
HOSPITAL: Host and Network System Profiler and
Internet Traffic Analyzer

Esam Sharafuddin, Nan Jiang, Yu Jin and Zhi-Li Zhang
University of Minnesota

{shara,njiang,yjin,zhzhang}@cs.umn.edu

Abstract—The ever-increasing complexity and diversity of
the Internet pose several challenges to network operators and
administrators and, in general, Internet users. More specifically,
because of the diversity in applications and usage patterns; the
prevalence of dynamic IP addresses and applications that donot
conform to standard configuration (e.g. VoIP to bypass firewalls),
monitoring and securing networks and end hosts is no longer a
trivial task. In this paper, we propose Host and netwOrk System
Profiler and Internet Traffic AnaLysis (HOSPITAL): a tool for the
summarization, characterization of traffic and the troubleshoot-
ing of potential suspicious activities. HOSPITAL provides the
network operator as well as the user with knowledge about
applications, communicating parties, services required/provided,
etc, at different levels of granularity (e.g. individual hosts, /24
blocks, a large enterprise, etc), all presented concisely with an
easy to use web interface. Moreover, HOSPITAL is a light-weight
self-contained tool that incurs little overhead with configuration
and customization capabilities for users and developers.

I. I NTRODUCTION

In recent years, Internet related applications have becomean
indispensable component in everyone’s daily life. People rely
on VPN to work remotely, initialize telephone meeting with
VoIP, play games and watch movies online, etc. The increas-
ing number of applications and their inherent dependencies
inevitably leads to much more complexity in the end system,
making it an invisible “blackbox”. It is hard nowadays, even
for a savvy user, to tell “what is my computer doing right
now?” or “what are these outgoing connections from my home
network to the outside Internet?” Such uninterpretabilityof the
end systems makes them vulnerable to potential attacks.

Traditional solutions for anomaly detection and trou-
bleshooting often make use of traffic data which is readily pro-
vided by the routers, e.g., Cisco NetFlow data. For example,
typical intrusion detection/prevention systems (IDS/IPS) [1],
[2] identify network anomalies from such flow-level data.
However, no matter how we place the router, flows among
internal hosts are unobservable since they do not pass the
router. In addition, due to the sheer volume of the traffic at the
border routers, sampling is an inevitable solution to improve
scalability. Both factors render such flow data a less accurate
representation of the traffic in the network. Though such in-
accuracy has little impact for detecting network-scale exploits
or troubleshooting network-wide problems, it is intolerable for
the “last-mile” diagnosis of host-level/subnet-level problems.

To the other extreme, a number of tools enable users to
collect raw traffic data from either a computer or a subnet,
such as tcpdump and wireshark. However, relying on users
to mine meaningful information from such raw traffic data is

unrealistic. Built on top of these traffic collection mechanisms,
a variety of host-level tools, such as virus detection softwares
and firewalls to detect malwares such as virus and worms,
etc. Though being widely deployed to protect networks and
end hosts, the design goal of these tools is to accurately and
automatically detect anomalies. Therefore, they are general,
require no user participation and hence provide little infor-
mation to help understand host activities. As a consequence,
there is an increasing demand for means of fine-grained traffic
analysis to help gain better understanding on the activities of
a computer or a small subnet.

Motivated by the needs for managing and securing end hosts
and small subnets, in this paper, we propose a tool forHost
and netwOrk SystemProfiling and InternetTraffic AnaLysis
(HOSPITAL). HOSPITAL is designed explicitly to fulfill the
needs of traffic analysis at the level of end hosts or small
subnets. The system is characterized with highdeployability
andflexibility. The system is a self-contained tool, which can
be readily placed at either an end host or at the border router
of a small subnet providing concise and more meaningful
network traffic summary statistics. These statistics are readily
available for demonstration in a web interface and can be
configured (e.g., adding or removing different modules and
changing the display layout) according to specific requests
from users. The operators can also retrieve these statistics
remotely for diagnosing problems happening at end hosts.

