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Abstract—Gaining a better knowledge of one’s own network
is crucial to effectively manage and secure today’s large, di-
verse campus and enterprise networks. Because of the large
number of IP addresses (or hosts) and the prevalent use of
dynamic IP addresses, profiling and tracking individual hosts
within such large networks may not be effective nor scalable.
In this paper, we develop a novel methodology for capturing,
characterizing, and tracking network activities at the block-level
by carefully selecting a port feature vector and capturing the port
activities of individual hosts within a block using a block-wise
(host) port activity matrix (BPAM). Applying the SVD low-rank
approximation technique, we obtain a low-dimensional subspace
representation which captures the significant and typical host
activities of the block. Using these subspace representations, we
cluster and classify blocks to provide high-level descriptive labels
to assist network operators and security analysts to gain insight
into the network activities. We also develop novel methods to
track and quantify changes in blocks’ behaviors over time, and
demonstrate how these methods can be utilized to identify major
changes and anomalies within the network.

I. I NTRODUCTION

Due to its scale and complexity, managing and securing
today’s large campus or enterprise networks is a challenging
task. The scale and complexity comes not only from the
number of heterogeneous hosts and devices on the network
(e.g., various servers, desktop office client machines, laptops,
lab machines, wireless access points, routers and so forth),
but also from a wide range of diverse applications running
on these machines. Traditionally, network security has largely
focused on identifying and preventing attacks, e.g., through
attack signature generation or anomaly detection. However, the
scale, complexity and diversity of large campus and enterprise
networks render such an approachaloneless efficient, scalable
and manageable. For instance, in the case of anomaly detec-
tion, what constitutes “anomalous” activities in one network
or part of it may be considered “normal” in another network
(or subnet). As an example, “unauthorized” peer-to-peer file
sharing applications are not allowed on a departmental subnet
of our campus network (unless they are for research purposes);
on the other hand, such peer-to-peer activities are considered
legitimate on student residential hall subnets. Hence, to more
effectively manage and secure a large, diverse network, one
must also build a good knowledge of one’s own network, e.g.,
by understanding the range of applications, usage patterns
and user behaviors in various parts of the network. Such
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knowledge will enable network operators and security analysts
to better tailor their monitoring system and detection tools
(e.g., firewall configurations), and focus their attention on
specific vulnerabilities or areas of problem.

Along this new direction ofunderstanding oneself, several
research studies [1]–[3] have developed algorithms and tools
for (primarily) host-level traffic classification and profiling.
While these studies offer innovative methods for classifying
traffic or host behaviors, the analysis at the granularity of
individual hosts (or individual IP addresses) has two major
drawbacks in practice. First, the prevalent usage of dynamic
IP addresses makes tracking individual hosts an infeasible
task in most networks [4], [5], since dynamic IP addresses
are frequently reassigned to different hosts. Furthermore, the
large number of IP addresses (e.g., our campus network has 3
class-B subnets, with3× 1016 potential hosts) make applying
host-level traffic profiling to every host quite expensive.

To address these limitations, in this paper, we propose and
develop a novel methodology forblock-levelnetwork traffic
behavior profiling. An IP address block constitutes a set of
consecutive IP addresses, typically in size of2k, say,k = 8
(i.e., a /24 or class-C block), a unit used by a network
administrator for IP address assignment to a subnet. More
often than not, many hosts within the same block would be
used for similar usage, e.g., a department block for office
desktop and laptop machines, a block for lab machines, a
block for student residential hall, a block with one or two
wireless access points, and so on. As shown in [5], dynamic IP
addresses are generally assigned in a block of consecutive IP
addresses. Hence, by analyzing and profiling network activities
at the block-level, we can circumvent the issues caused by
dynamic IP addresses. Furthermore, by exploiting the similar
user activities and usage patterns within a block, we can obtain
a more compact block-level behavior profile which captures
and summarizes the significant and typical behaviors of hosts
within the block. Finally, the block-level analysis is far more
scalable: in the case of our campus network, using /24 blocks,
we only need to profile and track at most768 (= 3 × 256)
blocks as opposed to3 × 106 IP addresses.

