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Abstract

The expected commute times for a strongly connected directed graph are related to

an asymmetric Laplacian matrix as a direct extension to similar well known formulas for

undirected graphs. We show the close relationships between the asymmetric Laplacian

and the so-called Fundamental matrix. We give bounds for the commute times in

terms of the stationary probabilities for a random walk over the graph together with

the asymmetric Laplacian and show how this can be approximated by a symmetrized

Laplacian derived from a related weighted undirected graph.

1 Introduction

The spectral analysis of undirected graphs has been studied extensively [1, 8, 10, 12, 14,
16, 25, 26, 27, 28, 34, 38], but fewer papers exist discussing directed graphs (digraphs)
[4, 7, 9, 39]. In particular, the relationship between expected first transit/hitting times and
round-trip commute times in a random walk, on the one hand, and spectral properties of
the underlying graph on the other, has been studied mainly for undirected graphs. In this
paper, we show that the round-trip commute times are closely related to certain asymmetric
“Laplacian” matrices for strongly connected directed graphs in ways analogous to those
known for undirected graphs. We show that one can approximate a strongly connected
digraph by a related weighted undirected graph which shares some of the properties of
the original digraph (e.g. connectivity, stationary probabilities), while only approximately
inheriting others (e.g. first transit/hitting times and node centrality). This has applications
in domains with asymmetric connections, such as wireless packet switching networks with
low-powered units where link asymmetry is a widely observed phenomenon.

A directed graph, or digraph, G = (V , E), is a collection of vertices (or nodes) i ∈ V =
{1, . . . , n} and directed edges (i → j) ∈ E . One can, optionally, assign weights to each
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directed edge, thereby making it a so-called weighted digraph, or else a common edge weight
of 1 to obtain an unweighted digraph. Algebraically, the digraph G can be represented by its
n×n adjacency matrix A = [aij], where aij 6= 0 is the weight on edge (i → j) and aij = 0
if (i → j) 6∈ E . A directed graph G is called strongly connected or a strong digraph if
there is a path i=ℓ0 → ℓ1 → · · · → ℓκ−1 → ℓκ=j for any pair of nodes i, j, where each link
ℓι−1 → ℓι, ι = 1, . . . , κ, is an edge in the graph. In this paper, we focus entirely on strongly
connected directed graphs.

A random walk over a graph can be modeled by a Markov chain with probability
transition matrix P = D−1A, where D = Diag(d) = Diag(A · 1) is the diagonal matrix of
vertex out-degrees and 1 denotes the vector of all ones. Here we assume every node has at
least one out-going edge, which can include self-loops. The associated vector of stationary
probabilities is denoted by π and satisfies π

TP = π
T and π

T1 = 1. If the graph is strongly
connected, the associated Markov chain is irreducible, and all the entries of π are strictly
positive by Perron-Frobenius theory [15, 19]. If the graph were undirected, the associated
Markov chain would be reversible, and the vector of stationary probabilities would be a
scalar multiple of the vector of vertex degrees: π = d/(dT1), where the denominator would
be called the volume of the graph. Unfortunately, this relationship does not necessarily hold
for digraphs. We denote by Π = Diag(π), the diagonal matrix of stationary probabilities,
which is non-singular if the graph is strongly connected. These quantities have proven useful
in the analysis of graphs and form the basis for this paper. For more details on Markov
chains and their close relationships with graphs, the reader is referred to [20, 21, 29].

In this work, we examine a scaled “Laplacian,” not necessarily symmetric and denoted
simply by L, which is defined for a strongly connected directed graph or a strong digraph. In
what follows, the words graphs and digraphs will be used strictly to mean strong digraphs,
unless otherwise stated. Even though most of the derivations mimic known derivations for
undirected graphs, not everything carries over from the world of undirected graphs to that
of their directed counterparts. For example, the concept of “volume” of a graph and the
metaphor of resistances of an electrical network [5, 11, 22] do not play the obvious central
role in the derivations for directed graphs as they do for undirected graphs.

Our focus is on an asymmetric Laplacian (L = Π(I − P )) and its related matrices,
which help illustrate parallels in the directed case to the well known properties defined for
undirected graphs. In particular, we show the following for strongly connected directed
graphs:

a. The average hitting times and round-trip commute times can be expressed in terms of
the pseudo-inverse of this Laplacian.

b. The commute time is a distance measure for the vertices of a strongly connected di-
rected graph.

c. There is a close relationship between the so-called Fundamental Matrix and the pseudo-
inverse of the asymmetric Laplacian (L).
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d. The commute times for a directed graph can be bounded in terms of the stationary
probabilities and the eigenvalues of a diagonally scaled symmetrized graph Laplacian.

The rest of this paper is organized as follows. Section 2 gives some elementary necessary
lemmas regarding the pseudo-inverse of matrices under rank-one changes. Section 3 compares
the different Laplacians for directed graphs. Section 4 reviews the Fundamental Matrix and
its relation to the pseudo-inverse of the Laplacian and to the matrices of expected hitting
and commute times for a directed graph. Section 5 derives upper and lower bounds for
the commute times in terms of the stationary probabilities together with the Fundamental
Matrix and/or the diagonally scaled Laplacian. Section 6 shows how the Laplacian yields an
indicator of node centrality based on average commute times for directed graphs in much the
same way as for undirected graphs. Section 7 uses a simple example to show how treating
a wireless network as a directed graph, which is more accurate, can yield a different result
compared to the traditional analysis as an undirected graph.

2 The Pseudo-Inverse Under Small Rank Changes

The development in this paper makes use of several lemmas regarding general square matrices
with nullity equal to 1, and their pseudo-inverses under small rank modifications. Here
nullity is the dimension of the right null space.

Some notations warrant a mention here. The first two lemmas concern a general square ir-
reducible matrix L such that nullity(L) = 1, and its Moore-Penrose pseudo-inverse M = L+.
By a simple singular value decomposition, one can see that nullity(L) = 1 ⇔ nullity(M) = 1.
Recall that the adjugate of a matrix A, adj(A) is the transpose of the matrix of cofactors of
A: [adj(A)]ij = det(A−j,−i), where A−j,−i denotes the (n − 1) × (n − 1) matrix formed from
A by deleting row j and column i. We are now ready for the first of our lemmas.

Lemma 1 [35]. If A is a square matrix such that nullity(A) = 1, and u,v are non-zero
vectors such that Au = ATv = 0, then the adjugate of A is a rank-one matrix given as
adj(A) = αuvT, for some scalar α.