HOSPITAL consists of four components, traffic collector,
parser, analysis engine and a GUI. The traffic collector gathers
raw network traffic data from/towards the end host or passing
through the border router of a subnet. The parser extracts
packet header information from the raw data and translates
it into a unified flow format. The analysis engine integrates
a variety of state-of-the-art traffic analysis techniques,such
as RU analysis [3], traffic graph analysis [4] and block
analysis [5], etc., to distill concise and meaningful summary
statistics to help users gain better understanding on the on-
going traffic activities. To achieve better efficiency and ease
of maintenance, the analysis engine adopts amodularization
architecture, in which these modules are organized in a hierar-
chy, where high-level modules can utilize low-level modules to
generate intermediate results without computing statistics from
the raw data. The fourth component is a GUI, which provides
summarization tools via a web-based interface that enables
users to configure the HOSPITAL to their specific needs and
provides users and operators with visualized analysis results.

We implement the system and deploy it to a lab subnet with

IEEE Globecom 2010 Workshop on Complex and Communication Networks

978-1-4244-8864-3/10/$26.00 ©2010 IEEE 435

various types of machines. Experimental results show that the
system is capable of providing a variety of useful statistics,
which help us gain insight on the activities associated withthe
end host/subnet, and detect a number of suspicious behaviors.

Related Work. With the same purpose to protect networks
and end hosts, classical intrusion detection/prevention systems
employ either machine learning/data mining techniques [1]
or expert rules [2] to detect network and system anomalies.
Unlike our system, which provides detailed information on
the types of activities and their characteristics, these existing
works are purpose-specific, and designed primarily to detect
anomalies. Many recent works focus on profiling network/host
activities. For example, Xu et. al. [6] designed and imple-
mented a real-time Internet backbone traffic profiling system.
Similarly, BLINC [7] aims at classifying traffic flows by
exploring the interaction patterns of hosts and port numbers.
Our work, on the other hand, provides a much finer-grained
traffic analysis tool at the level of end hosts or small subnets.
A number of these discussed profiling methods provide an
“infrastructure-based” monitoring which relies on the collab-
oration of different entities, compared to HOSPITAL, which
can be tuned to work as an independent self-contained system
or collaboratively.

The rest of the paper is organized as follows. We discuss
the challenges and design principles of HOSPITAL in Sec-
tion II. The details of the design of HOSPITAL are presented
in Section III. In Section IV, we demonstrate how to use
HOSPITAL to understand host activities and detect anomalies
and Section VI concludes the paper.

II. D ESIGN CHALLENGES AND PRINCIPLES

In this section, we first discuss the challenges that users
and network operators encounter when attempting to gain an
insight into “what is going on” within their networks or hosts
We also show how these challenges are further complicated
by the intricacy the Internet has experienced during the past
decade. Next, we present the design principles of HOSPITAL
which not only directly address these challenges, but also
provide rich analysis via a configuration utility and with little
overhead making the deployment of HOSPITAL a simple task.

A. Challenges

Levels of granularity: Users and network operators are gen-
erally faced with the question of how their network resources
are being utilized. While a user may be interested in the
activities within his/her own machine or few machines con-
nected to his/her home network router, an operator managing
a subnet (e.g. servers within an engineering department), has
the focus of all incoming traffic into these machines. Yet,
security administrators managing enterprise networks have the
larger scope of the overall activities passing through some
vantage points or a border router. Whatever is the network
segment under study (host, subnet, or whole network), users
and operators may be interested in different levels of analysis.
For example, while an operator of a subnet may be interested
in a more fine-grained analysis, such as the activities of
a specific IP address block that has been reported to send

scanning traffic or an email/SMTP machine receiving large
amount of spam messages, a user, on the other hand, may
be interested in more aggregated information, such as major
activities on personal machine or home network answering
questions such as how much of gaming traffic is captured at
the home router or why there is incoming p2p traffic! All
these and similar questions need to be answered via easy-to-
use tools that provide different granularity levels in terms of
observation window times, segments of the network or even a
specific IP or port activity.

Lack of customization tools: Most of the existing tools come
with an overwhelming functionality for which the user may
not be interested in. Not only this tends to effect deployability,
but also makes the customization of these tools a tedious task
for both users and developers. Users may be interested in a
partial subset of functionality for which existing tools usually
do not offer an easy-to-use method allowing them to choose
the type and level of analysis. Moreover, interested developers
may want to take these tools one step further by utilizing
the source code to build more functionality that services their
specific needs, which may incur a learning curve on developers
to understand how the code is written. In order for a tool to be
of use to developers, the design should make the incorporation
of a new functionality as easy as a plug-and-play.