In this paper, we employ flow-level data (i.e., Netflow
data) captured at the campus border router, and utilize the
port information thereof to characterize and profile traffic
behaviors and host activities at the block level. By considering
well-known service ports, popular application ports and other
dominant ports extracted from our flow data, we form aport
feature vectorconsisting of 2000 source and 2000 destination



ports. Using this port feature vector, a straightforward way
to summarize the behavior of a block is to simply compute
the aggregate port distribution of the block: namely, for each
source or destination port in the port feature vector, the
fraction of flows using the port that are generated by any
IP address (or host1) within the block. However, while the
aggregate port distribution captures the overall activities of
hosts within the block, it fails to provide adequate information
to capture, characterize, and distinguish significant and typical
host behaviors within the block. For example, we would like
a block-level behavior profileto enable us to meaningfully
answer questions such as the following: i) Do all hosts in the
block behave similarly, e.g., most of them are client machines
that are used to primarily access the web? Thus, the overall
port distribution would represent the “typical” behavior of
the hosts in the block. ii) Does the block contain one or a
few dominant hosts (e.g., web servers, or “heavy-hitter” client
machines) that generate a majority of the flows? In other
words, the overall port distribution of the block is skewed
mostly by these dominant hosts, while obscuring the activities
of other “typical” hosts within the block. iii) Or, does the block
consist of several groups of hosts with distinct behaviors or
activities, e.g., web/email servers, client machines withheavy
web and P2P activities?

The ability to answer these and similar questions is im-
portant to characterize, summarize and distinguish the be-
haviors of various inside (campus) blocks within a network,
and therefore help network operators and security analysts
to understand and monitor the block-level activities, detect
sudden changes and anomalies, and identify policy violations,
security breaches and malicious attacks. For this purpose,we
introduce theblock-wise (host) port activity matrix(BPAM),
which records the activities of each host within the block
on these ports, i.e., the number of flows using each of the
ports. Hence, the BPAM represents the key port activities of
individual hosts within each block. By applying the Singular
Value Decomposition (SVD) method (to an appropriately nor-
malized and re-scaled version of BPAM), we obtain a compact,
low-dimensionsubspace representationof the behaviors of
each block. We show that as a low-rank approximation to
the original BPAM, this subspace representation captures the
significantandtypical activities of individual hosts within the
block, and can be used to answer the questions listed above.

Moreover, by introducing a subspace distance metric, we
employ the subspace representations to cluster and classify
the behaviors of various blocks of the network. The block-
level behavior clustering allows us to assigninterpretivelabels
to various blocks as to assist network operators and security
analysts in understanding the overall block-level activities
within the network. Furthermore, we demonstrate how to use
the subspace representations to track changes in block-level
behaviors over time, and develop two methods to quantify
and classify such changes. We also show how these methods
can be explored to identify major changes and anomalies.

1For simplicity, in this paper we use the termhost to denote a specific IP
address (although an IP address may be assigned to a router, aprinter or some
other devices).

The efficacy of our proposed block-level network behavior
profiling methodology has been extensively evaluated and
validated using a month-long netflow data collected at our
campus network.
Related Work. Several approaches have addressed traffic
classification. Unlike [6]–[8] which rely on packet payload,
our approach utilizes netflow data captured at a vantage point
which is less expensive. While [1]–[3] classify traffic on
the host-level, our approach; on the other hand, performs
traffic classification at the block-level which is more scalable
especially for large campus or enterprise networks with larger
number of IP addresses, a good share of which are dynamic.
Moreover, our scheme provides compact and summarized de-
scriptive labels for thesignificantandtypicalactivities a block.
While [9] uses closely related methodology of PCA to describe
structures of OD flows and utilizes the approach to detect
specific types of attacks, our work compactly summarizes the
block behaviors and its underlying activities.