Proof. By [35], nullity(A) = 1 ⇒ rank(adj(A)) = 1, hence adj(A) = αxyT for some non-
zero vectors x,y. Since A · adj(A) = Det(A) · I = 0, x must be in the right nullspace of A
and hence is a non-zero multiple of u. Likewise, y must be a non-zero multiple of v.
2

Lemma 1 provides an easy way to compute the adjugate of a square matrix L with
nullity(L) = 1. Computing the left and right nullspaces yields u,v, and computing one
principal minor yields the scale-factor α. We remark that if nullity(A) = 0, then adj(A) =
det(A) · A−1, whereas if nullity(A) > 1, then adj(A) = 0 [35].

Lemma 2. Let L =

(
L11 l12
lT21 lnn

)
be an n × n irreducible matrix such that nullity(L) = 1.

Let M = L+ be the pseudo-inverse of L partitioned similarly and (uT, 1)L = 0, L(v; 1) = 0,
where u,v are (n − 1)-vectors. Here, the operator ‘;′ denotes vertical concatenation à la
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Matlab. Then the inverse of the (n − 1) × (n − 1) matrix L11 exists and is given by

L−1
11 = X

def

= (In−1 + vvT)M11(In−1 + uuT) = (In−1 , −v)

(
M11 m12

mT
21 mnn

) (
In−1

−uT

)
, (1)

where In−1 denotes the (n − 1) × (n − 1) identity matrix.

Proof. Note that, L11v + l12 = 0 and uTL11 + lT21 = 0, and lnn = −uTl12 = +uTL11v.
Given M = L+, the right annihilating vector for L is the left annihilating vector for M and
viceversa, i.e. (vT, 1)M = 0 and M(u; 1) = 0.

Hence, M11u + m12 = 0 and vTM11 + mT
21 = 0, and mnn = −vTm12 = +vTM11u.

Therefore, for the (n − 1) × (n − 1) matrix X we have the following form;

X
def

= In−1 + vvT)M11(In−1 + uuT)
= M11 + M11uuT + vvTM11 + (vTM11u)vuT

= M11 − m12u
T − vmT

21 + mnnvuT

= (In−1 , −v)M

(
In−1

−uT

) (2)

We now show that L11 must have an inverse by contradiction. Suppose L11x = 0 such that
x 6= 0. Then lT21x = −uTL11x = 0 which means that L(x, 0)T = 0. However, this would
mean that we have a second right annihilating vector which is not a multiple of (v, 1)T. This
contradicts the initial assumption that nullity(L) = 1.

Let X be as defined above in equation (2). Multiplying on the left and right sides of X
by L11 we get;

L11XL11 = L11(In−1 , −v)M

(
In−1

−uT

)
L11 = (L11 , l12)M

(
L11

lT21

)

=
(
In−1 , 0

)
LML

(
In−1

0T

)
=

(
In−1 , 0

)
L

(
In−1

0T

)
= L11.

Since L11 is invertible, we can multiply both sides of the equation above by L−1
11 on the right

to obtain L11X = In−1.
2

When a non-singular matrix remains non-singular after a rank-one change, its inverse
is given by the well-known Sherman-Morrison formula [19, 17]. However, when either the
starting matrix or the resulting matrix after a rank-one change is singular, the pseudo-inverse
is our only resort. We need the following result for a rank-one change made to a singular
matrix which makes it non-singular.

Lemma 3.[24] Let A be a singular matrix, and assume C = A + uvT is non-singular. Let
x,y be unit vectors (in the 2-norm) such that Ax = 0, ATy = 0. Then, vTx 6= 0, yTu 6= 0,
and

C−1 = A+ − 1

vTx
xvTA+ − A+ 1

yTu
uyT +

1 + vTA+u

vTx · yTu
xyT (3)
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Proof. Since C is non-singular, Cx = uvTx 6= 0, hence vTx 6= 0. Suppose u could be
written as Az for some z, then Cz = Az + uvTz = u(1 + vTz) = Cx1+vTz

vTx
6= 0. Hence z

must be a multiple of x and Az = 0, a contradiction. So u cannot be written as Az for any
z. Likewise yTu 6= 0 and vT cannot be written as wTA for any wT. We thus have case (i)
of [24]. Theorem 1 of [24] then yields the required result in equation (3).
2

We also need a lemma in the opposite direction, in which we apply a rank-one change to
a non-singular matrix which makes it singular.

Lemma 4. Let C be an n × n non-singular matrix and suppose A = C − uvT is singular.
Then the Moore-Penrose pseudo-inverse of A is given as;

A+ = B
def

=

(
I − xxT

xTx

)
C−1

(
I − yyT

yTy

)
,

where x = C−1u, yT = vTC−1.

This lemma is most easily proven using the following general result.

Theorem 5 [13, Thm 3]. Let A,B be two matrices such that rank(A + B) = rank(A) +
rank(B). Let S = (PR(BT)PR(AT)⊥)+, T = (PR(A)⊥PR(B))

+, where PR(A) denotes the or-
thogonal projector onto the range (column space) of a matrix A, and PR(A)⊥ denotes the
orthogonal projector onto the orthogonal complement of the column space of A (same as the
left nullspace of A). Then (A + B)+ = (I − S)A+(I − T ) + SB+T .
2

Proof of Lemma 4. To prove this result, we establish some facts in sequence:

1. Let z 6= 0 be such that Az = 0. Then Cz = uvTz. That means Cz must be a non-zero
multiple of u. Choose the scaling such that Cz = u. Then z = C−1u = x, Ax = 0,
and vTx = 1. Likewise, we have yTA = 0 and yTu = 1.

2. We have the two orthogonal projectors in the notation of Theorem 5:
(
I − xxT

xTx

)
= PR(AT)⊥ ,

(
I − yyT

yTy

)
= PR(A)⊥ . Defining S and T as in Theorem 5, we

then have
(
I − xxT

xTx

)
S = 0 and T

(
I − yyT

yTy

)
= 0.

3. Hence, using (3), we get

(
I − xxT

xTx

)
C−1

(
I − yyT

yTy

)
=

(
I − xxT

xTx

)
A+

(
I − yyT

yTy

)
− 0 − 0 + 0 = A+,

where we have used the fact that the left nullspace of A+ equals the right nullspace of
A, namely span{x}, and likewise for the right nullspace of A+.