Deployability issue:The overhead incurred by deploying a
tool plays a major factor in its deployability. Even though these
existing run in the background, they fork several processesand
consume a large share of CPU and memory. Moreover, in order
to deploy these tools, other heavy-duty third-party software
programs may need to be installed. Another limitation of
existing tools is the fact that they are platform-dependentand
an exerted effort is required to port them to other platforms.

Presentation and configuration issues:The majority of
existing tools present analysis in the form of logs and requires
experienced support engineers to sift through these logs to
capture important observations and analysis. Therefore, auser
finds such tools complicated to utilize. Moreover, system
administrators may not be interested in spending hours staring
at logs and rather prefer a summarization of findings which
can be presented in a graph or a plot via a web-browser GUI
for which the majority of existing tools do not offer. Moreover,
most of the analysis of these tools is post-mortem. However,
there are times when a user or an operator requires on-the-
fly real-time analysis. Therefore, to be of use to users, a tool
should incorporate some visualization capability and different
modes of operation with an easy configuration mechanism.

B. Design Principles

1) Multi-level analysis:To address the levels of granularity
challenge, HOSPITAL is designed to provide analysis at
different levels of granularity in terms of network size (a host
or a /24 vs. /16 subnet). The tool can be installed on a single
machine, a switch of a subnet or a border router with no
additional customization cost. Therefore HOSPITAL has the
capability of providing global- as well as local-level analysis.
Moreover, HOSPITAL can be configured to provide analysis
for different time windows (per hour, day, week or month),

436

as well as different types of analysis for an application, an
IP address or a block, or a specific port. Finally, the level
of analysis can also be fine-grained such as an application-
specific (p2p or HTTP) or coarser-grained (e.g., the total
number of flows per every 5 minute through the vantage point).

2) Modular design:HOSPITAL comes with a configuration
utility which addresses the lack of customization challenge
by allowing users and developers to setup and customize
HOSPITAL to their needs. For users, the utility provides
easy-to-use XML configuration module that allows them to
choose the types of analyzers to be executed and the mode
of operation. For developers, the utility provides an interface
module that allows them to write their own modules and easily
integrate them with the existing analysis engine in a plug-and-
play fashion. Moreover, HOSPITAL does not implement each
analyzer by directly utilizing the raw traffic data. Instead, the
analyzers follow a dependency tree from which one higher-
level analyzer utilizes the statistics or outcome data obtained
from another lower-level analyzer(s). For example, the RU
analyzer utilizes information from the flow analyzer. For users,
this tends to lower the overhead of HOSPITAL especially
when it is utilized in real-time mode. For developers, this
characteristic allows for developing new analyzers with mini-
mal integration by simply utilizing the interface module which
defines the dependency tree of the analyzers.

3) Lightweight design:HOSPITAL addresses the challenge
of deployability issues by incurring little (to no) overhead
in terms of deployment and operation. The components of
HOSPITAL are either lightweight components, such as SQLite
(back-end DBMS) or out-of-the-box tools such as tcpdump or
wireshark. This self-contained lightweight design allowsfor
the deployment of HOSPITAL on any platform.

4) Configurability: One of the key features of HOSPITAL
is its presentation and configuration capability. First, the GUI
is XML-based which allows for simple interpreters to be
written easily into the targeted platform. Not only developers
can customize the GUI, but users can also decide what to be
presented and displayed on the HOSPITAL GUI. Second, the
GUI is rich with visualization tools. Instead of going through
thousands of lines of logs (as is the case in some tools), a user
or a network operator can obtain analysis results in a compact
format via the GUI. Finally, HOSPITAL can be configured in
one of two modes: real-time or off-line, which allows for both
on-the-fly and post-mortem analysis.

III. HOSPITAL DESIGN

In this section, we present the architecture of HOSPITAL
and highlight the analysis and profiling utility of hospital.
Fig. 1 illustrates the architecture of HOSPITAL, which consists
of four major components: a data collector, a parser, an
analysis engine and a GUI.

A. Data Collector

The task of the data collector is to capture traffic
from/towards a host or within a subnet. The collector could
be placed on a host or connected to a switch in a subnet. For
better deployability, the collector utilizes out-of-the-box tools,

Fig. 1. Architecture of HOSPITAL and the user interface

such as tcpdump and wireshark to collect packets (or flows,
depending on the tools) and then pipes the data to the parser.