More closely related work, the authors in [10] utilize
host-port associations and apply probabilistic latent semantic
analysis (pLSA) to extractactivity patternsand provide a
global viewof the activity patterns within the network. In this
work, we capture thesignificantanddominantactivities within
the block based on its subspace representation and provide
meaningful labelling for each block .

The remainder of this paper is organized as follows. In
section II, we describe how the port feature vector is selected.
In section III, we introduce the BPAM and the SVD-based
subspace method to extract and summarize significant and
typical host behaviors within each block. In section IV, we
develop a clustering method to classify block-level behaviors
using the subspace representations, while in section V, we
develop methods for tracking and quantifying block-level
behavior changes, and show how they can be used to identify
anomalies. The paper is concluded in section VI.

II. B LOCK BEHAVIORS AND PORT FEATURE VECTOR

Port numbers are the most widely used packet/flow level
features for identifying network activities. Certain (IANA
reserved or registered) ports are almost synonymous with
the well-known services associated with these ports, e.g.,
web with TCP 80, email with TCP port 25, etc. Although
these reserved ports may be misused by other applications
(e.g., for penetrating firewalls), or the well-known services
may also use other ports (e.g., TCP 8080 for web), for a
majority of the hosts, the dominant activities observed on these
ports represent the well-known services. Hence, such dominant
service ports often reflect the typical server/client activities
in each block. In this section, we utilize this observation to
select a set of frequently used ports to form aport feature
vectorfor characterizing block-level network activities. Before
presenting this method, we first describe the datasets used in
our study.
Dataset.Our study is based on a one-month data collected at
the border router of our campus network. The data includes
bidirectional Cisco NetFlow records corresponding to traffic
between inside (campus) hosts (3 class B IP blocks with216 IP



addresses) and outside hosts. We only focus on theoutgoing
TCP, UDP and ICMP traffic which account for more than
99% of all the outgoing traffic, since incoming traffic usually
contain a significant amount of “noise” (e.g., scanning), which
may not even pass the border firewall. We note that we
choose the block size to be28 (class C IP block) throughout
the paper, which is the most commonly used block size for
our network administrators to assign IP addresses to different
departments/subnets [5].
Port Feature Vector SelectionOur port selection method is
as follows. LetFt be the set of flows observed during a time
interval t, say, a day (this is the time interval used in this
paper). We rank all the source (resp. destination) ports that
appear inFt in terms of both the number of flows containing
the ports and the number of hosts with flows containing
the ports. We pick the top rankedN source ports andN
destination ports in such a manner that they cumulatively cover
at least, say 95%, of all flows as well as of all “active” hosts
(an IP address which generates at least one flow during the
time intervalt). Through experiments using our flow datasets,
we decide onN = 1999, which yields1999 top source ports
as well as1999 top destinations2, and these ports cover nearly
98% of all the flows and close to 100% of all “active” hosts.

In addition, we group all remaining source/destination ports
as if they were special “virtual” source/destination ports,
referred to as “all other source/destination ports” (oraoSr-
cPort/aoDstPort in short). We define a4000-dimensionport
feature vectorPFV = [port1, . . . , port4000], where for1 ≤
j ≤ 1999, portj refers to one of the top 1999 source ports
(ordered in the increasing number of the port numbers), and
port2000 refers toaoSrcPort; and for2001 ≤ j ≤ 3999, portj
refers to one of the top 1999 destination ports (ordered in the
increasing number of the port numbers), andport4000 refers
to aoDstPort.

These dominant ports indeed reveal the popular activities
in each block. For example, in blocks belonging to certain
department subnets which maintain their own web servers and
email servers, service activities like web (80 and 443), ssh(22)
and email (25 and 993) account for a high percentage of flows.
In contrast, in residential halls blocks, client activities are more
popular, with web (80 and 443) and messenger (AOL for 5190
and MSN for 1863) being the dominant ports.

III. B LOCK-WISE HOST PORT ACTIVITIES AND SUBSPACE

REPRESENTATION

In this section, we introduce theblock-wise (host) port
activity matrix (BPAM) to represent the port activities of
individual hosts within a block. Using the SVD method, we
derive a low-rank approximation to the BPAM, and thus obtain
a low-dimensionsubspace representationof the behaviors
of each block. Applying this technique to our campus flow
data, we demonstrate that these subspaces indeed capture the
significant and typical activities of individual hosts within
a block that can be used to meaningfully characterize and
distinguish various block behaviors within a network.

