
4

A Modular Machine Learning System for Flow-Level Traffic
Classification in Large Networks

YU JIN, University of Minnesota
NICK DUFFIELD, JEFFREY ERMAN, PATRICK HAFFNER, and SUBHABRATA SEN,
AT&T Labs – Research
ZHI-LI ZHANG, University of Minnesota

The ability to accurately and scalably classify network traffic is of critical importance to a wide range of
management tasks of large networks, such as tier-1 ISP networks and global enterprise networks. Guided
by the practical constraints and requirements of traffic classification in large networks, in this article, we
explore the design of an accurate and scalable machine learning based flow-level traffic classification sys-
tem, which is trained on a dataset of flow-level data that has been annotated with application protocol
labels by a packet-level classifier. Our system employs a lightweight modular architecture, which combines
a series of simple linear binary classifiers, each of which can be efficiently implemented and trained on
vast amounts of flow data in parallel, and embraces three key innovative mechanisms, weighted threshold
sampling, logistic calibration, and intelligent data partitioning, to achieve scalability while attaining high
accuracy. Evaluations using real traffic data from multiple locations in a large ISP show that our system
accurately reproduces the labels of the packet level classifier when runs on (unlabeled) flow records, while
meeting the scalability and stability requirements of large ISP networks. Using training and test datasets
that are two months apart and collected from two different locations, the flow error rates are only 3% for
TCP flows and 0.4% for UDP flows. We further show that such error rates can be reduced by combining the
information of spatial distributions of flows, or collective traffic statistics, during classification. We propose
a novel two-step model, which seamlessly integrates these collective traffic statistics into the existing traffic
classification system. Experimental results display performance improvement on all traffic classes and an
overall error rate reduction by 15%. In addition to a high accuracy, at runtime, our implementation easily
scales to classify traffic on 10Gbps links.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management; I.5.2 [Pattern Recognition]: Design Methodology—Classifier design and
evaluation

General Terms: Algorithms, Measurement, Theory

Additional Key Words and Phrases: Communications network, traffic classification, machine learning

ACM Reference Format:
Jin, Y., Duffield, N., Erman, J., Haffner, P., Sen, S., and Zhang, Z.-L. 2012. A modular machine learning
system for flow-level traffic classification in large networks. ACM Trans. Knowl. Discov. Data 6, 1, Article 4
(March 2012), 34 pages.
DOI = 10.1145/2133360.2133364 http://doi.acm.org/10.1145/2133360.2133364

The work of Z.-L. Zhang was supported in part by the NSF grants CNS-0905037 and CNS-1017647, and an
AT&T VURI gift grant.
Authors’ addresses: Y. Jin, N. Duffield, J. Erman, P. Haffner, and S. Sen, AT&T Labs – Research, AT&T
Shannon Laboratory (Building 103), 180 Park Avenue, Florham Park, NJ 07932; email: {yjin, duffield,
erman, haffner, sen}@research.attt.com; Z.-L. Zhang, Department of Computer Science and Engineer-
ing, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, MN 55416; email:
zhzhang@cs.umn.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1556-4681/2012/03-ART4 $10.00

DOI 10.1145/2133360.2133364 http://doi.acm.org/10.1145/2133360.2133364

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:2 Y. Jin et al.

1. INTRODUCTION

Motivation. Today’s large IP networks, such as tier-1 ISPs and global enterprise net-
works, carry a mixture of traffic from a wide range of diverse applications. The ability
to accurately classify network traffic, namely map traffic to the types of applications
that generate them, is critical to the operations and management of such networks.
Security monitoring includes detection of known attacks, or unexpected growth in an
application usage that may indicate a new exploit. Traffic engineering in an ISP re-
quires better classification and prediction of peer-to-peer and video application traffic,
due to their high and growing bandwidth consumption. Identifying emerging applica-
tions and estimating their bandwidth requirements can also help ISPs better forecast
and adapt to application trends, and plan network capacity accordingly. Meeting and
monitoring service level agreements (SLAs) for business customers and other profit-
generating applications, as well as traffic policing and prioritization for performance-
sensitive applications, also require accurate traffic classification.

While a variety of network traffic classification methods have been proposed (see,
e.g., Sen et al. [2004], Karagiannis et al. [2004], Haffner et al. [2005], and Ma et al.
[2006]), most were developed for monitoring at the level of end hosts or enterprise
networks, and either do not meet the accuracy requirements of network management
tasks, or are too expensive to be scalably deployed in such large networks. For exam-
ple, the simplest and cheapest approach is to use port numbers; however, attribution
of applications based on port numbers alone is widely known to be problematic, lim-
ited by non-conventional use of port numbers, amongst other reasons [Sen et al. 2004].
While packet-based traffic classification techniques (e.g., Haffner et al. [2005] and Ma
et al. [2006]) are generally very accurate, they additionally employ application pro-
tocol level information, and hence require visibility beyond the packet’s network and
transport layer headers. At the line speed of high-capacity network links, special traf-
fic measurement devices are needed for such packet-based classifiers, making them
costly for large-scale deployment that could classify all network flows.

System Design Considerations. Guided by the practical constraints and requirements
of traffic classification in large IP networks, in this article we focus on the design of
an accurate and scalable traffic classification system that uses only IP flow-level net-
work data. Unlike packet-level data, flow-level data (derived from IP and transport
layer packet headers) is collected routinely and widely in large networks, and used for
various network management tasks. Their availability notwithstanding, the amount
of flow data is still enormous and thus poses challenging scalability issues in the de-
sign and operations of network traffic classification systems. Hence, a central research
question which this article attempts to address is the following: Is it possible to develop
a flow-level traffic classification system that meets the scalability and other require-
ments (e.g., can be inexpensively deployed in a large-scale network, producing reliable,
stable and interpretable results without frequent inputs or tracking by human opera-
tors), while attaining the accuracy of a packet-level traffic classification scheme? We
employ flow records created at two locations in a large Tier-1 ISP using specialized
measurement devices. These flow records are annotated with application labels by an
operational packet-level classification system that utilizes application protocol level
information. Using these flows as ground truth, we then explore (supervised) machine
learning (ML) techniques to train a flow-level classification system that accurately and
scalably reproduces the packet-level classification outcomes.

The main contribution of this article lies in the development of a machine-learning-
based flow-level traffic classification system, which utilizes a lightweight modular
architecture, together with several innovative mechanisms, for large-scale and accu-
rate traffic classification. The modular architecture combines a series of simple linear

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:3

binary classifiers each of which can be efficiently implemented and trained on vast
amounts of flow data in parallel and integrates them in such a manner that it attains
the accuracy of more sophisticated (but computationally more demanding, thus less
scalable) ML classifiers. This is achieved via three innovative mechanisms, (i) weighted
threshold sampling, which allows each of the simple binary classifiers to be adequately
and extensively trained on large training data despite the inherently imbalanced data
in terms of traffic class distributions; (ii) logistic calibration, which effectively han-
dles the differences in traffic class distributions of both training and testing data to
attain high accuracy when the outputs of the binary classifiers are integrated; and
(iii) intelligent data partitioning, which utilizes domain knowledge to intelligently par-
tition data based on certain features to further enhance the scalability and accuracy
of the system. This architecture is very naturally amenable to parallelization, which
is becoming increasingly prevalent with the advent of multicore machines. We there-
fore implemented our classifier as a multithreaded system to exploit such parallelism
wherever available.

Our second contribution is to propose a novel two-step-model to incorporate spa-
tial traffic class distribution information, or collective traffic statistics, as additional
features to further enhance traffic classification accuracy. By representing flows in
the network as a colored traffic activity graph (colored TAG) [Jin et al. 2010a], these
new features correspond to the closeness of different traffic classes on the graph. The
proposed two-step model seamlessly integrates such neighborhood information into
the existing traffic classification system. At the first bootstrapping step, we use the
existing system to conduct flow-level classification and construct a colored TAG with
initial labeling from aggregating flow-level classification results. In the second graph-
based calibration step, we employ the inherent neighborhood and local properties of
the edges in the TAG to calibrate (re-enforce) the initial edge labeling.

Preview of Evaluation Results. We evaluate our system’s performance along three prin-
ciple directions: spatial and temporal stability, classification accuracy, and training
and runtime scalability.

Extensive evaluations show that our flow-level classifier remains accurate over long
period of time as well as across different geographical locations. For example, for
training and testing data collected two months apart and from different locations, the
error rates are only 3% for TCP flows and 0.4% for UDP flows. Even for a larger time
difference of one year, the corresponding error rates are still only 5.5% for TCP and
1.2% for UDP traffic. By incorporating collective traffic statistics as features using
the two-step approach, we can further improve the accuracy on all traffic classes, and
reduce the overall error rate by 15%. The temporal persistence of accuracy suggests
that, once trained, the classifier can be effectively used for a long time without frequent
retraining. The spatial persistence of accuracy suggests that the classifier trained at
one location can be used at other places, obviating the needs for a deployment of a
packet level classification capability everywhere for collecting training data.

The accuracy of the classifier is a function of both the amount of the training data
and the number of iterations used by the machine learning algorithm. The training
component of our system is designed to be configurable. Given the time budget, it
can determine the amount of training data needed and the number of iterations of the
learning algorithm. For example, to get error rates of 3% for TCP and 0.4% for UDP,
the training time of our system was only around 2 hours.

We evaluated the runtime scalability of our system on different hardware architec-
tures under realistic traffic conditions for a large ISP. On a heavily loaded machine
monitoring two 1Gbps links, with only one thread, our system was able to handle a
load of up to 800K new flows arriving per minute. This figure is about 2 to 4 times

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:4 Y. Jin et al.

higher (depending on the time of the day) than the normal new flow arrival rate on
those links. On a multicore machine, using 10 threads, we were able to handle up to
6.5 million new flow arrivals per minute, which far exceeds the capability required for
classification on a 10Gbps link with similar utilization as the previous case.

We note that even though we evaluate our method using large ISP network data,
the challenges and requirements in other large networks, such as large enterprise
networks, are similar to ISPs and hence we believe our method is also applicable to
these networks.

Outline. The remainder of the article is organized as follows. Section 2 motivates the
problem by discussing the unique operational requirements and challenges. We then
give an overview of the proposed modular system architecture in Section 3, explain
the technical details of the design choices in Section 4, and evaluate each of them in
Section 5. We discuss how to use the two-step model to improve the classification accu-
racy based on the collective traffic statistics in Section 6. Section 7 presents the details
of implementation and optimization employed, and evaluates the accuracy, scalability
and stability of the whole system. Finally, Section 8 concludes the article.

1.1. Related Work

Most supervised learning-based approaches [Jiang et al. 2007; Moore and Zuev 2005]
use manually labeled data for training purposes and have major focus on accuracy.
Moore and Zuev [2005] extensively study the suitability of a Naı̈ve Bayes classifier for
Internet traffic classification. This work is continued in Jiang et al. [2007] by adapting
their approach to real-time traffic classification. Williams et al. [2006] compare five
population machine learning algorithms. Our work shares with theirs the same obser-
vation that training time varies greatly across different machine learning algorithms
and shall be taken into consideration in practice.

Because labeled training data is hard to obtain, many works propose using
unsupervised/semi-supervised learning methods for traffic classification. Bernaille
et al. [2006] use unsupervised learning of application classes by clustering of flow fea-
tures and a derivation of heuristics for packet-based identification. Similarly, Crotti
et al. [2007] use packet sizes, interarrival times, etc. of the first N packets as features
for their classifier. Erman et al. [2007] propose a semi-supervised ML approach based
on clustering flow statistics. All these approaches demand manual identification of the
traffic class for each cluster and hence are not scalable to large networks. Moreover,
these methods are known to be less accurate than supervised learning.