B. Parser

Using the raw data, the parser processes the data into a
common format: the unified flow format (UFF). In addition to
parsing data from the data collector, the parser also supports
datasets provided from readily available sources, such as Cisco
NetFlow data or other data provided by ISPs or enterprises.
Once parsed, UFF records are either loaded into a light-weight
DBMS (SQLite) for off-line (post-mortem) analysis or piped
directly to the analysis engine for real-time analysis. We note
that the collector and the analysis engine can be installed in
different machines, in this case, the communication between
the collector and the analysis engine utilizes sockets.

C. Analysis Engine

The analysis engine is a set of analyzers each of which is
referred to as ananalyzeror a profiler 1, which utilizes the
UFF records to provide the analysis and profiling utility. The
modular design of the analysis engine eases both development
and operation. New analysis method can be incorporated in a
fast way and users can choose appropriate analyzers to fit their
specific operation needs.

Though analyzers provide different types of measurements
for the collected traffic, they are not designed in a “flat” way.
Instead, these analyzers form a hierarchy. A few basic analyz-
ers generate statistics directly from UFF records; while some
analyzers are built on top of other analyzers. For example, the
flow analyzer directly processes UFF records and provides
flow level statistics as output. The session analyzer directly
takes these flow level measurements from the flow analyzer
as input and produces session level statistics. This hierarchical
design reduces computation costs and overlapping processing
of data. Below, we provide details on different analyzers. Due
to space limit, we only provide a subset of these analyzers
which will be used for experiments in Section IV.

Flow Analyzer. The flow analyzer is the most basic analyzer,
which generates basic flow information for both incoming and
outgoing flows. More specifically, it generates statistics for
incoming matched flows, outgoing matched flows, incoming
unmatched flows and outgoing unmatched flows2. Statistics
include the number of flows, packets, bytes, port numbers, IP

1We use analyzer as a generic term for analyzer and profiler.
2A flow is considered as matched if the same flow 5-tuple is observed on

the opposite direction within a time intervalT , say, 30 minutes.

437

addresses, blocks and ASes. This rather simple analyzer cap-
tures traffic patterns that may provide insight on a dominance
of some ports or a remote host (based on the number of flows).
For example, a dominant port along with a dominant remote
host towards a local block may imply the presence of certain
incoming scanning activity.

Session Analyzer.Session analyzer is another basic analyzer
that provides session statistics, such as number of sessions
initiated by a local host for a given period of time, number
of sessions initiated by the remote host, number of flows per
session, duration of session, session with maximum/minimum
flows or duration, etc. Session information can be utilized to
obtain some observations on the types of sessions a given
host is involved in. For example, presence of sessions, such
as HTTP 3-way handshake, that do not terminate may be a
sign of suspicious activity (i.e. SYN flood attack).

RU Analyzer. This analyzer utilizes the statistics collected
by the flow analyzer to compute therelative uncertainty(RU)
vector of the local host or block based on parameters specified
by the user. These parameters include the number of flows
sufficient to calculate RU values3 (e.g. 100 TCP flows).
RU vector contains RU values for source/destination IPs,
source/destination ports, number of flows, packets or bytes,
which measures the dominance (or lack thereof) of an IP
address, a port, or traffic volume. The RU analyzer can be
used for different purposes, such as finding dominant IPs or
ports. RU can also be used to distinguish between dynamic
and static remote addresses (see [8] for details).

Activity Patterns Profiler. The activity patterns profiler cap-
tures the significant activity patterns of a subnet. The activity
patterns profiler utilizes the pLSA method as explained in [9].
In pLSA, the host-port association is represented in a matrix
A, the entries of whichA(h, p) represents the joint probability
that port p is associated with hosth in the overall traffic.
The joint probability is defined by the mixtureA(h, p) :=
Pr(h, p) =

∑
c∈C

Pr(p|c)Pr(c|h)Pr(h), in which C =
{c1, . . . , cK} represents theK latent applications (or “activity
patterns”) within the subnet. The method generates the distinct
activity patterns with interpretable labels.