2We refer to ICMP type numbers as the port numbers for ICMP traffic,
e.g., ICMP0 represents ICMP type 0 echo reply traffic.

Definition of BPAM. Given a /24 blockB, let i, 0 ≤ i ≤ m−1
(wherem = 256), denote a host (more precisely an IP address)
within the block. For each hosti, let fi denote the total number
of (outgoing) flows generated by hosti during an observation
time windowt, say, a day. We usej to represent thejth port in
the port feature vector that we define in the previous section.
Then fij denotes the number of flows generated by hosti
using source portj (1 ≤ j ≤ 2000) or targeting destination
port j (2001 ≤ j ≤ 4000), where

∑2000
j=1 fij =

∑4000
j=2001 fij =

fi. We define the BPAM for a blockB as am × n matrix
FB = [fij ] (wherem = 256 and n = 4000). Fig.1 visually
depictsFB for a block with predominantly client machines
(a) and a block with many web and email servers (b), where
each row in the figure corresponds to a host within the block,
and a dot at thejth position of theith row is plotted if and
only if fij/fB ≥ 0.005 and fi ≥ 100 flows, wherefB =
∑256

i=1 fi is the total number of flows generated by all hosts
in the block. The left half (1-2000) of the x-axis represents
the source ports, wherex=2000 representsall other source
ports (aoSrcport), and the right half (2001-4000) represents
the destination ports, wherex=4000all other destination ports
(aoDstPort). These figures visually illustrate that these blocks
indeed exhibit distinct behaviors characteristics.

To reduce the impact of “heavy-hitter hosts” and “inac-
tive” hosts within a blockB, we introduce an appropriately
normalizedand re-scaledversion of FB defined asAB :=
[sipij ]m×n = [sifij/fi]m×n. pi = fi/fB is the fraction of
flows generated by hosti and entB := −

∑m

i=1 pi log pi,
0 ≤ entB ≤ log m: is the (flow activity) entropyand the
closerentB is to the upper boundlog m, the more uniformly
distributed are the flows among the hosts; whereas the closer
entB is to 0, the more skewed is the flow distribution among
the hosts.si := entB/(−logpi) if pi > 0, andsi = 0 other-
wise3. We see that the smallerpi is, the smallersi is. On the
other hand,si only grows inverse logarithmically withfB/fi

(approximately logarithmically withfi), thus dampening the
effect of extremely active hosts.
Extracting Typical Host Behaviors from BPAM. Given
this definition of BPAM, we apply SVD4 to AB to extract
“significant” and “typical” host behaviors of a block. We
denote the rank-K approximation of the BPAM matrixAB

as: A ≈ UKΣKV T
K , where UK = [u1, · · · , uK ], ΣK =

diag[σ1, · · · , σK ], andVK = [v1, · · · , vK ].
Intuitively, the right singular vectors,vi’s, provide anor-

thogonal representation of the port activities of them hosts
within a block. In a sense, eachvi can be viewed as avirtual
host, where|vij | (or v2

ij) measures the magnitude of activities
on portj by this virtual host (note that

∑n

j=1 v2
ij = 1; hence,

{v2
ij} can be viewed as a probability distribution). Unlike the

port activities of them original (real) hosts, them virtual hosts
have orthogonalport behaviors (i.e.,vT

i vj = 0 for i 6= j).

3Here we implicitly assume that each block has at least two active hosts,
thus pi < 1 for all i’s. As − log pi is the entropy of an individual hosti,
intuitively si measures the contribution of individual hosts’ entropies to the
(average) entropy of the block.

4We conducted the same experiments using robust PCA [11], [12], and the
results are similar, possibly due to the normalization process which eliminates
the effect of outliers.
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(d) server-centered subspace representation

Fig. 1. Block-wise host port activities for two example blocks and their subspace representations.

