
Know Your Enemy, Know Yourself:
Block-Level Network Behavior Profiling and Tracking

Esam Sharafuddin, Yu Jin, Nan Jiang, Zhi-Li Zhang

University of Minnesota
{shara,yjin,njiang,zhzhang}@cs.umn.edu

Abstract. Gaining a better knowledge of one’s own network is crucial toeffec-
tively manage and secure today’s large, diverse campus and enterprise networks.
Because of the large number of IP addresses (or hosts) and theprevalent use of
dynamic IP addresses, profiling and tracking individual hosts within such large
networks may not be effective nor scalable. In this paper we develop a novel
methodology for capturing, characterizing, and tracking network activities at the
block-level. To characterize block-level behaviors, we carefully select a port fea-
ture vector and capture the port activities of individual hosts within a block using
a block-wise (host) port activity matrix (BPAM). Applying the SVD low-rank
approximation technique, we obtain a low-dimensional subspace representation
which captures the significant and typical host activities of the block. Using these
subspace representations, we cluster and classify blocks to provide high-level
descriptive labels to assist network operators and security analysts to gain a “big-
picture” view of the network activities. We also develop novel methods to track
and quantify changes in blocks’ behaviors over time, and demonstrate how these
methods can be utilized to identify major changes and anomalies within the net-
work.

1 Introduction

Due to its scale and complexity, managing and securing today’s large campus or enter-
prise networks is a challenging task. The scale and complexity comes not only from the
number of heterogeneous hosts and devices on the network (e.g., various servers, desk-
top office client machines, laptops, lab machines, wirelessaccess points, routers and so
forth), but also from a wide range of diverse applications running on these machines.
Traditionally, network security has largely focused on identifying and preventing at-
tacks, e.g., through attack signature generation or anomaly detection (i.e., the focus is
on understanding the attacks and attackers). However, the scale, complexity and di-
versity of large campus and enterprise networks render suchan approachalone less
efficient, scalable and manageable. For instance, in the case of anomaly detection, what
constitutes “anomalous” activities in one network or part of it may be considered to be
“normal” in another network (or subnet). As an example, “unauthorized” peer-to-peer
file sharing applications are not allowed on a departmental subnet of our campus net-
work (unless they are for the purpose of research); on the other hand, such peer-to-peer
activities are considered legitimate on student residential hall subnets. Hence, to more
effectively manage and secure a large, diverse network, onemust also build a good

knowledge of one’s own network, e.g., by understanding the range of applications, us-
age patterns and user behaviors in various parts of the network. Such knowledge will
enable network operators and security analysts to better tailor their monitoring system
and detection tools (e.g., firewall configurations), and focus their attention on specific
vulnerabilities or areas of problem.

Along this new direction ofunderstanding oneself, several research studies [1–3]
have developed algorithms and tools for (primarily)host-leveltraffic classification and
behavior profiling. While these studies offer innovative methods for classifying traffic
or host behaviors, the analysis at the granularity of individual hosts (or individual IP
addresses) has two major drawbacks in practice. First, the prevalent usage of dynamic
IP addresses makes tracking individual hosts an infeasibletask in most networks [4,5],
since dynamic IP addresses are frequently reassigned to different hosts. Furthermore,
the large number of IP addresses (e.g., our campus network has 3 class-B subnets, with
3 × 1016 potential hosts) also make applying host-level traffic profiling to every host
quite expensive.

To address these limitations, in this paper, we propose and develop a novel method-
ology forblock-levelnetwork traffic behavior profiling. An IP address block constitutes
a set of consecutive IP addresses, typically in size of2k, say,k = 8 (i.e., a /24 or class-C
block), a unit used by a network administrator for IP addressassignment to a subnet.
More often than not, many hosts within the same block would beused for similar us-
age, e.g., a department block for office desktop and laptop machines, a block for lab
machines, a block for student residential hall, a block withone or two wireless access
points for wireless access (i.e., a wireless block), and so on. As shown in [5], dynamic
IP addresses are generally assigned in a block of consecutive IP addresses. Hence, by
analyzing and profiling network activities at theblock-level, we can circumvent the is-
sues caused by dynamic IP addresses. Further, exploiting the similar user activities and
usage patterns within a block, we can obtain a more compact block-level behavior pro-
file which captures and summarizes the significant and typical behaviors of hosts within
the block. Finally, the block-level analysis is far more scalable: in the case of our cam-
pus network, using /24 blocks we only need to profile and trackat most768 (= 3×256)
blocks as opposed to3 × 106 IP addresses.

In this paper, we employ flow-level data (i.e., Netflow data) captured at the campus
border router, and utilize theport information thereof to characterize and profile traf-
fic behaviors and host activities at the block level. By considering well-known service
ports, popular application ports and other dominant ports extracted from our flow data,
we form aport feature vectorconsisting of 2000 source and 2000 destination ports.
Using this port feature vector, a straightforward way to summarize the behavior of a
block is to simply compute the aggregate port distribution of the block: namely, for
each source or destination port in the port feature vector, the fraction of flows using
the port that are generated by any IP address (or host1) within the block. However,
while the aggregate port distribution captures the overallactivities of hosts within the
block, it fails to provide adequate information to capture,characterize, and distinguish
significant and typical host behaviors within the block. Forexample, we would like a

1 For simplicity, in this paper we use the term ahostto denote a specific IP address (although an
IP address may be assigned to a router, a printer or some otherdevices).

block-level behavior profileto enable us to meaningfully answer questions such as the
following: i) Do all hosts in the block behave similarly, e.g., most of them are client
machines that are used to primarily access the web? Thus, theoverall port distribution
would represent the “typical” behavior of the hosts in the block? ii) Does the block con-
tain one or a few dominant hosts (e.g., web servers, or “heavy-hitter” client machines)
that generate a majority of the flows? In other words, the overall port distribution of
the block is skewed mostly by these dominant hosts, while obscuring the activities of
other “typical” hosts within the block. iii) Or, does the block consist of several groups
of hosts with distinct behaviors or activities, e.g., web/email servers, client machines
with heavy web and P2P activities?

The ability to answer these and similar questions is important to characterize, sum-
marize and distinguish the behaviors of various inside (campus) blocks within a net-
work, and therefore help network operators and security analysts to understand and
monitor the block-level activities, detect sudden changesand anomalies, and identify
policy violations, security breaches and malicious attacks. For this purpose, we intro-
duce theblock-wise (host) port activity matrix(BPAM), which records the activities of
each host within the block on these ports, e.g., the number offlows using each of the
ports. Hence, the BPAM represents the key port activities ofindividual hosts within each
block. By applying the Singular Value Decomposition (SVD) method (to an appropri-
ately normalized and re-scaled version of BPAM), we obtain acompact, low-dimension
subspace representationof the behaviors of each block. We show that as a low-rank ap-
proximation to the original BPAM, this subspace representation captures thesignificant
andtypical activities of individual hosts within the block, and therefore can be used to
answer the questions listed above.

In addition, by introducing a subspace distance metric, we employ the subspace
representations to cluster and classify the behaviors of various blocks within a network.
The block-level behavior clustering allows us to assigninterpretivelabels to various
blocks as to assist network operators and security analystsin understanding the over-
all block-level activities within the network. Furthermore, we demonstrate how to use
the subspace representations to track changes in block-level behaviors over time, and
develop two methods to quantify and classify such changes. We also show how these
methods can be explored to identify major changes and anomalies within a network.
The efficacy of our proposed block-level network behavior profiling methodology has
been extensively evaluated and validated using a month-long netflow data collected at
our campus network.