All these aforementioned analyzers can be configured to
only focus on specific applications, such as DNS traffic or
ICMP traffic. We can also zoom in into a limited number of
hosts or blocks of interest. For example, tracking the activities
of certain “suspicious” or blacklisted hosts.

D. GUI and Interface

Due to the fact that analyzers provide different types of
traffic statistics, a major effort is imposed on delivering
such information to users in a more clear and concise way.
HOSPITAL comes with an XML-based GUI that can easily be
interpreted into a platform. Moreover, it can be easily modified
and customized by the user. The power in the GUI lies also in
its visualization capabilities of providing visual representation
of statistics, communities, and interactions.

3RU for m observations is calculated as−
P

i=1
mpilog2pi

log2m
in which pi

is the percentage (or frequency) of observingi in m.

IV. EXPERIMENT RESULTS

In this section, we demonstrate the analysis and profiling
utility of HOSPITAL by applying some of its analyzers on
data collected at our network.

Experiment Setup:We installed HOSPITAL on a switch
of our lab /24 subnet, which contains 30 active hosts. There
are 10 Ubuntu Linux clients, 8 Sun Solaris machines, 4 MS
Windows 7 desktops, 4 MS windows XP desktops, 2 Windows
Vista desktops and 2 MAC OS machines. Users were given
the option to install HOSPITAL on their own machines and
the mode of operation on these machines varied between off-
line and real-time modes. Users used these machines as usual
and from our experience of using the machines for a week,
we noticed that there was no complaint regarding the over-
head associated with running HOSPITAL on these machines4.
Fig. 2(a) shows plot generated by the HOSPITAL’s web-based
GUI which depicts the results obtained from applying the flow
analyzer to the collected traffic on the /24 block in terms of the
No. of flows and No. of inside IP addresses receiving traffic
from the outside. Thex-axis represents the time (in hours) and
they-axis represents the magnitude (in log base 2). As shown,
we observe a spike during the11th hour. Upon investigation
of the data towards the inside block, we find a remote IP
address sending traffic to every IP address within the inside
block directed at the sameUDP port 139. The IP address
is reported on blacklists [10] and extensive research on the
port shows that even thoughUDP port 139is a NetBIOS port
utilized for Windows file and printer sharing, it is reportedthat
it is usually the first port hackers target in port scan attacks.

To illustrate the effect of scanning within our collected
data, we configure HOSPITAL to filter all remote IP addresses
that touches at least 100 IP addresses from a /16 block. For
each remote IP address, using the No. of flows, we compute
RU(dstip) and RU(dstprt). A remote IP address sending
traffic using some dominant dstprt (RU(dstprt) ≈ 0) could
be accessing inside service (p2p or web server). However, if
the remote IP address sends equally the same number of flows
to all inside IP addresses (RU(dstip) ≈ 1), the remote IP
address is most probably a scanner. In Fig. 2(b), HOSPITAL
GUI plots the results of the RU analyzer in which thex-
axis represents the number of local IP addresses touched by
the remote IP address (in log base 2), they-axis represents
RU(dstip) and thez-axis representsRU(dstprt). We notice
that the IP addresses inside the oval have largeRU(dstip)
and smallRU(dstprt). Upon validation of a sample of IP
addresses, we discover that they are blacklisted as scanners.

To demonstrate the multi-level design property of HOSPI-
TAL, we install the tool on the border router of our campus
network and collect traffic for a whole day. We show the utility
of the application profiler by configuring the analyzer to focus
on DNS trafficUDP/TCP port 53. Fig. 2(c), shows a graph
generated by the GUI representing the interaction patterns
between unsuccessful DNS queries and the IP addresses who
initiate these queries in a whole-day traffic data. By extracting
community structures from the graph, the analyzer detects

4More rigorous evaluation of the overhead is one of our futureworks.

438

(a) Flow Analyzer (b) RU Analyzer (c) DNS Failure

Fig. 2. Experiment results for three analyzers

(a) IM (b) HTTP (c) P2P

Fig. 3. Experiment results: activity patterns profiler

correlated DNS query failures caused by potentially malicious
network activities. We mark 3 community structures detected
by the analyzer. Communities 1 and 2 correspond to well-
known domain-flux bots, Conficker A and Conficker B [11],
[12]. Community 3 is caused by a host queries for many non-
existing email servers, possibly related to spamming activities.