2
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3 The Laplacians

Several different Laplacians have been proposed in literature, each one helps infer different
properties for graphs. We provide a brief summary here for historical perspective. Recall
the notation from sec. 1. A graph G can be represented by its adjacency matrix A whose
i, j-th entry is the weight of the edge i → j, equal to one if there are no weights, or zero if
there is no such edge. If D = Diag(A · 1) is the diagonal matrix of row sums (out-degrees
of the vertices) of A, then P = D−1A is the probability transition matrix for a random walk
over this graph. Let π be the vector of stationary probabilities, such that π

TP = π
T and

π
T1 = 1, and let Π = Diag(π). The “ordinary” Laplacian L = Π(I−P ) and the diagonally

scaled Laplacian Ld = Π−
1/2LΠ−

1/2 are the main focus of this paper. We put this Laplacian
in perspective by comparing it to other related Laplacians.

The unnormalized Laplacian La = D−A for an unweighted digraph yields the number
of spanning trees in the graph [4].

If the underlying graph is undirected, the matrix La is also symmetric, and in fact identical
(up to scaling) with L. This is because the vector of vertex degrees A · 1 is a scalar multiple
of π. However, when the underlying graph is a digraph, the matrix La is not symmetric
and differs from L. In [4] La is called the Formal Laplacian. This Laplacian has been
used extensively to compute the average first hitting times and round-trip commute times
in a random walk on an undirected graph, identifying which are the most “central” vertices
[14, 16], the related effective resistance when the graph is an electrical network [5, 11, 22],
including identifying minimal graph cuts in spectral graph partitioning [10, 12, 25, 26, 27,
34, 38], bounding the connectivity of the graph and related Cheeger or isoperimetric and
expander constants [1, 8, 28]. The connection with electrical theory motivates the name
‘Kirchoff matrix’ or ‘admittance matrix’ for La.

The following is a classical theorem relating this Laplacian to a property of the original
graph, even directed graphs, apparently first proved in [3] and later proved independently
in [37], according to [4]. We present the simplest case for unweighted directed graphs. To
define the terms used here, a spanning tree rooted at a vertex k is a subgraph of the original
directed graph consisting of all the vertices and just enough directed edges so that there is
exactly one path from k to any other vertex j. A spanning arborescence rooted at k is a
subgraph consisting of all the vertices and just enough directed edges so that there is exactly
one path from any vertex i back to the root k.

Theorem 6 (Matrix-Tree Theorem). Let La = D − A be the n × n Kirchoff matrix
for an unweighted directed graph with adjacency matrix A and with D = Diag(A · 1). Let
(La)−k be the (n−1)× (n−1) matrix obtained from La by deleting row and column k. Then
the number of spanning arborescences rooted at vertex k is equal to the principal minor
det[(La)−k].

Proof. See [4, sec. 9.6] and references therein. This is actually a special case of a more
general theorem for weighted directed graphs.
2
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A simple consequence of the result above is the following theorem, which holds not only
when the directed graph is strongly connected but also when it has exactly one strongly
connected component in the sense that all the vertices can be divided into two disjoint
classes V1,V2 where V1 is strongly connected, and from each vertex in V2 there is a path to
a vertex in V1.

Corollary 7. Assume the directed graph is strongly connected, or has exactly one strongly
connected component. Given the notation of Theorem 6, let ri be the number of spanning
arborescences rooted at vertex i, for i = 1, . . . , n. Then the vector r = (r1, . . . , rn) is the
unique (up to scaling) left annihilating vector for La.

Proof. If the graph is strongly connected, the induced Markov chain must be irreducible,
and hence eigenvalue 1 of the state transition matrix P must be simple, and the stationary
probabilities for the induced Markov chain must be entirely strictly positive. This implies
nullity(La) = 1. By Lemma 1, its adjugate, adj(La), has rank 1. Since La · 1 = 0, adj(La) =
1vT for some vector v unique up to scaling, which spans the left nullspace of La. By the
Matrix-Tree Theorem, the diagonal entries of adj(La) are exactly the ri’s, which therefore
satisfy ri = vi.
2

Directed graphs with more than one strongly connected component have no spanning
arborescences, but they still have spanning forests of arborescences, extensively studied by
Cheboratev et al (see [7] and references therein). The discussion of this topic is beyond the
scope of this paper, but for completeness we present the following result.

Corollary 8 [7]. Using the notation of Theorem 6, the number of spanning forests of
arborescences is equal to det(I + La).

Proof. For detailed proofs see [7]. However, a simple argument can be constructed by
applying the Matrix Tree Theorem to an augmented graph obtained by adding a single new
vertex to the given graph and adding an edge from every old vertex to this new vertex.
2

The normalized Laplacian Lp = I − P = D−1La has been used to analyze connec-
tivity in terms of the mixing times or diffusion rate for the random walk as well as related
expander constants, and in spectral graph partitioning. For example, in graph partitioning,
La corresponds to finding the minimal cut relative to the number of vertices in each graph
partition, while Lp corresponds to finding the minimal cut relative to the number of edges in
each partition. We refer the reader to [8, 36, 38] for a detailed discussion. The diagonally
scaled Laplacian Ld = Π−

1/2LΠ−
1/2 = I−Π

1/2PΠ−
1/2 will be studied in this paper. It is often

used since in the case of undirected graphs this scaling would have the effect of symmetrizing
L, hence showing that L would have all real eigenvalues.

We summarize the quantities defined above as follows, where A is the adjacency matrix
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for a graph G:

D = Diag(A · 1) Diagonal matrix of out-degrees

P = D−1A Probability transition matrix

Π = Diag(π) Diagonal matrix of station-

(where π
TP = π

T and π
T1 = 1) ary probabilities

L = Π − ΠP Ordinary Laplacian

La = D − A = D − DP Unnormalized Laplacian

Lp = I − P Normalized Laplacian

Ld = I − Π
1/2PΠ−

1/2 Diagonally scaled Laplacian

(4)

In addition, we use the letter M to denote the Moore-Penrose pseudo-inverses of the above
quantities:

M = L+, Md = (Ld)+, Mp = (Lp)+, etc. (5)

Once again, in the case of digraphs, Π is not a scalar multiple of D and Ld is not
necessarily symmetric, unlike the situation for undirected graphs. Hence it has been found
useful to study the following symmetrized Laplacians which do satisfy all the useful properties
for undirected graphs.