The remainder of this paper is organized as follows. In section 2 we describe how
the port feature vector is selected. In section 3 we introduce the BPAM and the SVD-
based subspace method to extract and summarize significant and typical host behaviors
within each block. In section 4 we develop a clustering method to classify block-level
behaviors using the subspace representations, while in section 5, we develop methods
for tracking and quantifying block-level behavior changes, and show how they can be
used to identify anomalies. The paper is concluded in section 6.

2 Block Behaviors and Port Feature Vector

Port numbers are the most widely used packet/flow level features for identifying net-
work activities. Certain (IANA reserved or registered) ports are almost synonymous
with the well-known services associated with these ports, e.g., web with TCP 80, email
with TCP port 25, and DNS with UDP port 53. Although these reserved ports may be
misused by other applications (e.g., for penetrating firewalls), or the well-known ser-
vices may also use other ports (e.g., TCP 8080 for web), for a majority of the hosts the
dominant activities observed on these ports represent the well-known services. Further-
more, many popular “non-standard” applications that do nothave officially “reserved”
or “registered” ports, such as many P2P and other emerging applications, often use
certain fixed ports, or have a default range of ports. More importantly, because of the
socket layer programming interfaces used by networked applications today, source and
destination ports are generally used in certain manners that distinguish ports that pro-
videservices(in the sense of an “application server”) from many random ports (used by
“application clients”). For example, an application providing a service (an “application
server”) often must listen on a fixed (source) port, while an application requesting such
a service (an “application client”) must send a service request using the said port as
the destination port and a typically randomly generated source port. Hence when exam-
ining the flow-level data, the service ports used by popular applications (even though
these ports may not be fixed) tend to occur more frequently than a randomly selected
port. In this section, we utilize this observation to selecta set of frequently used ports
to form aport feature vectorfor characterizing block-level network activities based on
ports. Before presenting this method, we first describe the datasets used in our study.

Dataset: Our study is based on a one-month data collected at the borderrouter
of our campus network. The data includes bidirectional Cisco NetFlow records cor-
responding to traffic between inside (campus) hosts (3 classB IP blocks with216 IP
addresses) and outside hosts. We focus on theoutgoingTCP, UDP and ICMP traffic
which account for more than 99% of all the traffic from our campus network to the
outside Internet hosts. The outgoing flows represent trafficactivities either initiated by
inside hosts, or in response to outside service requests, thus they are indicative of true
activities of the inside hosts. In contrast, incoming traffic may contain a significant
amount of “noises” (such as various scanning, backscatter and other activities) gen-
erated by the outside hosts towards our campus network, manyof which do not even
pass the campus network border firewall. In the following, when referring to specific
source or destination port number, e.g., source or destination port 80, we will also use
the shorthand,srcPort 80or dstPort 80.

We note that we choose the block size to be28 (class C IP block) throughout the
paper, which is the most commonly used block size for our network administrators to
assign IP addresses to different departments/subnets [5].

2.1 Port Feature Vector Selection

One simple way to select ports to characterize host activities is to utilize a list of well-
known or registered service ports from IANA. IANA defines theport number range
0-1023 as the well-known (or reserved) ports, the port number range 1024-49151 as

0 500 1000 1500 2000 2500 3000 3500 4000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Top N source ports and top N destination ports

F
lo

w
 c

ov
er

ag
e

(a) Top N ports vs. flow cover-
age

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percentage of flows covered

C
D

F

(b) CDF of per block flow cover-
age

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f
b

lo
c
k
s

TCP80
TCP22

ICMP0

TCP443
TCP25

TCP3306

TCP143

ICMP771

TCP993

UDP123

(c) Top 10 most popular source
service ports

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f
b

lo
c
k
s

TCP80
ICMP0

UDP53

TCP5190

TCP443

TCP1863

TCP8200
TCP25

TCP7000

UDP123

(d) Top 10 most popular destina-
tion service ports

Fig. 1. Properties of top service ports

registered ports and the remaining ports as dynamic/private ports. Using such an ap-
proach has two obvious drawbacks. First, many ports used by popular applications such
as most instant messenger (IM or chat) and p2p applications use port numbers above
1024 or 5000 as service ports. Furthermore, services or applications associated with
some well-known or registered service ports may not be provided or used by any hosts
within the campus network (or even if they are available, they may be restricted to
internal use, thus have no associated traffic activity across the campus border router).
Including these reserved/registered service ports in the port feature vector is therefore
unnecessary. To address these issues, we propose a method toextract service ports based
on the frequencies of ports occurring in the observed trafficof the entire campus net-
work. As described earlier, the basic intuition is that service ports used by popular or
common applications by many hosts in our campus network willlikely occur more fre-
quently than a randomly selected port. We therefore select the most frequent ports (in
terms of number of flows/hosts associated with them) as likely candidates for service
ports. The port selection method is described below.

LetFt be the set of flows observed within our campus network during atime interval
t, say, a day (this is the time interval used in this paper). We rank all the source (resp.
destination) ports that appear inFt in terms of both the number of flows and the number
of hostscovered: we say asrcPort(resp.,dstPort) p covers a flowf if the flow contains
p as the source (resp., destination) port. Likewise, we say thesrcPortor dstPortp covers
an inside hosth (an IP address) ifh appears as the source IP address in at least one of
the covered flows. We pick the top rankedN source ports andN destination ports in
such a manner that they cumulatively cover at least, say 95%,of all flows as well as
of all “active” hosts (an IP addresses which generates at least one flow during the time

interval t). The intuition is that the (source or destination) serviceports selected are
expected to contribute a significant traffic volume and be used by a large number of
hosts. Hence the choice ofN should be sufficiently large so that we can identify nearly
all service ports used by popular applications. However, itshould not be too large to
avoid misclassifying some random ports as service ports.

Through experiments using our flow datasets, we decide onN = 1999, which yields
1999 top source ports as well as1999 top destinations2. Fig. 1(a) shows the combined
flow coverage (y-axis) of these top source and destination ports (x-axis). From the fig-
ure, we see that they cover nearly 98% of all flows. These top source/destination ports
also cover nearly 100% of all “active” hosts. Due to the spacelimitation, we do not
include the corresponding figure here. We group all remaining source ports as if they
were a special “virtual” source port, referred to as “all other source ports” (oraoSrcPort
in short), and all remaining destination ports as if they were a special “virtual” destina-
tion port, referred to as “all other destination ports” (oraoDstPortin short). Together
with the top 1999 source ports and 1999 destination ports, wedefine a4000-dimension
port feature vectorPFV = [port1, . . . , port4000], where for1 ≤ j ≤ 1999, portj
refers to one of the top 1999 source ports (ordered in the increasing number of the port
numbers), and forj=2000,port2000 refers toaoSrcPort; and for2001 ≤ j ≤ 3999,
portj refers to one of the top 1999 destination ports (ordered in the increasing number
of the port numbers), and forj=4000,port4000 refers toaoDstPort.

2.2 Characterizing Blocks using Ports

In this section, we show some statistics regarding the block-level flow coverage using
the selected service ports and illustrate how these ports provide some basic information
regarding the activities of various blocks. In the following, we useSsrc andSdst to
denote the sets of 1999 source service ports and 1999 destination service ports, respec-
tively.

In Fig. 1(b), we show the flow coverage in each block using the selected service
ports, wherex-axis represents the percentage of flows in each block that are covered
by eitherSsrc or Sdst, andy-axis is the CDF. We observe that for 90% of the blocks,
the flow coverage is at least 90%, indicating that these selected service ports also have
good flow coverage at the block level. However, there are five blocks with flow coverage
less than 75%. Investigation on the domain names of the IP addresses in these blocks
indicates that they contain mostly wireless addresses and other dynamic IP addresses.
Hosts using these address blocks may run some non-typical applications, perhaps even
inflicted with certain “suspicious” activities.