We later configure the tool at the border router to capture
traffic corresponding to a /24 residential hall block. Fig . 3
shows the results of applying the activity patterns profiler
to the traffic of the selected residential hall /24 block. The
diagram shows the significant activity patterns [9] in which
the lower row circles represent the hosts (h), the upper row
circles represent the ports (p) and an edge between a host
and a port shows strong utilization ofp by h. We find that
there are mainly three activity patterns within the selected
/24 block. The first activity of this block represents Instant
Messaging (IM) using AOLdst port 5190, MSN Messenger
dst port 1863and Yahoo Messengerdst port 5050. The second
activity pattern represents an HTTP web server using source
port 80 and secure HTTP (HTTPs) web server represented
using sourceport 443 along with aoDstPort. Common to
residential and dynamic subnets, p2p and file sharing service
are highly popular on such subnets which are depicted by
activity 2 with BitTorrentsrc UDP/TCP 6881, andaoDstPort.

The results obtained from utilizing a few analyzers on a
sample data shows the summarization tool provided to users
and network administrators. While HOSPITAL may not fix
any issues, it can, through its analysis, summarization and
profiling capabilities provide users and operators conciseas
well as detailed information on possible underlying causesof
a malfunction. HOSPITAL can also be used in conjunction
with other tools, such as IDS, anti-virus programs, spy-ware
detectors and removers along with other security tools.

V. CONCLUSIONS

In this paper, we proposed HOSPITAL, a lightweight system
for multilevel profiling and analyzing network traffic at the
level of end hosts and subnets. HOSPITAL consists of four
components. The data collector captures traffic from a host or

subnet, then passes it to the parser to convert the data into a
common UFF format. The analysis engine integrates a set of
analyzers to generate analysis results from the collected data.
GUI component provides user friendly interface to demon-
strate the analysis results. We implemented HOSPITAL in a
real network and demonstrated that we could gain some insight
on what is going on in within hosts and subnets. In future
work, we plan to conduct evaluation on the scalability of the
system and the communication overhead when HOSPITAL is
deployed in a distributed environment.

VI. A CKNWLEDGEMENT

The work is supported in part by the National Science Foun-
dation grants CNS-0626808, CNS-0626812, CNS-0905037
and the DTRA grant HDTRA1-09-1-0050.

REFERENCES

[1] MINDS. Minnesota Intrusion Detection System.
http://www.cs.umn.edu/research/minds/.

[2] SNORT. http://www.snort.org/.
[3] K. Xu, Z. Zhang and S. Bhattacharyya. Profiling Internet backbone

traffic: behavior models and applications. InProc. of ACM SIGCOMM,
August 2005.

[4] Y. Jin, E. Sharafuddin, and Z-L. Zhang. Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition. InProc. of SIGMETRICS ’09, pages 49–60, 2009.

[5] E. Sharafuddin, Y. Jin, N. Jiang, and Z.-L. Zhang. Know your enemy,
know yourself: Block-level network behavior profiling and tracking. In
To appear in Proc. of GLOBECOM, 2010.

[6] K. Xu, F. Wang, S. Bhattacharyya, and Z. Zhang. A real-time network
traffic profiling system. InDSN, pages 595–605. IEEE Computer
Society, 2007.

[7] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel
traffic classification in the dark. InIn Proceedings of ACM SIGCOMM,
pages 229–240, 2005.

[8] Y. Jin and E. Sharafuddin and Z.-L. Zhang. Identifying Dynamic IP
Address Blocks Serendipitously through Background Scanning Traffic.
In Proc. of ACM CoNext’07, 2007.

[9] E. Sharafuddin, Y. Jin, N. Jiang, and Z. Zhang. Sifting through network
data to cull activity patterns with heaps. InProc. of ICDCS, 2010.

[10] MX Toolbox Blacklists. http://www.mxtoolbox.com/blacklists.aspx.
[11] P. Porras, H. Saidi, and V. Yegneswaran. An analysis of conficker’s

logic and rendezvous points. http://mtc.sri.com/Conficker/.
[12] N. Jiang, J. Cao, Y. Jin, Z.-L. Zhang, and L. Li. Identifying suspicious

activities through dns failure graph analysis. Technical report, University
of Minnesota, 2010.

439

