
REVERSE ENGINEERING THE YOUTUBE VIDEO DELIVERY CLOUD

Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang

Department of Computer Science & Engineering, University ofMinnesota - Twin Cities
viadhi@cs.umn.edu, sourj@cs.umn.edu, yingying@cs.umn.edu, zhzhang@cs.umn.edu

ABSTRACT

In this paper we set out to “reverse-engineer” the YouTube
video delivery cloud by building a globally distributed active
measurement infrastructure. Through careful and extensive
data collection, analysis and experiments, we deduce the key
design features underlying the YouTube video delivery cloud.
The design of the YouTube video delivery cloud consists of
three major components: a “flat”video id space, multiple
DNS namespaces reflecting a multi-layeredlogical organiza-
tion of video servers, and a 3-tier physical cache hierarchy.
By mapping the video id space to the logical servers via a
fixed hashing and cleverly leveraging DNS and HTTP redi-
rection mechanisms, such a design leads to a scalable, robust
and flexible content distribution system.

1. INTRODUCTION

Given the traffic volume, geographical span and scale of op-
erations, the design of YouTube’s content delivery infrastruc-
ture is perhaps one of the most challenging engineering tasks
(in the context of most recent Internet development). Be-
fore Google took over YouTube in late 2006 [1] and subse-
quently re-structured the YouTube video delivery infrastruc-
ture, it was known that YouTube employed several data cen-
ters in US (see [3]) as well as third-party content delivery net-
works [2, 9] to stream videos to users. Since Google’s take-
over, YouTube has grown rapidly and became several-fold
larger both in terms of users and videos. For instance, using
inter-domain traffic collected in 2007 and 2009 at hundreds of
ISPs across the world, the authors of a recent study [6] show
that Google has become one of the top fiveinter-domaintraf-
fic contributors in 2009; a large portion of Google’s traffic
can be attributed to YouTube. While it is widely expected that
Google has re-structured and incorporated the YouTube deliv-
ery system into its own vast Internet infrastructure in the past
few years, little is known how Google leverages its resources
to re-design and re-structure the YouTube video delivery in-
frastructure – which we will refer to as theYouTube video
delivery cloud– to meet the rapidly growing user demands as
well as user performance expectations.

This work is supported in part by the NSF grants CNS-0905037 and
CNS-1017647, and the DTRA Grant HDTRA1-09-1-0050.

This paper attempts to “reverse-engineer” the YouTube
video delivery cloud through large-scale active measurement,
data collection and analysis. We are particularly interested in
answering the following important design questions: i) how
does YouTube design and deploy ascalableanddistributed
delivery infrastructure to match the geographical span of its
users and meet varying user demands? ii) how does YouTube
perform load-balancing across its large pool of Flash video
servers (and multiple locations)? and iii) given the sheer
volume of YouTube videos which renders it too costly, if
not nearly impossible, to replicate content at all locations,
what strategies does YouTube use to quickly find the right
content to deliver to users? On one hand we believe that
Google’s YouTube video delivery cloud offers an example of
the “best practices” in the design of an Internet-scale con-
tent delivery infrastructure. On the other hand, the design
of YouTube video delivery cloud also poses some interesting
and important questions regarding alternative architectural
designs, cache placement, content replication and load bal-
ancing strategies, and so forth.

The global scale of the YouTube video delivery cloud
poses several challenges inactivelymeasuring, and collect-
ing data from the YouTube video delivery cloud. To address
these challenges, we have developed a novel distributed ac-
tive measurement platform with more than 1000 vantage
points spanning five continents. Through careful data anal-
ysis and inference – especially by analyzing the relations
among YouTube video ids, DNS names, and IP addresses –
and by conducting extensive “experiments” to test and under-
stand the behavior of the YouTube video delivery cloud, we
are not only able to geo-locate a large portion of YouTube
video server and cache locations, but also to uncover and
deduce the logical designs of the YouTube video id space,
the DNS namespace structures and cache hierarchy, and how
they map to the physical infrastructure and locations. We
describe the measurement infrastructure and collected data
in Section 3. We provide a summary of the key findings
regarding the YouTube design in Section 4. In Section 5 and
Section 6 we present more details regarding how we derive
these findings, including analysis performed, the methods
used, and additional experiments conducted to verify and
validate the findings.