Automated construction of packet-level application signatures via ML was proposed
in Haffner et al. [2005]; by contrast, our focus is on automated construction of flow level
signatures, learning from the outcomes of packet-level classifiers.

In comparison to building a general traffic classification framework, many works
apply machine learning techniques to classify traffic under specific application sce-
nario. For instance, But et al. [2007] proposed the ANGEL system for detecting
and then prioritizing game traffic in ISP network. Iliofotou et al. [2009b] developed
a graph-based framework for classifying P2P traffic. Nguyen and Armitage [2006a,
2006b] proposed training the classifier on a combination of short subflows for fast traf-
fic classification and demonstrated that good classification results could be achieved
with subflows formed by as few as only 25 packets.

In contrast to much previous work, the major contribution in our article is that
we take into account many practical challenges, for example, scalability and stabil-
ity, for deployment of machine-learning-based traffic classification techniques in large
networks. Extensive evaluations demonstrate that our system meets the practical re-
quirements for traffic classification in such large networks.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:5

In additional to utilizing packet-level or flow-level features for network traffic classi-
fication, several recent studies [Iliofotou et al. 2009a; Karagiannis et al. 2005; Trestian
et al. 2008; Xu et al. 2005] have examined the problems of endpoint traffic character-
ization from network traffic data as well as other information. Of particular interest
is the multi-level traffic classification scheme (called BLINC) proposed in Karagian-
nis et al. [2005], which also exploits characteristics of traffic exchanged with other
hosts. Nonetheless, the goal of BLINC is primarily on characterizing the traffic of
endpoints, not the application classes used between two endpoints. Further, unlike
our two-step methodology for utilizing collective traffic statistics which is developed
based on sound machine learning models, BLINC is purely heuristic-driven, using ad
hoc (unsupervised) graph analysis. One difference in applicability of our work com-
pared with graph level classification of Iliofotou et al. [2009a] is that the latter is not
expected to work well for small traffic classes, for example, NetNews or FTP, for which
relatively few edges are observed, and for which hence the graph level features are not
statistically meaningful.

In terms of analyzing spatial patterns from network traffic data, McDaniel et al.
[2006] studies the so-called (host-level communities-of-interest (COIs) in network traf-
fic, and use the historical communications of COIs as reference profiles for detecting
propagation of malware. The notion of traffic activity graphs (TAGs) come from the
two recent studies [Iliofotou et al. 2007; Jin et al. 2009] which investigate the proper-
ties of various application-specific TAGs. The two-step methodology in this paper was
inspired by the findings in Jin et al. [2009].

Collective classification or inference [Sen et al. 2008] refers to a class of algorithms
that extend machine learning classifications techniques to network or graph data.
These techniques have been extensively studied on web data and social networks but
we are not aware of their application to IP traffic graphs. Besides its scale, a traffic
graph presents another challenge to traditional collective inference techniques: edge
(or node) labels can change with time. The only class of collective classification algo-
rithms that would scale to our data is iterative classification [Sen et al. 2008]. Com-
pared to iterative classification, our proposed two-step method is significantly simpler
and is especially well suited for time varying-graph data, as we shall see in Section 7.6.
We have applied the two-step method in Jin et al. [2010a] for classifying network level
traffic where port numbers are missing. In this article, we adopt the same approach
and demonstrate its usefulness in improving the classification accuracy and stability
of the flow-level traffic classifier. In comparison to Jin et al. [2010a], this article also
describes in detail the novel modular machine learning architecture for building the
flow-level traffic classification system and evaluates extensively the system in a large-
scale ISP network.

2. PROBLEM SETTING

We motivate the design of our flow-level classification system by discussing the target
operational environment and the unique challenges arising in large ISP networks,
before overviewing our proposed solution in Section 3.

2.1. Operational Requirements

Monitoring traffic in large IP networks presents challenges in speed and scale. They
typically span multiple geographically dispersed sites, including city level router cen-
ters housing 10s or 100s of routers equipped with high-speed (Gbps or higher) inter-
faces. Passive traffic flow measurement commonly takes place at routers, using, for
example, Cisco NetFlow. A traffic flow is a sequence of packets with a common key,
namely, the standard 5-tuple of IP protocol, source and destination IP addresses, and

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:6 Y. Jin et al.

Table I. TCP/UDP Broad Application Classes

Index TCP/UDP Class Exemplary Applications

1 TCP/UDP Business Middleware, VPN, etc.
2 TCP/UDP Chat Messengers, IRC, etc.
3 TCP/UDP DNS DNS application
4 TCP/UDP FileSharing P2P applications
5 TCP FTP FTP application
6 TCP/UDP Games Everquest, WoW, Xbox, etc.
7 TCP Mail SMTP and POP
8 TCP/UDP Multimedia RTSP, MS-Streaming, etc.
9 TCP/UDP NetNews News

10 TCP SecurityThreat Worms and trojans
11 TCP/UDP VoIP SIP application
12 TCP Web HTTP application

TCP/UDP ports, that are localized in time. Flow measurements comprise summary
statistics that aggregate information derived from a flow’s packet headers (including
the key, aggregate packet and byte counts for the flow, and timing information) that
are exported as IP flow records to a collector. Router-based flow measurement is widely
available in routers and provides a low-cost approach to network traffic measurement.

To serve the various needs network management tasks, such as traffic accounting
and security monitoring, we must classify each IP flow accurately into one of a number
of broad application classes (using one or both of TCP and UDP), each of which is
associated with one or more specific applications; see Table. I.

Since traffic flows are the only available data at most network sites, a flow-based
traffic classification system is a natural choice. In selecting an approach, we are drawn
to machine learning, which has been used to automatically derive classification rules
in settings when data sizes makes this infeasible as a manual task; see Section 1.1.
Thus, we focus on designing a machine learning based flow-level traffic classification
solution. The basic idea depends on having a training dataset comprising flow records,
which in addition to the usual flow level information, are also labeled with their appli-
cations and classes from Table I. As described more fully here, such labels are derived
from packet-based classifiers that can key off application protocol level information in
packets, in addition to the usual packet header fields. Using this training data, ma-
chine learning algorithms construct a new set of classification rules that can operate
purely at the (unlabeled) flow level, but that reproduce, at least approximately over a
population of flow records, the desired application class labels.

Training datasets of the type just described are typically acquired through packet-
level monitoring at special purpose measurement devices; this is described more fully
in Section 2.2. The expense of widespread deployment of such devices network wide
provides a powerful incentive for our approach. A limited deployment of such func-
tionality in one (or a small number of) representative network sites furnishes training
data that can be used to construct flow-level classifiers that can operate on flow level
measurement network wide.

The design of such a machine learning based flow-level traffic classification system
for the target operational environment must meet the following requirements.

— Accuracy. The flow-level classifier should attain similar performance to the packet-
based classifier, i.e., mapping flows to a set of application/class categories (“labels”)
with low error rates.

— Scalability has two aspects. First, training should not require prohibitively ex-
pensive computational resources. When retraining is necessary to maintain accu-
racy (periodically or in response to events) the time required should be controllable.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:7

Table II. Datasets from Two Sites

Site 1 (s1) Site 2 (s2)

w1 05/02/2008 to 05/08/2008 w1 06/12/2008 to 06/18/2008
w2 05/09/2008 to 05/15/2008 w2 06/19/2008 to 06/25/2008
w3 05/16/2008 to 05/22/2008 w3 06/26/2008 to 07/02/2008
w4 06/09/2008 to 06/15/2008 w4 07/03/2008 to 07/09/2008
w5 06/16/2008 to 06/22/2008 d1 04/12/2009
w6 06/26/2008 to 07/02/2008 d2 04/13/2009
w7 07/03/2008 to 07/09/2008

Second, at runtime, classification must be able to keep up with the high traffic vol-
ume and rates at each site, without requiring sampling prior to classification. In
practice, bursts of around 1 million new flows per minute must be accommodated
on Gbps links.

— Stability. The classifier is expected to remain accurate for a long duration with-
out retraining or human intervention. Likewise, the same classifier is expected to
be deployed at different sites without site-specific retraining or parameter tweak-
ing. Such temporal and spatial stability are particularly important, as retraining
requires collection and labeling of new packet-level training data, which may be
computationally expensive.

— Versatility. In order to accommodate changing needs of network management tasks
and the emergence of new applications, the traffic classifier should be easily re-
configurable to utilize different feature sets or new class labels, without having to
rebuild the entire system. Such capability is especially valuable, once the classifier
has been deployed in multiple different locations.

2.2. Data Characteristics and Challenges

Characteristics of the available training data also present several unique challenges
for our system design. Our datasets comprise flow records, annotated by application
labels, that were created by special purpose traffic measurement devices operating
at two geographically dispersed sites of a large ISP network. As in Haffner et al.
[2005] and Karagiannis et al. [2005], the labels are generated in an automated way
by the measurement device, using a set of packet-level rules based on combinations
of packet signatures that operate on layer-4 packet header information, and layer-7
application protocol signatures. The flow records do not include any application data;
neither do they report any user identity information. Due to the huge traffic volume,
sampling is employed in the creation of flow records, with 1 out of 20 flows reported
on, sampling over the standard flow level 5-tuples. However, for each sampled flow,
the flow record aggregates header information from all its packets, without further
sampling. The datasets contain flow records from approximately 40,000 ISP network
endpoints gathered at two sites, representing several hundred Terabytes of network
traffic. No endpoint is represented at both sites. The datasets are summarized in
Table II, where wisj denotes the whole ith week dataset from site j, and dksj to indicate
the whole kth day dataset from site j.

The distribution of flows over the application classes of Table I is highly unbal-
anced. The largest classes—Web and FileSharing—account for 60% to 80% of the total
flows in different weeks, while the smallest classes (e.g., NetNews and SecurityThreat)
contain only a few thousand flows out of millions. In addition, a portion of flows
(29.4% of total flows representing 19.9% of total bytes) cannot be classified using the
packet-based classifier, that is, they do not match any rule. This can be caused by
encryption of application level information, or the presence of new applications or se-
curity threats for which signatures are not yet developed. We call these flows Unknown

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:8 Y. Jin et al.

Table III. Flow-Level Features

Name Type Name Type

lowsrcport numeric lowdstport numeric
highsrcport numeric highdstport numeric
duration numeric (*) packet numeric
mean packet size (mps) numeric (*) byte numeric
mean packet rate (mpr) numeric (*) tos numeric
toscount numeric numtosbytes numeric
tcpflags text srcinnet {0,1}
dstinnet {0,1}

hereafter. The labeled flow records are used both as training and testing data, and
serve as the “ground truth” for our study. We exclude Unknown flows in our experi-
ment. (However, because we are adding new manual rules over time, our ground truth
on the training data is also expanding. The data classified by these new rules can,
in some sense, serve as ground truth for evaluating the accuracy of our classification
system on Unknown flows. Please see the Appendix Section for details).