The symmetrized Laplacians Ls = (L + LT)/2 and Lds = [(Ld)T + Ld]/2 correspond
to those used in [9, 39], with various diagonal scalings. In terms of the transition probability
matrix (P ) and the diagonal matrix of stationary probabilities (Π), we have

Ls = (L + LT)/2 = Π − (ΠP + PTΠ)/2

Lds = (Ld + (Ld)T)/2 = I − (Π
1/2PΠ−

1/2 + Π−
1/2PTΠ

1/2)/2

= Π−
1/2LsΠ−

1/2

Lps = Π−
1/2LdsΠ

1/2 = I − (P + Π−1PTΠ)/2,

(6)

and their corresponding pseudo-inverses

M s = (Ls)+, Mds = (Lds)+, Mps = (Lps)+. (7)

These Laplacians can be thought of as the ordinary Laplacians for a weighted undirected
graph Gs derived from the original directed graph G. Assume G is a directed graph without
self-loops (edges starting and ending on the same vertex), with adjacency matrix A. The
derived weighted undirected graph Gs is defined to be the graph with adjacency matrix
As = (ΠP + PTΠ)/2. The new graph Gs has exactly the same vertices as G and has edges
between a pair of vertices exactly where there is an edge in either direction in G. The weight
on the edge in Gs connecting vertices i and j is

as
ij = as

ji =
πiaij

2di

+
πjaji

2dj

= 1/2(πipij + πjpji), (8)

where aij is the weight of the edge i → j in the original graph G, equal to one if G was
unweighted, and di is the [weighted] out-degree of node i in G. The new matrix of transition
probabilities is

P s = Π−1As = (P + Π−1PTΠ)/2 (9)
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with individual entries

ps
ij =

1

2
·
(

pij +
πjpji

πi

)
=

πipij + πjpji

2πi

. (10)

The stationary probabilities for Markov chain represented by P s match those for P : π
TP s =

π
T. A simple calculation shows that the symmetrized Laplacians, originally defined by sym-

metrizing the Laplacians of G, are also the usual Laplacians corresponding to the weighted
undirected graph Gs:

Ls = Π − ΠP s

Lds = Π−
1/2LsΠ−

1/2 = I − Π
1/2P sΠ−

1/2

Lps = Π−1Ls = I − P s

(11)

This construction shows that the bounds for G in [9, 39] can be treated as bounds for the
undirected graph Gs based on the classical theory for undirected graphs. In [9], they use
both Lds and Ls, referring to Ls as the “combinatorial Laplacian” and reserving the name of
just “Laplacian” to our diagonally scaled version Lds. In [39], they use only Lds. In Sec. 5
we derive bounds on the commute times in terms of the stationary probabilities, which also
apply to Gs, limiting how much the commute times for Gs graph can differ from those of
the original G. We remark that an alternative way to symmetrize a directed graph G, with
an asymmetric adjacency matrix A, is to symmetrize the edges to create Av = (A + AT)/2
[6]. We denote this naively symmetrized graph by Gv. In latter sections we make empirical
comparisons for random walk measures to reveal the varying degrees of inaccuracy incurred
upon approximating a directed graph G by either Gs or Gv.

Henceforth, we concentrate on the asymmetric Laplacian L = Π(I −P ), referring to this
as simply the “Laplacian,” as well as the diagonally scaled Laplacian Ld = Π

1/2(I −P )Π−
1/2 .

We derive bounds applicable to the directed graph itself based on these Laplacians, separate
from bounds for the related undirected graph.

4 Fundamental Matrix

Consider a Markov chain with state transition matrix P = D−1A, where D = Diag(d)
is a diagonal matrix, d = A · 1 is the vector of [weighted] out-degrees for the vertices of
the graph, and 1 = (1, . . . , 1)T. In the following, we assume the graph is directed and
strongly connected, or equivalently the Markov chain is irreducible and has no transient
states. Clearly, we do not assume either reversibility or aperiodicity of the equivalent Markov
chain.

Definition 9. Using the quantities defined in (4), we define the Fundamental matrix for a
digraph or its corresponding Markov chain, under various scalings:

(a) The Fundamental Matrix Zp [18] whose inverse is

(Zp)−1 def

= Y p = (Lp + 1π
T) = (I − P + 1π

T). (12)

9



(b) The scaled Fundamental Matrix, Z̃ = ZpΠ−1 whose inverse is

Z̃−1 def

= Ỹ = ΠY p = L + ππ
T = Π(I − P + 1π

T). (13)

(c) The diagonally scaled Fundamental Matrix Zd = Π
1/2Z̃Π

1/2 = Π−
1/2ZpΠ

1/2 whose inverse
is

(Zd)−1 def

= Y d = Π
1/2Y pΠ−

1/2 = Ld +
√

π

√
π

T
. (14)

Here we use the shorthand
√

π = (
√

π1, . . . ,
√

πn)T for the vector obtained by taking
the square root of each element. We remark that this vector is a unit vector in 2-norm
since ‖√π‖2

2 =
∑

i πi = 1.

Lemma 10. The following are some of the elementary properties of the laplacians, their
respective pseudo-inverses, and the inverses of the fundamental matrices, under various scal-
ings,

L · 1 = LT1 = 0 (15)

M · 1 = MT · 1 = 0 (16)

Ld ·
√

π = (Ld)T ·
√

π = 0 (17)

Md ·
√

π = (Md)T ·
√

π = 0 (18)

L, Ld, M , Md all have (left and right) nullity equal to 1 (19)

Ỹ · 1 = Ỹ T · 1 = π (20)

Y d ·
√

π = (Y d)T ·
√

π =
√

π (21)

Proof.To prove (15) and (19), observe 0 = Lx = Πx − ΠPx ⇐⇒ x = Px . For a strongly
connected Markov chain, the Perron-Frobenius theory [15, 19] guarantees that the eigenvalue
1 of P is simple and hence x must be a multiple of 1. (16) follows from the observation that
the right annihilating vector for L is the left annihilating vector for M and viceversa. The
rest follows similarly.
2

Before we go any further, we must first establish that Z̃ indeed exists, or equivalently Ỹ
is invertible [18]. We can actually prove the following stronger result.

Theorem 11. Let P be the transition matrix for an irreducible Markov chain with a vector
of stationary probabilities π, and Π = Diag(π). Then Ỹ = Π(I − P ) + ππ

T is non-singular

and is also positive definite (in the sense that Y s = (Ỹ + Ỹ T)/2 is symmetric positive definite
in the usual sense). In addition L is positive semi-definite in the sense that Ls = (L+LT)/2
is positive semi-definite.

The following lemma is useful in proving Theorem 11.

