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Abstract. Gaining a better knowledge of one’s own network is cruciaftec-
tively manage and secure today’s large, diverse campusrdaarpeise networks.
Because of the large number of IP addresses (or hosts) anquebteent use of
dynamic IP addresses, profiling and tracking individualthegthin such large
networks may not be effective nor scalable. In this paper exeldp a novel
methodology for capturing, characterizing, and trackieguork activities at the
block-level To characterize block-level behaviors, we carefully siedeport fea-
ture vector and capture the port activities of individuastsavithin a block using
a block-wise (host) port activity matrix (BPAMApplying the SVD low-rank
approximation technique, we obtain a low-dimensional pabe representation
which captures the significant and typical host activitiethe block. Using these
subspace representations, we cluster and classify blacksovide high-level
descriptive labels to assist network operators and sgamalysts to gain a “big-
picture” view of the network activities. We also develop abmethods to track
and quantify changes in blocks’ behaviors over time, andafestnate how these
methods can be utilized to identify major changes and ariemalithin the net-
work.

1 Introduction

Due to its scale and complexity, managing and securing tediage campus or enter-
prise networks is a challenging task. The scale and contpleaimes not only from the
number of heterogeneous hosts and devices on the netwgrkJ@ious servers, desk-
top office client machines, laptops, lab machines, wiredesgss points, routers and so
forth), but also from a wide range of diverse applicationsning on these machines.
Traditionally, network security has largely focused onnitifging and preventing at-
tacks, e.g., through attack signature generation or anodsdéction (i.e., the focus is
on understanding the attacks and attackers). However,ctide, scomplexity and di-
versity of large campus and enterprise networks render anchpproactaloneless
efficient, scalable and manageable. For instance, in tleeafasomaly detection, what
constitutes “anomalous” activities in one network or pdiit mmay be considered to be
“normal” in another network (or subnet). As an example, ‘wtharized” peer-to-peer
file sharing applications are not allowed on a departmentahst of our campus net-
work (unless they are for the purpose of research); on ther didind, such peer-to-peer
activities are considered legitimate on student residehéll subnets. Hence, to more
effectively manage and secure a large, diverse network noue also build a good



knowledge of one’s own network, e.g., by understanding éimge of applications, us-
age patterns and user behaviors in various parts of the ret®ach knowledge will
enable network operators and security analysts to better their monitoring system
and detection tools (e.g., firewall configurations), andifotheir attention on specific
vulnerabilities or areas of problem.

Along this new direction ofinderstanding oneseléeveral research studies [1-3]
have developed algorithms and tools for (primaritgst-levetraffic classification and
behavior profiling. While these studies offer innovativethoels for classifying traffic
or host behaviors, the analysis at the granularity of imtliel hosts (or individual IP
addresses) has two major drawbacks in practice. First,rthalent usage of dynamic
IP addresses makes tracking individual hosts an infeasiblein most networks [4, 5],
since dynamic IP addresses are frequently reassignedféoettit hosts. Furthermore,
the large number of IP addresses (e.g., our campus netwst& ¢lass-B subnets, with
3 x 10'6 potential hosts) also make applying host-level traffic firafito every host
quite expensive.

To address these limitations, in this paper, we propose emelap a novel method-
ology forblock-levehetwork traffic behavior profiling. An IP address block catuses
a set of consecutive IP addresses, typically in sizZ¥p$ay,k = 8 (i.e., a/24 or class-C
block), a unit used by a network administrator for IP addeesssgnment to a subnet.
More often than not, many hosts within the same block wouldidged for similar us-
age, e.g., a department block for office desktop and laptoghmes, a block for lab
machines, a block for student residential hall, a block witle or two wireless access
points for wireless access (i.e., a wireless block), ands@e shown in [5], dynamic
IP addresses are generally assigned in a block of consedbtimddresses. Hence, by
analyzing and profiling network activities at théock-leve] we can circumvent the is-
sues caused by dynamic IP addresses. Further, exploitrgirtiilar user activities and
usage patterns within a block, we can obtain a more compackével behavior pro-
file which captures and summarizes the significant and typataaviors of hosts within
the block. Finally, the block-level analysis is far morelabte: in the case of our cam-
pus network, using /24 blocks we only need to profile and tedchost768 (= 3 x 256)
blocks as opposed ®x 10° IP addresses.

In this paper, we employ flow-level data (i.e., Netflow da@ptered at the campus
border router, and utilize thgort information thereof to characterize and profile traf-
fic behaviors and host activities at the block level. By cdasng well-known service
ports, popular application ports and other dominant pottiieted from our flow data,
we form aport feature vectorconsisting of 2000 source and 2000 destination ports.
Using this port feature vector, a straightforward way to marize the behavior of a
block is to simply compute the aggregate port distributibthe block: namely, for
each source or destination port in the port feature vedterfriaction of flows using
the port that are generated by any IP address (orhasthin the block. However,
while the aggregate port distribution captures the ovaivities of hosts within the
block, it fails to provide adequate information to captwtegaracterize, and distinguish
significant and typical host behaviors within the block. Egample, we would like a

! For simplicity, in this paper we use the terrhastto denote a specific IP address (although an
IP address may be assigned to a router, a printer or somedzthiees).



block-level behavior profiléo enable us to meaningfully answer questions such as the
following: i) Do all hosts in the block behave similarly, e.gnost of them are client
machines that are used to primarily access the web? Thusyérall port distribution
would represent the “typical” behavior of the hosts in thackl? ii) Does the block con-
tain one or a few dominant hosts (e.g., web servers, or “hé#tgr” client machines)
that generate a majority of the flows? In other words, the al/port distribution of

the block is skewed mostly by these dominant hosts, whilewfrsg the activities of
other “typical” hosts within the block. iii) Or, does the lsloconsist of several groups

of hosts with distinct behaviors or activities, e.g., wehad servers, client machines
with heavy web and P2P activities?

The ability to answer these and similar questions is immbttacharacterize, sum-
marize and distinguish the behaviors of various inside (masjhblocks within a net-
work, and therefore help network operators and securityyatsgato understand and
monitor the block-level activities, detect sudden chareyas anomalies, and identify
policy violations, security breaches and malicious atsaélor this purpose, we intro-
duce theblock-wise (host) port activity matriBPAM), which records the activities of
each host within the block on these ports, e.g., the numb#ilow$ using each of the
ports. Hence, the BPAM represents the key port activitiésadifidual hosts within each
block. By applying the Singular Value Decomposition (SVD3thod (to an appropri-
ately normalized and re-scaled version of BPAM), we obtainmapact, low-dimension
subspace representatiaf the behaviors of each block. We show that as a low-rank ap-
proximation to the original BPAM, this subspace represmtacaptures theignificant
andtypical activities of individual hosts within the block, and theyed can be used to
answer the questions listed above.