Figs. 1(c) and (d) show the top 10 source ports and top 10 destination ports that are
most popular in all 768 blocks (which accounts for at least 10% of the traffic in each
block), wherex-axis represents the port numbers andy-axis stands for the total number
of blocks with the associated port number. The most popular server activity is web (80
and 443), ssh (22) and email (25 and 993)3. Investigation on these blocks with dominant

2 We refer to ICMP type numbers as the port numbers for ICMP traffic, e.g., ICMP0 represents
ICMP type 0 echo reply traffic.

3 We note that, unless otherwise mentioned, we refer a port number as a TCP port by default

port numbers showing dominant activities, we find that most of these blocks belong to
certain department subnets which maintain their own web servers and email servers. On
the other hand, the most popular client activities are associated with web (80 and 443),
DNS (UDP53), messenger (AOL for 5190 and MSN for 1863). The number of blocks
associated with web client activities is much larger, agreeing with the fact that most
of IP addresses in our campus network are used by client machines. Investigating the
blocks that contain most (web/chat) client activities indicates that many of these blocks
belong to residential hall networks, or wireless and other dynamic address blocks that
are typically dominated by client machines.

As argued in the introduction, though the aggregated port distribution of a block
provides us with some hints on the overall activities of the hosts within a block, it
fails to provide adequate information to capture, characterize, and distinguish signif-
icant and typical host behaviors within the block. This is mainly due to the fact that
certain extremely active hosts, either popular servers or heavy hitter client machines,
can dominate the overall activities of a block, thus maskingthe typical behaviors of
other active hosts. For example, in a block containing different kinds of servers, e.g.,
web servers, email servers, ssh servers and an IRC server, the activity of the IRC server
and ssh servers may not be “visible” due to being masked by thetypically huge amount
of traffic generated by web and email servers. To circumvent this problem, in the next
section, we will introduce the block-wise (host) port activity matrix to represent the port
activities of individual hosts within a block.

3 Block-wise Host Port Activities and Subspace Representation

In this section, we introduce theblock-wise (host) port activity matrix(BPAM) to rep-
resent the port activities of individual hosts within a block. Using the Singular Value
Decomposition (SVD) method, we derive a low-rank approximation to the BPAM, and
thus obtain a low-dimensionsubspace representationof the behaviors of each block.
Applying this technique to our campus flowdata, we demonstrate that these subspaces
indeed capture thesignificantandtypical activities of individual hosts within a block,
and produce compact and meaningful block-level behavior representations that can be
used to characterize and distinguish various block behaviors within a network.

3.1 Extracting Significant Block Behaviors from BPAMs

In this section, we formally define the block-wise (host) port activity matrix (BPAM),
and apply singular value decomposition (SVD)4 to A to extractsignificantactivities
of “typical” as well as “dominant” hosts within a block. Mathematically, as a low-rank
matrix approximation to the original BPAM of the block, the outcome of SVD yields a
subspacerepresentation of the significant block behaviors.

Given a /24 blockB, let i, 0 ≤ i ≤ m − 1 (wherem = 256), denote a host
(more precisely an IP address) within the block. For each host i, let fi denote the total

4 We conducted the same experiments using both SVD and robuts PCA [6, 7], and the results
are similar, possibly due to the normalization process which eliminates the effect of outliers.

0 500 1000 1500
0

50

100

150

200

250

Src. port index

H
os

t i
nd

ex

2001 2500 3000 3500 4000
Dest. port index

(a) a client-centered block

0 500 1000 1500
0

50

100

150

200

250

Src. port index

H
os

t i
nd

ex

2001 2500 3000 3500 4000
Dest. port index

(b) a server-dominated block

0 500 1000 1500
0

50

100

150

200

250

Src. port index

H
os

t i
nd

ex

2001 2500 3000 3500 4000
Dest. port index

(c) a residential network block

Fig. 2.Example block-wise host port activities.

number of (outgoing) flows generated by hosti during an observation time windowW ,
say, a day. For1 ≤ j < 2000, we usej to represent one of the 1999 most frequent
sourceports in theport feature vectordefined in the previous section, andj = 2000
to represent the all other source ports. Likewise, for2001 ≤ j < 4000, we usej to
represent one of the 1999 most frequentdestinationport in the port feature vector, and
j = 4000 to represent the all other destination ports. Then for1 ≤ j ≤ 2000, fij

denotes the number of flows generated by hostsi that uses the source port(s)j, whereas
for 2001 ≤ j ≤ 4000, fij denotes the number of flows generated by hostsi that uses
the destination port(s)j. Note that since each flow has both a source and a destination
port, we have

∑2000
j=1 fij =

∑4000
j=2001 fij = fi.

A straightforward way to represent the block-wise host portactivities is to directly
use them×n matrixFB = [fij] (wherem = 256 andn = 4000). Fig.2(a)-(c) visually
depictFB for three representative blocks, where each row in the figurecorresponds to
a host within the block, and a dot at thejth position of theith row is plotted if and
only if fij/fB ≥ 0.005 andfi ≥ 100 flows, wherefB =

∑256
i=1 fi is the total number

of flows generated by all hosts in the block. The left half (1-2000) of the x-axis rep-
resents the source ports, wherex=2000 representsall other source ports (aoSrcport),
and the right half (2001-4000) represents the destination ports, wherex=4000all other
destination ports (aoDstPort). The block in Fig.2(a) is a department block with predom-
inantly client machines, Fig.2(b) a department block with many servers (web, email,
etc.), whereas Fig.2(c) depicts a block in the student residential hall network with many
diverse activities, e.g., frequent p2p, IM activities in addition to typical client activities

such web and email. These figures visually illustrate that these blocks indeed exhibit
distinct behaviors characteristics.

When applying SVD to extract the “significant” and “typical”behaviors of a block
B, usingFB directly has a major drawback. For instance, consider a block that con-
tains one or two popular servers or a few extremely active hosts, but otherwise consists
of typical client machines. Because these servers or “heavy-hitter” hosts generate far
larger number of flows than an average client machine, their behaviors may mask those
of “typical” hosts within the block. In other words, the outcome of SVD may represent
only the behaviors of a few dominant “heavy-hitters” but miss the significant behav-
iors of “typical” hosts. Another alternative is to use the (frequency) matrixPB = [pij],
wherepij = fij/fi is the frequency of flows using portj. This matrix, on the other
hand, amplifies the behaviors of “inactive” hosts that generate a few flows in total. For
instance, consider a block that contains many active hosts (i.e., frequently generating
traffic) but a few “inactive” hosts. These inactive hosts mayoccasionally respond to
outside scanning activities on a few random service ports that are otherwise not used
by any of the “typical” active hosts within the block. For these inactive hosts, although
there are only a few flows on these randomly scanned ports, becausefi is also very
small,pij is closer to 1. In other words, the corresponding row entriesof these inac-
tive hosts would dominate those of “typical” active hosts. But the behaviors of these
“typical” active hosts are actually what we are interested in extracting!

To counter-balance the effects of extremely active as well as inactive hosts, we in-
troduce an appropriatelynormalizedand re-scaledversion ofFB (or PB) using en-
tropy. Recall thatfB =

∑m
i=1 fi is the total number of flows generated by all hosts

within block B. Definepi = fi/fB, the fraction of flows generated by hosti. We de-
fine the(flow activity) entropyof block B, entB := −∑m

i=1 pi log pi. We note that
0 ≤ entB ≤ log m: the closerentB is to the upper boundlog m, the more uniformly
distributed are the flows among the hosts; whereas the closerentB is to 0, the more
skewed is the flow distribution among the hosts. UsingentB, we define ascaling factor
for each host as follows: fori = 1, . . . , m, si := entB/(−logpi) if pi > 0, andsi = 0
otherwise5. We see that the smallerpi is, the smallersi is. On the other hand,si only
grows inverse logarithmically withfB/fi (approximately logarithmically withfi), thus
dampening the effect of extremely active hosts. We are now ina position to formally
define theblock-wise (host) port activity matrix(BPAM) for a given block B:

AB := [sipij]m×n = [sifij/fi]m×n.

