is executed in each outer loop iteration. Intuitively, an inner loop or

procedure call with higher coverage and lower execution probability is more likely

to cause the larger variations in the iteration size of the outer loop. The one that

has the largest ratio is selected for transformation.

During transformation, a set of basic blocks that can be reached from the inner

loop or procedure call are identified and stored into bb set. For each basic block

bb in bb set that has a side entry, tail duplication is performed such that all basic

blocks that can be reached by bb are duplicated. The bb set is updated accordingly

after each tail duplication. Finally, a new loop head H is created for the outer

loop, and all loop tails in bb set are re-directed to this new loop head.
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5.5 Case Study with Compression Applications

To demonstrate the importance of the proposed optimization techniques, we con-

duct a case study of compression applications for which TLS typically achieves

modest speedup. Two compression benchmarks bzip2 and gzip from SPEC2000

benchmark suite are selected for an extensive study [67].

BZIP2

Bzip2 [8] represents one class of compression applications that uses a block-based

algorithm. It divides the input data into blocks of the size N ranging from 100k to

900k bytes, and processes the blocks sequentially. While it is possible to process

different blocks in parallel, the huge size of the speculative data modified by each

thread often exceeds the capacity of speculative buffer provided by TLS, which

is typically from 16k to 32k bytes. The frequent stalls due to the buffer overflow

inhibit most of the performance gains from TLS.

During the compression of each block S of size N , the most time consuming

part is Burrows-Wheeler Transform (BWT). It forms N rotations of a block by

cyclically shifting S, and sorts these rotations lexicographically. Bucket sort is used

in the main sorting phase. The buckets are organized as a two-level hierarchical

structure. The big bucket in the outer level contains all rotations starting with

the same character, while the small bucket in the inner level contains all rotations

starting with the same two characters.
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Consequently, a two-level nested loop is used to traverse each bucket to sort all

rotations inside. The outer loop seems an ideal target for parallel execution since

sorting of big buckets can be done independently. However, in order to speedup

the sequential algorithm, the information about the sorting of the current bucket

is kept in the global data structures such as quadrant and used in the sorting of

following buckets to avoid redundant computations. Also, the results of sorting the

current big bucket are used to update other unsorted buckets. As a result, those

optimizations for sequential algorithm introduces inter-thread dependences that

are undesirable for parallel execution. On the other hand, the performance of the

inner loop is mainly limited by the reduction-like variable workDone. Reduction

elimination cannot be applied here since workDone is also used by non-reduction

operations in the loop. The sorting of each small bucket is done by calling qSort.

Since qSort is not always called in every inner loop iteration, it introduces unbal-

anced load among threads.

The compression algorithm also includes other phases such as run-length en-

coding, move-to-front encoding, and Huffman encoding. The performance of the

main loops in those phases are typically limited by long critical forwarding paths

that are hard to optimize.

The decompression phase in bzip2 has much lower coverage than in the com-

pression phase. Similar to compression, decompression is performed for one block

at a time. Decompression of multiple blocks cannot run in parallel due to the
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size limitation of the speculative buffer. Most loops in the decompression phase is

sequential due to the fact that the decoding of a character is completely dependent

on the previous characters.

GZIP

gzip [71] represents another class of compression applications that uses a dictionary-

based algorithm. The input data is scanned sequentially, once a repeated string is

detected, it is replaced by a pointer to the previous string. A hash table is used

for detecting a repeated string. All input strings of length three are inserted in the

hash table.

Two versions of the algorithm are implemented. Deflate fast is a simplified

version, which is fast but with low compression ratio. The main loop iterates

through all input characters. Each time a match is found, it is selected immediately.

The main performance limitation is caused by the use of global variables such as

lookahead and strstart. Deflate, a more complex and time consuming version,

uses a technique called lazy evaluation in order to find a longer match. With lazy

evaluation, the match is not selected immediately. Instead, it is kept and compared

with the matches for the next input string for a better choice. However, the use

of current match in the next matching step causes additional data dependences.

Both deflate and deflate fast call longest match to find the longest match among

all strings with the same hash index. The average iteration size of the main loop in
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longest match is typically small due to the facts that most of strings do not match

with the current string and a fast check is used to avoid unnecessary comparison.

