
Co-designing the Failure Analysis and Monitoring of
Large-Scale Systems

Abhishek Chandra, Rohini Prinja, Sourabh Jain, Zhi-Li Zhang ∗

{chandra,rohinip,sourj,zhzhang}@cs.umn.edu
Department of Computer Science, University of Minnesota - Twin Cities

ABSTRACT
Large-scale distributed systems provide the backbone for nu-
merous distributed applications and online services. These
systems span over a multitude of computing nodes located at
different geographical locations connected together via wide-
area networks and overlays. A major concern with such sys-
tems is their susceptibility to failures leading to downtime
of services and hence high monetary/business costs. In this
paper, we argue that to understand failures in such a sys-
tem, we need to co-design monitoring system with the failure
analysis system. Unlike existing monitoring systems which
are not designed specifically for failure analysis, we advocate
a new way to design a monitoring system with the goal of
uncovering causes of failures. Similarly the failure analysis
techniques themselves need to go beyond simple statistical
analysis of failure events in isolation to serve as an effec-
tive tool. Towards this end, we provide a discussion of some
guiding principles for the co-design of monitoring and failure
analysis systems for planetary scale systems.

1. INTRODUCTION
Large-scale distributed systems such as content distribu-

tion networks [1], peer-to-peer systems [3], computation Grids [6,
5], and network testbeds [7] provide an essential platform
for numerous distributed applications ranging from content
sharing and Web services to VoIP and scientific simulations.
Many of these systems consist of large number of nodes
communicating with each other over widely distributed net-
works. Due to their inherent scale, diversity and complexity,
these systems are prone to frequent failures, which could be
caused by a variety of factors: network instabilities, power
outages, node crashes, application software failures or se-
curity attacks. Any downtime due to failures, whatever the
cause, can lead to large disruptions and huge losses; a recent
example of such a failure is the one affecting Skype users in
August 2007 in which 200M users could not use the Skype
service for nearly 48 hours [4].

To provide high level of reliability and availability in such
large-scale systems, it is critical to detect, diagnose and
fix these failures as they happen. Identifying the location
and cause of a failure is especially important for such trou-
bleshooting. Accurate diagnosis can not only lead to quick
repair and recovery of failures, but also provides insights for

∗The work is supported in part by the National Science
Foundation grants CNS-0435444, CNS-0626812 and CRI
0709048, an NSF CAREER Award CNS-0643505, as well
as an IBM Faculty Partnership Award and a University of
Minnesota DTC DTI grant.

making longer-term decisions on resource provisioning, soft-
ware debugging, and hardware upgrades. For instance, the
ability to determine that a failure occurred at an end-host
rather than in the network can help system administrators
focus their troubleshooting effort on that end-host. More-
over, they can come up with the correct remedy if they can
determine whether the failure was due to a hardware crash
or a software bug. However, identifying the actual cause
of failures in large scale systems is a challenging task due
to several reasons. First of all, simply identifying the fail-
ure events themselves does not provide enough information
about their cause, or the possible remedy. For instance,
discovering that a node has stopped responding does not in-
dicate whether it has suffered a node failure, a link failure,
or a software crash. In order to get a better understanding
of these failures, we may want to employ additional informa-
tion, such as periodic data collected by monitoring systems
and system logs that are routinely collected in such systems.
However, the scale of these systems typically makes it diffi-
cult to analyze these vast amount of data without any prior
domain knowledge, and thus limited in their utility to make
higher-level inferences.

In this paper we advocate co-designing the system mon-
itoring and failure analysis for large-scale distributed sys-
tems, where the needs of failure inference and diagnosis
can be synergistically incorporated into the system moni-
toring. This should be done in such a manner that it pro-
vides an administrator control over the collection of data
(e.g., in terms of both the granularity and types of data) to
meet their needs while addressing scalability and efficiency
concerns at the same time. Such a position is based on
our experience in attempting to perform failure classifica-
tion, inference and diagnosis using an existing large-scale
distributed system monitoring infrastructure (the CoMon
system for PlanetLab [7]), where due to the limitations of
the types and granularity of data collected, we had limited
success in accomplishing our failure analysis goals. We be-
lieve this methodology of co-design is likely to provide more
accurate and timely diagnosis and troubleshooting capabil-
ities for large-scale distributed systems, while at the same
time it is likely more scalable and less complex by obviating
the need for handling extraneous data or requiring explicit
human intervention throughout the process.