In addition, by introducing a subspace distance metric, mpley the subspace
representations to cluster and classify the behaviorsradwsiblocks within a network.
The block-level behavior clustering allows us to assigerpretivelabels to various
blocks as to assist network operators and security analystsderstanding the over-
all block-level activities within the network. Furtherngoiwe demonstrate how to use
the subspace representations to track changes in bloekHehaviors over time, and
develop two methods to quantify and classify such changesaldb show how these
methods can be explored to identify major changes and afesnaithin a network.
The efficacy of our proposed block-level network behaviafiing methodology has
been extensively evaluated and validated using a monthpHetflow data collected at
our campus network.

The remainder of this paper is organized as follows. In saciwe describe how
the port feature vector is selected. In section 3 we intredbe BPAM and the SVD-
based subspace method to extract and summarize signifieity@cal host behaviors
within each block. In section 4 we develop a clustering meéttooclassify block-level
behaviors using the subspace representations, while fiosés; we develop methods
for tracking and quantifying block-level behavior changasd show how they can be
used to identify anomalies. The paper is concluded in se&tio



2 Block Behaviors and Port Feature Vector

Port numbers are the most widely used packet/flow level featfor identifying net-
work activities. Certain (IANA reserved or registered) gsoare almost synonymous
with the well-known services associated with these ports, web with TCP 80, email
with TCP port 25, and DNS with UDP port 53. Although these resé ports may be
misused by other applications (e.g., for penetrating fitlsjyaor the well-known ser-
vices may also use other ports (e.g., TCP 8080 for web), foajanity of the hosts the
dominant activities observed on these ports representéliekmown services. Further-
more, many popular “non-standard” applications that dohaet officially “reserved”
or “registered” ports, such as many P2P and other emergiplicapons, often use
certain fixed ports, or have a default range of ports. Moreoirigmtly, because of the
socket layer programming interfaces used by networkedegijans today, source and
destination ports are generally used in certain mannetglts@nguish ports that pro-
vide serviceqin the sense of an “application server”) from many randomsp@sed by
“application clients”). For example, an application priivig a service (an “application
server”) often must listen on a fixed (source) port, while pplization requesting such
a service (an “application client”) must send a service estjuising the said port as
the destination port and a typically randomly generatedcsoport. Hence when exam-
ining the flow-level data, the service ports used by popyt@tieations (even though
these ports may not be fixed) tend to occur more frequently gheandomly selected
port. In this section, we utilize this observation to sekeset of frequently used ports
to form aport feature vectofor characterizing block-level network activities based o
ports. Before presenting this method, we first describe #tasgts used in our study.

Dataset: Our study is based on a one-month data collected at the bowdésr
of our campus network. The data includes bidirectional €isetFlow records cor-
responding to traffic between inside (campus) hosts (3 @al$s blocks with2'6 1P
addresses) and outside hosts. We focus orotligoingTCP, UDP and ICMP traffic
which account for more than 99% of all the traffic from our cammetwork to the
outside Internet hosts. The outgoing flows represent traffiivities either initiated by
inside hosts, or in response to outside service requesisthiey are indicative of true
activities of the inside hosts. In contrast, incoming taffiay contain a significant
amount of “noises” (such as various scanning, backscatigrosher activities) gen-
erated by the outside hosts towards our campus network, wfanhich do not even
pass the campus network border firewall. In the followingewheferring to specific
source or destination port number, e.g., source or destinpbrt 80, we will also use
the shorthandsrcPort 80or dstPort 80

We note that we choose the block size toXeclass C IP block) throughout the
paper, which is the most commonly used block size for our agt@dministrators to
assign IP addresses to different departments/subnets [5].

2.1 Port Feature Vector Selection

One simple way to select ports to characterize host aetivis to utilize a list of well-
known or registered service ports from IANA. IANA defines thert number range
0-1023 as the well-known (or reserved) ports, the port numémege 1024-49151 as
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registered ports and the remaining ports as dynamic/grpatts. Using such an ap-
proach has two obvious drawbacks. First, many ports useoylar applications such
as most instant messenger (IM or chat) and p2p applicatiseagart numbers above
1024 or 5000 as service ports. Furthermore, services oicafiphs associated with
some well-known or registered service ports may not be dexlor used by any hosts
within the campus network (or even if they are availableythey be restricted to
internal use, thus have no associated traffic activity actios campus border router).
Including these reserved/registered service ports in tinefpature vector is therefore
unnecessary. To address these issues, we propose a mettdtbdservice ports based
on the frequencies of ports occurring in the observed traffihe entire campus net-
work. As described earlier, the basic intuition is that gsrports used by popular or
common applications by many hosts in our campus networKikély occur more fre-
quently than a randomly selected port. We therefore sehecitrtost frequent ports (in
terms of number of flows/hosts associated with them) asylikehdidates for service
ports. The port selection method is described below.

Let I} be the set of flows observed within our campus network durihgaiinterval
t, say, a day (this is the time interval used in this paper). &vik all the source (resp.
destination) ports that appear# in terms of both the number of flows and the number
of hostscoveredwe say asrcPort(resp. dstPor) p covers a flowf if the flow contains
p as the source (resp., destination) port. Likewise, we sagrtiortor dstPortp covers
an inside host (an IP address) if. appears as the source IP address in at least one of
the covered flows. We pick the top rank&dsource ports an@v destination ports in
such a manner that they cumulatively cover at least, say #%l] flows as well as
of all “active” hosts (an IP addresses which generates at ta#e flow during the time



interval t). The intuition is that the (source or destination) seryicets selected are
expected to contribute a significant traffic volume and bealusea large number of
hosts. Hence the choice &f should be sufficiently large so that we can identify nearly
all service ports used by popular applications. Howeveshduld not be too large to
avoid misclassifying some random ports as service ports.

Through experiments using our flow datasets, we decid€ en1999, which yields
1999 top source ports as well 4999 top destination’s Fig. 1(a) shows the combined
flow coverageg-axis) of these top source and destination partaXis). From the fig-
ure, we see that they cover nearly 98% of all flows. These tapceddestination ports
also cover nearly 100% of all “active” hosts. Due to the spaoéation, we do not
include the corresponding figure here. We group all remgisurce ports as if they
were a special “virtual” source port, referred to as “allextbource ports” (ocaoSrcPort
in short), and all remaining destination ports as if theyenespecial “virtual” destina-
tion port, referred to as “all other destination ports” émDstPortin short). Together
with the top 1999 source ports and 1999 destination portsiefiae a1000-dimension
port feature vectotPFV = [ports, ..., portsoo], Where forl < j < 1999, port;
refers to one of the top 1999 source ports (ordered in the&sing number of the port
numbers), and foj=2000,portsggo refers toaoSrcPort and for2001 < j < 3999,
port; refers to one of the top 1999 destination ports (ordereddrirtbreasing number
of the port numbers), and fgr4000,port g refers toaoDstPort

2.2 Characterizing Blocks using Ports

In this section, we show some statistics regarding the blee# flow coverage using
the selected service ports and illustrate how these partéde some basic information
regarding the activities of various blocks. In the follogjrwe useS;,.. and Sy to
denote the sets of 1999 source service ports and 1999 destisarvice ports, respec-
tively.