Similar to bzip2, the decompression phase in gzip has a much lower coverage

than the compression phase. The decompression is performed sequentially since the

decoding of the current character depends on the characters decoded previously.

As a result, it is hard to extract parallel threads in the decompression phase.
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Chapter 6

Performance Evaluation

6.1 Simulation Framework

The compiler techniques described in the previous chapters are evaluated on a

simulator that is built upon Pin [43]. It models a CMP with four single-issue

in-order processors. The configuration of our simulated machine model is listed

in Table 6.1. Each processor has a private L1 data cache, a write buffer, an

address buffer, and a communication buffer. The write buffer holds the data that

are modified by a speculative thread [62]. The memory address accessed by any

exposed load from a speculative thread is kept in the address buffer, which is

checked by each store from previous threads for detecting possible inter-thread

dependence violations. The communication buffer is used for storing the data

forwarded by the immediate predecessor thread during synchronization. All four
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Table 6.1: Simulation parameters.
Issue Width 1 Main Memory Latency 50 cycles

L1-Data Cache 32KB, 2-way, 1 cycle Commu. Buffer 128 entries, 1 cycle

L2-Data Cache 2MB, 4-way, 10 cycle Commu. Delay 10 cycles

Cache Line Size 32B Thread Spawning 10 cycles

Write Buffer 32KB, 2-way, 1 cycle Thread Squashing 10 cycles

Addr. Buffer 32KB, 2-way, 1 cycle

processors share a L2 data cache, which is used as a safe storage to store the

committed non-speculative data.

All simulations are performed using the ref input set. To reduce the simulation

time, a simple sampling technique is used. For each parallelized loop, it is simulated

up to 1 thousand invocations, and each invocation is simulated up to 0.1 million

iterations. For each non-loop thread, it is simulated up to 0.1 million invocations.

Overall, by using this sampling technique, we are able to simulate up to 10 billion

instructions while covering all parallel threads in the program.

6.2 Benchmark Description

We select SPEC2000 benchmark suite for this evaluation. 11 integer benchmarks

(mcf , crafty, twolf , gzip, bzip2, vpr, vortex, parser, perl, gap, and gcc) and

4 floating point benchmarks (ammp, art, equake, and mesa) are studied. All of

them are written in C, and represent a wide class of general-purpose applications

that are hard to parallelize by traditional parallelizing compiler.
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Table 6.2: Loop statistics.
Application Number of Maximum

Name Loops Nest Level

CINT2000 mcf 47 4
crafty 1,905 9
twolf 839 7
gzip 185 6
bzip2 153 9

vpr-place 387 5
vpr-route 387 6
vortex 181 7
parser 498 10
perl 748 8
gap 1,680 10
gcc 2,592 12

CFP2000 ammp 68 10
art 373 6

equake 88 5
mesa 868 6

Average 687 7.5

6.3 Loop Selection

In this section, the effectiveness of loop selection is evaluated. We list the statistics

for the loops in all benchmarks in Table 6.2. The level of loop nest is measured

based on the loop graph described in Chapter 3. The loop graph is built dynamically

by using ref input set, and all the recursive edges in the graph have been removed.

From Table 6.2, we can see that both integer and floating point benchmarks

have complex loop nests. On average, each of them has 687 loops with an average

nest level of 7.5. In the extreme case of gcc, it has 2592 loops with the maximal

nest level of 12. Consequently, it is difficult to select loops from such complex loop

nests without a systematic approach.
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As described in Chapter 3, the key to the success of loop selection is to accu-

rately predict the speedup for each individual loop. We have designed three loop

speedup estimation techniques according to different strategies used in estimating

the synchronization cost. Here is the short description of these three techniques.

The first estimation technique (estimation I) uses a simple estimation strategy

that counts the number of instructions involved in inter-thread data dependence

to approximate the impact of synchronization. The second estimation technique

(estimation II) takes into consideration the timing of executing the producer in-

struction and the consumer instruction of each dependence pair, and select the

one that causes the longest stall of the consumer instruction to estimate the syn-

chronization cost. The third technique (estimation III) takes one step further by

considering the effects of instruction scheduling, so that the timing estimation of

the producer instruction and the consumer instruction is based on the dependence

graph.