The remainder of the paper is organized as follows. We
begin by presenting a brief overview of existing large-scale
failure analysis and monitoring systems in Section 2. In
Section 3, we present a failure analysis case study for Plan-
etLab using the CoMon monitoring system, in which we

10

identify some successes and limitations of the existing mon-
itoring system. In Section 4, we present a set of recom-
mendations and guidelines to co-design a cooperative fail-
ure analysis-monitoring system that would meet the failure
analysis goals. We finally conclude in Section 5.

2. RELATED WORK

2.1 Failure Analysis and Prediction
Prior studies have focused on failure characterization [12],

availability prediction [11], and churn characterization [8] in
large-scale systems. Many of these studies have focused on
predicting node-level failures. While these studies provide
useful insights into failure characteristics, they suffer from
several limitations. First of all, most of them rely only on
failure characteristics such as failure durations, or failure
occurrence times to characterize these failures. However, as
we will show in the next section, this information by itself
does not provide complete insights into the failure causes.
Secondly, many of these studies ignore correlations between
multiple failures, and consider most errors to be indepen-
dent. Statistical cross-node correlations are considered in
[12], however, it provides limited insights into the reasons
behind these correlations. Finally, many of these studies fo-
cus only on the node or network-level failures, or else do not
distinguish between them. Overall, while such studies may
provide useful prediction/characterization models, they do
not provide a better understanding of the failure causes, or
the correct remedy to overcome their impact. In [16] au-
thors analyzed the failures caused by different applications
and in [15] the use of past failures to provide an auto-
mated diagnosis of future failures was suggested. However
these works were limited to identification and diagnosis of
node-level failures only and did not look at the interaction
of failures occurring in a large-scale system.

2.2 Monitoring
Monitoring data can be useful for failure analysis, and

several monitoring systems have been deployed in large-scale
systems. These designs include i) CoMon [14]: centralized
resource monitoring system for PlanetLab, ii) CoTop [13]: a
centralized resource monitoring system for distributed ser-
vices in PlanetLab, iii) PlanetSeer [17]: a monitoring system
for failures in the communication network, and iv) Ganglia
[10]: a monitoring system for grid/ cluster systems used for
high-performance computing.

Most of these systems have been designed for specific pur-
poses, e.g., CoMon is designed mainly to monitor the re-
source usage and connectivity of PlanetLab nodes and slices,
while Ganglia is mainly designed for accounting of node-level
resource usage. While the monitoring information provided
by these systems can be useful, they are not inherently de-
signed to provide metrics specifically suited for failure anal-
ysis. For instance, CoMon has a centralized architecture,
which is suitable for its intended use, but it is prone to fail-
ures of the monitoring node itself. Similarly, while Ganglia
uses a scalable and distributed design, which is more ro-
bust, it is not suitable for large-scale systems because of its
reliance on a static tree topology, prior knowledge of node
identities, and limited data aggregation capabilities.

3. FAILURE ANALYSIS ON PLANETLAB:
A CASE STUDY

In this section we present our experience in performing
failure analysis of the PlanetLab system using the moni-
toring data collected by CoMon [14]. Here, we give a brief
overview of our study, and details can be found in a technical
report [9]. We chose PlanetLab for our study, because it is
a widely used networking testbed consisting of autonomous
nodes running a large variety of applications and experimen-
tal services that stress the system in a variety of ways and
lead to frequent failures. The goal of our failure analysis is
to understand and classify failures based on their character-
istics so as to help us diagnose possible causes of failures.
Using the monitoring data collected by CoMon, we set out
to answer the following basic questions: i) can we infer and
distinguish between hard (i.e., machine crashes) vs. soft (i.e.,
application crashes or network outages) failures; ii) can we
infer and distinguish between (random) node failures and
correlated failures due to, for instance, site-wide power out-
age, network instabilities, or application-level or slice-wide
correlated failures? In the following we first provide a brief
overview of the data collected by CoMon that is used in our
study, and then present our experience and lessons learned
in our study. We use these insights to provide guidelines for
co-designing monitoring and failure analysis systems in the
next section.