2. RELATED WORK

Most existing studies of YouTube mainly focus on user be-
haviors or the system performance. For instance, the authors
in [4] examined the YouTube video popularity distribution,
popularity evolution, and its related user behaviors and key
elements that shape the popularity distribution using data-
driven analysis. The authors in [5] investigate the YouTube
video file characteristics and usage patterns such as the num-
ber of users, requests, as seen from the perspective of an
edge network. Another study [9] analyzed network traces for
YouTube traffic at a campus network to understand benefits
of alternative content distribution strategies. A more recent
work [8] studies the impact of the YouTube video recommen-
dation on the popularity of videos.

Perhaps most relevant to our work is the recent study car-
ried in [3], where the authors utilize the Netflow traffic data
passivelycollected at various locations within a tier-1 ISP to
uncover the locations of YouTube data center locations, and
infer the load-balancing strategy employed by YouTube at the
time. The focus of the study is on the impact of YouTube
load-balancing on the ISP traffic dynamics, from the perspec-
tive of the tier-1 ISP. As the data used in the study is from
spring 2008, the results reflect the YouTube delivery infras-
tructurepre Google re-structuring. To the best of our knowl-
edge, our work is the first study that attempts to reverse engi-
neer the current YouTube video delivery cloud.

3. MEASUREMENT PLATFORM

In this section we first briefly describe the basics of YouTube
video delivery. We then provide an overview of our dis-
tributedactivemeasurement and data collection platform.

3.1. YouTube Video Delivery Basics

When a user visits, or clicks on any URL of the form
http://www.youtube.com/watch?v=ABCDEFGHIJK,
the web server returns an HTML page withembeddedURLs
of certain forms, e.g.,v1.lscache5.c.youtube.com,
pointing to the Flash video server responsible for serving that
video. When the user clicks the playback button of an em-
bedded Flash video object on the page, the browser resolves
the hostname to get an IP address for the Flash video server,
which then streams the video to the user’s browser.

3.2. Active Measurement Platform

Our active measurement platform utilizes471 PlanetLab
nodes, and843 open recursive DNS servers provided by and
located at various ISPs and organizations. We also developed
an emulated YouTube Flash video player in Python which
emulates the process involved in playing back a YouTube
video using HTTP. The emulator records detailed log of the

Fig. 1. Our Active Measurement Platform: an Illustration.

process including multiple HTTP request redirections and
DNS resolutions. The detailed text-based logs recorded for
each step of the process contain a variety of information such
as the hostnames and URLs involved in each step, the HTTP
request and response messages and their status codes, the
basic HTML payload and timestamps for each of the steps.
In addition, our emulated YouTube Flash video player can
be configured to use an open recursive DNS servers (instead
of the default local DNS server of a PlanetLab node). This
capability therefore enables us to use the843 open recursive
DNS servers as additional vantage points. Hence we have a
total of 1, 314 globally distributed vantage points for active
YouTube measurement and data collection.

3.3. Measurement Methodology and Datasets

We adopt a multi-step process to collect, measure, and an-
alyze YouTube data. First, we crawl the YouTube website
from geographically dispersed vantage points using the Plan-
etLab nodes to collect a list of videos, and record their view
counts and other relevant metadata. We show the popularity
of the videos in our list in Fig. 3. We note that because of
our sampling method, a large percentage of the videos in our
list are popular videos. To address this problem, we added a
large number of videos with very low view counts to this list
of videos. Second, we feed the URLs referencing the videos
to our emulated YouTube Flash video players, download and
“playback” the Flash video objects from the471 globally dis-
tributed vantage points, perform DNS resolutions from these
vantage points, and record the entire playback processes in-
cluding HTTP logs. Third, we perform ping-based latency
measurements from the PlanetLab nodes to all the observed
IP addresses. Furthermore, we also extract the HTTP request
redirection sequences, analyze and model these sequences to
understand YouTube redirection logic.