Note that each rowi of AB sums up tosi, hence, the contribution of each hosti to the
total “mass” of the BPAMAB is proportional tosi. (In the following, we will drop the
subscriptB when the context is clear.)

Given this definition of BPAM, we apply SVD toA to extract “significant” and
“typical” host behaviors of a block. Asm ≤ n, the SVD decomposition ofA is given
by A = Um×mΣm×mV T

m×n, whereΣ = [σi] is a diagonal matrix containing the
singular valuesin the decreasing order,σ1 ≥ σ2 ≥ . . . σm, U = [u1, · · · , un] is an

5 Here we implicitly assume that each block has at least two active hosts, thuspi < 1 for all i’s.
As − log pi is the entropy of an individual hosti, intuitively si measures the contribution of
individual hosts’ entropies to the (average) entropy of theblock.

orthonormal matrix (i.e.,UUT = I), the columns of which are theleft singular vectors
of A, andV = [v1, · · · , vm] is also an orthonormal matrix, where the columns areright
singular vectorsof A.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

k

N
o

of
 B

lo
ck

s

(a) ǫ = 10%

5 10 15 20 25 30
0

20

40

60

80

100

120

140

k

N
o

of
 B

lo
ck

s

(b) ǫ = 5%

Fig. 3. No of singular values for different values ofǫ

Intuitively, the (n-dimensional) right singular vectors,vi’s, provide anorthogonal
representation of the port activities of them hosts within a block. In particular,v1 cap-
tures most dominant port activities (those with most variances or energy) across all
hosts,v2 the second most dominant port activities, and so forth. In a sense, eachvi can
be viewed as avirtual host, where|vij | (or v2

ij) measures the magnitude (or fraction)
of activities on portj by this virtual host (note that

∑n
j=1 v2

ij = 1, hence,{v2
ij} can be

viewed as a probability distribution). Unlike the port activities of them original (real)
hosts, them virtual hosts haveorthogonalport behaviors (i.e.,vT

i vj = 0 for i 6= j).
As a result, we can decompose the (rescaled) port activitiesof each original hosth,
1 ≤ h ≤ m, as a linear combination of them virtual hosts, whereu2

hi measures the
contribution of the virtual hosti. Since the magnitude of the overall virtual hosti activ-
ities is measured byσi, those with largestσi (say, the firstK) capture and represent the
most significant and typical behaviors of the hosts within a block. For an appropriately
chosenK, the firstK singular values and their associated left and right singular vectors
provide a low-rank approximation toA, namely,

A ≈ UKΣKV T
K ,

whereUK = [u1, · · · , uK], ΣK = diag[σ1, · · · , σK], andVK = [v1, · · · , vK]. Hence,
extracting the significant and typical host behaviors of a block boils down to obtaining
a low-rank approximation to the BPAMA via SVD. We refer to thesubspacespanned
by the firstK dominant virtual hosts,v1, . . . , vK , as a subspace representation of the
(significant and typical) behaviors of a block. In the next section, we will discuss how
we decide onK, and provide some interpretations of extracted “dominant”(virtual)
host behaviors (vk ’s), where1 ≤ k ≤ K.

3.2 Significant Block Behaviors and Interpretations

We employ the standard scree plot method to chooseK: given a small thresholdǫ > 0,
we deem a singular valueσk significant ifσk/σ1 ≥ ǫ, in whichσ1 is the largest singular
value. Using this method, we apply SVD to the BPAMs of the /24 blocks in our campus

0 500 1000 1500
−1

0

1

v 1

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

v 2

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

Src. port index

v 3

2001 2500 3000 3500 4000
Dst. port index

(a) A client-centered block

0 500 1000 1500
−1

0

1

v 1

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

v 2

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

Src. port index

v 3

2001 2500 3000 3500 4000
Dst. port index

(b) A server-centered block

0 500 1000 1500
−1

0

1

v 1

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

v 2

2001 2500 3000 3500 4000

0 500 1000 1500
−1

0

1

Src. port index

v 3

2001 2500 3000 3500 4000
Dst. port index

(c) A residential hall block

Fig. 4.Port distribution for the top 3 singular vectors.

network. Figs. 3(a)-(b) show the histogram of the resultingK ’s for all the blocks for
ǫ = 0.1 andǫ = 0.05, respectively. We see that a majority of the blocks require only
a smallK, say,≤ 5. In fact, we have validated that the low-rank approximations thus
obtained indeed capture at least 95% of the energy in the original BPAM (or, with
squared errors less that 0.05). Hence, for the majority of blocks, their significant and
typical behaviors can be captured and represented by a few (largest) singular vectors
vk ’s. However, there do exists a few “outlier” blocks which require far large number of
singular vectors (e.g., one with 30 and another one with 15).

We now use the three representative blocks shown in Fig. 2 as examples to illustrate
and interpret the behaviors captured by the top (right) singular vectorsvk ’s, and show
that they indeed capture the significant and typical behavioral characteristics of these
blocks. Usingǫ = 0.05, we obtainK = 3 for each of the three blocks in Fig. 2(a)-
(c). In Figs. 4(a)-(c), we plot the “energy” of the ports,vij , in the top three singular
vectors,v1 (the top panel),v2 (the middle panel), andv3 (the bottom panel), for each
of the three blocks. Recall that the range[0, 2000) in the x-axis represents the 1999
most frequent source ports andj = 2000 all other source ports (compactly denoted as
aoSrcPortbelow); and the range[2001, 4000) the 1999 most frequent destination ports
andj = 4000 all other destination ports (compactly denoted asaoDstPortbelow).

For the client-centered block in Fig. 4(a), we first note thatmost points with high
energy (i.e., with large non-zero valuev2

ij) in v1-v3 are concentrated in the destination
port range [2001-4000], except for one major point atj = 2000 (in v1) corresponding
to aoSrcPort. In addition toaoSrcPort, the other two largest points inv1 correspond to

destination port 80 (j = 2020) and port 443 (j = 2033). Hence,v1 captures the web-
related client activities of the hosts. Whereas,v2 contains a number of considerably
large nonzero points corresponding to various destinationservice ports such as Instant
Messaging (IM) for AOL port 5190, (j = 3728), in addition to destination ports 80
and 443 (when the same point appears in bothv1 andv2, it has opposite signs).v3

also corresponds to other IM, such as Yahoo Messenger port 5050 (j = 3721), MSN
Messenger port 1863 (j = 3004) in addition to remote desktop port 3389 (j = 3561).
Therefore, the subspace spanned by the top three singular vectors captures the prevalent
client behaviors of the hosts within the block, where web-related and IM activities are
most significant and typical.

In contrast, for the server-dominated block in Fig. 4(b), most points with high en-
ergy in bothv1 andv2 are concentrated in the source port range [1-2000], except for the
point atj = 4000 corresponding toaoDstPort. In v1, the other major nonzero points
correspond to major source service ports such as source ports 80 (j = 11) in v1.

Whereas,v2 contains a number of considerably large nonzero points inv2 corre-
sponding to various source ports such as email port 25 (j = 8), and ssh port 22 (j = 7).
v3 has similar ports (with opposite signs) to that ofv2. Hence, the subspace spanned by
the top three singular vectors captures the prevalent server behaviors of the hosts within
the block, where web, email, and ssh server activities dominate.