In Fig. 1(b), we show the flow coverage in each block using #ected service
ports, wherer-axis represents the percentage of flows in each block teat@rered
by eitherS;,. or Sus;, andy-axis is the CDF. We observe that for 90% of the blocks,
the flow coverage is at least 90%, indicating that these wlexervice ports also have
good flow coverage at the block level. However, there are fvelds with flow coverage
less than 75%. Investigation on the domain names of the |Reagés in these blocks
indicates that they contain mostly wireless addresses #rat dynamic IP addresses.
Hosts using these address blocks may run some non-typigli¢ations, perhaps even
inflicted with certain “suspicious” activities.

Figs. 1(c) and (d) show the top 10 source ports and top 10ndistn ports that are
most popular in all 768 blocks (which accounts for at lea$tdf the traffic in each
block), wherer-axis represents the port numbers gralis stands for the total number
of blocks with the associated port number. The most popelaes activity is web (80
and 443), ssh (22) and email (25 and $9®)vestigation on these blocks with dominant

2 We refer to ICMP type numbers as the port numbers for ICMPi¢tad.g., ICMPO represents
ICMP type 0 echo reply traffic.
% We note that, unless otherwise mentioned, we refer a porbeuas a TCP port by default



port numbers showing dominant activities, we find that mdsthese blocks belong to
certain department subnets which maintain their own wekeseand email servers. On
the other hand, the most popular client activities are agsstwith web (80 and 443),
DNS (UDP53), messenger (AOL for 5190 and MSN for 1863). Thelper of blocks
associated with web client activities is much larger, agigevith the fact that most
of IP addresses in our campus network are used by client meshinvestigating the
blocks that contain most (web/chat) client activities aades that many of these blocks
belong to residential hall networks, or wireless and othgragnic address blocks that
are typically dominated by client machines.

As argued in the introduction, though the aggregated paitidution of a block
provides us with some hints on the overall activities of tlsth within a block, it
fails to provide adequate information to capture, charaeand distinguish signif-
icant and typical host behaviors within the block. This isimhadue to the fact that
certain extremely active hosts, either popular serverseamy hitter client machines,
can dominate the overall activities of a block, thus maskhgtypical behaviors of
other active hosts. For example, in a block containing cbffie kinds of servers, e.g.,
web servers, email servers, ssh servers and an IRC semvegtikity of the IRC server
and ssh servers may not be “visible” due to being masked bty theally huge amount
of traffic generated by web and email servers. To circumv@satgroblem, in the next
section, we will introduce the block-wise (host) port aityivnatrix to represent the port
activities of individual hosts within a block.

3 Block-wise Host Port Activities and Subspace Representian

In this section, we introduce tHdock-wise (host) port activity matrigBPAM) to rep-
resent the port activities of individual hosts within a lHotJsing the Singular Value
Decomposition (SVD) method, we derive a low-rank approxiarato the BPAM, and
thus obtain a low-dimensiosubspace representatiaf the behaviors of each block.
Applying this technique to our campus flowdata, we demotestieat these subspaces
indeed capture thsignificantandtypical activities of individual hosts within a block,
and produce compact and meaningful block-level behavimreisentations that can be
used to characterize and distinguish various block behawdahin a network.

3.1 Extracting Significant Block Behaviors from BPAMs

In this section, we formally define the block-wise (host)tpmtivity matrix (BPAM),
and apply singular value decomposition (SVB®Yo A to extractsignificantactivities
of “typical” as well as “dominant” hosts within a block. Manatically, as a low-rank
matrix approximation to the original BPAM of the block, thetoome of SVD vyields a
subspaceepresentation of the significant block behaviors.

Given a /24 blockB, leti, 0 < i < m — 1 (wherem = 256), denote a host
(more precisely an IP address) within the block. For eachhdst f; denote the total

4 We conducted the same experiments using both SVD and ro@As[® 7], and the results
are similar, possibly due to the normalization process Wwklaminates the effect of outliers.
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number of (outgoing) flows generated by hbdtiring an observation time windoW,
say, a day. Fot < j < 2000, we usej to represent one of the 1999 most frequent
sourceports in theport feature vectodefined in the previous section, afd= 2000

to represent the all other source ports. Likewise, 2iab1 < j < 4000, we usej to
represent one of the 1999 most frequéestinationport in the port feature vector, and
j = 4000 to represent the all other destination ports. Thenlfo£ j < 2000, f;;
denotes the number of flows generated by ho#tat uses the source portgs)whereas
for 2001 < j < 4000, f;; denotes the number of flows generated by ho#tst uses

the destination port(s). Note that since each flow has both a source and a destination
2000 4000

port, we have "7 fij = 3= 20001 fij = i

A straightforward way to represent the block-wise host potivities is to directly
use then x n matrix Fg = [f;;] (Wherem = 256 andn = 4000). Fig.2(a)-(c) visually
depict Fp for three representative blocks, where each row in the figareesponds to
a host within the block, and a dot at thith position of theith row is plotted if and
only if fi;/f5 > 0.005 andf; > 100 flows, wherefz = >°>°% f; is the total number
of flows generated by all hosts in the block. The left half (DB@) of the x-axis rep-
resents the source ports, where2000 representsll other source portsgoSrcpor},
and the right half (2001-4000) represents the destinatiots pwherer=4000all other
destination portsgoDstPor}. The block in Fig.2(a) is a department block with predom-
inantly client machines, Fig.2(b) a department block witany servers (web, email,
etc.), whereas Fig.2(c) depicts a block in the student esial hall network with many
diverse activities, e.g., frequent p2p, IM activities irdén to typical client activities



such web and email. These figures visually illustrate thesehblocks indeed exhibit
distinct behaviors characteristics.

When applying SVD to extract the “significant” and “typicdl&haviors of a block
B, using F'g directly has a major drawback. For instance, consider akitloat con-
tains one or two popular servers or a few extremely activéshbst otherwise consists
of typical client machines. Because these servers or “hé#tgr” hosts generate far
larger number of flows than an average client machine, tiediabiors may mask those
of “typical” hosts within the block. In other words, the oatne of SVD may represent
only the behaviors of a few dominant “heavy-hitters” but sntise significant behav-
iors of “typical” hosts. Another alternative is to use thee(fuency) matrixs = [p;;],
wherep;; = fi;/fi is the frequency of flows using pojt This matrix, on the other
hand, amplifies the behaviors of “inactive” hosts that gateea few flows in total. For
instance, consider a block that contains many active hosts ffequently generating
traffic) but a few “inactive” hosts. These inactive hosts na&gasionally respond to
outside scanning activities on a few random service poesdhe otherwise not used
by any of the “typical” active hosts within the block. For ffeeinactive hosts, although
there are only a few flows on these randomly scanned portaubkeg; is also very
small, p;; is closer to 1. In other words, the corresponding row entfethese inac-
tive hosts would dominate those of “typical” active hostsit Ehe behaviors of these
“typical” active hosts are actually what we are interesteextracting!