6.3.1 Statistics for the Selected Loops

All three speedup estimation techniques are implemented in the loop selection

phase, and three sets of loops are selected. The statistics for the selected loops are

listed in Table 6.3, Table 6.4, and Table 6.5 respectively. For comparison, we also

use the speedup obtained from simulation as the perfect estimation. The loops

selected by using this perfect estimation are treated as the upper bound of loop
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Table 6.3: Loop statistics of estimation I.
Application Number of Average Average

Name Loops Nest Level Iteration Size

CINT2000 mcf 8 1.75 214
crafty 6 4.16 265
twolf 16 1.93 4,679
gzip 7 2.85 307
bzip2 18 3.77 346

vpr-place 4 3 248
vpr-route 18 2.77 370

vortex 10 3.9 1,971
parser 42 4.64 207
perl 10 3.9 543
gap 10 3.8 1,026
gcc 81 3.53 281

CFP2000 ammp 25 4.28 334
art 19 4.15 325

equake 8 2 220
mesa 4 3 3,530

Average 18 3.34 929

selection. The statistics for these perfectly selected loops are listed in Table 6.6.

Note that, the nest level of a loop in the loop graph is defined as the length of the

longest path from the outer most loop to that particular loop. So the higher nest

level a loop has, the more deeply it is nested. The loop iteration size is measured

by counting the number of dynamic instructions.

Based on the statistics shown in these tables, we make the following observa-

tions:

First, estimation I tends to select loops with lower nest level than other two

techniques. Those loops have larger iteration size with 929 dynamic instructions

on average. As we described previously, this simple estimation only considers the

instructions directly involved in the inter-thread data dependence, and the number
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Table 6.4: Loop statistics of estimation II.
Application Number of Average Average

Name Loops Nest Level Iteration Size

CINT2000 mcf 4 4.5 235
crafty 7 5.17 127
twolf 4 2.25 209
gzip 3 2.33 322
bzip2 13 3.84 218

vpr-place 2 3.5 154
vpr-route 9 2.88 243

vortex 6 3.83 221
parser 10 4.8 149
perl 5 4.8 257
gap 3 4 119
gcc 19 4.2 186

CFP2000 ammp 15 4.26 337
art 17 3.94 343

equake 4 2.5 233
mesa 5 6 146

Average 8 3.9 219

of such instructions becomes relatively small when the iteration size becomes large.

As a result, those loops are predicted to have high speedup and are more likely be

selected by estimation I.

Second, estimation II usually selects loops with higher nest level. Those loops

have much smaller iteration size with 219 dynamic instructions on average. The

number of loops selected by this technique is much less than other two techniques.

Since this technique ignores the effects of possible thread optimizations such as

instruction scheduling, the small number of loops selected by this technique indi-

cates that, without thread optimizations, few loops achieve good performance in

these benchmarks.

Third, estimation III tends to select loops with the average nest level higher
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Table 6.5: Loop statistics of estimation III.
Application Number of Average Average

Name Loops Nest Level Iteration Size

CINT2000 mcf 13 2.38 174
crafty 5 4.11 371
twolf 19 2.26 244
gzip 6 2.83 308
bzip2 19 3.84 410

vpr-place 3 3 250
vpr-route 19 3 968

vortex 9 4 647
parser 40 4.35 297
perl 9 4.77 372
gap 7 3.8 213
gcc 98 3.91 277

CFP2000 ammp 21 3.85 464
art 25 3.84 327

equake 9 1.77 242
mesa 4 2.66 373

Average 19 3.4 371

than estimation II after the effects of thread optimization have been considered.

The average iteration size with 371 dynamic instructions is also larger than esti-

mation II, but is much smaller than estimation I. However, the number of loops

selected by this technique is similar as estimation I.

Finally, for perfect estimation, it tends to select more loops, especially for gcc

and parser, both of which have significant number of loops. We can also see that,

to achieve the best performance, the average nest level of the selected loop is 3.36.