Unlike the previous two cases, the top three singular vectors in the residential net-
work block in Fig. 4(c) contain several points with high energy in both the source
[1, 2000] and destination[2001, 4000] port ranges. In addition toaoSrcPortandaoDst-
Port, the other two major points inv1 correspond to destination ports 80 (j = 2020),
and destination port eMule (p2p) 4662 (j = 3696), whereas the points with highest
energy inv2 correspond to destination ports 80 and 4662 (with opposite signs). Inv3,
in addition to these two destination ports and theaoDstPortport, points with highest
energy correspond to source port gnutella (p2p) 6348 (j = 1805) and destination IM
port 5190 (j = 3728). Hence, the subspace spanned by the top three singular vectors
captures typical residential hall behaviors in which p2p and IM are prevalent in addition
to the web-client behaviors.

We have performed similar analysis of the top singular vectors for other blocks, and
found that, overall, these top singular vectors indeed capture the significant and typical
behaviors of the hosts within the block, as confirmed by examining the port activities
of those individual hosts which generate significant numberof flows. As an additional
example, we examine the outlier block in Fig. 3 which requires top 30 singular vectors
to capture its significant and typical behaviors. These top singular vectors represent
diverse behaviors of a mixed group of server (e.g., web, email and ssh) and client hosts
which are active on a wide range of source and destination ports. Using information
from other sources, we find that it belongs to one of the most diversified school: the
school of public health. Blocks belonging to this department are assigned to several
other smaller departments: biology, genetics, health school, clinical research and other
health-related departments. It is not surprising to find outthat this block was originally
assigned to the school of public health in general but as the school expanded, portions
of the same block were assigned to different departments which put them into a wide

range of different usages, from web, email, ftp servers, to office and lab machines as
well as wireless access networks.

4 Classifying Block Behaviors

0

0.5

1

1.5

2

2.5

3

3.5

(a) Visual representation of subspace dis-
tance matrix.

(b) Eigenvalue scree plot.

−0.1
−0.05

0
0.05

0.1
0.15

−0.2

−0.1

0

0.1

0.2
−0.2

−0.1

0

0.1

0.2

(c) 3-D embedding and K-means cluster-
ing.

Fig. 5. Clustering and Labeling of Blocks

The examples in the previous section show that blocks with hosts running different
applications exhibit distinct behavioral characteristics, and the principal subspace pro-
vides a succinct way to extract, characterize and representthe significant and typical
behaviors of a block. In this section, we compare and classify block-wise behaviors
based on their subspace representations. By grouping blocks with similar behaviors,
we can assign a high-levelinterpretivelabel to each block, e.g., a client-centered block
with prevalent web activities, a server-dominated block with web and email servers, a
resident network block with frequent web, p2P, IM activities, and so forth. Such inter-
pretive labels will enable network operators and security analysts to better understand
and manage a campus/enterprise network, and profile and track the behaviors of various
blocks within the network.

Consider two blocks,B1 andB2, wherev(1)
1 , . . . , v

(1)
K1

andv
(2)
1 , . . . , v

(2)
K2

are the top
(right) singular vectors extracted from their respective BPAMs. LetV (i), i = 1, 2, be
the subspace spanned byv

(i)
1 , . . . , v

(i)
Ki

, i.e.,V (i) is the resulting subspace representa-
tion of blockBi. To compare the behaviors of these two blocks, we need asimilarity
or distance(dissimilarity) metric for the two subspaces,V (1) andV (2). Note that as
two subspaces in ann-Euclidean spaceRn (n is the number of elements in the sin-
gular vectors,v(i)

j ’s) both pass through the origin, and the set of the singular vectors

v
(i)
1 , . . . , v

(i)
Ki

forms an orthonormal basis of theKi-dimensional subspace,i = 1, 2.
Intuitively, if K1 = K2 and the two subspaces coincide with each other, then the two
subspaces are exactly identical, i.e., their distance is zero. On the other hand, if two
subspaces are perpendicular to each other (i.e.,〈v(1)

i , v
(2)
j 〉 = 0, 1 ≤ i ≤ K1 and

1 ≤ j ≤ K2, where〈·, ·〉 denotes the inner product of two vectors), then they are least
similar, i.e., their distance is largest. In general, asK1 6= K2, we would expect that two
subspaces where one is entirely contained in the other wouldhave a smaller distance
than those where one is only partially contained in, or “cut cross” the other.

These intuitions lead to the following distance metric between two subspaces [8]:
For anyK1-dimensionalV (1) andK2-dimensionalV (2) subspaces inRn, letv(i)

1 , . . . , v
(i)
Ki

be an orthonormal basis ofV (i), i = 1, 2. Thesubspace distancebetweenV (1) andV (2)

is

d(V (1), V (2)) =

√

√

√

√max(K1, K2) −
K1
∑

i=1

K2
∑

j=1

(〈v(1)
i , v

(2)
j 〉)2.

In [8], it is shown that the subspace distance defined above isa Euclidean distance
function, andis independent of the choices of the orthonormal bases, v

(i)
1 , . . . , v

(i)
Ki

.

Further,0 ≤ d(V (1), V (2)) ≤
√

max(K1, K2), whered(V (1), V (2)) = 0 if and only
if K1 = K2, and the two subspaces coincide, andd(V (1), V (2)) =

√

max(K1, K2)
when two subspaces are perpendicular to each other6.

Using the above definition, we compute the pairwise subspacedistance between any
pair of the 492 blocks7, and the results are shown in Fig. 5(a): the rows and columns are
indexed by the blocks, and a gray scale is used to visually depict the distance: the darker
a point(i, j) is, the shorter the distance between the two blocks(Bi, Bj). The rows and
columns are sorted so that the blocks with likely similar behaviors are located closer
to each other. The figure clearly shows clusters of blocks with likely similar behaviors.
To extract the clustering structure and classify the block behaviors, we first apply the

6 Note that whenK1 = K2 = 1, thend(V (1), V (2)) = d(v
(1)
1 , v

(2)
1) =

√
1 − cos2 θ = sin θ,

whereθ is the angle between the two vectorsv
(1)
1 andv

(2)
1 (two 1-dimensional space). Hence,

in a sense we can considerarcsin d(V (1), V (2)) as ageneralized anglebetween two sub-
spaces. In statistical literature, another generalization of angles, a series ofprincipal angles
(typically defined whenK1 = K2) instead of a single metric, are used to measure similar-
ity/dissimilarity between subspaces. In the next section,we will use (a variation of) principal
angles to compare, characterize and track similarity/dissimilarity among individual singular
vector components of the two subspaces,V (1) andV (2).

7 We only focus on 492 blocks which contains at least 10 active hosts with at least 10 observed
flows originated from each host in a day.

classical scalingmethod [9] and then theK-meansclustering algorithm (see, e.g., [10])
for dimension reduction and clustering.

As the subspace distance is a Euclidean distance function, it implies that we can
embed the blocks (or more precisely, their corresponding subspace representation) as
points in anM -dimensional Euclidean spaceRM , whereM = 492, the total number of
the blocks. In this embedding, the Euclidean distance between two points is exactly the
subspace distance between the two corresponding blocks. The classical scaling method
allows the recovery of the (intrinsic) coordinates of thesepoints inRM from thesquared
distance matrixof these points (up to a rotation and translation) [11]. TheM × M
squared distance matrix is given byD(2) = [d2

ij], wheredij = d(V (i), V (j)) is the
subspace distance between blocksBi and Bj . Let J = I − M−1eeT , wheree =
[1, 1, ...,]T is an M-dimensional all-1 column vector8, and define the doubly-centered
matrix BD = − 1

2JD(2)J . Applying eigenvalue decomposition toBD yields BD =
WΛWT , whereΛ = diag[λ1, . . . , λM] is a diagonal matrix containing the eigenvalues
(in a decreasing order) ofBD, columns of the orthonormal matrixW = [w1, . . . , wM]
are the corresponding eigenvectors ofBD, andWT W = I. Then the columns of the
matrixX = Λ1/2WT , whereΛ1/2 = diag[

√
λ1, . . . ,

√
λM], are the coordinates of the

M points (blocks) inRM , and the Euclidean distance of any two points,Bi andBj ,
computed using this coordinate systemX , is exactly equal todij .