To counter-balance the effects of extremely active as veelhactive hosts, we in-
troduce an appropriatelyormalizedandre-scaledversion of Fiz (or Pg) using en-
tropy. Recall thatfs = Y., f; is the total number of flows generated by all hosts
within block B. Definep; = f;/fg, the fraction of flows generated by haste de-
fine the(flow activity) entropyof block B, entp := — > ", p; logp;. We note that
0 < entg < logm: the closerentp is to the upper bountbg m, the more uniformly
distributed are the flows among the hosts; whereas the ctegeris to 0, the more
skewed is the flow distribution among the hosts. Usingz, we define acaling factor
for each host as follows: far=1,...,m, s; :== entg/(—logp;) if p; > 0,ands; =0
otherwis€. We see that the smallgy is, the smallew; is. On the other hand; only
grows inverse logarithmically witlfiz / f; (approximately logarithmically witlf;), thus
dampening the effect of extremely active hosts. We are nosvposition to formally
define theblock-wise (host) port activity matrgBPAM) for a given block B:

AB = [Sipij]mxn = [Sifij/fi]mxn-

Note that each row of A sums up tos;, hence, the contribution of each hagb the
total “mass” of the BPAMA i is proportional tos;. (In the following, we will drop the
subscriptB when the context is clear.)

Given this definition of BPAM, we apply SVD td to extract “significant” and
“typical” host behaviors of a block. Ag < n, the SVD decomposition ofl is given
by A = UnxmEmxmV,,, WhereX = [o;] is a diagonal matrix containing the

singular valuesn the decreasing ordes; > o2 > ..o, U = [u1,--- ,u,] IS an

5 Here we implicitly assume that each block has at least twiweahbsts, thug; < 1 for all i's.
As — log p; is the entropy of an individual host intuitively s; measures the contribution of
individual hosts’ entropies to the (average) entropy oftitoek.



orthonormal matrix (i.e/UT = I), the columns of which are tHeft singular vectors
of A,andV = [vy,--- ,v,,] is also an orthonormal matrix, where the columnsraylet
singular vectorof A.

(@) e=10% (b) e = 5%

Fig. 3. No of singular values for different values of

Intuitively, the (.-dimensional) right singular vectors;’s, provide anorthogonal
representation of the port activities of thehosts within a block. In particulas; cap-
tures most dominant port activities (those with most varémor energy) across all
hostsu, the second most dominant port activities, and so forth. lenss, each; can
be viewed as airtual host, whergu;;| (or v?j) measures the magnitude (or fraction)
of activities on portj by this virtual host (note thaZ:;.‘zl vfj =1, hence,{vfj} can be
viewed as a probability distribution). Unlike the port aites of them original (real)
hosts, them virtual hosts haveorthogonalport behaviors (i.ey] v; = 0 for i # j).
As a result, we can decompose the (rescaled) port actidfieach original host,

1 < h < m, as a linear combination of the virtual hosts, Whermii measures the
contribution of the virtual host Since the magnitude of the overall virtual hosictiv-
ities is measured by;, those with largest; (say, the firstk') capture and represent the
most significant and typical behaviors of the hosts withinaek. For an appropriately
chosenk, the firstK singular values and their associated left and right singidetors
provide a low-rank approximation td, namely,

A UgXgVE,

whereUyk = [u1, -+ ,uk], Xk = diag[o1, -+ ,0k], andVx = [v1, -+ ,vk]. Hence,
extracting the significant and typical host behaviors ofacklboils down to obtaining

a low-rank approximation to the BPAM via SVD. We refer to theubspacepanned

by the first K dominant virtual hostsyy, ..., vk, as a subspace representation of the
(significant and typical) behaviors of a block. In the nexttsm, we will discuss how
we decide onK, and provide some interpretations of extracted “domingwittual)
host behaviorsy,'s), wherel < k < K.

3.2 Significant Block Behaviors and Interpretations

We employ the standard scree plot method to chd6sgiven a small threshold > 0,
we deem a singular valus, significantifoy, /o1 > ¢, in whichoy is the largest singular
value. Using this method, we apply SVD to the BPAMSs of the /Bxks in our campus
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network. Figs. 3(a)-(b) show the histogram of the resultifig for all the blocks for
e = 0.1 ande = 0.05, respectively. We see that a majority of the blocks requity o
a smallK, say,< 5. In fact, we have validated that the low-rank approximagithus
obtained indeed capture at least 95% of the energy in thénati@PAM (or, with
squared errors less that 0.05). Hence, for the majority @fkd, their significant and
typical behaviors can be captured and represented by a &geft) singular vectors
vk'S. However, there do exists a few “outlier” blocks which vég far large number of
singular vectors (e.g., one with 30 and another one with 15).

We now use the three representative blocks shown in Fig. 2aam@es to illustrate
and interpret the behaviors captured by the top (right)udargvectorsy,’s, and show
that they indeed capture the significant and typical belavicharacteristics of these
blocks. Usinge = 0.05, we obtainK = 3 for each of the three blocks in Fig. 2(a)-
(c). In Figs. 4(a)-(c), we plot the “energy” of the ports,, in the top three singular
vectors,v; (the top panel)y, (the middle panel), ands; (the bottom panel), for each
of the three blocks. Recall that the ran@e2000) in the x-axis represents the 1999
most frequent source ports and= 2000 all other source ports (compactly denoted as
aoSrcPortbelow); and the rang2001, 4000) the 1999 most frequent destination ports
andj = 4000 all other destination ports (compactly denotecaBstPortbelow).

For the client-centered block in Fig. 4(a), we first note tiaist points with high
energy (i.e., with large non-zero valmg) in v1-v3 are concentrated in the destination
port range [2001-4000], except for one major poinj at 2000 (in v;) corresponding
to aoSrcPort In addition toaoSrcPorf the other two largest points in correspond to



destination port 805(= 2020) and port 443 { = 2033). Hencew; captures the web-
related client activities of the hosts. Whereag,contains a number of considerably
large nonzero points corresponding to various destinauice ports such as Instant
Messaging (IM) for AOL port 5190,j( = 3728), in addition to destination ports 80
and 443 (when the same point appears in hgtlandv,, it has opposite signs)s
also corresponds to other IM, such as Yahoo Messenger pd& 0= 3721), MSN
Messenger port 1863 (= 3004) in addition to remote desktop port 3388+ 3561).
Therefore, the subspace spanned by the top three singetarseaptures the prevalent
client behaviors of the hosts within the block, where welatssl and IM activities are
most significant and typical.