4. SUMMARY OF KEY FINDINGS

In this section we provide a summary of our key findings
regarding the design and operations of the YouTube global

Fig. 2. Geographical distribution of YouTube Video Cache
Locations.

video delivery system. This serves as the road map for the
ensuing sections, where we will provide specifics as to how
we arrive at these findings, including the data analysis and in-
ference as well as experiments we have performed to verify
the findings.

4.1. Overall Architecture

The design of YouTube video delivery cloud consists of three
major components: thevideo id space, themulti-layeredor-
ganization oflogical video servers via multipleanycastDNS
namespaces, and a 3-tierphysicalserver cache hierarchy with
(at least)38 primary locations,8 secondarylocations and 5
tertiary locations. Here by aanycast(DNS) namespace we
mean that each DNS name isby design, mapped to multiple
IP addresses.
YouTube Video Id Space. Each YouTube video is “uniquely”
identified using a “flat” identifier of 11 literals long, where
each literal can be [A-Z], [0-9], - or. The total size of the
YouTube video id space is effectively6411. Analyzing the
434K video ids we collected, we find that they are uniformly
distributed in the video id space.
Anycast DNS Namespaces and Layered Logical Video
Server Organization. Based upon the request redirection
mechanism deiscussed later, we observe that YouTube de-
fines multiple (anycast) DNS namespaces, each representing
a collection oflogical video servers with certain roles. To-
gether, these (anycast) DNS namespaces form alayeredorga-
nization oflogical video servers. As shown in Table 1, there
are a total of threeanycastnamespaces, which we refer to as
lscache, tccache, andcachenamespaces; each namespace has
a specific format1.
Physical Server Cache Hierarchy and Their Locations.
Using the YouTube IP addresses seen in our datasets, we are
able to geo-map the YouTube “physical” video server cache
locations, which are dispersed at five continents (see Fig. 2).
We next see what logical hostnames map to what location
to classify the physical cache locations. From this analysis,

1We also encountered, although very rarely, slightly different formats for
lscacheandcachenamespaces where hostnames hadnonxtandaltcachein
them respectively

we deduce that YouTube employs a 3-tier physical cache
hierarchy with (at least)38 primary locations,8 secondary
locations and 5tertiary locations. Each location contains
varying number of IP addresses (“physical” video servers),
and there are some overlapping between the primary and
secondary locations (e.g., at the Washington D.C. metro ar-
eas), where one “physical” video server may serve either as a
“primary” or a “secondary” video server. Columns 4-6 show
the total number of IPs, prefixes, and locations each DNS
namespace is mapped. In Section 5.3 we will provide some
details regarding how we geo-map the YouTube physical
cache locations.
Unicast Namespace. In addition, for each IP address,
YouTube also defines aunicastDNS name. Namely, there is
a one-to-one between this DNS name and the IP address. As
shown in Table 1, the unicast names have two formats, which
we refer to asrhostandrhostispformats.