UsingX , we can directly apply theK-meansclustering algorithm to extract the clus-
ter structure. However, for largeM , this may not be efficient and scalable (as its time
complexity isO(M3)). Moreover, the well-known “curse of dimensionality” alsoleads
to unsatisfactory clustering results [12]. Examining the scree plot of the eigenvalues of
BD (see Fig. 5(b)), we see that theM points lie mostly in a low-dimensional space,
as their coordinates in the higher dimensions are close to zero. The inset in Fig. 5(b)
shows that we can apply the spectral clustering method [13] directly. Usingr = 3
andK = 10, the 10 clusters are represented by either “o” or “+” with different col-
ors, where “+” stands for dense or seemingly dense clusters,and “o” stands for loose
clusters). From the figure, we see that there are blocks that are more tightly clustered to-
gether, while others are somewhat more loosely clustered. Afew blocks are “outliers”,
having a relatively distance to nearly all other blocks. Dueto some randomness in the
K-means algorithm, some blocks may be assigned somewhat arbitrarily to one or the
other loose cluster, as their distances to other blocks in each of them may be similar.
Hence, the ordering how blocks get assigned to each cluster has an impact on the over-
all clustering results. We have performed K-means clustering algorithms with different
seeds, withr = 3, . . . , 6, andK = 5, . . . , 25. The overall observation remains the
same: there are about 3 tightly clustered blocks, and a smallgroup of “outlier” blocks,
while other blocks belong to somewhat more loosely associated clusters. The number
of clusters and membership of blocks hinge on the parameterK, the seeds, but less so
on the dimensionr.

Table 1 summarizes a sample clustering result withr = 3 andK = 10, where the
intra-cluster distance is the average distance between blocks within the same cluster,
and the inter-cluster distance is the average distance between blocks within the same

8 J is often referred as the cantering matrix, as multiplying a matrix byJ on both sides produces
a matrix that has0 − mean columns or rows.

ID Label Intra-dist. Inter-dist. # blocks Dominant Src. Ports Dominant Dst. PortsDetails
1 web client-centered 0.28 1.26 83 aoSrcPort 80 Academic departments. No servers
2 web server-centered 0.99 1.29 13 80, 25, 443 aoDstPort CSE and ITLabs. with multiple web servers
3 non-web-dominated 1.01 1.42 28 Mail, p2p (no port 80) aoDstPort CSE, ITLabs and SuperComputing. No web traffic.
4 mixed web clients/web servers 1.1 1.59 51 80,aoSrcPort 80,aoDstPort Departmental office client machines with web activities

and at least one web server.
5 mixed web clients/servers 1.09 1.34 57 80, 25, 22 80,aoDstPort Departmental office client machines with web activities

and different types of servers.
6 diversified 1.32 1.48 69 non-service 80 and non-service Web clients along with other client traffic.

web clients random ports random ports.
7 web and p2p clients 1.31 1.44 79 p2p 80 and p2p Client machines with more diverse behaviors and non-

web-dominance.
8 mixed client behaviors 1.63 1.61 9 p2p and IM 80, p2p, mail and IM Client machines with more diverse behaviors and non-

web-dominance.
9 mixed clients and servers 1.52 1.59 16 80, 25, IM and p2p 80,IM and p2p Residential halls and wireless blocks with very diversi-

fied traffic
10 outliers 1.64 2.13 6 special-service-portsspecial-service-portsBlocks with widely different behaviors.

Table 1.Summary of clustering results.

cluster and those outside the cluster. Each cluster is assigned a “high-level”descriptive
label, based on the interpretation of common behaviors shared by most blocks in the
cluster. The interpretation is derived by manually examining the ports with highenergy
(i.e.,v2

ij) in the top singular vectors of the blocks within a cluster. The blocks within the
first three clusters are most tightly clustered, exhibitingmore cohesive behaviors. The
blocks within theclient-centeredcluster are characterized by the fact that most energy
is concentrated on two points,dstPort 80, andaoSrcPort, and the combined energy of
these two ports often exceeds 90% of the total energy. Blockswithin this cluster of-
ten belong to academic departments. In contrast, theweb-server-dominatedcluster is
characterized by the fact that highest energy is concentrated onsrcPort 80andaoD-
stPort. Blocks within this cluster demonstrate somewhat more diversity (compared to
those within the client-centered cluster), as some blocks may also exhibit higher energy
on other service ports, such assrcPort 443, srcPort 25. The blocks within this clus-
ter belong to the university and academic departments/colleges (e.g., CSE, IT) where
multiple web servers are hosted. Blocks within the thirdnon-web-dominatedcluster are
characterized bylack ofhigh energy (often 5% or less) on eitherdstPort 80or srcPort
80. Many of the blocks within this cluster belong to lab machines (e.g., CSE and IT
labs) and the supercomputing center, where users of these machines do not routinely
use them for web surfing.

The fourth cluster,mixed web clients/web servers, contains blocks with high energy
on bothsrcPort 80anddstPort 80(at least 15%) as well as onaoSrcPortandaoDstPort.
These blocks typically comprise client machines with predominantly web surfing activ-
ities, together with at least one web server. The next cluster, mixed web clients/servers,
is similar to the previous cluster, in that they contain blocks with high energy on both
srcPort 80anddstPort 80(at least 15%). They differ from those in the previous clus-
ter in that they have high energy only onaoDstPort, not onaoSrcPort; in addition,
they also contain relatively high energy on a few other source service ports such as
srcPort 25(email) orsrcPort 22(ssh), suggesting that these blocks may contain other
server-related activities. Most blocks of the previous twoclusters belong to academic
departments, containing typical office client machines as well as web or other servers.

The sixth cluster is a loosely clustered which, in addition,to having a high energy
on dstPort 80, it contains diversified (seemingly random) ports both for destination and
source ports. Unlike cluster 1, this cluster does not haveaoSrcPortas dominant source

port. Most probably, this cluster depicts behaviors of blocks for which the member
clients initiate web connections using random, yet frequently-used ports in our campus
traffic.

Blocks within the next three clusters are more loosely clustered. Their behaviors
are characterized by far less dominant web client activities and no dominant web server
activities. Cluster 7 (web and P2P clients) is characterized by relatively high energy on
various source and destination P2P ports, while Cluster 8 (Mixed client behaviors) in
addition contains high energy on some IM (instant messaging) and other related ports.
But blocks in neither cluster contain relatively high energy on any of the standard source
service ports, suggesting that they contain client machines with more diverse behaviors,
where web activities are no longer dominant. The behaviors of the blocks in Cluster 9
(mixed clients and servers) are more diverse, with energy spreads not only across a num-
ber of P2P and IM source/destination ports but also on srcPort 25, and so forth. Most of
these blocks belong to student residential hall networks, university wireless and library
network blocks. The last cluster contains essentially a few“outlier” blocks, where their
behaviors are quite distinct due to being used for special purpose. For example, one of
the blocks within this cluster contains two very active PlanetLab machines, with a wide
range of ports frequently being used. Another example is a block being used to conduct
credit card transactions. We conclude this section by emphasizing that the goal of our
clustering of block behaviors is not to generate a precise classification, but to produce
some high-level “descriptive” labels and provide a “big picture” view of the block-wise
behaviors in a campus/enterprise network so as to assist network operators and security
analysts to better monitor and manage the network.