Lemma 12. For any given real matrix A, its “symmetric part”, (A + AT)/2, is symmetric
positive semi-definite if and only if xTAx ≥ 0 for any real vector x. We say the real field of
values for A is non-negative.
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Proof of Lemma 12. The symmetry of A + AT is trivial. Within this proof, let i =
√
−1

and let 2
H denote the conjugate transpose of 2. (“if”) Let z = x + iy for any real vectors

x,y. Then zHAz = (xT − iyT)A(x + iy) = xTAx + yTAy + i(xTAy − yTAx) = α + iβ,
where α ≥ 0. Hence zH(A + AT)z = 2α ≥ 0. (“only if”) Suppose A + AT is real symmetric
positive semi-definite. Then for any real vector x: xTAx = xH(A + AT)x/2 ≥ 0.
2

In light of Lemma 12, we say a general real matrix A is positive semi-definite if and only
if A + AT is symmetric semi-positive definite in the usual sense.

Proof of Theorem 11. Let L = Ỹ − ππ
T, and A = I − (L + LT)/2

def

= I − Ls. From
(15) notice that A1 = AT1 = 1. A is symmetric and doubly stochastic with non-negative
entries. Actually, all the entries are in the interval [0, 1). It is also irreducible, since the
original P was, so 1 is a simple eigenvalue of A, and all the other eigenvalues are in the
interval [−1, +1). Therefore, Ls = (L + LT)/2 has a simple zero eigenvalue and all its other
eigenvalues are in the interval (0, 2]. Hence Ls is positive semi-definite and nullity(Ls) = 1.
This implies that the ‘real field of values’ for L is non-negative: xTLx ≥ 0 for any real x.

We further observe that xTLx = 0 only when x = α1 for some scalar α. Observe that
xTỸ x = xTLx + (xT

π)(πTx) ≥ 0, with xTLx ≥ 0 and (xT
π)(πTx) ≥ 0. The only vector

x for which both xTLx = 0 and (xT
π)(πTx) = 0 is x = 0. Hence xTỸ x > 0 for any real

x 6= 0.
2

As an application, the Fundamental Matrix can be used to compute the “Hitting Time”,
also known in the literature as the “First Transit Time” or “First Passage Time” in a random
walk over the underlying digraph. Let H(i, j) be the average number of state transitions
required to reach state j for the first time starting from state i (hitting time). Similarly, let
C(i, j) be the average “Commute Time” defined as the average number of steps taken in a
random walk starting from state i, visit state j for the first time, and return back to state
i. Evidently, C(i, j) = H(i, j) + H(j, i).

Theorem 13. Define the Fundamental Matrices according to Def. 9. Then the one-way
expected hitting times are

H(i, j)=
zp

jj − zp
ij

πj

= z̃jj − z̃ij =
zd

jj

πj

−
zd

ij√
πiπj

(22)

The round-trip expected commute times are then

C(i, j)=
zp

jj − zp
ij

πj

+
zp

ii − zp
ji

πi

= z̃ii + z̃jj − z̃ij − z̃ji =
zd

jj

πj

+
zd

ii

πi

−
zd

ij + zd
ji√

πiπj

(23)

In matrix form,

H = 1 · [diag(Z̃)]T − Z̃

C = H+ HT = 1 · [diag(Z̃)]T + [diag(Z̃)] · 1T − Z̃ − Z̃T
(24)

11



Proof. The first part of formula (22) is proved in [18] starting with the recursive formula
for H(i, j) [21, 29, 31, 18]:

H(i, j) = 1 +
n∑

ℓ=1

piℓH(ℓ, j), for i = 1, . . . , n, (25)

where by convention, H(ℓ, ℓ) = 0, ∀ℓ. The last parts of (22) and (24) were shown in [23] and

follow from the identity Z̃ = Π−
1/2ZdΠ−

1/2 . The rest follows by direct calculation or by simply
assembling the scalar formulas into a matrix formulation. Notice that C(i, j) = H(i, j)+H(j, i)
is a symmetric quantity while H(i, j) is generally not, whether the underlying graph is directed
or undirected.
2

The following lemma relates the pseudo-inverse of the Laplacians to the Fundamental
Matrix.

Lemma 14. Using the notation of Def. 9, for a strongly connected directed graph,

(a) M = L+ =
(
I− 11T

n

)
Z̃

(
I− 11T

n

)
.

(b) Z̃ = M − Mπ1T − 1π
TM + (1 + π

TMπ)11T.

(c) z̃ij = mij −
∑

j mijπj −
∑

i mijπi + (1 +
∑

ij mijπiπj).

(d) L, M=L+, Ld, Md=(Ld)+ are all positive semi-definite.

(e) Zd = Md +
√

π

√
π

T
.

Proof. Noting that L ·1 = 0, LT ·1 = 0, Ỹ ·1 = π, Ỹ T ·1 = π (Lemma 10), formulas (a), (b)
follow immediately from Lemmas 4 and 3, respectively. Formula (c) is just the elementwise
version of item (b). Formula (d) follows from Theorem 11 and Lemma 4. Formula (e) follows
similarly to item (b) by recalling (18).
2

Theorem 15. If L is the Laplacian for a strongly connected unweighted directed graph, and
M = L+ is its Moore-Penrose pseudo-inverse, then the expected hitting times and commute
times, in terms of the Laplacian pseudo-inverse, are

H(i, j) = mjj − mij +
∑

ℓ

(miℓ − mjℓ)πℓ =
md

jj

πj

−
md

ij√
πiπj

(26)

C(i, j) = mjj + mii − mij − mji =
md

jj

πj

+
md

ii

πi

−
md

ij + md
ji√

πiπj

(27)

Furthermore, a set of points {si}n
1 can be found in the Euclidean space IRn corresponding to

the n vertices of the graph such that C(i, j) = ‖si − sj‖2
2.

12



Proof. Substitute Lemma 14(c), (e) into the formulas of Theorem 13. The relations involv-
ing md

ij were shown in [23]. The last statement follows by observing that M +MT is positive

semi-definite or equivalently that Z̃ + Z̃T is positive definite, so that they can be considered
as Gram matrices. It is then a simple consequence of (23) and the following theorem of
[32, 33, 2], reformulated in terms of matrices.

Theorem 16.[32, 33, 2] Let Z be an n × n symmetric matrix. Define the matrix C =
[diag(Z) · 1T + 1 · diag(Z)T]/2 − Z. Then there exists a set of points {si}n

1 ⊂ IRn such that
Cij = ‖si − sj‖2

2 ∀i, j = 1, . . . , n if and only if Z is positive semi-definite.
2

The formulas of Theorem 15 reduce to the usual known formulas for hitting times and
commute times when the underlying graph is undirected [5, 11, 14, 16, 22].