4.2. Mechanisms and Strategies

The introduction of the layered organizations oflogical video
servers via multiple namespaces enables YouTube to employ
several mechanisms and strategies to i) map videos tological
video servers via a fixed hashing, and ii) maplogical video
servers to physical video servers at various locations of its
physical cache hierarchy through both DNS resolution and
HTTP redirection mechanisms.
Fixed Mapping between Video Id Space and Logical Video
Servers (Anycast DNS Namespaces). YouTube adopts a
fixed hashing to map each video id uniquely to one of the
192 DNS names in thelscachenamespace. In other words,
the video id space is uniformly divided into192 sectors, and
eachlscacheDNS name – representing alogical video cache
server – is responsible for a fixed sector. Thisfixedmapping
between thevideo id space to thelscacheDNS namespace
(logical video servers) makes it easier for individual YouTube
front-endweb servers(www.youtube.com) to generate –in-
dependently and in a distributed fashion– HTML pages with
embedded URLs pointing to the relevant video(s) users are in-
terested in, regardless where users are located or how logical
servers are mapped to physical video servers or cache loca-
tions. Furthermore, there is also a fixed and consistent map-
ping between the (anycast) namespaces. For example, there
is one-to-one mapping between the 192 DNS names of the
lscachenamespace and those of thetccachenamespace, and
a three-to-one maping between these namespaces andcache.
These fixed mappings make it easy for each (physical) video
server to decide – given its logical name – what portion of
videos it is responsible for serving.
DNS Resolution and (Coarse-grain) Locality-Aware Server
Selection. The mapping betweenlogical video servers (i.e.,
DNS names) andphysicalvideo servers (i.e., IP addresses)
are done via DNS resolution. The mapping between DNS
names to IP addresses are in generalmany-to-many: each

Table 1. YoutubeAnycastandUnicastNamespaces.
DNS namespace format # hostnames # IPs # prefixes # locations any/uni-cast

lscache v[1-24].lscache[1-8].c.youtube.com 192 4, 999 97 38 anycast

tccache tc.v[1-24].cache[1-8].c.youtube.com 192 636 15 8 anycast
cache v[1-8].cache[1-8].c.youtube.com 64 320 5 5 anycast
rhost r[1-24].city[01-16][s,g,t][0-16].c.youtube.com 5, 044 5, 044 79 37 unicast

rhostisp r[1-24].isp-city[1-3].c.youtube.com 402 402 19 13 unicast

(anycast) DNS names are generally mapped to multiple IP
addresses; and multiple DNS names may be mapped to the
same IP address. YouTube employs a (coarse-grain)locality-
awareserver selection strategy: depending on where the user
request is originated, YouTube picks a primary video cache
location that is “close” to the user, and resolves the requested
lscacheDNS name to one of the IP addresses within that
location.
Dynamic HTTP Request Re-direction. To perform finer-
grain and dynamic load-balancing, or to handle cache misses,
YouTube employs HTTP request redirection mechanism.
Such a redirection mechanism is especially useful and im-
portant, as YouTube always maps the user video request to a
“physical” video server at aprimarycache location. Since the
size difference of the primary locations (in terms of the num-
ber of “physical” video servers or IP addresses) can be quite
large, and the user demand is also likely to vary from one ge-
ographical area to another, dynamic load-balancing is needed.
Further, the cache size at each location may also differ signif-
icantly, and videos cached at each location can change over
time (e.g., due to the differing popularity of videos), cache
misses are inevitable – depending on how busy a video server
at the primary location, it can either directly fetch a “cold”
video from another video server at a secondary or tertiary
location (e.g., via the Google internal backbone network),
or re-direct the request directly to another video server ata
secondary or tertiary location.

YouTube cleverly utilizes the multiple (both anycast and
unicast) DNS namespaces to perform dynamic load-balancing
as well as to keep track of the redirection process. There is
a strict orderingamong the anycast namespaces, only redi-
rection from a “higher” layer namespace to a “lower” layer
namespace is allowed, e.g., fromlscacheto cache, but not
the other way round; a redirection can “jump” across multi-
ple layers, e.g., fromlscacheto tccacheor cache. YouTube
uses both a redirection count and a tag to keep track of the
redirection sequences.

5. CACHE NAMESPACES & HIERARCHY

In this section we describe the structure and organization
of YouTube video caches. First, we describe several DNS
namespaces used to refer to these cache servers, and how the
mapping betweenvideo id space and the namespaces used

by video cache servers is done. Finally, we describe how
YouTube uses DNS infrastructure to direct the users to an IP
address located in the vicinity of their location.