5 Tracking Block Behaviors over Time

In this section we show how we can use the subspace representations of block behaviors
to track changes in their behaviors over time, and detect major changes that may be
indicative of potential attacks or other anomalies.

5.1 Methods for Tracking Behavior Changes over Time

Given a blockB, let V (t) denote the subspace representation of its behaviors extracted
at thetth time interval (say, thetth day). We can use the subspace distance,d(V (t), V (t+1)),
to compare and track the changes in the behaviors of blockB over time. For simplicity
of notations, we will useV andW instead ofV (t) andV (t+1) to denote the subspace
representations of a blockB at the two consecutive time intervalst andt + 1, respec-
tively. LetV = [v1, . . . , vK] andW = [w1, . . . , wL], wherevi’s andwi’s are the corre-
sponding top singular vectors. Clearly, ifK 6= L, thend(V, W) ≥ 1, a relatively large
distance. Even whenK = L, we may still expect a relatively large distance. Fig.6(a)
shows an example of the subspace distance of each of the 492 blocks in two consec-
utive days: the x-axis is indexed by the blocks in the increasing order of the subspace
distance between the two days; the solid curve is the subspace distance of the blocks
(the left y-axis is the corresponding scale), and the dotted“zigzag-like” curve represents
|K − L|–the difference in the numbers of dominant singular vectorsin two days (the

right y-axis is the corresponding scale). We see that about 170 blocks having a subspace
distance less than 1, many of which have a distance close to 0,indicating relatively lit-
tle changes in their behaviors over two days. The majority ofblocks (about 300) have a
subspace distance between 1 and 2, while a few blocks have a subspace distance larger
than 2. There are about 215 blocks (nearly half of the blocks)with K = L: the majority
of these blocks have a subspace distance less than 1; however, for a few of them, the
subspace distance can be as large as1.5. All the remaining blocks have different num-
bers of (dominant) singular vectors in the two days, with a subspace distance of at least
1.

Clearly, in general, large distance signifies major changesin its behaviors. However,
the subspace distancein itselfdoes not tell us what may have changed that causes a large
distance from time intervalt to t + 1 interval. To address this issue, we develop two
methods which provide more detailed information to quantify and track the behavior
dynamics of blocks over time. In the first method, we considereach individual singular
vector,wj , 1 ≤ j ≤ L, at time intervalt + 1 and compute its distance to the (entire)
subspaceV of the previous time intervalt as follows:

d(wj , V) =

v

u

u

t1 −
K

X

i

〈vi, wj〉. (1)

Eq.(1) can be viewed as measuring the (generalized)angleΘ between the vectorwj

and the subspaceV , wherearcsinΘ = d(wj , V). Hence, ifd(wj , V) is close to0, say,
d2(wj , V) ≤ ǫ for some smallǫ > 0 (we useǫ = 0.1 in all experiments), thenwj

is (nearly) containedin V . In other words, the behavior captured bywj (namely, the
associated port activities) in the time intervalt + 1 can be nearly fully represented by
those in the previous time interval, i.e.,V . On the other hand, ifd(wj , V) is close to1,
say,d2(wj , V) ≥ 1 − ǫ, thenwj is (nearly) orthogonalto V (i.e.,θ ≈ π/2), and thus
the behaviors captured bywj is almost totally different from those represented byV .
Whend(wj , V) lies in between (say,ǫ ≤ d2(V, W) ≤ 1 − ǫ), the behaviors captured
by wj contains both “old” port activities that are similar to those in V , but also “new”
ones that are not. In this case, we saywj is partially associatedwith V . Therefore, by
considering individualwj ’s and computing their distances toV , we can classifywj into
three categories,(nearly) contained, partially associated, or (nearly) orthogonal, and
use this classification to identify and quantify thosewj ’s, or newbehaviors, that cause
large changes in the subspace distance.

In the second method, we go one step further by comparing individual wj ’s with
individual vi’s. To characterize the relations betweenwj ’s and vi’s, we introduce a
sequence ofprincipal angles[14], (0 ≤)θ1 ≤ · · · ≤ θmax{K,L}(≤ π/2), defined
recursivelyas follows: 1)cosθ1 = max1≤i≤K

max1≤j≤L〈vi, wj〉; namely,θ1 is the smallestangle formed by any pair ofvi’s and
wj ’s. We denote the pair of vectors associated withθ1 as(v∗1 , w∗

1). 2) More generally,
for k ≥ 2, θk is the smallest angle between the (remaining) pairs ofvi’s andwj ’s after
we have removed the pairs associated withθ1, . . . , θk−1. Note that ifK = L, then
eachwj is paired with onevi. If K 6= L, then either somewj ’s (whenK < L) or
vi’s are left. Hence, fork = min{K, L} + 1, . . . , max{K, L}, we defineθk = π/2.
For 1 ≤ k ≤ min{K, L}, the pairs of vectors(v∗k, w∗

k)’s that are associated with the

principal anglesθk ’s provide the bestmatchingbetween the behaviors represented by
vi’s andwj ’s: v∗1 andw∗

1 represent most similar behaviors in the time intervalst and
t + 1, v∗2 andw∗

2 the second most similar, and so forth.
We can therefore classify the relations betweenvi’s andwj ’s usingθk ’s. If there

existsκ1 ≤ min{K, L} such that fork = 1, . . . , κ1, θk is close to 0 (say,sin2 θk ≤ ǫ),
thenwk andv∗k are(nearly) identical. Thus they represent behaviors that do not change
very much fromt to t + 1. On the other hand, if there existsκ2 ≤ min{K, L} such
that for κ1 ≤ k ≤ min{K, L}, θk is close toπ/2 (say,sin2 θk ≥ 1 − ǫ), thenwk

andv∗k are (nearly) orthogonaland any values between identical and orthogonal are
considered to bepartially similar. Thus these pairs represent nearly distinct behaviors
that were present in the time intervalt but nott + 1, and vice versa. In addition, when
K 6= L, anyunmatchedvi’s or wj ’s represent “old” behaviors that have disappeared or
new behaviors that have emerged. Hence, the principal angles provide us with a finer
grain method to quantify and track the changes in block behaviors over time.

1

2

S
ub

sp
ac

e
di

st
an

ce

0 100 200 300 400 500
0

2

4

6

C
ou

nt

Blocks

subspace distance
num. of singular vectors

(a) Correlation between subspace dis-
tance and change in no of singular vectors

100 200 300 400
0

2

4

6

8

10

12

14

Blocks

M
ag

ni
tu

de

nearly contained
partially associated
nearly orthogonal

(b) Percentages of the 3 different cate-
gories of pairs

100 200 300 400
0

2

4

6

8

10

12

14

Blocks

M
ag

ni
tu

de

nearly identical
partially similar
nearly orthogonal

(c) Percentages of the 3 different cate-
gories of distances

Fig. 6. Subspace distance between two consecutive days

We apply the two methods described above to classify and quantify the changes
in block behaviors over the same two days as in Fig. 6(a). The results are shown in
Fig. 6(b) and Fig. 6(c), respectively, where the number of singular vectors (or vector
pairs) belonging to each of the three categories is plotted,and the total height of the
curve is the maximum number (max{K, L}) of singular vectors in each block. The
block indices (the x-axis) are fixed in the same order (i.e., increasing subspace distance)

as in Fig. 6(a). As is clear from Fig. 6(b) and Fig. 6(c), for blocks with very small
subspace distance (say, block 1 - block 100) between the two days, almost allwj ’s
of the second day arenearly containedin the subspaceV of the previous day (the
dark shaded area under the curve in Fig. 6(b)). Furthermore,most “best-match” vector
pairs(v∗i , w∗

i)’s arenearly identical(the dark shaded area under the curve in Fig. 6(c)),
with the remaining pairs at leastpartially similar. As the subspace increases further,
morewj ’s becomepartially associatedwith V , suggesting thatwj ’s capture some new
activities or changes in behaviors in the underlying hosts of these blocks. For block
171 or higher (where the subspace distance of the two days is larger than 1), we see
that at least onewj becomesnearly orthogonalto V , or equivalently, there exists either
an unmatched singular vector (whenK 6= L) or at least a pair(v∗k, w∗

k) that isnearly
orthogonal(both are indicated by the light shaded area under the curve in each of the
figures). In particular, for blocks where the subspace distance is at least 2 (block 450
and higher), nearly all singular vectorswj ’s in the second day are orthogonal toV , and
to the individual singular vectorsvi’s of the previous day. Hence, they suggest that hosts
in these blocks may have almost completely different behaviors in these two days.