Dataset Description: PlanetLab deploys a centralized
monitoring infrastructure called CoMon [14] that collects
and reports statistics on active PlanetLab nodes. The sys-
tem is designed in such a way that a central monitoring
node located in Princeton queries daemons running on the
remote nodes every five minutes and collects data. The data
consists of various metrics such as uptime, CPU and mem-
ory utilization, CPU load, etc. Some of these metrics are
actively measured by CoMon, e.g., CPU available to a spin-
loop program (i.e. Free CPU), while other metrics are pas-
sively measured or synthesized, e.g., number of live slices.
If central node does not receive any reply from the remote
node for a query then it writes the corresponding error mes-
sage to archive. The archived data resides in the repository
which is publicly accessible through the CoMon website [2].
For our analysis, we used a 3-month long (Dec’06-Feb’07)
data trace collected by CoMon.

3.1 Using Multi-dimensional Views to Under-
stand Failures

Using the monitoring data we first extract the node up-
down1 binary series. We use this up-down series to clas-
sify the failures along two dimensions: duration and size2

of group failure. We then use Uptime information to distin-
guish between hard and soft failures and show interesting
characteristics of hard and soft failures along duration and
size dimensions. Next, we distinguish between (random)
node-failures and correlated failures by using additional in-
formation available from CoMon. We also infer possible
cause of failures using local resource usages (CPU, Mem)
and socket error messages.

1UP: CoMon received periodic monitoring data from this
node; DOWN: Failure in collecting the periodic monitoring
data for the node from CoMon node.
2Failure group size is defined as number of nodes failing
together.

11

Time (1 unit = 5 min)
Black pixel: Node unavailable, White pixel: Node available

N
od

es
 (

so
rt

ed
 in

 g
eo

gr
ap

hi
ca

l o
rd

er
)

0.5 1 1.5 2 2.5

x 10
4

100

200

300

400

500

1

2

3

Figure 1: Availability time-series of nodes in Plan-
etLab for 3-month period.

30 min 4 hours 8 hours More than 12 hours
0

10

20

30

40

50

60

70

80

Duration of failure

%
 o

f f
ai

lu
re

s

Distrbution of failures with respect to duration

All Failures
Soft Failures
Hard Failures

Figure 2: Distribution of failures with respect to
duration.

Figure 1 shows a graphical view of the per-node failures
observed in PlanetLab during the 3-month period of our
study. The key observation from this figure is that failures
have many diverse characteristics. For instance, the failures
differ widely in terms of their durations; some failures appear
to occur together while others appear to be independent3;
the number of such co-occurring failures also varies widely
with time. The question is whether these different charac-
teristics can be explained using any additional information
that is gathered by the monitoring system. In particular, is
there an underlying difference among the different kinds of
failures that can explain their different properties?

To understand the basic characteristics of failures, we first
examine the distribution of failures along failure duration.
Intuitively a failure that lasts for few minutes would have a
different cause behind it than a failure which lasts for more
than a day. For instance, a transient overload or a network
failure can cause a node not to respond for a small duration
but this may not last for a long time. A relatively longer
duration failure can be caused by power outage, mainte-
nance routines, etc., and still longer duration failures might
happen due to hardware malfunction which requires human
intervention and can take days to fix.

In Figure 2 we plot the distribution of failures with respect
to their duration. As seen in this figure a majority of the
failures last for very small durations; however there is a good

3There is an interesting period during which all nodes ap-
pear to have failed.