5.1. Anycast DNS Namespace

Table 1 summarizes theanycastnamespaces used by YouTube
to refer to video cache servers. Our detailed analysis of video
playback logs show that theseanycastnamespaces can be
divided into following categories:
Primary Video Caches. These are the hostnames embedded
in the initial HTML file provided by the YouTube front-end
web server to user, when a user accesses a video page. Us-
ing our analysis of initial HTML files for all the434K col-
lected from several vantage points, we found that there are a
total of 192 such hostnames embedded in the main HTML
file which refer to the servers hosting the Flash video ob-
jects. We also found that eachvideo id maps to a unique
lscachehostname out of 192 such names. For instance, a
video identified using thevideo id MQCNuv2QxQY always
maps to v23.lscache1.c.youtube.comlscachename from all
the 1,314 vantage points at all times. Since all thevideo ids
are uniformly distributed in the flat video identifier space,the
number ofvideo ids that map to eachlscachehostname are
also equally distributed. To demonstrate this we consider all
the434K video ids and plot the number ofvideo ids that map
to each of thelscachehostnames in Figure 4. As seen in
this figure, there are approximately equal number of videos
mapped to each of thelscachehostnames.

Based upon the location of IP addresses that hostnames
in this namespace map to, we see 38 primary cache locations.
We note that as we increased the number of vantage points, we
increasingly uncovered additional primary cache locations.
Secondary Video Caches. Similar to primary video caches,
YouTube also deploys a secondary video cache for bet-
ter availability and reliability. Again, it usesanycastDNS
namespace to identify hosts in this set, which is of the follow-
ing form: tc.v[1-24].cache[1-8].c.youtube.com. In addition,
this namespace maps to a relatively smaller set of IP addresses
in total, and as we will explain later, these video caches are
located at only8 locations.
Tertiary Video Caches. Tertiary Video Cachesshow up as

the final set of video caches during redirections in our play-
back logs. Unlike primary and secondary video caches, these
tertiary video caches have a namespace constituted by only 64

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
0

10
5

Videos

T
ot

al
 v

ie
w

s
(a

s
of

 S
ep

/2
01

0)

Fig. 3. View counts for434K videos

50 100 150
0

500

1000

1500

2000

l scache hostnames

N
u
m

b
e
r

o
f

v
i
d
e
o
s

Fig. 4. Number of videos mapped to each
lscachehostname.

10 20 30 40
0

50

100

150

Rank of the YouTube lscache Location

N
um

be
r

of
 P

la
ne

t−
La

b
no

de
s

th
at

ha

ve
 a

t l
ea

st
 o

ne
 ls

ca
ch

e
ho

st
na

m
es

m

ap
pe

d
at

 th
e

ith
 r

an
k

lo
ca

tio
n

Fig. 5. PlanetLab nodes with delay based
rank of the YouTube location.

DNS hostnames, which are represented using regular expres-
sion: v[1-8].cache[1-8].c.youtube.com. Since there are only
64 hostnames in the tertiary video cache namespace, hence
there is a three-to-one mapping between the hostnames in pri-
mary/secondary video cache namespaces and tertiary video
cache namespaces. Unlike primary cache locations, the num-
ber of secondary and tertiary cache locations did not increase
as we added new vantage points.

5.2. Unicast DNS Namespace

In addition to severalanycastnamespaces used by YouTube
to refer to video cache servers, YouTube also uses aunicast
namespace to identify individual video servers. Theseunicast
DNS hostnames map to a unique IP address irrespective of
the user location, it helps in redirecting the user to a specific
server during the dynamic load balancing process.

