
How Do You “Tube”?

Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen and Zhi-Li Zhang ∗

Department of Computer Science & Engineering, University of Minnesota
Minneapolis, MN

{viadhi, sourj, yingying, zhzhang}@cs.umn.edu

ABSTRACT

In this paper we “reverse-engineer”the YouTube video deliv-
ery cloud by building a distributed measurement infrastruc-
ture. Through extensive data collection and analysis, we de-
duce the key design features underlying the YouTube video
delivery cloud. The design of the YouTube video delivery
cloud consists of three major components: a “flat” video id

space, multiple DNS namespaces reflecting a multi-layered
logical organization of video servers, and a 3-tier physical
cache hierarchy. By mapping the video id space to the logical
servers via consistent hashing and cleverly leveraging DNS
and HTTP re-direction mechanisms, such a design leads to
a scalable, robust and flexible content distribution system.

Categories and Subject Descriptors

C.2.4 [Distributed systems]: Distributed applications

General Terms

Measurement, Performance

1. INTRODUCTION
Given the traffic volume, geographical span and scale of

operations, the design of YouTube’s delivery infrastructure
is perhaps one of the most challenging engineering tasks.
Little is known how Google leverages its resources to de-
sign and structure the YouTube video delivery cloud to meet
the rapidly growing user demands. This paper attempts to
“reverse-engineer”the YouTube video delivery cloud through
large-scale active measurement, data collection and analy-
sis. We are particularly interested in answering the follow-
ing question: how does YouTube design and deploy a scal-

able and distributed delivery infrastructure to match the ge-
ographical span of its users and meet varying user demands?

Towards this goal, we have developed a novel distributed
active measurement platform with more than 1000 vantage
points spanning five continents. Our distributed measure-
ment platform consists of two key components: i) PlanetLab
nodes that are used to play YouTube videos and and to per-
form DNS resolutions and ii) open recursive DNS servers

∗This work is supported in part by the NSF grants CNS-
0905037, CNS-1017647 and CNS-1017092 and the DTRA
Grant HDTRA1-09-1-0050.

Copyright is held by the author/owner(s).
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
ACM 978-1-4503-0262-3/11/06.

to provide additional vantages to perform DNS resolutions.
Through data analysis and inference, and by conducting ex-
tensive “experiments” to test and understand the behavior
of the YouTube video delivery cloud, we uncover and de-
duce the logical designs of the YouTube video id space, the
DNS namespace structures and cache hierarchy, how they
map to the physical infrastructure and locations, and what
mechanisms they use to select a server for any given request.

Most existing studies of YouTube mainly focus on user
behaviors or the system performance. For instance, the au-
thors in [3] examined the YouTube video popularity distri-
bution, popularity evolution, and its related user behaviors
and key elements that shape the popularity distribution us-
ing data-driven analysis. The authors in [4] investigate the
(top 100 most viewed) YouTube video file characteristics and
usage patterns such as the number of users, requests, as seen
from the perspective of an edge network. A more relevant to
our work is the recent study carried in [2], where the authors
utilize the Netflow traffic data passively collected at vari-
ous locations within a tier-1 ISP to uncover the locations of
YouTube data center locations, and infer the load-balancing
strategy employed by YouTube at the time. As the data used
in the study is from 2008, the results reflect the YouTube
delivery infrastructure pre Google re-structuring. This work
attempts to reverse engineer the current YouTube design.

2. MEASUREMENTS & DATASETS
We develop a distributed active measurement and data

collection platform consisting of the 471 PlanetLab nodes
and 843 open recursive DNS servers. We use PlanetLab
nodes to run our distributed crawler to crawl YouTube video
pages and collect 434K video ids. We then play all those
videos on PlanetLab nodes using our video player emulator
and collect video playback traces that include all the host-
names and IP addresses involved in the video delivery. We
use the open recursive DNS servers as additional vantage
points to resolve the hostnames that appear in the video
playback trace. Additionally, we measure round-trip delay
to all observed IP addresses from all PlanetLab nodes.

3. YOUTUBE SYSTEM DESIGN
Analysis of the sequence of hostnames and IP addresses in

the playback traces reveals that the YouTube video delivery
cloud consists of the following three components. Due to
space limitations, we refer the readers to [1] for more detais.
Video Id Space. Each video is uniquely identified using a
“flat” identifier of 11 literals long, where each literal can be
[A-Z], [0-9], - or , thus forming a space of total 6411 ids.



rhostrhost

rhost

rhost

rhostisp

lscache
(Non-Google)

tccache

cachealtcache

nonxt 
(Google)

lscache 
(Google)

Primary

Secondary

Tertiary

Figure 1: Namespace hierarchy and redirection order.