Neither benchmark achieves this best performance by simply selecting either outer

loops or inner loops.
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Table 6.6: Loop statistics of perfect estimation.
Application Number of Average Average

Name Loops Nest Level Iteration Size

CINT2000 mcf 12 2.21 132
crafty 13 4.09 176
twolf 14 2.17 644
gzip 8 2.76 195
bzip2 21 3.84 624

vpr-place 5 2.8 257
vpr-route 17 2.92 667

vortex 11 3.97 389
parser 54 4.41 812
perl 13 4.84 324
gap 11 3.78 356
gcc 124 3.85 278

CFP2000 ammp 18 3.71 684
art 22 3.97 426

equake 8 1.76 478
mesa 6 2.72 942

Average 22 3.36 462

6.3.2 Performance Impact of Loop Speedup Estimation

To study the performance impact of different speedup estimation techniques, we

generate loop threads for the selected loops. Instruction scheduling is then ap-

plied on these loop threads to improve the synchronization due to register depen-

dence [69]. We run the final parallelized code on our simulator. The program

speedup is shown in Figure 6.1 and the loop coverage is shown in Figure 6.2. Note

that, the coverage is measured by counting the number of cpu cycles when a fully

optimized sequential version of code is simulated.

Estimation I, despite its simplicity, achieves comparable performance as estima-

tion III for over half of benchmarks (especially for floating point benchmarks). For
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Figure 6.1: The program speedup of loop threads.

some benchmarks such as mcf, twolf, and perl, it tends to over-estimate the perfor-

mance of those loops with high coverage, and cannot achieve similar performance

improvements as estimation III.

Estimation II, without considering the effect of optimizations, usually selects

loops with lower coverage. For some benchmarks such as mcf, vpr place, and

mesa, such low coverage of the selected loops results in poor program performance.

Overall, this estimation technique is too conservative in selecting loops.

Estimation III achieves the best performance improvement across all bench-

marks. Such improvement is close to the perfect estimation with a difference less

than 5%.

Finally, for some benchmarks such as crafty and gap, the loop coverage is very

low (below 20%) even under the perfect estimation. This strongly indicates that

the loop-level parallelism is limited in such programs, and it is necessary to exploit

parallelism beyond loops.
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Figure 6.2: The coverage of loop threads.

6.4 Non-loop Partitioning

In this section, we evaluate the effectiveness of the non-loop partitioning algorithm

described in Chapter 4. Non-loop partitioning is performed after loop threads are

extracted in the loop selection phase. Table 6.7 lists the statistics of the non-loop

threads extracted from each benchmark.

Overall, we extract 255 non-loop threads from 9 programs. For the remaining

programs (mcf, gzip, vpr-place, ammp, art, equake, mesa), non-loop threads are

not created since they have substantial amount of loop-level parallelism. The

extracted non-loop threads have reasonable size with 250 dynamic instructions on

average. The program speedup achieved by using non-loop threads is shown in

Figure 6.3, and the coverage of non-loop threads is shown in Figure 6.4. Although

the achieved speedup (1.04 on average) is not as impressive as loop threads, non-

loop threads still helps especially for those programs that have limited loop-level

parallelism. For instance, the program speedup for crafty, gap and vortex are all
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Table 6.7: Non-loop thread statistics.
Application Number of Average

Name Non-Loop Threads Thread Size

CINT2000 mcf 0 0
crafty 33 238
twolf 19 372
gzip 0 0
bzip2 11 274

vpr-place 0 0
vpr-route 9 234
vortex 22 278
parser 39 209
perl 21 267
gap 34 221
gcc 57 197

CFP2000 ammp 0 0
art 0 0

equake 0 0
mesa 0 0

around 1.05, and non-loop threads in these programs account for more than 20%

of total execution time.

One important factor that affects the performance of non-loops is thread pre-

dictability. In our thread execution model, compiler statically predicts the succes-

sor thread so that each fork instruction knows which thread needs to be spawned.

Figure 6.3: The program speedup of non-loop threads.
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Figure 6.4: The coverage of non-loop threads.

The prediction is verified by the predecessor thread after it finishes execution. At

this point, it knows exactly which thread needs to be executed next. If the succes-

sor thread is incorrectly predicted, it will be squashed along with all its successors.

Since the overhead caused by a mis-prediction is so significant, it is important to

know how well this static prediction scheme performs.

Figure 6.5: The prediction accuracy of non-loop thread.

