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Abstract—Gaining a better knowledge of one’s own network knowledge will enable network operators and security estaly
is crucial to effectively manage and secure today's large,id to better tailor their monitoring system and detection $ool

verse campus and enterprise networks. Because of the large(e g. firewall configurations), and focus their attentiom o
number of IP addresses (or hosts) and the prevalent use of specific vulnerabilities or areas of problem.

dynamic IP addresses, profiling and tracking individual hogs _ ) ] -
within such large networks may not be effective nor scalable ~ Along this new direction otinderstanding oneseléeveral
In this paper, we develop a novel methodology for capturing, research studies [1]-[3] have developed algorithms ant$ too
characterizing, and tracking network activities at the block-level  for (primarily) host-leveltraffic classification and profiling.
by carefully selecting a port feature vector and capturing hie port  while these studies offer innovative methods for classiyi
activities of individual hosts within a block using a block-wise traffic or host behaviors, the analysis at the granularity of

(host) port activity matrix (BPAM). Applying the SVD low-rank . .~ L .
approximation technique, we obtain a low-dimensional subsace individual hosts (or individual IP addresses) has two major

representation which captures the significant and typical bst drawbacks in practice. First, the prevalent usage of dyaami
activities of the block. Using these subspace representatis, we |P addresses makes tracking individual hosts an infeasible
cluster and classify blocks to provide high-level descripte labels task in most networks [4], [5], since dynamic IP addresses
to assist network operators and security analysts to gain isight  are frequently reassigned to different hosts. Furtherprtbie
into the network activities. We also develop novel methodsot 5,46 number of IP addresses (e.g., our campus network has 3
track and quantify changes in blocks’ behaviors over time, ad . 16 ! .
demonstrate how these methods can be utilized to identify njar class-B SUbne_ts’ W'“_a X 10" potential hOSFS) make applylng
changes and anomalies within the network. host-level traffic profiling to every host quite expensive.
To address these limitations, in this paper, we propose and
. INTRODUCTION develop a novel methodology fdilock-levelnetwork traffic
Due to its scale and complexity, managing and securighavior profiling. An IP address block constitutes a set of
today’s large campus or enterprise networks is a challengisonsecutive IP addresses, typically in size26f say, k = 8
task. The scale and complexity comes not only from th&e., a /24 or class-C block), a unit used by a network
number of heterogeneous hosts and devices on the netwadkninistrator for IP address assignment to a subnet. More
(e.g., various servers, desktop office client machinedotsy often than not, many hosts within the same block would be
lab machines, wireless access points, routers and so (forthged for similar usage, e.g., a department block for office
but also from a wide range of diverse applications runningesktop and laptop machines, a block for lab machines, a
on these machines. Traditionally, network security hagdlgr block for student residential hall, a block with one or two
focused on identifying and preventing attacks, e.g., thhouwireless access points, and so on. As shown in [5], dynamic IP
attack signature generation or anomaly detection. Howéwver addresses are generally assigned in a block of consecttive |
scale, complexity and diversity of large campus and enisgpraddresses. Hence, by analyzing and profiling network dietivi
networks render such an approatbneless efficient, scalable at the block-leve] we can circumvent the issues caused by
and manageable. For instance, in the case of anomaly detmamic IP addresses. Furthermore, by exploiting the amil
tion, what constitutes “anomalous” activities in one netwo user activities and usage patterns within a block, we caaimbt
or part of it may be considered “normal” in another networkk more compact block-level behavior profile which captures
(or subnet). As an example, “unauthorized” peer-to-peer fiknd summarizes the significant and typical behaviors ofshost
sharing applications are not allowed on a departmentaledubwithin the block. Finally, the block-level analysis is faone
of our campus network (unless they are for research purjpjosegalable: in the case of our campus network, using /24 bjocks
on the other hand, such peer-to-peer activities are corsidewe only need to profile and track at mo&8 (= 3 x 256)
legitimate on student residential hall subnets. Hence, doem blocks as opposed % x 10° IP addresses.
effectively manage and secure a large, diverse network, onén this paper, we employ flow-level data (i.e., Netflow
must also build a good knowledge of one’s own network, e.@jata) captured at the campus border router, and utilize the
by understanding the range of applications, usage pattefft information thereof to characterize and profile traffic
and user behaviors in various parts of the network. Suglhaviors and host activities at the block level. By corrige