In contrast, for the server-dominated block in Fig. 4(b)strqmoints with high en-
ergy in bothv; andw, are concentrated in the source port range [1-2000], exoepié
point atj = 4000 corresponding t@oDstPort In v;, the other major nonzero points
correspond to major source service ports such as source§((t = 11) in v;.

Whereasys contains a number of considerably large nonzero points ioorre-
sponding to various source ports such as email por§ 25 §), and ssh port 22j(= 7).
vs has similar ports (with opposite signs) to thatef Hence, the subspace spanned by
the top three singular vectors captures the prevalentiseelaviors of the hosts within
the block, where web, email, and ssh server activities datain

Unlike the previous two cases, the top three singular vediothe residential net-
work block in Fig. 4(c) contain several points with high emein both the source
[1,2000] and destinatiof2001, 4000] port ranges. In addition taoSrcPortandaoDst-
Port, the other two major points in; correspond to destination ports 80« 2020),
and destination port eMule (p2p) 4662 £ 3696), whereas the points with highest
energy inv, correspond to destination ports 80 and 4662 (with oppogjtess Invs,
in addition to these two destination ports and #wdstPortport, points with highest
energy correspond to source port gnutella (p2p) 6348 (1805) and destination IM
port 5190 § = 3728). Hence, the subspace spanned by the top three singularsect
captures typical residential hall behaviors in which p2g B are prevalent in addition
to the web-client behaviors.

We have performed similar analysis of the top singular vedar other blocks, and
found that, overall, these top singular vectors indeedwraphe significant and typical
behaviors of the hosts within the block, as confirmed by erangithe port activities
of those individual hosts which generate significant nundfélows. As an additional
example, we examine the outlier block in Fig. 3 which reguiagp 30 singular vectors
to capture its significant and typical behaviors. These foguar vectors represent
diverse behaviors of a mixed group of server (e.g., web, leamdissh) and client hosts
which are active on a wide range of source and destinatiots.pdsing information
from other sources, we find that it belongs to one of the moadrdified school: the
school of public health. Blocks belonging to this departtreme assigned to several
other smaller departments: biology, genetics, health@glebtnical research and other
health-related departments. It is not surprising to findtat this block was originally
assigned to the school of public health in general but asched expanded, portions
of the same block were assigned to different departmentshwiit them into a wide



range of different usages, from web, email, ftp serversfficeoand lab machines as
well as wireless access networks.

4 Classifying Block Behaviors
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Fig. 5. Clustering and Labeling of Blocks

The examples in the previous section show that blocks wititshmnning different
applications exhibit distinct behavioral characteristiand the principal subspace pro-
vides a succinct way to extract, characterize and reprébergignificant and typical
behaviors of a block. In this section, we compare and chasddck-wise behaviors
based on their subspace representations. By groupingsleitk similar behaviors,
we can assign a high-levigterpretivelabel to each block, e.g., a client-centered block
with prevalent web activities, a server-dominated blocithwveb and email servers, a
resident network block with frequent web, p2P, IM actidtiand so forth. Such inter-
pretive labels will enable network operators and securiiglysts to better understand
and manage a campus/enterprise network, and profile afditrabehaviors of various
blocks within the network.



Consider two blocksB; andB,, Whereugl), .. (1) andv1 ,e (2) are the top

(right) singular vectors extracted from their respectl\mNB’ls. LetV(Z), i1 =1,2, be
the subspace spanned b&), e ,v%)i, i.e., V(¥ is the resulting subspace representa-
tion of block B;. To compare the behaviors of these two blocks, we nesichdarity

or distance(dissimilarity) metric for the two subspacég(’) andV (). Note that as
two subspaces in an-Euclidean spac&™ (n is the number of elements in the sin-
gular vectors;u Z)’s) both pass through the origin, and the set of the singwators

v?), . forms an orthonormal basis of th€;-dimensional subspace,= 1, 2.
Intultlvely, |f K, = K, and the two subspaces coincide with each other, then the two
subspaces are exactly identical, i.e., their distanceris. 22n the other hand, if two
subspaces are perpendicular to each other (in.l.),,vJ(.Q)) =0,1<1i< K; and

1 < j < K, where(-, -) denotes the inner product of two vectors), then they ar¢ leas
similar, i.e., their distance is largest. In generalikas# K», we would expect that two
subspaces where one is entirely contained in the other waaud a smaller distance
than those where one is only partially contained in, or “ecoss” the other.

These intuitions lead to the following distance metric badw two subspaces [8]:
For anyK;-dimensional/ () andK,-dimensional’ (?) subspaces iR", Ietv%i), . vf,?
be an orthonormal basis &%*), i = 1, 2. Thesubspace distandzetweeri/ (!) andV(Q)
is

1 2
AV, vy = Imaz(Ky, Ks) ZZ , 2)
=1 j=1
In [8], it is shown that the subspace distance defined aboeeHsiclidean distance
function, andis independent of the choices of the orthonormal bas%§ e ,v%)i.
Further,0 < d(V) V) <\ /maz(K;, K3), whered(V), V() = 0 if and only
if K1 = K, and the two subspaces coincide, atitf (U, V(?)) = | /maz(K, K5)
when two subspaces are perpendicular to each®%ther
Using the above definition, we compute the pairwise subspiatznce between any
pair of the 492 block’s and the results are shown in Fig. 5(a): the rows and columens a
indexed by the blocks, and a gray scale is used to visuallictihyg distance: the darker
a point(i, j) is, the shorter the distance between the two bldéks B;). The rows and
columns are sorted so that the blocks with likely similardeabrs are located closer
to each other. The figure clearly shows clusters of blockis likely similar behaviors.
To extract the clustering structure and classify the blogkdviors, we first apply the

® Note that whenk; = K5 = 1, thend(V®", V®) = d(v(V,v{?) = /T = cos?0 = sin 6,
whered is the angle between the two vectm{é) andvf) (two 1-dimensional space). Hence,
in a sense we can considercsin d(V"), V(?)) as ageneralized angldetween two sub-
spaces. In statistical literature, another generalimatioangles, a series @frincipal angles
(typically defined whenK; = K3) instead of a single metric, are used to measure similar-
ity/dissimilarity between subspaces. In the next sectiemwill use (a variation of) principal
angles to compare, characterize and track similarityifdisarity among individual singular
vector components of the two subspadest) andV (@,

" We only focus on 492 blocks which contains at least 10 actbstshwith at least 10 observed
flows originated from each host in a day.



classical scalingnethod [9] and then th€-meanstlustering algorithm (see, e.g., [10])
for dimension reduction and clustering.