Table 1: Comparison of distributions for hard and
soft failures

Hard Failures Soft Failures
Frequency 623 20670

Total Downtime 1500 days 766 days
Mean Duration 34 hrs 53 min

Failures per node Mean = 2.1 Mean = 41

10
0

10
2

5

10

15

20

25

30

35

40

45

50

Failure duration

F
ai

lu
re

 s
iz

e

10
0

10
2

5

10

15

20

25

30

35

40

45

50

Failure Duration

S
iz

e
of

 fa
ilu

re

Soft FailureHard Failure

Large

Medium

Small Small

Medium

Large

short medium long short medium long

Figure 3: Hard and Soft failure in comparison to
duration and size of failures.

fraction of failures which last for longer durations. Based on
our intuitive understanding, it appears that long-duration
failures might be hard failures during which a machine was
shutdown and required manual intervention. On the other
hand, short-duration failures might happen because of tran-
sient conditions and hence are soft in nature4. This moti-
vates us to look at how hard and soft failures are distributed
along failure duration dimension. Figure 2 shows the distri-
bution and we provide summarized statistics for hard and
soft failures in Table 1. We see that most of the soft failures
last for small duration and hard failures tend to last for long
duration. However surprisingly, we also see that there are
some instances of soft failures which tend to last for very
long duration, and some instances of hard failures that last
for very small durations. We are unable to explain these
failures with the available data.

To get further insights into the nature of hard and soft
failures, we use socket error message information provided
by CoMon. These error messages are received by the mon-
itoring node when it is unable to reach a remote node. For
instance, ‘Connection Refused’ error message suggests a fail-
ure of monitoring daemon on the remote node while the node
is up, similarly ‘Network unreachable’ suggests a possible
network failure. For a large number of both hard and soft
failures, we saw ‘No Response’ error message which does not
provide any clue about the possible problems. However, to
our surprise, during some of the hard failures we found a
long sequence of ‘Connection Refused’ error message. One
possible reason for this could be that machine was highly
unstable during this time and kept on rebooting again and
again. However in CoMon, data is collected only at a five-
minute interval, which is too coarse-grained to conclude that
the machine was indeed restarting during five minutes. (For
detailed information, please refer to tech-report [9].)

Thus far we have attached with each failure information

4We use resets of uptime counter to separate hard-failures
from soft-failures.

12

about its duration and whether it was hard/soft; we now add
group-size information to these failures. Results are shown
in Figure 3 . We see that most of the large-size failures are
soft and last for short durations. This can be explained by
the fact that it is highly unlikely for a large number of ma-
chines to go down all at once, and the actual cause may be a
network or monitoring-side problem. We also observe that
a large number of both hard and soft failures are small in
size. We investigate small-size failures further in order to
see if they are correlated; this correlation can also be seen
in Figure 1. In failures marked as 1, we see that nodes at
different geographical locations fail at the same time and for
same duration. Our initial hypothesis that this might be an
application-level error proved wrong as we did not observe
much correlation between application-level resource usage
information and failures on these nodes. We attribute this
to the fact that applications operate in a constrained envi-
ronment in PlanetLab and are limited in terms of resources
that they can use. Failures marked as 2 are the failures in
which nodes in the same geographical region failed at the
same time. Small-size of these failures led us to explore
if these failures could be site-wise correlated. By site-wise
correlation we mean that nodes at the same PlanetLab site
failed at the same time. We found few instances of failures
when all the nodes belonging to a site were down and con-
firmed these by messages posted by site-administrators on
PlanetLab user-lists. Lastly, in Figure 1 we also see some
large-size failures (marked as 3) which show that nearly all
the nodes in the PlanetLab system were down all at once.
In reality this scenario is least likely to occur and this led us
to hypothesize that it might be a failure of monitoring nodes
at Princeton. Through our communication with PlanetLab
administrators, we found that this was indeed the case for
some of these instances.

To investigate some of the non-correlated node failures, we
looked at the usage of different resources on the nodes just
before it failed. We expected that resource usage just before
a failure might appear abnormal (high) when compared to
normal functioning of the machine. We did multiple exper-
iments to analyze any correlation that might exist between
usage of resources such as CPU, memory, network band-
width and failures on a node; however we found only weak
correlations with CPU usage (these results can be found in
[9]). We observed that this might be due to coarse gran-
ularity of data collected by CoMon and more fine-grained
information might be able to explain some of these failures.