The flow-level features used in our study are listed in Table III.1 The numeric val-
ues for the two (related) features lowsrcport and highsrcport are set using the follow-
ing rule: If the source port of a flow, say, x, is above 1024, then lowsrcport is set to
−1, and highsrcport is set to x; otherwise, lowsrcport is set to x and highsrcport is set
to −1. lowdstport and highdstport are set similarly. Duration, packet and byte rep-
resent the length of the flow, number of packets and bytes in the flow, respectively.
Mean packet size is the average bytes per packet, and mean packet rate is the average
packet interarrival time in seconds. The tcpflag feature contains all possible TCP flags
in the packets. The TOS (type of service) related features tos, toscount and numtos-
bytes are the predominant TOS byte, the number of packets that were marked with
tos, and the number of different tos bytes seen in a flow, respectively. The last two
features srcinnet/dstinnet equals 1 if the source/destination address belongs to the ISP
network, and 0 otherwise.

The training architecture must accommodate both the large size and the imbalance
of the training data, while producing accurate flow level classifiers in an acceptable
time. In addition, we must select the appropriate features from amongst the many
possible in order to avoid the poor accuracy which can result from overfitting. Even
though a number of powerful machine learning algorithms, in particular nonlinear and
kernel approaches, are capable of achieving high classification accuracy in general, we
learned during our study that a “black box” approach of employing existing machine
learning methods in a standard way does not provide a practical solution that meets
the accuracy, scalability, stability and versatility requirements. Instead, we must un-
derstand both the specific constraints and unique requirements of our setting, and
the inner workings of machine learning algorithms, then judiciously exploit domain
knowledge to guide our design. In the next section, we provide an overview of our solu-
tion: a lightweight modular architecture for large-scale network traffic classification,
and discuss several innovative mechanisms to address the operational requirements
and challenges.

3. SYSTEM DESIGN OVERVIEW

We now present an overview of the proposed solution. We focus on the design choices
for satisfying various operational requirements. We will provide a formal description

1The features marked (*) are not reported directly in flow records, but computed from quantities thereof.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:9

of the whole classification process and explain the technical details of different compo-
nents in Section 4.

Our key idea to address all these requirements is through modularization, that is,
we decompose the original monolithic multiclass traffic classification task into a series
of much simpler subtasks. Exploiting the availability of distributed systems and mul-
ticore machines, subtasks can be executed in parallel, resulting in high efficiency both
during the training phase as well as during real-time classification operations. Fur-
ther, the reduction in complexity due to partitioning makes possible that we can apply
more training data for a given total computational resource than in the unpartitioned
case; thereby enabling higher accuracy and training scalability.

3.1. Two-Level Modularization

Our system uses two levels of modularization. Figure 1(a) shows the first level parti-
tioning of the system: we exploit domain knowledge to intelligently partition the flow
data into m nonoverlapping flow sets according to certain flow features. For example,
the flow data can be partitioned based on protocols or flow sizes. We then run m mul-
ticlass (k-class) classifiers in parallel, where each one classifies flows in one of the m
partitions exclusively. This first level partitioning also enhances accuracy by training
a classifier particularly specific for the flows in each partition. We will discuss the
flow-size based partitioning strategy in Section 5.5, which is designed specifically for
enhancing the byte accuracy.

Zooming into one of the m multiclass classifiers, we show the architecture for the
second level modularization in Figure 1(b): this divides each k-class classifier into k
binary classifiers, that is, each binary classifier is a one-vs-rest classifier that separates
examples belonging to the associated broad traffic class from all others. For each flow,
the k binary classifiers produce k scores, indicating the likelihood that the flow belongs
to each of the k traffic classes. We then combine the binary classification results for
multiclass classification by assigning the flow to the traffic class with the highest score.
We note that we can also decompose the multiclass classification problem in a finer
granularity, for example, based on applications, which we will discuss in Section 5.5.

Previous studies have found the deviation from optimality resulting from a decou-
pled two-stage approach does not cause significant increase in error in practice [Rifkin
and Klautau 2004]. In our setting, the practical advantages of using one-vs-rest clas-
sifiers are considerable. Compared to the single k-class classifier, training k binary
classifiers can be both cheaper and faster. Up to k times less memory is required,
and with parallelization on a k-core machine, one can train the k binary classifiers at
least k times faster. Another advantage is flexibility. We can select unique features or
classification algorithms for different traffic classes for better accuracy or scalability.
We can also easily accommodate new class labels by adding new binary classification
modules for them.

3.2. Choice of Machine-Learning Algorithms

Any machine-learning algorithm can potentially serve as a binary classifier. However,
to strike a good balance between accuracy and scalability, we use state-of-the-art
classification algorithms that linearly combine first order predicates over features,
since these can be efficiently implemented without requiring immense computational
power. In particular, Adaboost [Freund and Schapire 1995] has execution time that is
easy to control, and it performed most accurately on our datasets. We also considered
alternative algorithms with more power to represent and learn complex non-linear
separations between classes. However, using higher order predicates, for example,

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:10 Y. Jin et al.

Fig. 1. A schematic representation of the modular traffic classification architecture.

classification trees, did not noticeably improve accuracy, while being much less
scalable both in training and real time operations.

3.3. Sampling and Calibration

The training architecture for individual classifiers, see Figure 1(c), was designed for
scalability. Due to the imbalance of the amount of training data across different ap-
plication classes, some class’ trainers would still be swamped by their training data,
even after partitioning into multiple one-vs-rest binary classifiers. Simple uniform
sampling cannot simultaneously reduce the data of the large classes to a workable
size while still retaining sufficient samples to maintain acceptable accuracy for small
classes. Instead, we propose a nonuniform weighted threshold sampling to create a
small but more balanced training set; see Section 4.3.

The nonuniform sampling technique, while enhancing accuracy of the overall
system, can skew the distribution of the training data away from the actual traffic

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:11

ALGORITHM 1: Training the flow-level classifier.
1: Parameters: Flow set F , number of classes K, partitioning criteria;
2: Output: classifiers {cij} and calibrators {clij}, 1 ≤ i ≤ K, 1 ≤ j ≤ p;
3: Partition F according to the partitioning criteria into {F j},1 ≤ j ≤ p;
4: for each F j do
5: for i from 1 to K do
6: Create a training data set Dtr

ij from F j using weighted threshold sampling (see
Section 4.3);

7: Train a classifier cij using Dtr
ij ;

8: Run cij on F j and get results Rij;
9: Create a reliability diagram using F j and Rij (see Section 4.4);
10: Train a calibrator clij based on the reliability diagram;
11: end for
12: end for

ALGORITHM 2: Flow-level classifier in operation.
1: Parameters: flow set F , partitioning criteria, classifiers {cij} and calibrators {clij},

1 ≤ i ≤ K,1 ≤ j ≤ p;
2: Output: multi-class classification result
3: for each flow record x ∈ F do
4: Run cip on x and get a score fcip(x);
5: Calibrate fcip(x) using clij and get the posterior probability P(Ci|x) corresponding to the

application class Ci;
6: end for
7: Find k = argmaxq P(Cq|x), 1 ≤ q ≤ K;
8: Classify flow record x into application class Ck;

distribution. This potentially violates the independent and identically distributed
(IID) assumption in the machine learning algorithms, and leads to problems when
we combine the outputs from the binary classifiers (subtasks) to produce the final
(multiclass) classification results. We solve this problem by a logistic calibration
method in Section 4.4. At training time, we train a calibrator for each binary classifier.
Then, at runtime, the prediction from a binary classifier will be adjusted by the
associated calibrator first before combination.

We summarize the training and operation of the proposed system in Algorithm 1 and
Algorithm 2. We note that we present the algorithm in a sequential way. However, all
the procedures within the for loop are ready to be parallelized and the performance
of the system can be improved significantly (see Section 7). The next section details
the different system components. In Section 5, we justify our design choices through
extensive experiments. In Section 7, we use test sets of labeled flow records to evaluate
the performance of the whole system for scalability, accuracy, and stability.

4. DETAILS OF THE COMPONENTS

In this section, we introduce the technical details for building our machine learning-
based traffic classification system. For ease of exposition, we first formalize the classi-
fication process in our system as follows.

Let F = {(x1, y1), (x2, y2) · · · , (xn, yn)} be a set of n flow records. Each xi = {xij, 1 ≤ j ≤
r} is an r-dimensional vector representing a flow record of r features, where xij stands
for the jth feature in the ith flow record. xij can be either categorical (e.g., tcpflag)

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:12 Y. Jin et al.

or numerical (e.g., flow duration). yi ∈ {C1, C2, · · · , Ck} stands for the label of the
corresponding flow record, from the predefined k classes, for instance, Web class and
Multimedia class. Our goal is to find an efficient yet accurate classification mapping
that can be used to attribute an application class y to any x.

At the first level of modularization, the flows are partitioned into m nonoverlapping
subsets, that is, F = {Fh}, where 1 ≤ h ≤ m. For each flow partition Fh, we train a
separate k-class classifier. At the second level of modularization, we divide each of the
k-class classifiers into k binary classifiers. Upon the arrival of each flow record, each of
the k binary classifiers will produce a prediction, or the posterior probability P(C j|x),
indicating the likelihood of the given flow belonging to the corresponding application
class C j. We then compare the k posterior probabilities, and assign the flow to the
application class C, where C = argmaxC j

P(C j|x). In the ideal case, this assignment
exactly corresponds to the Bayes optimum for the multiclass classification problem
[Duda et al. 2000].

4.1. Modularization Strategies

By default, the first level of modularization partitions flows by protocol into TCP flows
and UDP flows.2 Section 5.5 studies a partitioning strategy based on flow size, de-
signed specifically to improve byte accuracy.

At the second level of modularization, our default partitioning strategy is based on
broad application classes, that is, we partition the TCP (and UDP) multiclass classi-
fiers into 12 (and 8) binary classifiers, respectively. We can also partition more finely,
based on specific applications, if network management tasks require this detail. For
example, instead of using a single binary classifier for the entire FileSharing class,
we use multiple binary classifiers corresponding to individual applications within the
class, such as BitTorrent, eMule, etc. Results under application-based partitioning are
in Section 5.5.

4.2. Adaboost Algorithm as a Building Block

Almost all machine-learning algorithms can handle the binary classification problems
that we have described. To fulfill the requirements of scalability, accuracy and sta-
bility, we prefer simple yet powerful linear algorithms that minimize the number of
features they use. A small number of features yields faster classification times, bet-
ter generalization by avoiding idiosyncratic features, and easier model analysis. The
Adaboost [Schapire and Singer 2000] algorithm fulfills this requirement with a greedy
incremental approach that can be restricted to learn a limited number of features
(with implicit L1 regularization). To strike a balance between accuracy and scalabil-
ity, we choose the decision stump (the simplest decision tree, having one level) as the
weak learner. We refer to Adaboost with decision stumps as BStump in the rest of the
article.

Figure 2 gives a schematic view of BStump. During the training phase, we specify
the number of iterations T (or the number of the weak learners) used by the algorithm.
At iteration t, the algorithm selects one particular flow feature and the corresponding
feature value δ that best partitions the weighted training data into positive (target
class) and negative (other classes) instances. The algorithm creates a decision stump
using the selected feature as the weak learner, which we denote as ht, and the
classification result from the weak learner on flow record x is represented as ht(x).

2Other IP protocols constitute a negligible proportion of the total flows and bytes.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:13

Fig. 2. Weak learners for the Voip class.

Each weak learner outputs S− for a feature value below δ (for continuous feature)
or not equal to δ (for categorical feature), and outputs S+ otherwise. A total score
corresponding to a combination of weak learners is computed and a threshold is
applied to compute a binary outcome. The data weights are adjusted in order to best
reproduce the ground truth on all flows. The process is iterated until T weak learners
are generated.