As the subspace distance is a Euclidean distance functianplies that we can
embed the blocks (or more precisely, their correspondihgsace representation) as
points in anM -dimensional Euclidean spaé/, whereM = 492, the total number of
the blocks. In this embedding, the Euclidean distance ketvi@o points is exactly the
subspace distance between the two corresponding blockslassical scaling method
allows the recovery of the (intrinsic) coordinates of thesiats inR* from thesquared
distance matrixof these points (up to a rotation and translation) [11]. THex M
squared distance matrix is given By? = [d2], whered;; = d(V(), V(D) is the
subspace distance between blodksand B;. Let J = I — M~1eeT, wheree =
[1,1,...,]7 is an M-dimensional all- column vectot, and define the doubly-centered
matrix Bp = —%JD@)J. Applying eigenvalue decomposition #p yields Bp =
WAWT, whereA = diag[\1, . .., \] is a diagonal matrix containing the eigenvalues
(in a decreasing order) @ p, columns of the orthonormal matri¥” = [w1, ..., wa/]
are the corresponding eigenvectorsiy, andW” W = I. Then the columns of the
matrix X = AY/2W7T, whereA'/? = diag[\/X1, ...,/ ), are the coordinates of the
M points (blocks) ink, and the Euclidean distance of any two poiris,and B;,
computed using this coordinate systéimis exactly equal ta;;.

Using X, we can directly apply th&-meanstlustering algorithm to extract the clus-
ter structure. However, for largk/, this may not be efficient and scalable (as its time
complexity isO(M?)). Moreover, the well-known “curse of dimensionality” aleads
to unsatisfactory clustering results [12]. Examining tbees plot of the eigenvalues of
Bp (see Fig. 5(b)), we see that thi¢ points lie mostly in a low-dimensional space,
as their coordinates in the higher dimensions are closertm Zd&e inset in Fig. 5(b)
shows that we can apply the spectral clustering method [k8tilly. Usingr = 3
and K = 10, the 10 clusters are represented by either “0” or “+” witHahént col-
ors, where “+” stands for dense or seemingly dense clusars;'o” stands for loose
clusters). From the figure, we see that there are blockstaatare tightly clustered to-
gether, while others are somewhat more loosely clusterdew/locks are “outliers”,
having a relatively distance to nearly all other blocks. Bmeome randomness in the
K-means algorithm, some blocks may be assigned somewhi&tait» to one or the
other loose cluster, as their distances to other blockséh eAthem may be similar.
Hence, the ordering how blocks get assigned to each cluasesmimpact on the over-
all clustering results. We have performed K-means clusgesigorithms with different
seeds, withr = 3,...,6, and K = 5,...,25. The overall observation remains the
same: there are about 3 tightly clustered blocks, and a gl of “outlier” blocks,
while other blocks belong to somewhat more loosely assedielusters. The number
of clusters and membership of blocks hinge on the paraniéi¢ie seeds, but less so
on the dimension.

Table 1 summarizes a sample clustering result with 3 and X' = 10, where the
intra-cluster distance is the average distance betweakdbMithin the same cluster,
and the inter-cluster distance is the average distanceeketllocks within the same

8 J is often referred as the cantering matrix, as multiplyingadrir by J on both sides produces
a matrix that ha® — mean columns or rows.



D Label Intra-dist] Inter-dist ] # blockg Dominant Src. Portd Dominant Dst. Port§Details

1 web client-centered 0.28 1.26 83 aoSrcPort 80 Academic departments. No servers

2 web server-centered 0.99 1.29 13 80, 25, 443 aoDstPort CSE and ITLabs. with multiple web servers

3 non-web-dominated 1.01 1.42 28 | Mail, p2p (no port 80] aoDstPort CSE, ITLabs and SuperComputing. No web traffic.

4 | mixed web clients/web servers 1.1 1.59 51 80,a0SrcPort 80, aoDstPort Departmental office client machines with web activifies
and at least one web server.

5| mixed web clients/servers| 1.09 1.34 57 80, 25, 22 80,a0DstPort [ Departmental office client machines with web activities
and different types of servers.

6 diversified 1.32 1.48 69 non-service 80 and non-servicg Web clients along with other client traffic.

web clients random ports random ports.

7 web and p2p clients 1.31 1.44 79 p2p 80 and p2p Client machines with more diverse behaviors and fon-
web-dominance.

8 mixed client behaviors 1.63 1.61 9 p2p and IM 80, p2p, mail and IM Client machines with more diverse behaviors and ton-
web-dominance.

9 mixed clients and servers | 1.52 1.59 16 80, 25, IM and p2p 80,IMand p2p | Residential halls and wireless blocks with very divefsi-
fied traffic

10 outliers 1.64 2.13 6 special-service-port$ special-service-portsBlocks with widely different behaviors.

Table 1. Summary of clustering results.

cluster and those outside the cluster. Each cluster israessig “high-level'descriptive
label, based on the interpretation of common behaviors shareddsy bdocks in the
cluster. The interpretation is derived by manually exangrithe ports with higlenergy
(i.e.,vfj) in the top singular vectors of the blocks within a clustdreblocks within the
first three clusters are most tightly clustered, exhibitimgre cohesive behaviors. The
blocks within theclient-centereatluster are characterized by the fact that most energy
is concentrated on two pointdstPort 8Q andaoSrcPort and the combined energy of
these two ports often exceeds 90% of the total energy. Bladtsn this cluster of-
ten belong to academic departments. In contrastwbie-server-dominatecluster is
characterized by the fact that highest energy is concewtrasrcPort 80andaoD-
stPort Blocks within this cluster demonstrate somewhat morerditse (compared to
those within the client-centered cluster), as some blockg aso exhibit higher energy
on other service ports, such agPort 443 srcPort 25 The blocks within this clus-
ter belong to the university and academic departmentsied (e.g., CSE, IT) where
multiple web servers are hosted. Blocks within the tiioth-web-dominatecluster are
characterized biack ofhigh energy (often 5% or less) on eithastPort 80or srcPort
80. Many of the blocks within this cluster belong to lab mackirfe.g., CSE and IT
labs) and the supercomputing center, where users of theskimea do not routinely
use them for web surfing.

The fourth clustennixed web clients/web serve®ntains blocks with high energy
on bothsrcPort 80anddstPort 80(at least 15%) as well as @oSrcPoriandaoDstPort
These blocks typically comprise client machines with pragt@antly web surfing activ-
ities, together with at least one web server. The next alusted web clients/servers
is similar to the previous cluster, in that they contain kkwith high energy on both
srcPort 80anddstPort 80(at least 15%). They differ from those in the previous clus-
ter in that they have high energy only aeDstPort not onaoSrcPort in addition,
they also contain relatively high energy on a few other sewervice ports such as
srcPort 25(email) orsrcPort 22(ssh), suggesting that these blocks may contain other
server-related activities. Most blocks of the previous thgsters belong to academic
departments, containing typical office client machines e & web or other servers.