While we are able to get some insights into PlanetLab fail-
ures using multi-dimensional views of the CoMon data and
incorporating additional information, we are unable to ex-
plain or understand several failure instances. However doing
this study helped us understand shortcomings of CoMon for
our purposes and we present some of the lessons we learned.

3.2 Lessons Learned
• Inappropriate data granularity: CoMon collects data at
5 minute granularity, which is too coarse for some events
such as transient overloads or network fluctuations, but too
fine-grained for several events, such as node shutdowns for
maintenance. Therefore, we had insufficient data in some
cases, and too much redundant data in other cases, leading
to lack of evidence or data over-fitting.
• Lack of appropriate metrics for failure analysis: CoMon is
primarily designed for system-level monitoring, and there-

Figure 4: Co-design of the Monitoring and Failure
Analysis System

fore does not collect other information that might make it
easier to infer failure causes. An example of such infor-
mation could be application-level performance metrics, e.g.,
response time, throughput, etc., that could provide indica-
tions of application health.
• Lack of diverse view-points of the system: CoMon uses a
centralized monitor, which is sufficient for the scale of Plan-
etLab. However, using this data to infer failures has the
pitfall that monitor-side failures can be falsely attributed to
system-wide failure events. This phenomenon is observed as
the circled time period (marked as 3) in Figure 1, where a
monitoring-side network failure prevented the central mon-
itor from connecting to other nodes in PlanetLab.
• Lack of feedback between analysis and monitoring: In our
study, we used a statically monitored dataset for failure anal-
ysis. However, the quality of the analysis could be improved
if system can be made adaptive by introducing a feedback
loop from the analysis to the monitoring system.

4. DESIGN PRINCIPLES
Motivated by our experience with failure analysis using an

existing monitoring system, we advocate co-designing moni-
toring and failure analysis of large-scale distributed systems
(Figure 4) to accommodate both the needs of failure anal-
ysis (including failure classification, inference, diagnosis or
root-cause analysis) as well as the scalability and efficiency
concerns of system monitoring. In the following we lay out
a few key design principles for such co-design.

Allow flexibility in data collection and failure analy-

sis: The first design decision that one should make is what
data to collect and how frequently it should be collected.
For the purpose of failure analysis, ideally we would like to
monitor and collect as much data as possible and as fine-
granularity as needed. Unfortunately due to scalability re-
quirements, overhead on the monitored system, storage re-
quirement, etc., this is often not feasible. To accommodate
trade-offs, it is important to i) allow flexibility in monitoring
system in terms of being able to collect additional data at
different granularities, based on failure analysis needs; and
ii) allow flexibility in the failure analysis methodology to
provide different degrees of insights based on the quality of
data available, e.g., limited insights if only coarser-grained,
fewer dimensional data is available, and more accurate and
detailed insights if richer, more relevant and finer-grained

data is available.

13

Separating short-term vs. long-term monitoring data,

and what is locally stored and what is reported: Failure
analysis often requires monitoring and collecting fine-grain
statistics (e.g., CPU usage right before a failure caused by
system overload) and other relevant data (e.g., syslog) that
are closely associated with a failure. On the other hand,
since failures do not happen all the time, such short-term
fine-grain statistics and additional data types/sources are
not useful when there are no failures. In addition, to re-
duce the communication and storage overheads, only certain
types of data collected locally at a machine–especially those
that are useful for failure diagnosis–need to be reported to a
centralized data collection facility. For example, one possible
approach to accommodate these trade-offs is to adopt a slid-
ing window for monitoring and collecting short-term, fine-
grain data, and report only average statistics over a longer
period of time under normal operating conditions. When a
failure occurs, the immediate short-term statistics and other
relevant data collected before the failure would thus be avail-
able and could be retrieved later for failure analysis when
the failure has been recovered.

Adapt to varying system conditions: The monitoring
system should be designed in such a way that it can adapt
based on varying system characteristics and conditions. For
example, fine-grain CPU and other statistics or data types
may be recorded only when certain thresholds have been
exceeded. In addition, the types and granularities of data
being monitored and collected can further be adjusted based
on the prior history, analysis needs and feedback provided
by the failure analysis system.