Figure 6.5 shows the accuracy of static prediction. It is measured as the proba-

bility that a thread correctly predicts its successor thread. One means the successor

thread is always correctly predicted, while zero means it is always incorrectly pre-
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Figure 6.6: The performance impact of thread prediction.

dicted. For all the benchmarks, the static prediction achieves high accuracy with

90% on average. This is because our non-loop partitioning algorithm is based on

the frequent execution path, which is highly predictable in most of cases.

The performance impact of static prediction is shown in Figure 6.6. Our static

prediction is compared against an ideal scheme where each successor thread can

always be correctly predicted. Our static prediction achieves the performance

improvements close to this ideal scheme with the difference less than 1% for all the

benchmarks. The high prediction accuracy minimizes the performance impact of

mis-predictions.
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6.5 Impact of Instruction Scheduling for Mem-

ory Dependence

In this section, the impact of instruction scheduling for memory dependence is

evaluated. The instruction scheduling is applied on both loop threads and non-

loop threads. The loop threads are created from the set of loops identified by

estimation III described in Section 6.3, while the non-loop threads are the ones

created by non-loop partitioning described in Section 6.4.

To gain more insights on the parallel execution, we break down the total execu-

tion time into 7 categories. Busy represents the amount of time spent in executing

useful instructions. Idle represents the amount of time wasted due to the lack of

parallel threads. Syn represents the amount of time spent in synchronizing fre-

quently occurring memory dependences and all register dependences. Both the

waiting time of the consumer thread and inter-thread communication delay are in-

cluded in this category. Cache represents the amount of time spent on data cache

and main memory. Fail represents the amount of time wasted due to the squashes

of speculative threads. Imbalance indicates the amount of wasted time due to the

imbalanced workloads. Overflow represents the amount of stall time due to the

buffer overflow.

Figure 6.7 shows the performance impact of instruction scheduling on the loop

threads. The execution time of the loop threads is normalized assuming the se-
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Figure 6.7: The performance impact of instruction scheduling for memory depen-

dence on the loop threads.

quential execution time is 1. The first bar shows the normalized execution time of

the loop threads before instruction scheduling for memory dependence is applied.

The only thread optimization applied here is the instruction scheduling for regis-

ter dependence. The second bar shows the normalized execution time of the loop

threads after the instruction scheduling for memory dependence is applied.

Over half of benchmarks benefit from the instruction scheduling for memory

dependence. The most significant one is gzip, whose speedup is improved from

0.99 to 1.31. Other benchmarks such as mcf, twolf, vpr route, vortex, perl, gcc,

ammp, art, and mesa also achieve 3% to 16% performance improvements. For

these benchmarks, the improvements is mainly due to the reduced synchronization

cost. Instruction scheduling also may have side effects, for instance, it increases

the mis-speculation cost for mcf, gzip, bzip2, gap, gcc and mesa. There are two rea-

sons: i) the aggressive instruction scheduling in the producer thread may fail and
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Figure 6.8: The performance impact of instruction scheduling for memory depen-

dence on the non-loop threads.

cause the squash of the consumer thread and all following threads; and ii) the con-

sumer thread is executed more aggressively since the data is available much earlier,

and such aggressive execution may lead to more exposed loads that cause poten-

tial mis-speculations. For some benchmarks like vpr place and equake, instruction

scheduling has little impact on the performance, since memory dependence is no

longer the bottleneck for these benchmarks.

Figure 6.8 shows the performance impact of instruction scheduling on the non-

loop threads. The first bar shows the normalized execution time before instruction

scheduling for memory dependence is applied, while the second bar shows the

normalized execution time after the instruction scheduling for memory dependence

is applied.

Compared to the loop threads, the non-loop threads benefit little from in-

struction scheduling for memory dependence. For several benchmarks like crafty,

vpr route, vortex, and parser, the situation is even worse, and they are actually
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Figure 6.9: The performance impact of different instruction scheduling strategies

on the loop threads.

slowed down due to the increased mis-speculation cost. For other benchmarks, only

very little improvements have been achieved. As a result, instruction scheduling is

not recommended for the non-loop threads.