The sixth cluster is a loosely clustered which, in additimnhaving a high energy
on dstPort 80, it contains diversified (seemingly randonmsooth for destination and
source ports. Unlike cluster 1, this cluster does not fe&rcPortas dominant source



port. Most probably, this cluster depicts behaviors of ktofor which the member
clients initiate web connections using random, yet frediyeuised ports in our campus
traffic.

Blocks within the next three clusters are more loosely elhest. Their behaviors
are characterized by far less dominant web client act&aigd no dominant web server
activities. Cluster 7yeb and P2P clienjds characterized by relatively high energy on
various source and destination P2P ports, while Clustéiged client behavioisin
addition contains high energy on some IM (instant messaging other related ports.
But blocks in neither cluster contain relatively high enesg any of the standard source
service ports, suggesting that they contain client machiith more diverse behaviors,
where web activities are no longer dominant. The behavibtiseoblocks in Cluster 9
(mixed clients and servérare more diverse, with energy spreads not only across a num-
ber of P2P and IM source/destination ports but also on st@oand so forth. Most of
these blocks belong to student residential hall netwonkisgusity wireless and library
network blocks. The last cluster contains essentially a‘tavtlier” blocks, where their
behaviors are quite distinct due to being used for specigdgse. For example, one of
the blocks within this cluster contains two very active Riuab machines, with a wide
range of ports frequently being used. Another example ipelddbeing used to conduct
credit card transactions. We conclude this section by esipimg that the goal of our
clustering of block behaviors is not to generate a preciassification, but to produce
some high-level “descriptive” labels and provide a “bigtpie” view of the block-wise
behaviors in a campus/enterprise network so as to assigbriedbperators and security
analysts to better monitor and manage the network.

5 Tracking Block Behaviors over Time

In this section we show how we can use the subspace représasiaf block behaviors
to track changes in their behaviors over time, and detecbmedjanges that may be
indicative of potential attacks or other anomalies.

5.1 Methods for Tracking Behavior Changes over Time

Given a blockB, let V(Y) denote the subspace representation of its behaviors tedrac
at thetth time interval (say, theth day). We can use the subspace distas@é(®), v (t+1)),
to compare and track the changes in the behaviors of btboker time. For simplicity
of notations, we will usd” andW instead oft’ () andV (*+1) to denote the subspace
representations of a blodk at the two consecutive time intervalaindt + 1, respec-
tively. LetV = [v1,...,vk] andW = [wy,...,wy], wherev;’s andw;’s are the corre-
sponding top singular vectors. Clearly/if # L, thend(V, W) > 1, a relatively large
distance. Even wheK = L, we may still expect a relatively large distance. Fig.6(a)
shows an example of the subspace distance of each of the d&igshh two consec-
utive days: the x-axis is indexed by the blocks in the indreasrder of the subspace
distance between the two days; the solid curve is the subgtiatance of the blocks
(the left y-axis is the corresponding scale), and the déttigidag-like” curve represents
|K — L|-the difference in the numbers of dominant singular vedtots/o days (the



right y-axis is the corresponding scale). We see that abublocks having a subspace
distance less than 1, many of which have a distance closertdifating relatively lit-
tle changes in their behaviors over two days. The majoritylocks (about 300) have a
subspace distance between 1 and 2, while a few blocks havespasze distance larger
than 2. There are about 215 blocks (nearly half of the bloelith) K = L: the majority
of these blocks have a subspace distance less than 1; hofevaifew of them, the
subspace distance can be as largé.asAll the remaining blocks have different num-
bers of (dominant) singular vectors in the two days, withlaspace distance of at least
1.

Clearly, in general, large distance signifies major chamgigs behaviors. However,
the subspace distanteitselfdoes not tell us what may have changed that causes a large
distance from time interval to ¢t + 1 interval. To address this issue, we develop two
methods which provide more detailed information to qugraifid track the behavior
dynamics of blocks over time. In the first method, we cons@dah individual singular
vector,w;, 1 < j < L, at time interval + 1 and compute its distance to the (entire)
subspacé’ of the previous time intervalas follows:

K
d(w;, V) = [ 1= 3 (i, wy). )

Eq.(1) can be viewed as measuring the (generaliaad)e © between the vectow;
and the subspadé, wherearcsin © = d(w;, V). Hence, ifd(w,, V') is close ta), say,
d*(w;,V) < e for some smalk > 0 (we usee = 0.1 in all experiments), them,

is (nearly) containedn V. In other words, the behavior captured by (namely, the
associated port activities) in the time interval 1 can be nearly fully represented by
those in the previous time interval, i.&, On the other hand, #(w;, V') is close tol,
say,d?(w;, V) > 1 — ¢, thenw; is (nearly) orthogonato V' (i.e.,f ~ =/2), and thus
the behaviors captured hy; is almost totally different from those representediby
Whend(wj;, V) lies in between (say, < d*(V,W) < 1 — ), the behaviors captured
by w; contains both “old” port activities that are similar to tieas 1, but also “new”
ones that are not. In this case, we sayis partially associatedvith V. Therefore, by
considering individuadv;'s and computing their distancestg we can classifyv; into
three categoriegnearly) containedpartially associatedor (nearly) orthogonaland
use this classification to identify and quantify thasgs, or newbehaviors, that cause
large changes in the subspace distance.

In the second method, we go one step further by comparingithgil w;’s with
individual v;’s. To characterize the relations betweern's andv;’s, we introduce a
sequence oprincipal angles[14], (0 <)0; < --- < Ok, 13 (< 7/2), defined
recursivelyas follows: 1)cosf; = maxi<i<k
maxi<,;<r (v, w;); namely,0; is the smallestangle formed by any pair af;’s and
w;’s. We denote the pair of vectors associated Wittas (v}, wy). 2) More generally,
for k > 2, 6 is the smallest angle between the (remaining) pairs'sfandw;’s after
we have removed the pairs associated with. .., 0;_,. Note that if K = L, then
eachw; is paired with onev;. If K # L, then either somev;’s (whenK < L) or
v;'s are left. Hence, fok = min{K,L} + 1,... , max{K, L}, we defined, = /2.
Forl < k < min{K, L}, the pairs of vector$v;, w;)'s that are associated with the



principal angled;’s provide the besmatchingbetween the behaviors represented by
vy’s andw;’s: vi andw] represent most similar behaviors in the time intervadsd
t + 1, v andwj; the second most similar, and so forth.