The results show that using these two methods, we can quantify and track the change
in block behaviors over time, and identify specific activities (e.g., as embodied by the
nearly orthogonalwj ’s) that cause any major changes. We have performed similar anal-
ysis to compare, quantify and track the changes in block behaviors over time using
two-week long data, and obtained qualitatively similar results. Due to space limitation,
we do not present them here.

5.2 Anomaly and Attack Detection

In this subsection, we show that by tracking and identifyingmajor changes in block
behaviors, the methods we have developed in the previous subsection can be used to
detect potential anomalies and attacks. We demonstrate this capability throughattack
emulation, where we inject certain types of attacks or other anomalousactivities into a
block with otherwise “normal” activities. We have performed this study using a range
of anomalies. Due to space limitation, however, we briefly describe the outcomes under
three common types of attacks/anomalies:outside scanning, back-door trojan activities,
andDDoS ping flood attacks.

For the scanning attack scenario, we assume that an outside scanner is sending traf-
fic to all active hosts within a block which tends to trigger a response to this scanning
with a small number of flows (one or two flows) using the same incoming port. Hence,
the activities of the block have a new source port which reflects an additional activity.
Unlike the change of subspace distance caused by activitiesbeing modified, i.e. addi-
tion of one or more activities or making an activity more or less significant, the change
caused by response to scanning changes the activity to a totally different host behavior
associated with a drastic increase in subspace distance. Weobserve that blocks injected
with such scanning activity experience relatively high increase in subspace distance.
More specifically, we notice that server-dominated blocks which usually experience lit-
tle (or no) increase in subspace distance≤ 0.05, their subspace distance suddenly jumps
to values greater than 2 since now the dominant source port isno longer the original

source port corresponding to the service provided by the host, it is now the scanning
port which is more significant and dominant.

We also emulate traffic for an inside client host suddenly acting as a server estab-
lishing and accepting connections at some port (e.g. 80). This type of back-door attack
is usually used by bots, in which the client host daily registers the same IP address with
several different domains chosen from a specific list of domains. Consequently, bots
search the whole list to find the IP address to communicate with For client-dominated
blocks, we see that they transform into a server-like behavior dominated by the source
port corresponding to the bot port which causes a sudden increase in the subspace dis-
tance which is far greater than the normal range of change forclient blocks which might
otherwise have a slight increase in subspace distance caused by additional activities.

Finally, we tested our method for distributed denial of service (DDoS) attacks in
which an attacker sends an ICMP ping packets to an inside (potentially server) host
and listens for responses. This causes the server to start responding to multiple requests
which will now be dominated by both incoming and outgoing ICMP ports. The nature
of DDoS attacks involves a large number of ICMP requests (hence the name ping flood)
and the inside server now is no longer dominated by the port itis meant to service, but
rather by ICMP source and destination ports. Consequently,such (usually server) blocks
will experience a sharp increase in the subspace distance caused by DDoS attacks.

The above discussion illustrates the potential utility of our block-level behavior pro-
filing and tracking methodology in detecting anomalies and attacks, in addition to pro-
viding better knowledge of the “normal” activities and their changes over time within
a network. Clearly, the resulting anomaly and attack detection uncovered by tracking
the subspace distance over time of a block is only meant forpost-mortemanalysis or
“after-fact” discovery of attacks or anomalies, notreal-timedetection. Thus, it is com-
plementary to firewalls and other IDS (intrusion detection system) and IPS (intrusion
prevention system) that are commonly deployed in large campus and enterprise net-
works. Our technique is particularly useful in uncovering compromisedinside hosts
that are (frequently, periodically or even occasionally) used to launch attacks or other
illegitimate activities targeted at the outside Internet.

6 Conclusions

In this paper we have developed a novel methodology for profiling and tracking network
activities at theblock-level. By capturing and characterizing significant and typical host
behaviors within a block of contiguous IP addresses associated with subnets where
many hosts often have similar usage patterns, the proposed methodology is more scal-
able and can effectively handle the difficulty in tracking individual host behaviors due
to dynamic addresses. We introduced ablock-wised (host) port activity matrix (BPAM)
which represents the activities of individual hosts withina block on a carefully se-
lected port feature vector. Applying the SVD low-rank approximation technique, we
obtained a low-dimensional subspace representation whichcaptures the significant and
typical host activities of the block. Using these subspace representations, we clustered
and classified blocks to provide high-level descriptive labels to assist network opera-
tors and security analysts to gain a “big-picture” view of the network activities. We

also developed novel methods to track and quantify changes in block’s behaviors over
time, and demonstrated how these methods can be utilized to identify major changes
and anomalies within the network.

References

1. K. Xu, Z.-L. Zhang and S. Bhattacharyya. Profiling Internet Backbone Traffic: Behavior
Models and Applications. InProc. of ACM SIGCOMM, August 2005.

2. T. Karagiannis, K. Papagiannaki and M. Faloutsos. BLINC:Multilevel traffic classification
in the dark. InProc. of ACM SIGCOMM, August 2005.

3. K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Internet trafficbehavior profiling for network
security monitoring. InIEEE/ACM Trans. Netw., 2008.

4. Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wobber. How Dynamic are IP
Addresses? InProc. of ACM SIGCOMM, 2007.

5. Y. Jin and E. Sharafuddin and Z.-L. Zhang. Identifying Dynamic IP Address Blocks
Serendipitously through Background Scanning Traffic. InProc. of ACM CoNext’07, 2007.

6. Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensitivity of pca
for traffic anomaly detection.SIGMETRICS Perform. Eval. Rev., 35(1):109–120, 2007.

7. B. Rubinstein et al. ANTIDOTE: Understanding and Defending against Poisoning of
Anomaly Detectors. InProc. of ACM IMC, 2009.

8. L. Wang et al. Subspace distance analysis with application to adaptive bayesian algorithm
for face recognition. InPattern Recogn., volume 39, pages 456–464, 2006.

9. I. Borg and P. Groenen.Modern Multidimensional Scaling: Theory and Applications.
Springer Series in Statistics, 2005.

10. R. Duda, P. Hart, and D. Stork.Pattern Classification (2nd Edition). Wiley-Interscience,
2000.

11. S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha. On suitability of euclidean embedding of internet
hosts. InSIGMETRICS Perform. Eval. Rev., 2006.

12. F. Korn, B. Pagel, and C. Faloutsos. On the ‘dimensionality curse’ and the ‘self-similarity
blessing’. InIEEE Transactions on Knowledge and Data Engineering (TKDE), 2001.

13. Ulrike von Luxburg. A tutorial on spectral clustering.CoRR, abs/0711.0189, 2007.
14. Zlatko Drmac. On principal angles between subspaces of euclidean space. InSIAM Journal

on Matrix Analysis and Applications, volume 22, pages 173–194, 2000.