During aggressive instruction scheduling, one of the main concern is that how

aggressively the instructions should be scheduled. Data dependence probability

is a commonly used hint for such decision. For instance, if the probability of a

memory dependence is higher than some threshold, we will stop scheduling an load

instruction across the store it depends on. However, it is often difficult to select

such a threshold value to maximize the overall benefit of instruction scheduling. In

order to gain insights on how aggressive instruction scheduling should be, we try

different threshold values during scheduling. The higher the threshold is, the more

aggressive the instruction scheduling is. Since the loop threads are more likely

to benefit from instruction scheduling as it is shown previously, we use the loop

threads for this study.
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Figure 6.10: The performance impact of recovery code on the loop threads opti-

mized by using the most aggressive instruction scheduling strategy.

Figure 6.9 shows the performance impact of different instruction scheduling

strategies. The first bar shows the performance of the the most conservative

scheduling for which we set the threshold value to 20%, that is, a load will not be

scheduled across a store if the dependence probability is higher than 20%. The

second bar shows the performance of a more aggressive scheduling with the thresh-

old value of 50%. The third bar shows the performance of the most aggressive

scheduling with the threshold value of 80%. Overall, these three scheduling strate-

gies achieve similar performance improvements no matter how aggressive they are.

This strongly indicates that the data dependence is usually biased. Most of depen-

dences occur either very infrequently with a probability lower than 20% or very

frequently with a probability higher than 80%. Such property of data dependence

is also observed by Chen et al. [11].

From Figure 6.9, we can also see that the mis-speculation cost tends to increase

as the scheduling becomes more aggressive. To understand how important the
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recovery code is in reducing the mis-speculation cost, we select the loop threads

optimized by using the most aggressive scheduling strategy to study the impact

of recovery code. Figure 6.10 shows the experimental results. The first bar shows

the performance of the loop threads without recovery code support, while the

second bar shows the performance of the loop threads with recovery code support.

Several benchmarks such as gzip, vpr route, vortex parser, perl, gcc and ammp

have significant performance degradation when the recovery code support is not

available. The performance loss is mainly due to the increased mis-speculation cost.

With recovery code support, such mis-speculation cost can be greatly reduced so

that instruction scheduling can be performed more aggressively.

6.6 Impact of Reduction Transformation

In this section, the performance impact of reduction transformation is evaluated.

Reduction transformation is only applied to the loop threads. Table 6.8 shows for

each benchmark the number of loops with reduction variables transformed.

Figure 6.11 shows the performance impact of reduction transformation on the

loop threads. As the same as Figure 6.7, The first two bars shows the normalized

execution time before and after instruction scheduling for memory dependence is

applied, while the third bar shows the normalized execution time after both in-

struction scheduling and reduction transformation are applied. Three benchmarks

benefit significantly from this transformation: the speedup for twolf is improved
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Table 6.8: Loops for reduction transformation.
Application Number of

Name Loops Transformed

CINT2000 mcf 3
crafty 2
twolf 6
gzip 4
bzip2 5

vpr-place 1
vpr-route 3

vortex 4
parser 10
perl 3
gap 3
gcc 19

CFP2000 ammp 1
art 0

equake 0
mesa 2

from 1.73 to 1.85; the speedup for bzip2 is improved from 1.33 to 1.49; and the

speedup for mesa is improved from 2.04 to 2.59. Other two benchmarks parser

and gcc also benefit from this transformation although the improvements are not

as significant as the former three benchmarks. The speedup for parser is improved

from 1.30 to 1.34, while the speedup for gcc is improved from 1.08 to 1.13. The

improvements are mainly due to the reduced cost of synchronizing reduction vari-

ables. For both bzip2 and mesa, such synchronization costs are greatly reduced

after reduction transformation.
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Figure 6.11: The performance impact of reduction transformation on the loop

threads.