We can therefore classify the relations betwega andw;’s usingfy’s. If there
existsk; < min{K, L} such thatfok = 1,..., k1, 0 is close to O (sayin? 6, < e),
thenw;, andv;, are(nearly) identical Thus they represent behaviors that do not change
very much fromt to ¢ + 1. On the other hand, if there exists < min{K, L} such
that forx; < k < min{K, L}, 6 is close tor/2 (say,sin?6), > 1 — ¢), thenwy,
andv;, are (nearly) orthogonaland any values between identical and orthogonal are
considered to beartially similar. Thus these pairs represent nearly distinct behaviors
that were present in the time intervabut nott + 1, and vice versa. In addition, when
K # L, anyunmatched;’s or w;’s represent “old” behaviors that have disappeared or
new behaviors that have emerged. Hence, the principal sapgbvide us with a finer
grain method to quantify and track the changes in block hehswever time.
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Fig. 6. Subspace distance between two consecutive days

We apply the two methods described above to classify andtifipdne changes
in block behaviors over the same two days as in Fig. 6(a). €kalts are shown in
Fig. 6(b) and Fig. 6(c), respectively, where the number ofsiar vectors (or vector
pairs) belonging to each of the three categories is plottad,the total height of the
curve is the maximum numbeméx{ K, L}) of singular vectors in each block. The
block indices (the x-axis) are fixed in the same order (inergasing subspace distance)



as in Fig. 6(a). As is clear from Fig. 6(b) and Fig. 6(c), foodks with very small
subspace distance (say, block 1 - block 100) between the &ys, @dimost alkw;’s

of the second day areearly containedn the subspac& of the previous day (the
dark shaded area under the curve in Fig. 6(b)). Furthermuost “best-match” vector
pairs(v;, w})’s arenearly identicalthe dark shaded area under the curve in Fig. 6(c)),
with the remaining pairs at leapgrtially similar. As the subspace increases further,
morew;’s becomepartially associatedvith V', suggesting thai;’s capture some new
activities or changes in behaviors in the underlying hostthese blocks. For block
171 or higher (where the subspace distance of the two dagsgerithan 1), we see
that at least one; becomesearly orthogonato V', or equivalently, there exists either
an unmatched singular vector (whé&h# L) or at least a paifv;, wy) that isnearly
orthogonal(both are indicated by the light shaded area under the careacéh of the
figures). In particular, for blocks where the subspace distds at least 2 (block 450
and higher), nearly all singular vectars’s in the second day are orthogonalito and

to the individual singular vectorsg’s of the previous day. Hence, they suggest that hosts
in these blocks may have almost completely different bedravn these two days.

The results show that using these two methods, we can quantiftrack the change
in block behaviors over time, and identify specific actedti(e.g., as embodied by the
nearly orthogonab;'s) that cause any major changes. We have performed simidds a
ysis to compare, quantify and track the changes in block\hetsover time using
two-week long data, and obtained qualitatively similauitss Due to space limitation,
we do not present them here.

5.2 Anomaly and Attack Detection

In this subsection, we show that by tracking and identifyingjor changes in block
behaviors, the methods we have developed in the previowsestibn can be used to
detect potential anomalies and attacks. We demonstrateaipiability throughattack
emulation where we inject certain types of attacks or other anomadetigities into a
block with otherwise “normal” activities. We have perfordnhis study using a range
of anomalies. Due to space limitation, however, we brieflyotlibe the outcomes under
three common types of attacks/anomal@sside scanningpack-door trojan activities
andDDoS ping flood attacks

For the scanning attack scenario, we assume that an outsideey is sending traf-
fic to all active hosts within a block which tends to triggeteaponse to this scanning
with a small number of flows (one or two flows) using the sameiining port. Hence,
the activities of the block have a new source port which re&flaa additional activity.
Unlike the change of subspace distance caused by actibitieg) modified, i.e. addi-
tion of one or more activities or making an activity more adeignificant, the change
caused by response to scanning changes the activity tolly wifferent host behavior
associated with a drastic increase in subspace distanceb¥eeve that blocks injected
with such scanning activity experience relatively highrease in subspace distance.
More specifically, we notice that server-dominated blockgiv usually experience lit-
tle (or no) increase in subspace distance.05, their subspace distance suddenly jumps
to values greater than 2 since now the dominant source paod isnger the original



source port corresponding to the service provided by thg ftds now the scanning
port which is more significant and dominant.

We also emulate traffic for an inside client host suddenlingcas a server estab-
lishing and accepting connections at some port (e.g. 803.tfpe of back-door attack
is usually used by bots, in which the client host daily reggisthe same IP address with
several different domains chosen from a specific list of domaConsequently, bots
search the whole list to find the IP address to communicate kgt client-dominated
blocks, we see that they transform into a server-like belralominated by the source
port corresponding to the bot port which causes a suddeaaserin the subspace dis-
tance which is far greater than the normal range of changaiént blocks which might
otherwise have a slight increase in subspace distancecchysalditional activities.

Finally, we tested our method for distributed denial of &&DDoS) attacks in
which an attacker sends an ICMP ping packets to an insiderffiatly server) host
and listens for responses. This causes the server to stpa@ing to multiple requests
which will now be dominated by both incoming and outgoing IEMorts. The nature
of DDoS attacks involves a large number of ICMP requestsqiadéime name ping flood)
and the inside server now is no longer dominated by the pirniteant to service, but
rather by ICMP source and destination ports. Consequenitty (usually server) blocks
will experience a sharp increase in the subspace distansed#édy DDoS attacks.

The above discussion illustrates the potential utility wif block-level behavior pro-
filing and tracking methodology in detecting anomalies attakcs, in addition to pro-
viding better knowledge of the “normal” activities and thehanges over time within
a network. Clearly, the resulting anomaly and attack deteaincovered by tracking
the subspace distance over time of a block is only meanpdst-mortermanalysis or
“after-fact” discovery of attacks or anomalies, meal-timedetection. Thus, it is com-
plementary to firewalls and other IDS (intrusion detectigstem) and IPS (intrusion
prevention system) that are commonly deployed in large cesngmd enterprise net-
works. Our technique is particularly useful in uncoverimgnpromisednside hosts
that are (frequently, periodically or even occasionallggd to launch attacks or other
illegitimate activities targeted at the outside Internet.

6 Conclusions

In this paper we have developed a nhovel methodology for prgfdnd tracking network
activities at theblock-level By capturing and characterizing significant and typicatho
behaviors within a block of contiguous IP addresses aswutiaith subnets where
many hosts often have similar usage patterns, the proposttbdology is more scal-
able and can effectively handle the difficulty in trackingliwidual host behaviors due
to dynamic addresses. We introducedalack-wised (host) port activity matrix (BPAM)
which represents the activities of individual hosts withirblock on a carefully se-
lected port feature vector. Applying the SVD low-rank apgnaation technique, we
obtained a low-dimensional subspace representation veaiptures the significant and
typical host activities of the block. Using these subspapeasentations, we clustered
and classified blocks to provide high-level descriptiveelalio assist network opera-
tors and security analysts to gain a “big-picture” view o thetwork activities. We



also developed novel methods to track and quantify chamgle®ck’s behaviors over
time, and demonstrated how these methods can be utilizetktdify major changes
and anomalies within the network.
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