Multiple viewpoints and redundancy in monitoring

data: To enable effective system monitoring and failure
analysis, it is also important to incorporate multiple view-
points and redundancy in monitoring data, for example, us-
ing a hybrid of distributed monitoring, local data collection
and centralized reporting for monitoring data collection and
failure analysis. Such an approach would overcome the prob-
lem of limited viewpoints or lack of data due to failures
closer to a centralized monitoring system, and can help in
differentiating between failures happening due to software
or hardware problems that affect only a single machine, and
those caused by power or network failures that affect one
site, or a larger geographical area.

5. CONCLUSION
Nodes in a large-scale distributed system show many di-

verse patterns of failures and finding what caused these fail-
ures is a very hard problem. In our study, we looked at
multiple dimensions of failure characteristics and employed
a variety of other data analysis techniques to understand
these failures. Our techniques provided us with new in-
sights into node-failures and we were able to explain possible
causes of some of these failure instances. However, we also
found that this is not sufficient to explain and understand
all the failures. Therefore we argue co-designing monitoring
system with the failure analysis system and based on our ex-
perience, we provide design principles to serve as guidelines
when building such a system.

6. REFERENCES
[1] Akamai: Content distribution network.

http://www.akamai.com.

[2] Comon-a monitoring infrastructure for planetlab.
Available at http://comon.cs.princeton.edu.

[3] Gnutella. http://www.gnutelliums.com/.

[4] Restarts cited in skype failure. Available at
http://www.nytimes.com/2007/08/21/business/

worldbusiness/21skype.html.

[5] D. Anderson. BOINC: A System for Public-Resource
Computing and Storage. Proceedings of the 5th

IEEE/ACM International Workshop on Grid

Computing, pages 365–372, 2004.

[6] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@ home: an experiment in
public-resource computing. Communications of the

ACM, 45(11):56–61, 2002.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an
overlay testbed for broad-coverage services. ACM

SIGCOMM Computer Communication Review,
33(3):3–12, 2003.

[8] P. Godfrey, S. Shenker, and I. Stoica. Minimizing
churn in distributed systems. In Proceedings of the

ACM SIGCOMM Conference, sep 2006.

[9] S. Jain, R. Prinja, A. Chandra, and Z.-L. Zhang.
Failure Classification and Inference in Large-Scale
Systems: A Systematic Study of Failures in
PlanetLab. Technical Report tr-08-014, Department of
Computer Science, University of Minnesota - Twin
Cities, 2008.

[10] M. Massie, B. Chun, and D. Culler. The ganglia
distributed monitoring system: design,
implementation, and experience. Proceedings of the

Parallel Computing, 30(7):817–840, 2004.

[11] J. Mickens and B. Noble. Exploiting availability
prediction in distributed systems. Proceedings of

NSDI’06 Symposium on Networked Systems Design &

Implementation, pages 6–6, 2006.

[12] S. Nath, H. Yu, P. Gibbons, and S. Seshan. Subtleties
in tolerating correlated failures in wide-area storage
systems. Proceedings of 3rd Symposium on Networked

Systems Design & Implementation, 6, 2006.

[13] K. Park and V. Pai. CoTop: A Slice-Based Top for
PlanetLab.
http://codeen.cs.princeton.edu/cotop/.

[14] K. Park and V. Pai. Comon: a mostly-scalable
monitoring system for planetlab. ACM SIGOPS

Operating Systems Review, 40(1):65–74, 2006.

[15] C. Verbowski, E. Kıcıman, A. Kumar, B. Daniels,
S. Lu, J. Lee, Y. Wang, and R. Roussev. Flight Data
Recorder: Monitoring Persistent-State Interactions to
Improve Systems Management. Proceedings of the 7th

USENIX Symposium on Operating Systems Design

and Implementation, 2006.

[16] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang,
and W. Ma. Automated known problem diagnosis
with event traces. Proceedings of the 2006 EuroSys

conference, pages 375–388, 2006.

[17] M. Zhang, C. Zhang, V. Pai, L. Peterson, and
R. Wang. PlanetSeer: internet path failure monitoring
and characterization in wide-area services. Proceedings

of the 6th conference on Symposium on Opearting

Systems Design & Implementation, pages 12–12, 2004.