6.7 Impact of Iteration Merging

In this section, the impact of iteration merging is evaluated. It is the last opti-

mization that is applied on the loop threads. Its performance impact is shown in

Figure 6.12. The first three bars are the same as the ones shown in Figure 6.11,

while the fourth bar shows the performance improvements after iteration merging

is applied on top of previous two optimizations. Iteration merging is most effective

for two benchmarks bzip2 and parser. Both of them suffer the performance loss

due to imbalanced workloads. Note that, for parser, the load imbalancing becomes

a more severe problem after the reduction transformation is applied. The speedup

for bzip2 is improved from 1.49 to 1.69, while the speedup for parser is improved

from 1.33 to 1.39. Some loop threads in other two benchmarks twolf and gap also

benefit from this optimization, but since the coverages of those loops are low, no

significant improvements are achieved.
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Figure 6.12: The performance impact of iteration merging on the loop threads.

6.8 Program Speedup

Figure 6.13 shows the overall program speedup achieved from both loop threads

and non-loop threads after all optimizations described in the previous sections are

applied.

Figure 6.13: The program speedup achieved from both loop and non-loop threads.

On average, the loop threads achieve the speedup of 1.36, while the non-loop

threads achieve the speedup of 1.02. Both of them achieve the speedup of 1.38.

Loop threads are effective for all floating point benchmarks with the average
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speedup of 1.81. Loop threads are also effective for several integer benchmarks

such as mcf, twolf, gzip, bzip2 and vpr route, and all of them achieve the speedup

higher than 1.2. For the benchmarks that have limited loop-level parallelism such

as crafty, vortex and gap, non-loop threads can further deliver the speedup around

1.05.
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Chapter 7

Conclusions

Microprocessors that support multiple threads of execution are becoming increas-

ingly common. TLS allows a sequential program to be speculatively parallelized to

utilize the underlying hardware resources. Under TLS, The potentially dependent

threads can be executed in parallel while the sequential semantics of the program

is maintained through runtime checking. Although TLS greatly simplifies the au-

tomatic parallelization process, the compiler is still crucial to deliver the desirable

performance for those hard-to-parallelize applications.

In this thesis, we have studied several compiler techniques to explore the po-

tential of TLS. One important task of a TLS compiler is to identify speculative

threads with good performance potential. Loops are the primary candidates for

extracting parallel threads due to their regular structures and significant coverage.

We have proposed a loop selection algorithm that decides which loops should be
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parallelized for a program with a large number of nested loops. Based on the accu-

rate performance prediction of parallel execution, this loop selection algorithm is

effective in selecting a set of loops to maximize the overall program performance.

We have also observed that some general-purpose applications have limited loop-

level parallelism. For such applications, we have proposed a partitioning algorithm

to extract non-loop threads as the complementary to the loop threads.

The other important task of a TLS compiler is to optimize the performance

of extracted threads. We have proposed three optimization techniques to improve

the thread performance: instruction scheduling, reduction transformation and it-

eration merging. Instruction scheduling improves the efficiency of synchronizing

frequently occurring memory dependences; reduction transformation reduces the

impact of a class of reduction variables whose intermediate results are used by

non-reduction operations; iteration merging improves the load balancing by dy-

namically combining multiple short loop iterations with a long iteration to achieve

more balanced workloads.

All the proposed techniques are implemented in a TLS compiler framework

built on the Intel’s ORC compiler. On average, for 15 SPEC2000 benchmarks, we

achieve 1.36 program speedup from loop threads. For some applications that have

limited loop-level parallelism, we also achieve 1.05 program speedup from non-

loop threads. Overall, we achieve 1.38 program speedup from both loop threads

and non-loop threads. Our experimental results show that the compiler is crucial
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in delivering the desirable performance for general-purpose applications, and our

proposed techniques are effective in exploiting speculative parallelism under TLS.

The research work presented in this dissertation can be extended as follows.

First, exploiting TLP at single loop level may not be sufficient to fully utilize the

increasing computing resources on a modern multithreaded procssor, thus it is de-

sirable to extend our loop selection algorithm to identify multiple levels of parallel

loops and map them to the hardware hierarchically. Second, it is not clear whether

the traditional compiler techniques, such as procedure inlining and loop unrolling,

will deliver the desired performance when coupled with TLS. Furthmore, we need

to investigate the application of such optimizations to enhance the performance of

TLS. Our compiler framework provides a convenient way to study these problems.

Finally, our proposed techniques can be potentially applied to optimize programs

for transactional memory. However, since the sequential ordering of threads is not

mandatory in transactional memory, our performance estimation techniques need

to be reconsidered.
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