5 Bounds on Commute Times

In this section we give some upper and lower bounds on the commute times in terms of the
transition probabilities and the stationary probabilities. First we recall the following fact:

1 +
∑

i

pkiH(i, k) =
1

πk

(28)

The left side of (28) is the expected return time between visits to node k in the Markov chain
modeled by transition matrix P , computed by taking the weighted average of the hitting
times from each of k’s neighbors back to k. It is well known that this is equal to the inverse
of the stationary probability. A purely linear algebraic derivation of this fact is as follows.
First observe

−PZ̃ = (I − P + 1π
T)Z̃ − (I + 1π

T)Z̃ = Y pZ̃ − (I + 1π
T)Z̃

= Π−1 − Z̃ − 1π
TZ̃ = Π−1 − Z̃ − 11T,

where the last equality uses (20). Next combine the above with (24) to obtain

P H = P (1 · [diag(Z̃)]T − Z̃)

= 1 · [diag(Z̃)]T + Π−1 − Z̃ − 11T = H+ Π−1 − 11T.

Equating the diagonal entries and observing that H(k, k) = 0 for all k yields formula (28).

Since the average round-trip commute time between node k and some other specific node
j must be at least equal to the average time from k to any other node and back to node k,
we immediately have a lower bound

C(i, j) = C(j, i) ≥ max

{
1

πi

,
1

πj

}
. (29)

13



We also have the following identity that follows immediately from (22)

Hπ = 1 · diag(Z̃)T
π − Z̃π = (tr(Zp) − 1)1 ⇐⇒

∑

k

H(i, k)πk = tr(Zp) − 1, (30)

where tr(Z) denotes the trace of the matrix Z (the sum of the diagonal entries). By observing
that all the factors in (30) are non-negative, we also have the following upper bounds.

H(i, j) ≤ (tr(Zp) − 1)/πj.

C(i, j) ≤ (tr(Zp) − 1) ·
(

1

πj

+
1

πi

)
. (31)

Observe that tr(Zp) = tr(Zd), and this last quantity can be written in terms of π and the
diagonally scaled Laplacian Ld as follows. Recalling (14), we construct the symmetric unitary

Householder transformation H = I − 2vvT

vTv
such that H

√
π = e1, by setting v =

√
π − e1.

By (18), (21), HLdH, HY dH have the form:

Lh = HLdH =

(
0 0T

0 Lh
2

)
and Y h = HY dH =

(
1 0T

0 Lh
2

)
,

yielding the identity (Y h)−1 = (Lh)+ + e1e
T
1 , equivalent to (14). Hence Tr[(Y d)−1] =

Tr[(Ld)+] + 1. This immediately yields the identity

tr(Zp) = tr(Zd) = tr[Md] + 1. (32)

For the corresponding weighted undirected graph Gs represented by (8) sharing the same
stationary probabilities as G, both the lower bound (29) and the upper bound (31) apply
unchanged, though the factor tr(Zp) − 1 = tr[Md] in the upper bound will be replaced by
tr(Zps)−1 = tr[(Lds)+] = tr[Mds]. We now show that the resulting upper bound applies not
only to Gs, but also to the original G, so that we have a set of upper and lower bounds common
to both graphs. These bounds will imply that there is a limit to how much difference there
can be between the commute times for a directed graph G and those for its corresponding
symmetrized graph Gs. To show this, we need the following lemmas.

Lemma 17. If A is real symmetric positive definite and B is real skew-symmetric (BT =
−B), then C = A−1 − (A + B)−1 exists and is real positive semi-definite (in the sense that
uTCu ≥ 0 for any real u). If B is also non-singular, then C is positive definite.

Proof.

1. Recall skew-symmetry implies uTBu = 0 for any real vector u.

2. Check C exists: For any nonzero vector u, uT(A + B)u = uTAu > 0. So (A + B)
cannot be a singular matrix.

3. For a non-zero vector u, set v = (A + B)−1u, and notice vT = uT(A − B)−1 due to
the skew-symmetry of B. Compute

uT(A + B)−1u = vT(A − B)v = vTAv.

14



4. Compute
uTA−1u = vT(A − B)A−1(A + B)v

= vT(A − B + B − BA−1B)v
= vTAv − vTBA−1Bv.

5. Now −BA−1B = BTA−1B is a symmetric positive semi-definite matrix (strictly defi-
nite if B non-singular). Hence we have, for any non-zero vector u,

uTCu = uTA−1u − uT(A + B)−1u
= −vTBA−1Bv
≥ 0 (strictly > 0 if B is non-singular).

2

Lemma 18. If Y is a real matrix and (Y + Y T) is positive definite, then tr(Y −1) ≤
tr[((Y + Y T)/2)−1].

Proof.

Let A = (Y +Y T)/2. This matrix is positive definite. Let B = (Y −Y T)/2. This matrix
is real skew-symmetric. Let C = A−1−Y −1 = A−1− (A+B)−1. Then C is positive definite
and tr(A−1) − tr(Y −1) = tr(C) ≥ 0.
2

Lemma 19. Let G be a directed graph with probability transition matrix P and let Gs be
the corresponding weighted undirected graph with the associated matrices defined by (4),
(6), and Def. 9. Then tr(Zd) ≤ tr(Zps) = tr[Mds] + 1, and C(i, j) < Cs(i, j).

Proof. Since Y d = Π−
1/2Ỹ Π−

1/2 = Π−
1/2Z̃−1Π−

1/2 (a nonsingular congruence transformation),
it follows by Theorem 11 that its symmetric part, Y ds = 1/2(Y

d +(Y d)T), is positive definite.
Hence Lemma 18 applies guaranteeing that tr(Zd) ≤ tr(Zds). In addition, defining Y s =

(Zs)−1 = Ls + ππ
T = (L + LT)/2 + ππ

T, Lemma 18 guarantees that X = Zs − Z̃ is also
positive semi-definite. Combining (23) with Cs(i, j) = zs

ii + zs
jj − zs

ij − zs
ji and Theorem 16

yields the fact that ∂C(i, j) = Cs(i, j)−C(i, j) = xii+xjj−xij−xji is also a squared euclidean
distance and hence non-negative.
2

Theorem 20. Let G, Gs, P , P s, Ld, Lds be defined as in Lemma 19. Then the respective
expected hitting H,Hs and commute times C,Cs satisfy the following bounds