The work is supported in part by the National Science Fouodajrants well-known service ports, popular application ports arkbot

CNS-0626808, CNS-0626812, CNS-0905037 and the DTRA grata1-  dominant ports extracted from our flow data, we forrpat
09-1-0050. feature vectorconsisting of 2000 source and 2000 destination



ports. Using this port feature vector, a straightforwardywarhe efficacy of our proposed block-level network behavior
to summarize the behavior of a block is to simply compuferofiing methodology has been extensively evaluated and
the aggregate port distribution of the block: namely, fochea validated using a month-long netflow data collected at our
source or destination port in the port feature vector, tteampus network.
fraction of flows using the port that are generated by amelated Work. Several approaches have addressed traffic
IP address (or ho%t within the block. However, while the classification. Unlike [6]—[8] which rely on packet paylgad
aggregate port distribution captures the overall acéisitof our approach utilizes netflow data captured at a vantage poin
hosts within the block, it fails to provide adequate infotima  which is less expensive. While [1]-[3] classify traffic on
to capture, characterize, and distinguish significant gpital the host-level, our approach; on the other hand, performs
host behaviors within the block. For example, we would likgaffic classification at the block-level which is more stéda
a block-level behavior profildo enable us to meaningfully especially for large campus or enterprise networks withdar
answer questions such as the following: i) Do all hosts in thmumber of IP addresses, a good share of which are dynamic.
block behave similarly, e.g., most of them are client maesinMoreover, our scheme provides compact and summarized de-
that are used to primarily access the web? Thus, the ovestiptive labels for theignificantandtypical activities a block.
port distribution would represent the “typical” behaviof oWhile [9] uses closely related methodology of PCA to desrib
the hosts in the block. ii) Does the block contain one or structures of OD flows and utilizes the approach to detect
few dominant hosts (e.g., web servers, or “heavy-hittdentl specific types of attacks, our work compactly summarizes the
machines) that generate a majority of the flows? In othblock behaviors and its underlying activities.
words, the overall port distribution of the block is skewed More closely related work, the authors in [10] utilize
mostly by these dominant hosts, while obscuring the aw#®it host-port associations and apply probabilistic latent ss&im
of other “typical” hosts within the block. iii) Or, does théock  analysis (pLSA) to extrachctivity patternsand provide a
consist of several groups of hosts with distinct behaviars global viewof the activity patterns within the network. In this
activities, e.g., web/email servers, client machines Witavy work, we capture thsignificantanddominantactivities within
web and P2P activities? the block based on its subspace representation and provide
The ability to answer these and similar questions is inmeaningful labelling for each block .
portant to characterize, summarize and distinguish the be-The remainder of this paper is organized as follows. In
haviors of various inside (campus) blocks within a networksection Il, we describe how the port feature vector is setkct
and therefore help network operators and security analygstssection Ill, we introduce the BPAM and the SVD-based
to understand and monitor the block-level activities, detesubspace method to extract and summarize significant and
sudden changes and anomalies, and identify policy vialatio typical host behaviors within each block. In section IV, we
security breaches and malicious attacks. For this purpese, develop a clustering method to classify block-level bebayi
introduce theblock-wise (host) port activity matrigBPAM), using the subspace representations, while in section V, we
which records the activities of each host within the blocHevelop methods for tracking and quantifying block-level
on these ports, i.e., the number of flows using each of thehavior changes, and show how they can be used to identify
ports. Hence, the BPAM represents the key port activities ahomalies. The paper is concluded in section VI.
individual hosts within each block. By applying the Singula
Value Decomposition (SVD) method (to an appropriately nor- 1l. BLOCK BEHAVIORS AND PORT FEATURE VECTOR
malized and re-scaled version of BPAM), we obtain a compact
low-dimensionsubspace representatioof the behaviors of
each block. We show that as a low-rank approximation