At runtime, for each flow x, T scores are generated by the weak learners from the
binary classifier corresponding to target class C and these scores are summed up as
the prediction fC(x) :=

∑T
t=1 ht(x). The binary prediction is determined based on the

sign of fC(x), having a confidence that increases monotonically with fC(x).
Due to the simplicity of the BStump algorithm, the training time and accuracy of

BStump and hence the entire system can be controlled by varying the training data
size and the number of iterations; see Section 7.4. One of the main limitations of
BStump is that it may overfit on noisy data. However, BStump performs well on data
with little noise [Haffner et al. 2005], and this is the case in our setting.

One potential problem of BStump (and for other algorithms except L1-Maxent, that
are considered in Section 5.1) arises when k BStump’s are combined for the final mul-
ticlass prediction. The score output (fC(x)) from BStump ranks examples belonging to
the target class, but is not a good approximation of P(C|x). Choosing C to maximize
fC(x) does not in general yield a solution that minimizes classification error for the
equivalent full k-class training problem. We need a method to remap fC(x) to P(C|x).
This problem can be solved by the calibration method proposed in Section 4.4.

4.3. Weighted Threshold Sampling

In this section, we propose a weighted threshold sampling method that creates smaller
but more balanced training sets from an immense number of imbalanced flow records.
Given a threshold θ , if the number of flows |Ci| in a class Ci is below the threshold
θ , we keep all flows from Ci. But if |Ci| > θ , we perform simple random sampling on
flow records from Ci with sampling rate θ/|Ci|, thus yielding θ flows on average. As
we shall see in the experiment, the parameter θ can be easily determined from the
training data distribution and the available computation resources.

By creating a balanced sample, weighted threshold sampling introduces bias since
the distributions across applications are different for the training and testing data
sets, essentially violating the IID assumption that machine learning algorithms rely
on. This problem can again be solved by the calibration method in Section 4.4.

4.4. Logistic Calibration

Calibration addresses two issues: (1) different distributions in training data and test-
ing data, (2) remapping of the score outputs fC(x) to the posterior probabilities P(C|x).
Calibration is based on the observation that the relation between the predictions from
the binary classifiers and the posterior probabilities tends to follow a logistic curve
[Platt 1999]. This can be visualized from the reliability diagrams in Figure 3. Each

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:14 Y. Jin et al.

Fig. 3. Calibration results on selected TCP classes (similar observations for other TCP and UDP classes).

plot corresponds to the classification results for a specific binary BStump classifier,3
where the x-axis represents the output score intervals, and the y-axis represents the
empirical posterior probability value (true positive rate), which is computed as the
number of positive samples divided by the total number of samples within the same
score interval. For a well-calibrated classifier in which the output scores match the
posterior probabilities perfectly, we expect all the points in the associated reliability
diagram to be along the diagonal line. However, we observe that all the points actually
follow a logistic curve. Let fC(x) denote the predicted score of flow record x from a
binary classifier C, the logistic relation can be expressed as:

P(C|x) =
1

1 + exp(−α fC(x) − β)
. (1)

In practice, we use the entire flow set from which the training data is generated as
our calibration set to address the different distributions in the training set and the
testing set. In particular, we run each binary classifier on the calibration set. We then
create a reliability diagram based on the classification results to estimate α and β for
the calibrator by fitting a logistic curve of all the points on the diagram. These logistic
curves are also displayed in Figure 3. In the process of computing α and β, we need
to choose the number of score intervals to construct the reliability diagram. A large
enough number of intervals is required to accurately fit a logistic regression curve, but
too many intervals leads to more outliers. Empirical studies indicate that the number
of intervals between 50 and 100 generally provides satisfactory results. Therefore, we
always use 100 intervals for fitting the logistic curves during our experiments.

3Similar results are observed for BStump classification results on other TCP/UDP classes and the results of
other binary classifiers except BTree, which we will discuss in Section 5.2.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:15

5. EVALUATING DESIGN CHOICES

This section provides extensive evaluations of our design choices for the machine learn-
ing architecture. We present our evaluation in a bottom-up manner. We first com-
pare the binary classification accuracy and scalability of BStump with three alternate
algorithms. We then aggregate the binary classification results to determine multi-
class classification performance, and demonstrate the effectiveness of our calibration
method. Lastly, we discuss and evaluate different modularization strategies.

5.1. Alternative Algorithms

We use the Boostexter [Schapire and Singer 2000] implementation for the selected BS-
tump algorithm, using the default number of iterations, namely, 400. As we shall see
in Section 7, generally, increasing the number of iterations will result in reducing the
flow error rate, and vice versa. We select 400 iterations for BStump because the flow
error rates become stable after 400 iterations on most training datasets. For the pur-
pose of comparison, we select three popular machine learning algorithms. The para-
meters for the alternative machine learning algorithms are selected in a similar way.

Maximum Entropy. Maxent classifiers aim to approximate the probability distributions
for each class C j with the simplest possible distribution, corresponding to maximum
entropy. While most Maxent algorithms directly optimize the conditional probability
P(C j|x), the specific L1-Maxent algorithm [Phillips et al. 2004] optimizes the joint prob-
ability P(C j, x). It consists of a sequential procedure that greedily adds weak learners
in a similar way to Adaboost. L1-Maxent converges to an optimum that maximizes the
likelihood while minimizing the L1 norm of the weight vector, and thus the number of
non-zero feature weights. Theory and experiments show convergence even with very
noisy data. In this paper, L1-Maxent will refer to an implementation using stumps.4

Boosting Decision Trees. Decision trees are a generalization of decision stumps, com-
prising a hierarchy of threshold decisions over different features. They are supported
by Adaboost, in an algorithm we denote by BTree. While a boosted decision tree is still
a linear classifier on decision tree features, it has the representation power of a more
complex non-linear classifier that can handle conjunction of features. For BTree, we
use the Weka [Witten and Frank 1999] implementation (version 3.6.1) with number of
iterations equal to 100 to avoid overfitting; other parameters take default values.

Naı̈ve Bayes as a Baseline. As a baseline for comparison we trained a Naı̈ve Bayes
classifier (NBayes), the most widely used machine learning algorithm in the traffic
classification domain [Jiang et al. 2007; Moore and Zuev 2005]. A Naı̈ve Bayes clas-
sifier models the distribution function P(x|C j) for each traffic class C j and obtains the
prediction by using the Bayes theorem. A kernel approach is also applied to fit P(x|C j)
with multidimensional Gaussian mixtures. We use the Weka implementation (ver-
sion 3.6.1) of the NBayes classifier with the kernel option on and other parameters as
default.

5.2. Binary Classification Accuracy

A fair comparison of the learning algorithms requires use of the same training set.
The size of the training set is limited by BTree, which can only accommodate 100K
training examples under our hardware configuration. Therefore, we create a training
set with approximately 100K flows from a whole week flow data w1s1 using weighted
threshold sampling with parameter θ = 10,000 for TCP and θ = 15,000 for UDP. A

4http://www.cs.princeton.edu/~schapire/maxent/.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:16 Y. Jin et al.

Fig. 4. TCP per-class error rates.

complete week’s data is used in these experiments in order to eliminate any day-of-
week variation. Another whole week’s data (w2s1) serves as our test set.

Given a flow record x, let fC(x) be the corresponding output score from a binary clas-
sifier of class C. A positive prediction—that x belongs to C—is made if fC(x) exceeds a
threshold δ. Hence, δ controls the operating point and performance of the classifier. We
adjusted δ individually for each classifier to determine performance at its break-even
point, that is, when the numbers of flow false positives and flow false negatives are
equal.

Figures 4(a) and 4(b) shows TCP per-class flow error rate (ER) and byte error rate
(BER) for all the binary classifiers, expressed as the percentages of misclassified sam-
ples at the break-even point. The classes are arranged by the corresponding BStump
flow error rates in a descending order. In general, the non-linear classifier BTree yields
the lowest error rate; however, BStump and L1-Maxent perform nearly as well as
BTree, while being at least 10 times as fast as BTree on the same data sets. (Scal-
ability is discussed in detail in Section 5.3.) NBayes has the worst performance, likely
because of the unrealistic independence assumption on the flow features. In terms of
per class byte accuracy, Multimedia and Voip have the largest byte error rates across
all classifiers, due to the existence of large and long duration flows in such traffic [Chen
et al. 2010]. Similar behavior holds for UDP traffic.

5.3. Scalability of Binary Classifiers

In this section, we evaluate the scalability of different machine-learning algorithms.
Here we focus on training scalability; with proper optimization, all four classifiers can
achieve similar runtime scalability, discussed for BStump in Section 7.3.

Table IV reports the longest training time for a single one-vs-rest binary classifier.
Since different binary classifiers can be trained in parallel, this time corresponds to
the training time on a multi-core computer in which one core is allocated to each of
the 12 classes (see Section 7.1 for details of the lab machine for training). Imposing
a limit of training time 2-3 hours, BStump or L1-Maxent can support up to 1 mil-
lion training flows, in comparison to 100K for BTree, and less then 500K for NBayes.
The training time for BStump5 or L1-Maxent is linear in the size of the training data,

5We also test the training time of the Weka implementation of BStump, which is around 3 times slower than
the Boostexter implementation. However, the linear relationship between the number of training samples
and training time still holds.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:17

Table IV. Training Time for Different Classifiers

classifier training data training time(mins)
(#. of flows) TCP UDP

BStump 100K 17.3 13
1M 138 122

L1-Maxent 100K 13 13.3
1M 198 189

NBayes 100K 13 9
500K 924 459

BTree 100K 115 92.9

superlinear for NBayes,6 while the Weka implementation of BTree cannot accommo-
date more than 100K training flows. In practice, to attain a better classification accu-
racy often requires an increase of the training samples or an extension of the training
time (see Section 7 for the evaluation on training scalability). In this case, BStump and
L1-Maxent appear to be a more favorable choice to their linear relationship between
the training data and the training time.7

5.4. Multiclass Classification Performance

A Single k-class Classifier vs. A Combination of k Binary Classifiers. We compared the per-
formance of a directly trained single multiclass classifier against our binary combina-
tion approach. For a given memory size and total available training time, the direct
multiclass classifier had lower accuracy, principally because fewer iterations could be
performed, taking 17 times as long per iteration as the binary case. For example, with
400 iterations during training, the flow error rate for a direct multiclass classifier is
around 4.1%, which is worse than the 3.07% error rate from the proposed modular
approach.

We note that we use the implementations of Adaboost.MH and Adaboost.M1 as the
multiclass BStump classifier and the single class BStump classifier, respectively. Let
k be the number of classes. The training complexity of Adaboost.MH is O(k2) in time
and O(1) in space, in comparison to the O(1) complexity in both time and space for Ad-
aboost.M1. Due to the high time complexity, at the same level of convergence, we could
not conduct full experiment (with millions of training samples) using the multiclass
classifier. However, on smaller cases, at the same level of convergence, Adaboost.MH
with k classes never performed significantly better than k binary Adaboost.M1.

Benefit of Calibration. Recall calibration involves attributing a flow to the class with
the highest posterior probability, instead of the class with the highest score. Table V
displays the flow and byte error rates (ER and BER) with and without calibration.
Except for BTree, calibration decreases ER by a factor 2 or better for both TCP and

6We note that when discretization is used instead of kernel-density functions, NBayes only requires half of
the training time as BStump. However, the overall ER (BER) for NBayes increases in this case from 13.8%
(36.5%) to 28.8% (41.7%) on TCP traffic.
7We note that our evaluation is based on the existing algorithms without any optimization involved. Other
implementation of these algorithms, for example, optimization based on specific machine architectures,
memory caches and smart data structures, can potential increase the training scalability of these algo-
rithms. As an ongoing work, we are experimenting on a more efficient implementation of the BTree algo-
rithm for the traffic classification task.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:18 Y. Jin et al.