5.3. Geo-mapping YouTube Cache Locations

In order to geolocate YouTube IP addresses, first of all, we
leverage the large number ofunicast hostnames extracted
using the video playback logs. As described earlier, each of
these hostnames have 3-letter city codes embedded, which
represent the nearest airport code for the corresponding
YouTube location. We further verified using round trip delay
measurements that these embedded city codes are correct.

In the second step, we used the round trip delay logs for
all the YouTube IP addresses collected using471 PlanetLab
nodes. We use a basic idea similar to the approach used by
GeoPing [7]. In this approach, we consider the delay between
an IP address and a set of PlanetLab nodes (vantage points)
as the feature vector representing the IP address. Next, we
cluster all these IP addresses using k-means clustering algo-
rithm, and use Euclidean distance between the feature vectors
as a distance measure. We assign each cluster a location, if
we have at least one IP address in that cluster for which the
location was already known usingunicasthostnames. Also,
in several cases we found that there were multiple such IP
addresses in the clusters, for which the location was already

Table 2. DNS resolutions for v1.lscache1.c.youtube.com
PlanetLab node Resolved IP IP location

adam.ee.ntu.edu.tw 202.169.174.208 Taipei
chimay.infonet.fundp.ac.be 74.125.10.144 Amsterdam

cs-planetlab4.cs.surrey.sfu.ca 74.125.107.16 Seattle
dannan.disy.inf.uni-konstanz.de 173.194.18.70 Frankfurt

ds-pl3.technion.ac.il 173.194.18.6 Frankfurt

known. In all such instances the location for these multi-
ple IP addresses were always the same. In the end, we are
able to geolocate all the YouTube IP addresses to 47 different
cities spread across the globe. Furthermore, we found that pri-
mary caches are distributed in38 locations, secondary caches
in 8 and tertiary caches in5 locations with some locations
hosting overlapping cache hierarchy. We plot these extracted
YouTube locations on a world map in Figure 2.

5.4. Locality Aware DNS Resolution

YouTube uses DNS-based location awareness to direct users
to a nearby cache locations. As an example, in Table 2, we
show DNS resolutions for v1.lscache1.c.youtube.com host-
name performed from 5 different PlanetLab nodes. As seen
in this table, based upon the location of the PlanetLab node,
these hostnames mapped to an IP address at a nearby YouTube
location.

In order to verify location-awareness in DNS resolutions,
we performed the following analysis. For each PlanetLab
node, we order all47 YouTube locations in the increasing
order of round trip network delay and assign each YouTube
location a rank in this order. Next, we considerlscachehost-
name to IP addresses mapping for each of the PlanetLab
nodes, and see how they are distributed with respect to the
rank of the corresponding YouTube location for the given
PlanetLab node. In Figure 5 we plot the number of Plan-
etLab nodes which had at least one oflscachehostnames
mapped to anith rank YouTube location. As seen in this
figure, more than 150 PlanetLab nodes have at least one of
the IP addresses at the closest YouTube location with respect

to network delay. Only a very small number of nodes see that
the mapped IP addresses are from farther locations.

6. HTTP REDIRECTIONS

YouTube uses HTTP based redirection to achieve dynamic
load-balancing. For instance, if thelscacheserver responsi-
ble for a video cannot serve the requested video, it sends a
HTTP 302 response back to the client. This response tells
the client to go to another server to download the video from.
If the host corresponding to the HTTP redirect URL, again,
can not provide the video for some reason, it sends another
HTTP 302 response to the client to ask it to try yet another
hostname. This redirection mechanism allows YouTube to
perform dynamic load-sharing among its geographically dis-
tributed physical resources. In the following, we discuss the
specific mechanisms used in these HTTP based redirections.

To better understand the patterns in HTTP redirections,
we carefully examined the video playback logs correspond-
ing to such cases. Our analysis of these logs reveals several
interesting patterns in these redirections and the mechanisms
used to avoid HTTP redirection loops.