We refer to thesubspacespanned by the firstK dominant
virtual hosts,v1, . . . , vK , as a subspace representation of the
(significant and typical) behaviors of a block.
Significant Block Behaviors and Interpretations. We em-
ploy the standard scree plot method to chooseK. With
ǫ = 0.05, most blocks have at least 95% of the energy in
the original BPAM captured by the first few singular values.
For the two blocks in Fig. 1(a,b), we obtainK = 3 for both
of them. In Figs. 1(c,d), we plot the “energy” of the ports,vij ,
in the top three singular vectors,v1 (the top panel),v2 (the
middle panel), andv3 (the bottom panel) for both blocks.

For the client-centered block in Fig. 1(c), we first note that
most points with high energy (i.e., with large non-zero value
v2

ij ) in v1-v3 are concentrated in the destination port range
[2001-4000], except for one major point atj = 2000 (in
v1) corresponding toaoSrcPort. In addition toaoSrcPort, the
other two largest points inv1 correspond to destination port 80
(j = 2020) and port 443 (j = 2033). Hence,v1 captures the
web-related client activities of the hosts. Whereas,v2 contains
a number of large nonzero points corresponding to various
destination service ports such as AOL Instant Messaging (IM)
port 5190 (j = 3728), in addition to destination ports 80
and 443 (when the same point appears in bothv1 and v2,
it has opposite signs).v3 also corresponds to other IM, such
as Yahoo Messenger port 5050 (j = 3721), MSN Messenger
port 1863 (j = 3004) in addition to remote desktop port 3389
(j = 3561). Therefore, the subspace spanned by the top three
singular vectors captures the prevalent client behaviors of the
hosts within the block, where web-related and IM activities
are most significant and typical.

In contrast, for the server-centered block in Fig. 1(d), most
points with high energy in bothv1 and v2 are concentrated
in the source port range [1-2000], except for the point at
j = 4000 corresponding toaoDstPort. In v1, the other
major nonzero points correspond to major source service
ports such as source ports 80 (j = 11) in v1, whereas,v2

contains a number of considerably large nonzero points inv2

corresponding to various source ports such as email port 25
(j = 8), and ssh port 22 (j = 7). v3 has similar ports (with

opposite signs) to that ofv2. Hence, the subspace spanned
by the top three singular vectors captures the prevalent server
behaviors of the hosts within the block, where web, email, and
ssh server activities dominate.

IV. CLASSIFYING BLOCK BEHAVIORS

The examples in the previous section show that blocks
with hosts running different applications exhibit distinct be-
havioral characteristics, and the principal subspace provides
a succinct way to extract, characterize and represent the
significant and typical behaviors of a block. In this sec-
tion, we compare and classify block-wise behaviors based
on their subspace representations and group them based on
their behaviors. SinceV (i) is the resulting subspace repre-
sentation of blockBi, we can utilize the subspace distance
metric in [13] as follows: For anyK1-dimensionalV (1)

and K2-dimensionalV (2) subspaces inRn, let v
(i)
1 , . . . , v

(i)
Ki

be an orthonormal basis ofV (i), i = 1, 2. The sub-
space distancebetweenV (1) and V (2) is d(V (1), V (2)) =
√

max(K1, K2) −
∑K1

i=1

∑K2

j=1(〈v
(1)
i , v

(2)
j 〉)2. [13] shows

that the subspace distance defined above is a Euclidean
distance function, andis independent of the choices of the
orthonormal bases, v

(i)
1 , . . . , v

(i)
Ki

.
Using the above definition, we compute the pairwise sub-

space distance between any pair of the 492 blocks5, and the
results are shown in Fig. 2(a) which visually depicts groups
of blocks that have shorter distances and have similar host
behaviors. We then apply spectral clustering [14], [15], where
the corresponding eigenvalues are shown in Fig. 2(b) and the
clustering results shown in Fig. 2(c) forR3 (r = 3).