14

Discussion of “Co-designing the Failure Analysis and
Monitoring of Large-Scale Systems”

Presenter: Abhishek Chandra (University of Minnesota)
Discussant: John Douceur (Microsoft Research)

1. INTRODUCTION
The paper, “Co-designing the Failure Analysis and Mon-

itoring of Large-Scale Systems,” was presented at the Hot-
Metrics 2008 workshop by Abhisek Chandra from the Uni-
versity of Minnesota.

The presentation of the paper was followed by a very an-
imated discussion among participants in the workshop.

2. REVIEW SUMMARY
The reviewers were enthusiastic about the importance,

novelty, and discussability of this paper.
They liked the fact that the paper addresses a very prac-

tical problem. Reviewers noted their own experiences in
designing distributed systems, in which they encountered
the need for measurement modules, as well as the need for
failure-event collection and analysis.

The reviewers also liked the authors’ presentation of their
experience with trying to analyze data from an existing mon-
itoring system. They were pleased that the paper’s recom-
mendations are based on these real experiences in practical
large-scale measurement and fault analysis.

On the other hand, the reviewers wished for more of a
discussion of the challenges that would be involved in de-
signing and building a monitoring system that would satisfy
the stated requirements.

3. DISCUSSION SUMMARY
The discussant observed that this paper is a “position

paper” in a very strong sense, in that it advocates a posi-
tion, namely that monitoring systems and failure-analysis
systems should be co-designed. The discussant then asked
whether such co-design is really necessary. It might instead
be possible to distill certain principles from the examples
given in the paper. Perhaps merely applying these princi-
ples might be sufficient for monitoring systems to be able to
provide data to failure-analysis systems, rather than full co-
design. The discussant further asked whether perhaps the
real key is flexibility. The problems observed in the paper
seem to stem from the fact that the monitoring tool was
often too rigid. If it had been more configurable, perhaps
the failure-analysis system would have been able to extract
the data it needed.

A participant observed that for reasons of observability
and fault-tolerance, the monitoring system needs to be dis-
tributed; however, because failures are best analyzed with a
global view, the failure analysis will be most effective if it is
centralized. The presenter agreed with this point and noted

two related difficulties: One is collecting the right kind of
data that is most relevant to failure analysis. The other is
the problem of predictability, since some failure events are
more predictable than others.

A participant asked about the periodicity of failure events.
For example, is there any periodicity in the failure times
and/or failure durations? Would it useful to use statistics
gathering techniques such as histograms, correlations, etc.?
The presenter agreed that this is an interesting avenue for
exploration.

A participant noted the issue of scalability in failure anal-
ysis. Smaller systems can be monitored in detail, but in a
large system, data collection and analysis is very difficult.
Specifically, there is a bottleneck in the ability of humans to
interpret very large data sets. The presenter suggested that
perhaps visualization tools would be helpful in this respect.
This suggestion prompted an objection from the audience
that visualization implies manual effort to interpret the vi-
sualized data, but the failure-analysis should be automated
as much as possible. The presenter suggested data-mining
techniques and tools as an alternative approach.

A participant noted the need for failure-analysis tool to be
able to zoom in to the correct subset of important data. In
particular, the most important system problems are chronic
conditions, and it is difficult to identify the chronic condi-
tions happening under the surface. The presenter suggested
that anomaly-detection techniques may help identify such
chronic conditions and direct more detailed probing. This
suggestion prompted a comment from the audience about
the sensitivity of anomaly detectors: If the anomaly detec-
tion is too sensitive, this may lead to the triggering of too
many events. If it is too coarse, the monitoring system may
miss the problem entirely.

Finally, a participant asked about the security implica-
tions of co-designing monitoring and analysis systems. The
participant suggested perhaps employing a third party to
verify. The presenter agreed that there are interesting se-
curity questions that arise, but he was not strongly familiar
with security issues.

4. ACKNOWLEDGEMENTS
The discussant extends thanks to the session scribe, Brian

L. Mark, of Geore Mason University, for taking such careful
notes during the discussion.

15