(a) H(i, j) ≤ tr[Md]/πj ≤ tr[Mds]/πj;
(b) Hs(i, j) ≤ tr[Mds]/πj;

(33)

(a) max
{

1
πi

, 1
πj

}
≤ C(i, j) ≤ tr[Md] ·

(
1
πj

+ 1
πi

)
≤ tr[Mds] ·

(
1
πj

+ 1
πi

)

(b) max
{

1
πi

, 1
πj

}
≤ C(i, j) ≤ Cs(i, j) ≤ tr[Mds] ·

(
1
πj

+ 1
πi

)
;

(34)

Proof. Follows from the above discussion.
2
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We remark that all the eigenvalues of Lds are real and positive (except for one zero
eigenvalue) and are identical to the eigenvalues of Lps, since these are the appropriately scaled
Laplacians for an undirected graph. If we enumerate these eigenvalues in non-decreasing
order, 0 < λ2 ≤ · · · ≤ λn, then an upper bound for the factor tr[Mds] is tr[Mds] ≤ (n−1)/λ2.
This theorem is one example in which quantities derived from an undirected graph, for which
much theory is known, can be applied to bound a property for a strongly connected directed
graph.

6 Estimating Centrality of Individual Nodes

As a possible application, we can get a measure of the centrality of a given vertex by adding
the average lengths of all walks between any pair of vertices when those walks are restricted
to passing through the given vertex, following similar analysis for undirected graphs [30]. If
we compare this sum to the sum over all possible paths, we get an estimate on how much the
restriction of passing through a given vertex q represents a detour in going from an arbitrary
vertex i to another arbitrary vertex j. Since

∑
i mij =

∑
j mij = 0 (16), equation (26) yields

(for all paths) ∑

ij

H(i, j) = n
∑

j

mjj = n · Trace(M). (35)

The expected length of a walk from i to j forced through node q is:

Hq(i, j) = H(i, q) + H(q, j)

= mqq − miq +
∑

ℓ

(miℓ − mqℓ)πℓ

+ mjj − mqj +
∑

ℓ

(mqℓ − mjℓ)πℓ

= mqq + mjj − miq − mqj +
∑

ℓ

(miℓ − mjℓ)πℓ

= H(i, j) + mqq − miq − mqj

(36)

Summing this up for all pairs of sources i and destinations j yields

∑

ij

Hq(i, j) = n · Trace(M) + n2mqq (37)

Hence the difference between (37) and (35), namely n2mqq, represents the extra distance
traveled between two vertices when forced to pass through vertex q, summed over all n2

pairs of source/destination vertices.

Similarly, one can compute the detour overhead through a node q using the commute
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Figure 1: Simple unweighted directed graph G corresponding to (40) and its corresponding
symmetrized weighted undirected graph Gs derived using (8), (9).

time distances. From equation (36), we get

Cq(i, j)
def

= C(i, q) + C(q, j)

= H(i, q) + H(q, i) + H(j, q) + H(q, j) = Hq(i, j) + Hq(j, i)

= H(i, j) + mqq − miq − mqj + H(j, i) + mqq − mjq − mqi

= C(i, j) + 2mqq − miq − mqi − mjq − mqj

(38)

Summing this up for all pairs of sources i and destinations j yields
∑

ij

Cq(i, j) = 2n · Trace(M) + 2n2mqq (39)

The detour overhead is the same (up to the factor of 2) for the non-metric hitting times and
metric commute times for digraphs, much the same way as has been reported for undirected
graphs in [30].

7 Examples and Application Scenarios

7.1 An Example

We illustrate some of the results in this work with the help of a simple example. The state
transition matrices for the the simple network G shown in Fig. 1(a) and for the corresponding
weighted undirected graph Gs shown in Fig. 1(b) are

P = P (G) = P s = P (Gs) =



0 1.0 0 0 0 0
0 0 0.5 0 0.5 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0

1.0 0 0 0 0 0




,




0 0.50 0 0 0 0.50
0.50 0 0.25 0 0.25 0
0 0.50 0 0.50 0 0
0 0 0.50 0 0.50 0
0 0.25 0 0.25 0 0.50

0.50 0 0 0 0.50 0




.
(40)
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The vector of stationary probabilities shared by both G and Gs is

π =
(
0.2, 0.2, 0.1, 0.1, 0.2, 0.2

)T
.

The pseudo-inverses of the Laplacians for these graphs are

M = L+ for G (Fig. 1a) M s = (Ls)+ for Gs (Fig. 1b)

5

18




9 6 0 −6 −3 −6
−6 9 3 −3 0 −3
−9 −12 18 12 −3 −6
−3 −6 −12 18 3 0

3 0 −6 −12 9 6
6 3 −3 −9 −6 9




5

18




19 3 −11 −13 −3 5
3 15 −3 −9 −3 −3

−11 −3 31 5 −9 −13
−13 −9 5 31 −3 −11
−3 −3 −9 −3 15 3

5 −3 −13 −11 3 19




Following (37), we use the diagonal entry mqq of the pseudo-inverse of the Laplacian as a
measure of centrality. Recall, the lower the value of mqq, the more central is the node q.
For the original graph, nodes 1, 2, 5, 6 are tied as winners in their centrality scores, while in
the symmetrized graph, nodes 2, 5 are considered more central compared to nodes 1, 6. We,
therefore, see that the centrality ranks are not invariant under the symmetrization process
even when the page rank, determined by the vector of stationary probabilities, is the same
for both G and Gs.

The matrices of commute times for the two graphs are (rounded to the digits shown)

C for G (Fig. 1a) C for Gs (Fig. 1b)



0 5 10 10 5 5
5 0 10 10 5 5

10 10 0 10 10 10
10 10 10 0 10 10
5 5 10 10 0 5
5 5 10 10 5 0







0 7.8 20.0 21.1 11.1 7.8
7.8 0 14.4 17.8 10.0 11.1

20.0 14.4 0 14.4 17.8 21.1
21.1 17.8 14.4 0 14.4 20.0
11.1 10.0 17.8 14.4 0 7.8
7.8 11.1 21.1 20.0 7.8 0




The lower bounds (29) are the same for both these graphs since they depend only on the
stationary probabilities, which they share. In this particular case, the lower bounds happen
to exactly match the commute times C for G. Hence this example shows the lower bounds
can be tight. The upper bounds (31) are

upper bounds (31) for G upper bounds (31) for Gs




0 29.0 43.5 43.5 29.0 29.0
29.0 0 43.5 43.5 29.0 29.0
43.5 43.5 0 58.0 43.5 43.5
43.5 43.5 58.0 0 43.5 43.5
29.0 29.0 43.5 43.5 0 29.0
29.0 29.0 43.5 43.5 29.0 0







0 53.0 79.5 79.5 53.0 53.0
53.0 0 79.5 79.5 53.0 53.0
79.5 79.5 0 106.0 79.5 79.5
79.5 79.5 106.0 0 79.5 79.5
53.0 53.0 79.5 79.5 0 53.0
53.0 53.0 79.5 79.5 53.0 0
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Figure 2: A high power broadcaster on a ring.