The 10 clusters are represented by either “o” or “+” with
different colors, where “+” stands for dense or seemingly
dense clusters, and “o” stands for loose clusters. We have
performed K-means clustering algorithms with different seeds,
with r = 3, . . . , 6, andK = 5, . . . , 25. The overall observation
remains the same: there are about 3 tightly clustered blocks,

5We only focus on 492 blocks which contains at least 10 active hosts with
at least 10 observed flows originating from each host in a day.
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Fig. 2. Clustering and Labeling of Blocks
ID Label Intra-dist. Inter-dist. # Dominant Src. Ports Dominant Dst. Ports
1 web client-centered 0.28 1.26 83 aoSrcPort 80
2 web server-centered 0.99 1.29 13 80, 25, 443 aoDstPort
3 non-web-dominated 1.01 1.42 28 Mail, p2p (no port 80) aoDstPort
4 mixed web clients/web servers 1.1 1.59 51 80, aoSrcPort 80, aoDstPort
5 mixed web clients/servers 1.09 1.34 57 80, 25, 22 80, aoDstPort
6 diversified web clients 1.32 1.48 69 random ports 80, random ports
7 web and p2p clients 1.31 1.44 79 p2p 80 and p2p
8 mixed client behaviors 1.63 1.61 9 p2p and IM 80, p2p, mail and IM
9 mixed clients and servers 1.52 1.59 16 80, 25, IM and p2p 80,IM and p2p
10 outliers 1.64 2.13 6 special-service-ports special-service-ports

TABLE I
SUMMARY OF CLUSTERING RESULTS, R=3, K=10

and a small group of “outliers” blocks, while other blocks
belong to somewhat more loosely associated clusters. The
number of clusters and membership of blocks hinge on the
parameterK, the seeds, but less so on the dimensionr. Table I
summarizes sample clustering results. Each cluster is assigned
a “high-level” descriptive label, based on the interpretation
of common behaviors shared by most blocks in the cluster.
The interpretation is derived by manually examining the ports
with high energy (i.e., v2

ij ) in the top singular vectors of
the blocks within a cluster. The blocks within the first three
clusters are most tightly clustered, exhibiting more coherent
behaviors. They correspond to predominantly client blocks,
predominantly server blocks and blocks which belong to lab
machines (e.g., CSE and IT labs) and the supercomputing
center, where users of these machines do not routinely use
them for web surfing.

The fourth cluster contains blocks comprised of client
machines with predominantly web surfing activities together
with at least one web server which is similar to blocks within
the fifth cluster with the difference in that blocks within
the fifth cluster include mail and ssh servers in addition
to web servers. Behavior of blocks within the sixth cluster
include clients that initiate web connections using random,
yet frequently-used ports in our campus traffic. Blocks within
the next three clusters are more loosely clustered and their
behavior is characterized by far less dominant web client
activities and no dominant web server activities. These clusters
include blocks with various source and destination p2p ports,
or IM or both. The last cluster contains blocks in which their
behaviors are quite distinct due to being used for special
purposes such as PlanetLab or machines used to conduct credit
card transactions. [16] provides details of these clusters.

We conclude this section by emphasizing that the goal of
our clustering of block behaviors is not to generate a precise
classification, but to produce some high-level “descriptive”
labels and provide a “big picture” view of the block-wise
behaviors in a campus/enterprise network so as to assist

network operators and security analysts to better monitor and
manage the network. We have conducted the same study
for data collected from an enterprise network and were able
to articulate similar high-level “descriptive” labels, but these
results are not presented due to space limitation.

V. DETECTING CHANGE IN BLOCK BEHAVIOR

In this section, we show how to utilize the subspace rep-
resentation to detect change in a block’s behavior over time
which may be indicative of potentially suspicious activities.
Methods for Tracking Behavior Changes over Time.Given
a blockB, let V (t) denote the subspace representation of its
behaviors at thetth time interval (say, thetth day). We can
use the subspace distance,d(V (t), V (t+1)), to compare and
track the change in the behavior of blockB over time. Let
V (t) = [v1, . . . , vK ] and V (t+1) = [w1, . . . , wL]. Clearly, if
K 6= L, thend(V, W ) ≥ 1, a relatively large distance. Fig. 3(a)
shows an example of the subspace distance of each of the 492
blocks in two consecutive days along with|K−L|. Generally,
as|K−L| increases, the subspace distance increases, however,
for some blocks even thoughK = L, they still have relatively
large distance which implies change in activities.