Table V. TCP/UDP Multiclass ER (BER) in Percent

Before Calibration After Calibration

Classifier TCP UDP TCP UDP
BStump 7.64 (41.3) 1.34 (27.5) 3.07 (30.1) 0.34 (18.3)
BTree 8.37 (45.8) 1.97 (54.5) 35.2 (66.6) 2.66 (77.6)
NBayes 26.9 (52.7) 10.3 (72.9) 13.8 (36.5) 1.77 (73.3)
L1-Maxent 18.7 (52.5) 3.40 (39.4) 3.87 (40.1) 0.44 (16.4)

Fig. 5. Distribution of per endpoint accuracy.

UDP traffic. Using calibration, the best performance is obtained with BStump, with
an ER of 3.07% for TCP and 0.34% for UDP, L1-Maxent being a close second.8

Both BStump and L1-Maxent have the added advantage of speed (see the next sec-
tion) and model simplicity. The calibration process actually impairs the classification
results of BTree classifiers, because BTree does not exhibit a logistic relation between
the output scores and the posterior probabilities on the reliability diagrams.9

Comparing Byte Accuracy across Methods. In Table V, we observe a much higher byte
error rate than the flow error rate for each method. This is partly a reflection of our
methods, which are optimized to minimize the flow error rate. In fact, the comparison
in Table V is limited by use of a smaller dataset to accommodate the relatively slow
BTree classifier. Focusing on our best method, BStump, we will obtain better accuracy
by efficient use of more training data, and by a partitioning of the training based on
flow size that enables us to improve accuracy on the relatively small number of large
flows by handling them separately; see Section 5.5. On of our future works in on
developing efficient algorithms that directly optimize byte accuracy.

Byte Accuracy Distribution across Endpoints. Network operation problems that involve
attribution of network usage, require accurate estimation of traffic volume per end-
point. Figures 5(a) and 5(b) shows the CDF over endpoints of the BER of classification
with BStump, for all TCP/UDP flows associated with the endpoint. We see that major-
ity of the byte errors are contributed by only a small portion of endpoints. For 60% of
the endpoints, we can achieve 100% TCP byte accuracy; while for more than 90% of the

8Most errors are due to Multimedia flows misclassified into Web classes. Those flows utilize port 80 for
communication and share similar characteristics of Web traffic. We note that such result can be improved by
applying our two-step model as introduced in Section 6.
9We note that, without boosting, a good tree classifier, for example, C4.5, can achieve a TCP flow error rate
of 4.3% after calibration. We believe that, after an appropriate calibration process, we shall expect a much
better accuracy result from BTree. We leave this as our future work.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:19

Fig. 6. Byte dist. Fig. 7. TCP ER. Fig. 8. UDP ER.

endpoints, we can obtain 100% UDP byte accuracy. Comparing with Table V, we con-
clude that overall byte errors tend to be dominated by those of a relative small number
of endpoints. Investigation on these endpoints demonstrates that they concentrate on
mostly Multimedia applications which use nontraditional port numbers for communi-
cation. This implies that these users may be unfairly penalized if the classification
result is used for policing or prioritization. A classifier focuses on minimizing the max-
imum endpoint byte error rate can solve this problem. Searching for and evaluating
such algorithms will be our future work. This effect was also found in our subsequent
experiments for BStump. Hence, in the remainder of this article we shall report on,
and differentiate performance by, the overall byte accuracy.

5.5. Alternative Modularization Strategies

In this section, we discuss alternative modularization strategies to improve both accu-
racy and efficiency in training and testing. In machine learning, this kind of partition-
ing is known as a Mixture of Experts [Jacobs et al. 1991]. However, unlike traditional
methods that randomly partition the data, our proposed method incorporates domain
knowledge to determine the feature for partitioning, and then apply automated search
for the optimal partitions.

Flow-Size Based First Level Modularization. Our analysis of the cause of high byte error
rates in Section 5.4 suggests incorporating more large flows. This agrees with Figure 6,
which depicts the flow size distributions (log-log plot) for the TCP and UDP traffic from
w1s1, respectively. Overall byte accuracy is very dependent on the correct classification
of a relatively small number of large flows. To address this issue, we use a threshold
value to partition the data set into sets of small and large flows, each of which is to be
separately trained and classified.

To determine the threshold for partitioning, we apply a line search approach on a
small data set from w1s1. For a given threshold, we apply weighted threshold sampling
separately to the sets of small and large flows (using θ = 10K for TCP and θ = 15K
for UDP) to create two training sets with roughly 100K flows. We correspondingly
partition w2s1 into test sets of small and large flows. We train and test separately on
large and small flows, and compute composite ER (and BER) as an average weighted
by the total flows (or bytes) in each set. Figure 7 and Figure 8 show the composite
ER/BER for TCP and UDP traffic as a function of the threshold as indicated by the
proportion of flows that are deemed small. The threshold corresponding to the minimal
byte error rate is selected, which is 85,761 (99%) for TCP and 1,703 (98.5%) for UDP.

We now apply our optimal size threshold, to partition a larger dataset of 1 million
samples for training and testing (the calibration set and the test set remain the same).
The corresponding flow and byte error rates are summarized in Table VI. We can see
over 12% decrease in flow error rates for TCP and 6% for UDP. More noticeably, size

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:20 Y. Jin et al.

Table VI. Error Rates for Partitioning at the
Minimal Byte Error Rate Point (as Percent)

TCP UDP

Before After Before After
ER 3.13 2.75 0.35 0.33

BER 29.3 21.3 17.0 12.1

Table VII. Error Rates for Application Partitioning

TCP UDP

Before After Before After
ER 3.13 2.79 0.35 0.24

BER 29.3 25.5 17.0 17.1

partitioning rewards us with a significant improvement in byte accuracy, with BER
reduced by more than 27% for both TCP and UDP.10

Application-Based Second-Level Modularization. Another partitioning strategy is to de-
compose the multiclass classification at the level of individual applications, rather than
the coarser broad application classes of Figure 1(b). For example, the Mail class can
be further divided into applications, such as smtp and pop3, etc. Since we have 57 TCP
and 34 UDP applications, we apply the weighted threshold sampling at the subclass
level with θ = 20K for TCP and θ = 30K for UDP to create training sets with around
1M flows. Binary classifiers are then trained for each application, with calibration be-
ing also at the application level. At the classification stage, the classifier combines the
binary classification results and determines the associated application for each flow,
and then assigns the flow to the corresponding application class. The effectiveness of
this method is summarized in Table VII. We again observe over 10% decrease in flow
error rates. No improvement of the UDP byte error rate has been observed, since our
application partitioning method does not guarantee more large flows are included in
the training dataset.

In summary, the modular architecture enables us to further break down the traffic
classification task for both efficiency and optimizing certain application requirements.
These examples illustrate how we incorporate domain knowledge to find partitioning
criteria that maximize the flow accuracy and byte accuracy, which performs well in
practice. For other application needs, specific partitioning methods can also be de-
signed, which we leave for future work.

6. IMPROVING ACCURACY WITH COLLECTIVE TRAFFIC STATISTICS

In this section, we study the possibility of enhancing classification accuracy by incor-
porating a new set of features, the collective traffic statistics. We demonstrate the
concept of collective traffic statistics through colored traffic activity graphs (colored
TAGs), which is introduced in Jin et al. [2010a, 2010b]. Figure 9 illustrates an ex-
ample colored TAG containing 2000 edges. The nodes in the TAG stand for the hosts
in the network; while each edge describes the interaction (communication) between a
pair of hosts (For better visualizing smaller traffic classes, Figure 9(b) is constructed by
removing FileSharing edges from Figure 9(a). Figure 9(c) removes both FileSharing
and Web edges). Classifying traffic at the level of color TAGs enable us to utilize a set of
new features, which is called the collective traffic statistics, which captures the spatial

10The increase of overhead during training can be minimized by parallelization and almost no overhead is
introduced during operation.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:21

Fig. 9. TAGs containing 2000 edges, where different applications are represented with different colors.

distribution of application classes in the network. For example, we see that the edge
colors tend to be clustered together – where edges incident on some nodes are all of the
same color – and hence regions of the TAG seem to have the same color. This seems
to suggest that certain groups of hosts tend to generate application traffic in a similar
way (e.g., exchanging traffic with the same set of web servers), thereby showing up
with the same color on the TAG.

To utilize such information incorporated in spatial distribution of application classes
for the classification task, we apply a two-step methodology, which was initially devel-
oped to improved performance when protocol level information (such as port number)
is not available [Jin et al. 2010a]. In this case, a 50% reduction in the error rate was ob-
served. Here we use the two-step method as an additional calibration step. We present
the methodology in this section and demonstrate in Section 7 the improvement in both
accuracy and robustness to our flow-level traffic classification system after incorporat-
ing this new calibration step.

6.1. Problem Definition

Let G := {N , E} denote a particular TAG constructed over a specific time period T,
where N denote the set of all hosts in the network and each edge eij ∈ E represents the
aggregation of all traffic between host i and host j. In our edge classification problem,
we assume that each edge eij ∈ E belongs to one of K predefined application classes,
Ck, 1 ≤ k ≤ K (with K = 12).11 However, what class eij belongs to is unknown and to
be determined. Let L : E → {Ck, 1 ≤ k ≤ K} denote the edge class mapping, L(eij) = Ck
for some k. Our problem is to infer this edge class mapping L, given the unlabeled G
and the collection of the edge attribute sets, {xij : eij ∈ E}. To solve this problem, we
assume a supervised machine learning environment, where we are given a training
dataset, that is, a labeled G (constructed from the traffic within a certain time period)
where the class of each edge is given. The inference problem becomes the following
learning problem: Can one learn a function f that returns an estimate of the edge
class mapping each edge eij (Eq. (2))

L̃(eij) = f
(
xij, L(ei·), L(e· j)

)
, (2)

11We note that 99.5% of the communications between two hosts only involved a single application class
throughout a day (either communications are between clients and servers and servers usually host only one
type of application, for example, Web or DNS, or both communicating hosts use p2p FileSharing applications).
Hence in the model defined here only one traffic class is associated with each edge. In this case, the error rate
based on flows is similar to the error rate based on edges in our experiment, we therefore report edge errors
when the two-step model is applied. Moreover, the proposed model can be readily extended for inference on
multicolored edges.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:22 Y. Jin et al.

Fig. 10. Architectures for training and testing using the proposed two-step model.

where the traffic features xij contain the traffic statistics for edge eij; ei·, e· j ⊂ E rep-
resent the edges incident on the endpoint hi and those incident on the endpoint hj,
respectively; the neighborhood features L(ei·) and L(e· j) are obtained through aggrega-
tion of the corresponding edge classes.

6.2. Incorporating Collective Traffic Statistics with the Two-Step Model

Exact learning of L̃(eij) would require the knowledge of all the classes of the neighbor-
hood edges, which are obtainable only when the model L̃(eij) is known. The simplest
approximation based on the training of local classifiers is iterative classification, when
one starts from an initial estimate L̃0(eij) and runs the following iteration t until the
edge classes stabilize:

L̃t+1(eij) = f
(
xij, L̃t(ei·), L̃t(e· j)

)
. (3)

In this article, we propose a simplified variant of the iterative classification algo-
rithm, which we call the two-step model. It offers excellent results while adding little
more computational load. The schematic view of the training phase and the testing
phase for the proposed model is depicted in Figure 10.