100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

Number of nodes in the topology (n)

 

 
The directed graph G

The symmetrized graph Gs

The naive symmetrized graph Gv

H(3, 2)/
H(2, 3)

Figure 3: Ratio of Hitting times between nodes 2 and 3 for G, Gs and Gv for figure 2(a).

Considering that the upper bounds were derived from the summation in (30), it is clear that
at least one term in that summation must satisfy H(i, j)πj ≤ (tr(Zd) − 1)/n, and hence the
upper bounds cannot be tight.

7.2 Asymmetric Nature of Wireless Networks

We now use an example motivated by the domain of wireless networks to illustrate how
certain graph quantities for the directed graph can be markedly different in the corresponding
symmetrized graphs. Wireless networks is one domain where link asymmetry naturally
demands modeling of networks as directed graphs. Traditionally, these have been modeled
as undirected graphs [6] using various methods of symmetrization for the sake of simplicity.
Recently Li & Zhang [23] proposed to treat wireless networks with their asymmetric links as
is while analyzing the average transmission delays and costs between pairs of nodes in the
network. For simplicity, we assign an equal cost to every link in the topology while preserving
the link asymmetry. We also confine ourselves to the case of stateless routing [6], akin to a
random walk over the state space of the wireless devices in the topology, which is relevant to
the current work and is applicable to wireless networks due to ease of implementation and
maintenance.
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Figure 4: Ratio of Hitting times between nodes n− 1 and n for G, Gs and Gv for figure 2(b).

Consider the topologies in figure 2 with a high power base station, node 1, that can
transmit to all the other nodes in the topology through a broadcast. The other low power
stations, nodes 2 through n, form a chain-like topology with links to their immediate neigh-
bors. Only node n, henceforth called the terminal node, has a link to the broadcasting base
station. It is therefore the egress point of the chain topology. In figure 2 (a), the links
connecting the nodes 2 through n to their respective neighbors are symmetric/bi-directional
while in 2 (b), each of the low power nodes has an asymmetric link to its neighbor in the
clockwise direction. Of course, the connection between nodes 1 and n is bi-directional in
both topologies.

We study the hitting times between a pair of nodes in each of the two topologies to
observe the effect of approximating a directed graph G by its symmetrized counterparts Gs

or Gv. The control parameter for the experiment is the number of nodes in the topology
which we vary from n = 100 to n = 1000 in steps of 100.

For the topology in figure 2 (a), we analyze the hitting times between nodes 2 and 3. The
numerical values of H(2, 3) and H(3, 2) have been provided in Table 1 for n = {100, 500, 1000}.
While H(2, 3) is constant (≈ 1), H(3, 2) increases consistently with increasing values of n for
the original digraph G. This shows that the expected cost of communication from node 3
to node 2 appears to rise linearly with the size of the ring. In figure 3, we plot the ra-
tios H(3, 2)/H(2, 3) for the directed graph G, Hs(3, 2)/Hs(2, 3) the symmetrized graph Gs and
Hv(3, 2)/Hv(2, 3) the naively symmetrized graph Gv. Notice that while the curve monotoni-
cally increases with the value of n for G and Gs, for Gv it is almost a constant (≈ 2).

Similarly, for the topology in figure 2 (b), we analyze the hitting times between nodes
n − 1 and n, instead. The numerical values of H(n − 1, n) and H(n, n − 1) have been
provided in Table 2 for n = {100, 500, 1000}. Again, H(n − 1, n) is constant (≈ 1) whereas
H(n, n − 1) increases consistently with increasing values of n. In figure 4, we plot the ratios
H(n, n − 1)/H(n − 1, n) in the directed graph G, Hs(n, n − 1)/Hs(n − 1, n) the symmetrized
graph Gs and Hv(n, n − 1)/Hv(n − 1, n) the naively symmetrized graph Gv. This time, the
curve for G appears to grow at a much faster rate with growing values of n than for either
Gs or Gv.

From these observations, we see that the hitting times for a digraph and for any of its
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Table 1: H(2, 3) and H(3, 2) for the directed graph G in figure 2 (a) and its symmetrized
variants.

Directed graph G Symmetrized graph Gs Naively symmetrized Gv

n H(2, 3) H(3, 2) Hs(2, 3) Hs(3, 2) Hv(2, 3) Hv(3, 2)

100 1 130.6867 1.3868 130.3000 73.5000 148.5000
500 1 664.0004 1.3963 663.6077 373.5000 748.5000
1000 1 1330.6686 1.3964 1330.2722 748.5000 1498.5000

Table 2: H(n−1, n) and H(n, n−1) for the directed graph G in figure 2 (b) and its symmetrized
variants.

Directed graph G Symmetrized graph Gs Naively symmetrized Gv

n H(n−1, n) H(n, n−1) Hs(n−1, n) Hs(n, n−1) Hv(n−1, n) Hv(n, n−1)

100 1 50.5204 23.8302 70.3670 94.1911 114.8430
500 1 250.5040 60.3551 421.7567 471.8999 581.7167
1000 1 500.5020 87.9956 884.9298 944.0358 1165.30

symmetrizations may differ markedly, apparently without bound.

8 Conclusion

In this work we studied an asymmetric Laplacian under two different scalings for strongly
connected digraphs, the pseudo-inverse of which helps compute important graph properties
much the same way as is done in the undirected case. In particular, we developed formulas
for the average hitting and commute times which mimic the undirected case, and derived
some upper and lower points for these quantities. We derived a specific symmetrization
of the digraph which preserves the vertices, edge sets, and stationary probabilities, albeit
with altered edge weights, allowing one to exploit the wealth of existing knowledge base for
undirected graphs. Finally, we motivated the necessity for computing random walk based
quantities directly on the asymmetric structure represented by a directed graph through a
case study for a wireless network setup. Through it, we demonstrated how approximating
a directed graph by a symmetrized version can lead to large discrepancies even when the
resulting undirected graph shares the steady state stationary probabilities with the original
directed graph.
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