The first key finding here is that HTTP redirections for
any given video follow a very specific namespace hierarchy.
A lscachevideo cache server may re-direct a video request to
a correspondingtccachevideo cache server , or directly to a
correspondingcachevideo cache server. Likewise, atccache
video cache server may only re-direct a video request to a
correspondingcachevideo cache server but not to alscache
video server. In addition, we found that these HTTP redi-
rections may also involve severalunicast hostnames (such
as rhost and rhostisp) as well. However, the redirection to
one of these hostnames only occurs from one of theanycast
hostnames. In the event when ananycasthostname redirects
the user to one of theunicast hostnames, then it also up-
dates the redirection URL with a ‘tag’ corresponding to the
tier of the forwardinganycasthostname. E.g., whenever an
lscachehost forwards the video request torhosthost, it adds a
unique tag&st=lc in the redirection URL, which represents
that request was forwarded from one of the host inlscache
hostnames (tccacheandcacheuse the tags&st=tcts and
&st=ts respectively). These mechanisms ensures that the
HTTP redirection always follow the cache hierarchy and does
not create a redirection loop.

As an ultimate protection against the possible redirection
loops, redirection URL also contain a “redirection counter”,
which is incremented by one every time a video request is
forwarded from one anycast namespace to another anycast
namespace. When the redirection counter reaches 4 and the
correspondinganycastYouTube host can not serve the video,
then it simply fails with a HTTP 503 error code. To confirm
that maximum value for the redirection counter is 4, we modi-
fied the redirection URLs to have a redirection counter greater
than 4, and asked several hosts to serve the video. In all such

cases, we found that either the host served the video, or sent
the HTTP 503 error code.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we built a globally distributed active measure-
ment platform to reverse engineer YouTube video delivery
framework and uncovered and geo-located YouTube’s 3-tier
physical video server hierarchy, and deduced the key design
features of the YouTube video delivery cloud. We are confi-
dent that we have uncovered the major design features of the
YouTube video delivery cloud. Nonetheless, there are still
specific questions, such as the precise YouTube redirection
decision logic and process, and how they are affected by video
popularity, that still require in-depth analysis and additional
experiments. Our current ongoing work, in part, attempts to
answer these questions.

While Google’s YouTube video delivery cloud represents
an example of the “best practices” in the design of such
planet-scale systems, its design also poses several interest-
ing and important questions regarding alternative architec-
tural designs, cache placement, content replication and load
balancing strategies, especially in terms of user perceived
performance. In addition, the YouTube video delivery cloud
design is clearly confined and constrained by the existing
Internet architecture. Understanding the pros and cons in the
YouTube video delivery cloud design also provides valuable
insights into the future Internet architecture designs.

8. REFERENCES

[1] Google to acquire youtube for $1.65 billion in stock.
http://www.google.com/intl/en/press/
pressrel/google_youtube.html.

[2] Google-YouTube: Bad News for Limelight?http://www.
datacenterknowledge.com/archives/2006/10/
13/google-youtube-bad-news-for-limelight/.

[3] V. K. Adhikari, S. Jain, and Z. Zhang. YouTube Traffic Dynam-
ics and Its Interplay with a Tier-1 ISP: An ISP Perspective. In
IMC ’10. ACM, 2010.

[4] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I
tube, you tube, everybody tubes: analyzing the world’s largest
user generated content video system. InIMC ’07. ACM, 2007.

[5] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic charac-
terization: a view from the edge. InIMC ’07. ACM, 2007.

[6] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and
F. Jahanian. Internet inter-domain traffic. InSIGCOMM ’10.

[7] V. N. Padmanabhan and L. Subramanian. An investigation of ge-
ographic mapping techniques for internet hosts. InSIGCOMM
’01.

[8] R. Zhou, S. Khemmarat, and L. Gao. The Impact of YouTube
Recommendation System on Video Views. InIMC ’10.

[9] M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of
youtube network traffic at a campus network - measurements,
models, and implications.Comput. Netw., 2009.