The proposed model consists of two components. The first step, which we refer to
as bootstrapping, treats edges features as unknown and infers edge classes according
to only the traffic features xij associated with each edge, regardless of any structural

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:23

properties of the TAG. The initial classification from the bootstrapping step is in
Eq. (4)

L̃0(eij) := f0(xij). (4)

Bootstrapping provides us with the initial labels for all edges, though the accuracy
of these labels depend on the available traffic information in different application sce-
narios and hence can be inaccurate in certain situations. In a study where key traffic
features (e.g., port numbers, protocol number, etc.) are absent, the bootstrapping step
can only reach around 80% accuracy. In comparison, when all traffic features are ac-
cessible, the bootstrapping step can achieve an accuracy of over 96%.

The second step, referred to as graph-based calibration or calibration in short, in-
corporates the inherent neighborhood and local properties of the edges in the TAG to
calibrate (re-enforce) the initial edge classification provided by the bootstrapping step.
For example, given an edge with class C1 and all the neighborhood edges with class
C2, the calibration step may follow some edge clustering rule (as observed in Jin et al.
[2009]) and change the edge class into C1. The calibration process is expressed in
Eq. (5):

L̃(eij) := f1
(
L̃0(ei·), L̃0(e· j)

)
. (5)

Why do we deprive classifier f1 from traffic features xij? The explanation is that we
want the classifier to focus on the neighborhood features, which, for a given node or
IP address, only change slowly over time. This means that if we use the neighborhood
features only, test data that has been collected from the same graph as the training
data (but later in time) may still have a distribution that is close to the training data.
On the other hand, the traffic features suffer from a much greater time variability, and
can become undesirable noise when one has access to neighborhood features. In a pre-
liminary study, we always obtain a higher error rate by incorporating traffic features
in the calibration step.

As we do not have traffic features to stabilize the iterative classification process, we
found that a single calibration step was enough to obtain the best performance, hence
the simplification of the algorithm into a two-step approach. Therefore, from Eq. (5),
the edge classification from the proposed model is expressed as a combination of the
bootstrapping step and the calibration step. We note that the inference on the class
of a particular edge eij is based on the initial (inaccurate) classification of the neigh-
borhood edges (L̃0(ei·), L̃0(e· j)) from the bootstrapping step. Therefore, the training of
the calibration function f1 also depends on the initial classification provided by the
function f0 in the bootstrapping step, instead of depending on the ground truth. In the
following, we discuss the training and operating of the proposed two-step model.

6.3. Training and Operating the Two-Step Model

Taking advantage of the ground truth that we have for the network flow data, we
formulate both the bootstrapping step and the calibration step as classical multiclass
classification problems. Hence, the bootstrapping function f0 and the calibration func-
tion f1 correspond to two multiclass classifiers. We note that these two classifiers (f0
and f1) only differ in the feature sets, and both of these classifiers can be efficiently
learned using the existing machine-learning architecture proposed in Section 3.

Overall Training and Operating Architecture. The training architecture is presented in
Figure 10(a) and the whole procedure is summarized in Algorithm 3. Given the ground
truth of edge classes in the training data, we first learn a multiclass classifier f0, which
maps traffic features xij corresponding to each edge eij to the initial classification L̃0(eij).
We then generate initial classification for the entire TAG, L̃0(G) and learn the classifier

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:24 Y. Jin et al.

ALGORITHM 3: Training the two-step model.
1: Parameters: Flow set F ;
2: Output: edge-level classifier f0 and graph calibrator f1;
3: Construct a TAG G := {N , E} using F , with each edge eij ∈ E labeled as L(eij);
4: Using L(eij) as ground truth and traffic statistics associated with eij as features, train f0;
5: for each edge eij ∈ E do
6: Classify eij using f0 and get L̃0(eij);
7: Create collective traffic statistics based on the labels of the neighboring edges L̃0(ei·) and

L̃0(e· j) using histograms;
8: end for
9: Using L(eij) as ground truth and L̃0(ei·) and L̃0(e· j) as features, learn f1;

ALGORITHM 4: Two-step model in operation.
1: Parameters: flow set F , edge-level classifier f0, graph calibrator f1;
2: Output: multiclass classification result L̃(eij);
3: Construct a TAG G := {N , E} from F ;
4: for each edge eij ∈ E do
5: Classify eij using f0 as L̃0(eij) = f0(eij);
6: Construct collective traffic statistics from neighboring edges, L̃0(ei·) and L̃0(e· j), using

histograms;
7: Calibrate the label of eij as L̃(eij) = f1(L̃(ei·), L̃(e· j));
8: end for

f1 for the calibration step, which maps initial classification to the true classification
based on the classes of the neighbors of individual edges.

After learning two classifiers f0 and f1, at the operating time (Figure 10(b)), given
a TAG G created from the test dataset, we first apply f0 to obtain initial classes for all
the edges in the TAG, namely, L̃0(G). We then encode the neighborhood information
of all the edges into histograms and apply the classifier f1 for the calibration purpose,
which will produce the final prediction L̃(G) after calibration. The operation process is
summarized in Algorithm 4.

We note that f0 uses traffic features associated with individual edges. The avail-
able traffic features depend on specific applications, which we will discuss in detail in
Section 7.6. In the following, we focus on explaining how we encode the neighborhood
information as features for constructing f1.

Encoding Neighborhood Information for Graph-based Calibration. Given the fact that an
edge may have an unbounded number of neighborhood edges connected to the end
nodes, we encode the neighborhood information as histograms. More specifically, for an
edge eij, let |Ck| denote the number of edges connected to hi which are labeled as Ck, 1 ≤
k ≤ K. We then define K features corresponding to the neighborhood edges connected
to the end host hi as |Ck|/

∑
j |C j|, representing the percentage of edges connected to

hi that are labeled as Ck. Similarly, we define K features to encode the neighborhood
edges connected to hj. In addition, we include the degrees of hi and hj as two addi-
tional features. For K = 12 (the number of predefined application classes in Table I),
in both the two application scenarios in this article, we create a total of 26 features to
encode the neighborhood information of individual edges. Despite the loss of structural
information, encoding objects as histograms has enabled a fast deployment of machine-
learning solutions to many real world problems, with surprisingly good results.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:25

6.4. Discussion

In our traffic activity graph (TAG), we want to classify the edges into a set of
applications. This differs from most graphs studied in the collective classification
literature, where the nodes have to be classified. This difference is not significant,
and we assume that most techniques can easily be adapted from edge classification to
node classification.

A more significant difference is the way we distinguish the train and test graphs.
The two most common formulations [Gallagher and Eliassi-Rad 2007] are between-
network classification, where the train and test graphs are disconnected, and within-
network classification, where they are connected, and where the test data usually
consists of the unlabeled nodes. Adding a temporal dimension to the graph requires a
new types of approach. For instance, to deal with time-stamped IMDB movies [Neville
and Jensen 2000], one has to consider a graph where nodes are added over time. In
our problem, not only new nodes and edges are created over time, but the edge labels
may change. While we treat the test TAG as a different graph from the train TAG, this
time dependency will critically influence the choice of our model.

Our two-step approach differs from standard iterative collective classification algo-
rithms in two ways. First, the calibration step is iterated once only, as our experiments
show that a second calibration step is always detrimental. Second, the calibration clas-
sifier uses graph features only, and does not use traffic features. The reason for this
is that it significantly improves performance when the training and the testing data
come from the same site, which is our most common setting. In the less common cross
site setting, the training and test graphs are clearly separated, corresponding to the
standard collective classification setting. In this case, we verify that traffic features
help in the calibration step.

7. SYSTEM EVALUATION

In this section, we present the evaluation of the whole modular flow-level traffic clas-
sification system. We first discuss the evaluation environment and implementation
details. We then evaluate the runtime scalability and training scalability. At the end
of the section, we focus on evaluating the accuracy and stability of the system.

7.1. Evaluation Environment

To test real-time performance, we implemented the flow-based classifier on the same
machine where the packet-level classifier operates. This machine (referred to as Test)
directly connects to a Gbps link. The new flow arrival rate on the link ranges from
about 200K to 450K new flows per minute, apart from isolated bursts of up to 1.2
million new flows per minute.

The Test machine is a Sun X4200, equipped with 2 dual-core CPUs. The total mem-
ory size is 8GB, shared by the 4 cores via dynamic allocation. The Test machine is
heavily CPU loaded before we start our system, because traffic collection, flow aggre-
gation and packet level classification on the Gbps link are all performed directly on
this machine, and hence we need to set high priority to the aforementioned modules
to ensure the proper function of these modules. Therefore, we can only utilize the
remaining limited computation power for the flow-level classifier. This enables us to
study the impact on the classifier’s performance when many applications compete for
resources, for example, during the peak hours.

Multicore technology is widely available and multithreading is a common tool for
improving performance. Here we evaluate the potential performance gains it can pro-
vide for our system. Since the Test machine contains four cores and is also used by
other applications, we also conduct the multithreading experiments on a lab machine.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:26 Y. Jin et al.

The lab machine is a X4600 M2 machine with eight Quad-Core AMD Opteron proces-
sors (2.7 Ghz), which contains 64GB RAM, with 2x 146 GB 10,000 RPM SAS Drives
and 2x Single-Channel 4Gb FC-AL HBA PCIx. We copy traffic collected on the Test
machine to the lab machine and replay it there for our experiments. The lab machine
is also used for training purposes.

7.2. Implementation and Optimization

The training part for our system is implemented using Python. We allow two tunable
parameters: the sampling threshold θ and the number of iterations for the BStump
algorithm. Our system automates the following training process. First, the system
creates training data using weighted threshold sampling with parameter θ . It then
forks k instances of the Boostexter [Schapire and Singer 2000] implementation of the
BStump algorithm to train k binary classifiers in parallel for the specified number of
iterations. Finally, the system trains k calibrators for these binary classifiers. We note
the training time is measured as the running time of all Boostexter threads, no the
execution time of the entire Python script.

During the real-time evaluation, we implement the flow-based classification system
using C++. The whole system contains 12 TCP and 8 UDP binary classifiers and is
parameterized with the number of threads. On the Test machine, due to resource
constraints from other applications, we set the number of threads to be one, where the
12 TCP or 8 UDP binary classifications for each flow are conducted sequentially and
then combined for the final multiclass prediction. On the lab machine, we vary the
number of threads to study the impact of multithreading on the runtime performance
of the system, where these binary classification tasks are distributed evenly to multiple
threads. More specifically, assume q threads are running in parallel, each one will
handle �20/q� to �20/q	 binary classifications.

For better scalability, we further optimize the binary classifier implementation.
Originally, each binary classification needs to match T rules, where T =

∑r
1 Ti is the

number of decision stumps (weak learners) derived iteratively during training and Ti
is the number of decision stumps associated with feature i (in r features). However, the
complexity for classification can be reduced from O(T) to O(

∑r
1 log Ti), where r
 T in

general.
We illustrate the optimization for continuous features; categorical features are

treated with a slight modification. Recall that in a binary classifier, each decision
stump bi-partitions the real range of a particular feature with a threshold δ. The deci-
sion stump assigns a score S− to the flow if the corresponding feature value falls below
δ, and a score S+ is assigned otherwise. The T scores (from all decision stumps) are
summed up as the final prediction for the flow. Since r
 T, instead of doing T rule
matches at runtime, we can partition the real range of each feature into intervals ac-
cording to all the decision stumps associated and precompute the aggregated scores
corresponding to each interval. Therefore, at runtime, we can directly obtain the score
associated with each feature value by mapping the feature value to the correct inter-
val through a binary search tree (with complexity O(log Ti)). Hence, a maximum of∑r

1 log Ti comparisons is needed for each binary classification and a performance gain
of 10 to 20 times has been observed in our experiments.