Table 1: Anycast (first 5) & unicast (last 2) namespaces.
namespace format hosts

lscache v[1-24].lscache[1-8].c.youtube.com 192
nonxt v[1-24].nonxt[1-8].c.youtube.com 192

tccache tc.v[1-24].cache[1-8].c.youtube.com 192
cache v[1-8].cache[1-8].c.youtube.com 64

altcache alt1.v[1-24].cache[1-8].c.youtube.com 64

rhost r[1-24].cityid.c.youtube.com 5, 044
rhostisp r[1-24].isp-city[1-3].c.youtube.com 402

Three-Tier Server Cache Hierarchy. Using the IP ad-
dresses seen in our datasets, we geo-map the“physical”video
server cache locations, which are dispersed at five conti-
nents. In addition to cache locations inside Google, there are
about a dozen physical caches hosted inside other ISPs such
as Comcast and Bell-Canada. Based upon the roles of the
servers we deduce that YouTube employs a 3-tier physical
cache hierarchy with (at least) 38 primary cache locations,
8 secondary and 5 tertiary cache locations.
Multi-Layered Anycast DNS Namespaces. YouTube
videos and (physical) cache hierarchy are tied together by
a set of 5 (logical) anycast (can map to more than one IP
address) namespaces as well as 2 unicast (maps to a unique
IP address) namespaces as shown in Table 1.

4. MECHANISMS AND STRATEGIES
The layered organization of logical video servers enables

YouTube to employ several mechanisms and strategies.
Fixed Mapping between Video Id Space and Logi-

cal Video Servers. YouTube adopts a form of “consistent”
hashing to map each video id uniquely to one of the host-
name in each of the anycast namespaces. In other words, for
lscache namespace, the video id space is uniformly divided
into 192 sectors, and each lscache DNS name is responsible
for a fixed sector. This fixed mapping between the video id

space to the anycast namespaces makes it easier for individ-
ual YouTube front-end servers to generate – independently

and in a distributed fashion – HTML pages with embedded
URLs pointing to the relevant video users are interested in,
regardless of where users are located or how logical servers
are mapped to physical servers or cache locations. These
fixed mappings make it easy for each (physical) video server
to decide – given its logical name – what portion of videos
it is responsible for serving.
Locality-Aware Video Cache Selection via DNS Res-

olution. YouTube employs locality-aware DNS resolution
to serve user video requests regionally by mapping lscache

hostnames to physical video servers (IP addresses) residing
in cache locations reasonably close to users.
Dynamic HTTP Request Redirection. The DNS reso-
lution mechanism, while locality-aware, is generally agnostic
of server load or caching status. When cache misses hap-
pen, depending on how busy a video server at the primary
location, it may either directly fetch the missed video from
another video server which has the video cached, or redi-
rect the request to another video server at a secondary or
tertiary location. Our analysis and experiments show that
more than 18% times, a user video request is redirected from
a primary video cache server selected via DNS lscache name
resolution to another server.

YouTube employs a clever and complex mix of dynamic
HTTP redirections and additional rounds of DNS resolution
to perform finer-grained dynamic load-balancing and to han-
dle cache misses. For instance, our investigation shows that
YouTube utilizes the layered anycast namespaces to redi-
rect video requests i) from one location to another location
(especially from a non-Google primary cache location to a
Google primary cache location via the use of nonxt names-
pace); and ii) from a Google cache location in one tier to
another tier (the primary to secondary or tertiary, or the
secondary to tertiary via the use of the tccache cache and
altcache namespaces). There is a strict ordering as to how
the anycast namespaces are used for redirection (see Fig. 1).
At each step of the redirection process, the corresponding
anycast hostname is resolved to an IP address via DNS.
YouTube also utilizes the unicast namespaces to dynami-
cally redirect a video request from one video server to a spe-
cific server usually (more than 90% of times) within the same

cache location, and occasionally in a different location. The
use of the layered anycast namespaces enables to enforce an
strict ordering and control the redirection process.

On the other hand, each redirection (and DNS resolu-
tion) process incurs additional delay. Up to 9 redirections
may happen, although they are rarely observed in the video
playback traces we collected.

5. CONCLUSIONS
In this paper, we reverse-engineer the YouTube video de-

livery cloud by building a distributed active measurement
platform. Through extensive data collection, measurement
and analysis, we have uncovered and geo-located YouTube’s
3-tier physical video server hierarchy, and deduced the key
design features of the YouTube video delivery cloud.

6. REFERENCES
[1] How Do You “Tube”? Reverse Engineering the

YouTube Video Delivery Cloud (Technical report).
http://www-users.cs.umn.edu/~viadhi/resources/

youtube-tech-report.pdf.

[2] V. K. Adhikari, S. Jain, and Z. Zhang. YouTube Traffic
Dynamics and Its Interplay with a Tier-1 ISP: An ISP
Perspective. In IMC ’10. ACM, 2010.

[3] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and
S. Moon. I tube, you tube, everybody tubes: analyzing
the world’s largest user generated content video system.
In IMC ’07. ACM, 2007.

[4] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube
traffic characterization: a view from the edge. In IMC

’07. ACM, 2007.