To have an insight on what has changed in the block’s
behaviors as evident by the distance, we develop two methods
which provide more detailed information to quantify and track
the behavioral dynamics of blocks over time. In the first
method, we compute the distance of each singular vectorwi at
time t+1 to the entire subspaceV at timet and based on the
distance, we labelwi as eithernearly contained(distance close
to 0), partially associatedor nearly orthogonal. In the second
method, we go one step further by comparing distance between
individualwi’s to vi’s for the same block and recursively select
(and remove) pairs in the order of increasing pairwise distances
and label them in a similar fashion. (please refer to [16] for
more details).

The results of applying these two methods are shown in
Fig. 3(b) and Fig. 3(c), respectively, where the number of
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Fig. 3. Subspace distance between two consecutive days

wi’s or (w∗

i , v∗i ) pairs belong to each of the three categories
is plotted in which the x-axis is fixed in the same order
(i.e., increasing subspace distance) as in Fig. 3(a). As is
clear from Fig. 3(b) and Fig. 3(c), for blocks with very
small subspace distance allwi’s are nearly containedin V
of the previous day (the dark shaded area under the curve
in Fig. 3(b)). Furthermore, most “best-match” vector pairs
(v∗i , w∗

i )’s arenearly identical(the dark shaded area under the
curve in Fig. 3(c)), with the remaining pairs at leastpartially
similar. As the subspace increases, morewj ’s becomepartially
associatedwith V , suggesting thatwi’s capture some new
activities or changes in behaviors in the underlying hosts of
these blocks and for cases whereK 6= L, at least onewi

or at least one pair(v∗k, w∗

k) is nearly orthogonal. Having
morenearly orthogonalwi or (v∗k, w∗

k) suggests a more drastic
change in the block’s behavior.

We have performed similar analysis to compare, quantify
and track the changes in block behaviors over time using
two-week long data, and obtained qualitatively similar results
that enabled us to identify specific activities that cause major
changes. Due to space limitation, we do not present them here.

Detection of Suspicious Activities.We show how the methods
we have developed above can be used to detect potential
anomalies and attacks. We demonstrate this capability through
attack emulation, where we inject certain types of attacks
or other anomalous activities into a block with otherwise
“normal” activities. We have performed this study using a
range of anomalies includingoutside scanning, back-door
trojan activities and ddos attacks. We notice that change in
subspace representation caused by new activity in the block
is rather minor compared to the more drastic change caused
by malicious activities transforming the block’s behaviors into
completely different behaviors in which a source or a desti-
nation port suddenly becomes most significant and dominant.
Full discussion of these emulated attacks can be found in [16].

Clearly, the resulting anomaly and attack detection uncov-
ered by tracking the subspace distance of a block over time
is only meant forpost-mortemanalysis or “after-the-fact”
discovery of attacks or anomalies, notreal-time detection.
Thus, it is complementary to firewalls and other IDS (intru-
sion detection system) and IPS (intrusion prevention system)
that are commonly deployed in large campus and enterprise
networks. Our technique is particularly useful in uncovering
compromisedinside hoststhat are (frequently, periodically or
even occasionally) used to launch attacks or other illegitimate

activities targeted at the outside Internet.

VI. CONCLUSIONS

In this paper, we developed a novel methodology for
profiling and tracking network activities at theblock-level.
We applied methods to capture significant and typical host
behavioral activities of the block to help us cluster and provide
high-level descriptive labels of blocks. We also developed
methods to track and quantify changes in block’s behaviors
over time, and demonstrated the use of these methods to
identify major changes and anomalies. The proposed method
was validated using a month-long flow data captured at the
border router of a large university campus network.
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