7.3. Runtime Scalability

Real-Time Performance. We test the flow classification rate during the busiest hours
(7pm to 9pm) everyday for a week. Recall the new flow arrival rate at the busiest hours
is around 450K flows per minute. Without multithreading and with the presence of
other heavily loaded applications, our classifier processed up to more than 800K new

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:27

Fig. 11. Flow classification rates vs. number of threads.

flows per minute, which is twice as much as the mean flow rate on the two Gbps
links. However, in less than 0.5% of the 1-minute time intervals, bursts of more than
1 million new flows occur. Such bursts can be accommodated by temporarily storing
the unprocessed flows to disk before classification. Multithreading can also help, as we
now discuss.

Performance Gain with Multithreading. The performance of multithreading will depend
on the differing resource requirements of classifiers, the manner in which they are
distributed over threads, and the manner in which threads are distributed over cores.
We focus on the dependence on number of threads, which we vary from 1 to 20 on
the lab machine. We run each experiment for 100 times and report the average and
standard deviation of the flow classification rate in Figure 11.

The best performance is achieved when 10 to 14 threads are running in parallel;
here the flow-based classifier can scale up to 6.5 million flows per minute, an order of
magnitude higher than the normal flow rate and 4 times higher than the flow burst
rate (our result is faster than the result of 54.7K flows per second reported by Williams
et al. [2006], plausibly accredited to parallelization and our explicit optimization). As-
suming a linear scale up, this means our classifier would be able to keep up with new
flow arrivals on a 10Gbps link. This result is conservative in the sense that our system
would perform at least as well on a platform with no competing applications, and be-
cause the optimization we applied were relatively simple. When the number of threads
is greater than 14, we observe the general performance drop by adding more threads.
We believe this is likely due to the overhead of constantly switching threads among
CPUs. An even better performance is expected if each CPU is running one thread
exclusively.

7.4. Evaluation on Training Scalability

A major hurdle in the deployment of machine learning solutions is the fact that train-
ing time often turns out to be long and unpredictable. We found out that our modular
approach based on Adaboost training makes it possible to optimally allocate computer
cluster resources to deliver the best performing model under the constraint that train-
ing should be executed in T hours.

The key observation is that the training time is at worst linear in the number of iter-
ations, features, and examples. It is obviously linear in the number of iterations. The
time spent in each iteration is linear in the number of features, as each of them have

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:28 Y. Jin et al.

Fig. 12. Training time with different
parameters.

Fig. 13. Flow error rate with different
parameters (the x-axis is in log scale).

to be considered for weak classifiers. For each numerical feature, one has to consider
all stump threshold candidates, as many as there are training examples in the worst
case. Note the number of examples is determined by the parameter θ in the weighted
threshold sampling method. Assume the number of features is fixed, we train 12 TCP
binary classifiers in parallel and report the training time as the one for the slowest
thread. Figure 12 shows the changes of training time by varying the number of itera-
tions and θ , where the x-axis represents the number of iterations and y-axis stands for
the training time in hours (note the x-axis is in log scale). The training time is linear
to both the number of iterations and the training data size. With parallelization, we
can finish training in less than 1.5 hours with 700K training samples (θ = 64K) using
640 iterations.

Using w2s1 as the test set, we evaluate the accuracy of the classifier by varying
training parameters. In Figure 13, the x-axis represents the number of iterations and
the y-axis represents the flow error rate on the test data. A much faster convergence
for the flow error rate is expected with a smaller training data size. However, if a
higher accuracy is crucial, we need to incorporate more training data and allocate
much more computation resource for the training process. For example, if the training
time is constrained to be less than 15 minutes, the optimal setting is to use around
180K flows (θ = 16K) for training with the number iterations set to 640. In addition,
the maximum achievable accuracy depends (sublinearly) on the training data size. For
example, when the number of iterations equals 640, the flow error rate when θ = 64K
(i.e., around 600K training samples in total), the flow error rate is close to 3.1%; in
comparison, when θ = 2K (i.e., around 24K training samples in total), the flow error
rate is around 3.7%. Considering the large amount of traffic to be classified in a large
ISP network, such a decrease of the number of misclassified flows is worth the cost of
a longer training time.

7.5. Evaluation of Stability of Accuracy

This section focuses on evaluating the temporal and spatial stability of classifier accu-
racy. Robustness of learning across different times and measurement locations reduces
costs by limiting the need for frequent retraining and enabling the use of a single model
for different locations. Here we observe the degree of performance degradation when
the testing and training sets are drawn from a different time periods or locations.

Temporal Stability: Cross-Time Evaluation. To test the cross-time stability of our classi-
fier, we train three different classifiers using the 1M training data from w1s1, w2s1 and
w3s1, respectively, and testing on data from the subsequent weeks from site 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:29

Table VIII. Cross-Site Error Rates (as Percent)

w1s1- w1s1- w5s2- w5s2-
w2s1 w5s2 w1s1 w6s2

TCP ER 3.13 2.03 3.48 1.80
TCP BER 29.3 20.0 33.4 23.8
UDP ER 0.35 0.70 0.75 0.46

UDP BER 17.0 39.4 27.5 37.3

In a two-month time interval, the flow error rates are 3 ± 0.5% for TCP traffic and
0.4 ± 0.04% for UDP traffic, even with up to a 6-week gap between the collection of
the training and testing data sets. There is a slight ascending trend in the flow error
rate when the time gap between the training data set and the testing data set be-
comes larger. This reveals the inherent change of network traffic distribution, which
is against the IID assumption of the traffic classifier and results in the growing of er-
ror rates. For a longer period stability test, we recently collected 7 weeks data from
04/12/2009 to 05/30/2009. After one year, our classifier still achieves a TCP flow error
rate of 5.48±0.54% and a UDP flow error rate of 1.22±0.2%. The BER remains stable
in both experiments.

Spatial Stability: Cross-Site Evaluation. We selected two weeks of flow data from each of
two geographically separated sites, w1s1, w2s1, w2s1 and w2s2. Both sites are parts of a
large ISP network.12 Note there is also a month time-gap between collection dates of
the first week data at the two sites. We label each experiment as wisj-wpsq, in which a
1M training data set is created from data set wisj and the entire wisj and wpsq sets is
used for calibration and testing purpose, respectively.

We summarize the cross-site evaluation in Table VIII. The flow-level classifier ex-
hibits a strong spatial stability, with the TCP flow error rates less than 3.5% and the
UDP flow error rates less than 0.75%. There are slight increases of the error rates
for UDP traffic when tested on the second site, as well as a little decrease of the er-
ror rates for TCP traffic. Details of per-class error rates reveal that the major causes
of the error rate increase are Business and Multimedia for TCP traffic and Business,
FileSharing and Games for UDP traffic. This, in some sense reflects, the locality prop-
erty of traffic data, since the classification accuracy for “global” activities such as Mail
and Web remains stable.

In summary, the classifier exhibits strong temporal and spatial stability across dif-
ferent sites and temporal separations of up to 6 weeks. In particular, these timescale
are far longer than the 2-hour training time for the classifier reported in Section 5.3.
The stability of our flow-level classifier is likely attributed to the implicit L1 regular-
ization of BStump, which eliminates the features that are unstable.

7.6. Adding Collective Traffic Statistics

In this section, we add a calibration step to follow the two-step methodology presented
in Section 6. We discuss the implementation details of this step and report perfor-
mance improvements.

Flow-Level Bootstrapping. We note that our proposed approach is designed for the in-
ference on the edges in a TAG. However, in order to utilize flow-level features like port
numbers, we need to conduct the bootstrapping step at the flow-level. After classifying

12When two sites are different in nature, for example, one is ISP network and the other one is a campus
network, a new calibrator shall be trained to address the difference in the traffic class distribution. The
classifier, since it depends only on characteristics of application classes, which are expected to be stable
across locations and change slowly over time, does not require retraining.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:30 Y. Jin et al.

Fig. 14. Accuracy and stability.

flow records with the features in Table III, we choose the dominant flow predictions
as the predictions of individual edges. In particular, the dominant prediction of eij is
defined as the predicted traffic class that is associated with the largest number of flows
observed on eij. Similarly, we use the dominant flow-level labels as the ground truth
for the edges of the calibration method.

Implementation of the Calibration Step. The proposed method can be implemented in a
real-time manner. The basic idea is to maintain a historical TAG for the calibration
step. More precisely, let T be the time window length to construct the TAG for the
calibration step. To classify an edge eij in real-time at t0, we need to maintain the
traffic statistics and neighborhood edges of eij in a past time window from t0 − T to
t0. By maintaining the edge histogram features as running averages, their compu-
tation cost is independent of the window size. In general, the number of flows col-
lected within a certain time window is approximately 4 times the number of edges
within the same time window. Furthermore, due to the lower number of features and
rules for the graph-based calibration step, calibrating one edge only requires 1/3 the
computation time for classifying a flow record. In other words, turning on the graph-
calibration step only results in 8% (1/12) additional computation overhead. In this
case, our traffic classification system can still scale up with 10Gbps links. Similarly,
the additional training cost for the new calibrator is also small. In practice, around 1/4
iterations is required compared to the time for building the original flow-level traffic
classifier.

Accuracy and Stability. Using a one-hour dataset (05/03/2008 10-11AM) for training
and three datasets from the same site that are 1 week, 1 month and 1 year away
from the training dataset for testing, we evaluate the accuracy and the stability of our
approach. In addition, we employ a one-hour dataset collected from the second site 1
month later from the training dataset.

Figure 14 shows the accuracy after bootstrapping and calibration for the four testing
datasets mentioned above. Interestingly, the calibration step still increases the accu-
racy by 0.5% from the bootstrapping step (14% to 15% reduction in the errors) even
after the one-month time period. Even when the time gap between the training data
and the test data is one year apart or when the two datasets are collected from two
different sites, we still observe a 5% to 6% error rate reductions through calibration.

Per-Class F1 Scores. We also analyze the per-class classification performance by look-
ing at the per-class F1 score from the bootstrapping step and the calibration step.
Figure 15 shows all F1 scores corresponding to different traffic classes. Though the F1
scores slightly drop for FTP and Games, overall the F1 scores increase for all traffic

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:31

Fig. 15. F1 scores.

classes. This again indicates that the graph information on TAGs indeed boosts the
accuracy of all traffic classes and hence the overall traffic classification accuracy.

8. CONCLUSIONS

In this article, we designed a machine learning-based flow-level traffic classification
system as a solution to the large-scale network traffic classification problem. Uti-
lizing a novel modular architecture, our system decomposed the classification task
into multiple subtasks and employed classical machine-learning algorithms as well
as weighted threshold sampling, calibration and intelligent data partitioning methods
to solve these subtasks to achieve both accuracy and scalability. Through extensive
online and offline experiments, we demonstrated that our system attained a low-flow
error rates of only 3% of TCP and and 0.4% for UDP traffic, which remain stable for
a few months. Furthermore, such error rate was further reduced by 15% with collec-
tive traffic statistics using our novel two-step approach. More importantly, on a heavily
loaded machine with one thread and simple optimization, our system can scale up with
the new flow arrival rate on two 1Gbps links in an operational ISP network. With the
help of multithreading on multicore machines, our system can easily handle traffic
classification on 10Gbps links. We note that further parallelization methods can be
designed for improving the scalability.

The flow records employed for this study were not packet sampled, that is, all packet
headers from each sampled flow contributed to the aggregate flow record. Their flow-
specific features (packet/byte counts and duration) will have a different distribution
to flow records produced by (packet) Sampled NetFlow in wide use. Our main future
work is to adapt our system to learn flow based classifiers for packet sampled flows,
that can then be applied directly to classify Sampled NetFlow measurements. We also
plan to develop an automatic feature selection method that focus deliberately on im-
proving stability. Our preliminary results show that by removing tos and tosnumbyte,
we decrease the runtime complexity by 13.3% for TCP and 14.3% for UDP. In addition,
the TCP flow/byte error rates are reduced by 16%/21% and the UDP error rates remain
unchanged. We shall further refine this feature selection method.

APPENDIX

Appendix: Classifying Unknown Flows

The efficacy of traffic classification is limited by packet encryption and the lack of
rules for emerging applications, resulting in a subset set of flow labeled as Unknown
by the packet-level classifier. In contrast, the flow-level features are always available,
allowing our system to make inference concerning the class of these Unknown flows.
In this section, we evaluate the performance of our flow-level classifier on Unknown
flows.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:32 Y. Jin et al.

Constructing Training/Evaluation Sets. For evaluation, we must furnish as set of flows
that are Unknown at the packet-level, but to which we can, nevertheless, attribute a
class. We achieved this by constructing the evaluation set from the second type of
Unknown flows. In particular, using two versions of the packet-level classifier developed
at different times. The first one is from 07/07/2008 (R0), while the second one is from
04/13/2009 (R1). Compared with R0, R1 contains 15,545 more packet-level rules cover-
ing 63 diverse new applications–such as Games/wii, Web/iphone, FileSharing/pando–
distributed over all 12 of the broad application classes. Most of the new rules and
associated traffic relate to TCP, hence we only focus on TCP traffic in the experiment.
Therefore, R1 can classify a portion of flows (from new applications) that is “unknown”
to R0! We utilize this portion of flows as our evaluation set. In a more formal way,
let F be a set of flows. By applying R0 on F , we obtain F = K ∪ U , where K and U
represent the flows that can be classified by R0 and the flows unknown to R0, respec-
tively. We then run R1 on U . R1 can classify an additional flow set UE ⊂ U , which we
use as the evaluation set. In our experiments, we construct the evaluation set UE from
two whole-day flow sets d1s2 and d2s2 (Table II), which accounts for 0.7% of the total
flows.

Classification Results on Unknown Flows. We train the classifier using dataset w1s1 (with
ground truth from R0) in the default way and test on the evaluation set UE mentioned
previously. The overall flow error rate on the evaluation set is 24.0%, a good result on
these Unknown flows which otherwise can not be classified at all.

Examining classification results for individual applications in UE, the system
achieves a close to 0 flow error rate on most applications. This reflects that most of
the new applications in each broad class have similar flow feature values to other
applications in the same class, and our flow-level classification system can take advan-
tage of this to accurately classify these new applications. We do observe a large error
rate on Games/wii, which is almost all classified into Web class, resulting an error rate
of 25.7% for the Web class in UE. In fact, this is also the major contributor to the large
overall flow error rate, since removing Games/wii results in an overall error rate of
only 3.7%. We suspect this is because the traffic characteristics of Games/wii are sig-
nificantly different from other applications in Games/wii. We validate this by retrain
the classifier using the ground truth from R1 and the overall flow error rate reduces
to 2.8%.

REFERENCES
BERNAILLE, L., TEIXEIRA, R., AND SALAMATIAN, K. 2006. Early application identification. In Proceedings

of CoNext’06. ACM.
BUT, J., NGUYEN, T., STEWART, L., WILLIAMS, N., AND ARMITAGE, G. 2007. Performance analysis of

the angel system for automated control of game traffic prioritisation. In Proceedings of the 6th ACM
SIGCOMM Workshop on Network and System Support For Games (NetGames). 123–128.

CHEN, A., JIN, Y., CAO, J., AND LI, L. 2010. Tracking long duration flows in network traffic. In Proceedings
of the 29th Conference on Information Communications (INFOCOM). 206–210.

CROTTI, M., DUSI, M., GRINGOLI, F., AND SALGARELLI, L. 2007. Traffic classification through simple
statistical fingerprinting. ACM SIGCOMM Comput. Comm. Rev. 37, 1, 5–16.

DUDA, R. O., HART, P. E., AND STORK, D. G. 2000. Pattern Classification. Wiley-Interscience.
ERMAN, J., MAHANTI, A., ARLITT, M. F., COHEN, I., AND WILLIAMSON, C. L. 2007. Offline/realtime traffic

classification using semi-supervised learning. Perform. Eval. 64, 9–12, 1194–1213.
FREUND, Y. AND SCHAPIRE, R. E. 1995. A decision-theoretic generalization of on-line learning and an

application to boosting. In Proceedings of the 2nd European Conference on Computational Learning
Theory (EuroCOLT).

GALLAGHER, B. AND ELIASSI-RAD, T. 2007. An examination of experimental methodology for classifiers
of relational data. In Proceedings of the 7th IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE Computer Society Press, 411–416.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

Modular Machine Learning System for Traffic Classification in Large Networks 4:33

HAFFNER, P., SEN, S., SPATSCHECK, O., AND WANG, D. 2005. ACAS: Automated Construction of
Application Signatures. In Proceedings of the SIGCOMM Workshop on Mining Network Data (MineNet).
ACM.

ILIOFOTOU, M., PAPPU, P., FALOUTSOS, M., MITZENMACHER, M., SINGH, S., AND VARGHESE, G. 2007.
Network monitoring using traffic dispersion graphs (TDGS). In Proceedings of the ACM Internet Mea-
surement Conference (IMC).

ILIOFOTOU, M., FALOUTSOS, M., AND MITZENMACHER, M. 2009a. Exploiting dynamicity in graph-based
traffic analysis: techniques and applications. In Proceedings of CoNext’09. ACM.

ILIOFOTOU, M., KIM, H., FALOUTSOS, M., MITZENMACHER, M., PAPPU, P., AND VARGHESE, G. 2009b.
Graph-based p2p traffic classification at the internet backbone. In Proceedings of the 28th IEEE Inter-
national Conference on Computer Communications Workshops (INFOCOM). 37–42.

JACOBS, R. A., JORDAN, M. I., NOWLAN, S. J., AND HINTON, G. E. 1991. Adaptive mixture of local experts.
Neural Computat. 3, 79–87.

JIANG, H., MOORE, A. W., GE, Z., JIN, S., AND WANG, J. 2007. Lightweight application classification for
network management. In Proceedings of the 2007 SIGCOMM Workshop on Internet Network Manage-
ment (INM). ACM.

JIN, Y., SHARAFUDDIN, E., AND ZHANG, Z.-L. 2009. Unveiling core network-wide communication patterns
through application traffic activity graph decomposition. In Proceedings of SIGMETRICS’09. 49–60.

JIN, Y., DUFFIELD, N., HAFFNER, P., SEN, S., AND ZHANG, Z.-L. 2010a. Inferring applications at the net-
work layer using collective traffic statistics. In Proceedings of the 22nd International Teletraffic Congress
(ITC’22).

JIN, Y., DUFFIELD, N., HAFFNER, P., SEN, S., AND ZHANG, Z.-L. 2010b. Inferring applications at the
network layer using collective traffic statistics (extended abstract). In Proceedings of ACM SIGMET-
RICS’10.

KARAGIANNIS, T., BROIDO, A., FALOUTSOS, M., AND CLAFFY, K. 2004. Transport layer identification of
P2P traffic. In Proceedings of the ACM Internet Measurement Conference (IMC).

KARAGIANNIS, T., PAPAGIANNAKI, K., AND FALOUTSOS, M. 2005. BLINC: Multilevel traffic classification
in the dark. In Proceedings of ACM SIGCOMM’05. ACM.

MA, J., LEVCHENKO, K., KREIBICH, C., SAVAGE, S., AND VOELKER, G. M. 2006. Unexpected means of
protocol inference. In Proceedings of the ACM Internet Measurement Conference (IMC).

MCDANIEL, P., SEN, S., SPATSCHECK, O., DER MERWE, J. V., AIELLO, B., AND KALMANEK, C. 2006. En-
terprise security: A community of interest based approach. In Proceedings of the 13th Annual Network
and Distributed System Security Symposium (NDSS).

MOORE, A. W. AND ZUEV, D. 2005. Internet traffic classification using Bayesian analysis techniques. In
Proceedings of ACM SIGMETRICS’05.

NEVILLE, J. AND JENSEN, D. 2000. Iterative classification in relational data. In Proceedings of the AAAI
Workshop on Learning Statistical Models from Relational Data. AAAI.

NGUYEN, T. AND ARMITAGE, G. 2006a. Synthetic sub-flow pairs for timely and stable IP traffic identi-
fication. In Proceedings of the Australian Telecommunication Networks and Application Conference.
293–297.

NGUYEN, T. AND ARMITAGE, G. 2006b. Training on multiple sub-flows to optimise the use of machine
learning classifiers in real-world IP networks. In Proceedings of the 31st Conference on Local Computer
Networks. IEEE.

PHILLIPS, S. J., DUDÍK, M., AND SCHAPIRE, R. E. 2004. A maximum entropy approach to species dis-
tribution modeling. In Proceedings of the 21st International Conference on Machine Learning (ICML).
ACM.

PLATT, J. 1999. Probabilistic outputs for support vector machines and comparison to regularized likelihood
methods. In Proceedings of the 13th Conference on Neural Information Processing Systems (NIPS).

RIFKIN, R. AND KLAUTAU, A. 2004. In defense of one-vs-all classification. J. Mach. Learn. Res., 101–141.
SCHAPIRE, R. E. AND SINGER, Y. 2000. Boostexter: A boosting-based system for text categorization. Mach.

Learn. 39, 2–3, 135–168.
SEN, S., SPATSCHECK, O., AND WANG, D. 2004. Accurate, scalable in-network identification of P2P traf-

fic using application signatures. In Proceedings of the 13th International World Wide Web Conference
(WWW). ACM.

SEN, P., NAMATA, G., BILGIC, M., GETOOR, L., GALLAGHER, B., AND ELIASSI-RAD, T. 2008. Collective
classification in network data. AI Mag. 29, 3.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

4:34 Y. Jin et al.

TRESTIAN, I., RANJAN, S., KUZMANOVI, A., AND NUCCI, A. 2008. Unconstrained endpoint profiling
(Googling the Internet). In Proceedings of ACM SIGCOMM ’08.

WILLIAMS, N., ZANDER, S., AND ARMITAGE, G. 2006. A preliminary performance comparison of five ma-
chine learning algorithms for practical IP traffic flow classification. SIGCOMM Comput. Comm. Rev.
36, 5–16.

WITTEN, I. H. AND FRANK, E. 1999. Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann.

XU, K., ZHANG, Z.-L., AND BHATTACHARYYA, S. 2005. Profiling internet backbone traffic: Behavior models
and applications. In Proceedings of ACM SIGCOMM.

Received June 2010; revised March 2011, June 2011; accepted June 2011

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 1, Article 4, Publication date: March 2012.