'Port numbers are the most widely used packet/flow level
{Satures for identifying network activities. Certain (IAN

the original BPAM, this subspace representation captures {eserved or reglstere_zd) ports are alm(_)st synonymous with
he well-known services associated with these ports, e.g.,

significantandtypical activities of individual hosts within the web with TCP 80, email with TCP port 25, etc. Although

block, and can be used to answer the questions listed aboye. ; R
3 . ; . ese reserved ports may be misused by other applications
Moreover, by introducing a subspace distance metric,

e . . .
employ the subspace representations to cluster and cyias\,lg‘lafg" for penetrating firewalls), or the well-known seesc

the behaviors of various blocks of the network. The bloc e also use other ports (e.g., TCP 8080 for web), for a

X . . . majority of the hosts, the dominant activities observednasé
level behavior clustering allows us to assigterpretivelabels

: . Ports represent the well-known services. Hence, such damhin
to various blocks as to assist network operators and sgcufit

analysts in understanding the overall block-level adésit service ports often reflect the typical server/client atts

L in each block. In this section, we utilize this observation t
within the network. Furthermore, we demonstrate how to use, f | d f f
the subspace representations to track changes in bloek-1& ect a set o rquenty used ports to ornp_@_rt_ eature

éfctorfor characterizing block-level network activities. Befor

behawors_ over time, and develop two methods to quanti OIesenting this method, we first describe the datasets nsed i
and classify such changes. We also show how these meth u?study
can be explored to identify major changes and anomali€s. i .
P y ma 9 Dataset.Our study is based on a one-month data collected at
IFor simplicity, in this paper we use the temmostto denote a specific IP the. bor.der rou.ter of our campus network. The c_iata In.CIUdes
address (although an IP address may be assigned to a roptertea or some b'd|reCt'0_na|_ Cisco NetFlow records corresponding toficaf
other devices). between inside (campus) hosts (3 class B IP blocks itHP



addresses) and outside hosts. We only focus orothigoing Definition of BPAM. Given a /24 blockB, leti, 0 <i < m—1
TCP, UDP and ICMP traffic which account for more tharfwherem = 256), denote a host (more precisely an IP address)
99% of all the outgoing traffic, since incoming traffic usyall within the block. For each hostlet f; denote the total number
contain a significant amount of “noise” (e.g., scanning)iolth of (outgoing) flows generated by hastluring an observation
may not even pass the border firewall. We note that wviene windowt, say, a day. We usgto represent thgth port in
choose the block size to @ (class C IP block) throughout the port feature vector that we define in the previous section
the paper, which is the most commonly used block size fdhen f;; denotes the number of flows generated by host
our network administrators to assign IP addresses to difter using source porj (1 < 5 < 2000) or targeting destination
departments/subnets [5]. portj (2001 < j < 4000), wherey*Y fi; = 220 fij =
Port Feature Vector SelectionOur port selection method is f;. We define the BPAM for a block3 as am x n matrix

as follows. LetF; be the set of flows observed during a tim&’s = [f;;] (wherem = 256 andn = 4000). Fig.1 visually
interval ¢, say, a day (this is the time interval used in thislepicts Fz for a block with predominantly client machines
paper). We rank all the source (resp. destination) ports th{a) and a block with many web and email servers (b), where
appear inF; in terms of both the number of flows containingeach row in the figure corresponds to a host within the block,
the ports and the number of hosts with flows containingnd a dot at thgth position of theith row is plotted if and
the ports. We pick the top rankel¥ source ports andV only if f;;/fg > 0.005 and f; > 100 flows, wherefgp =
destination ports in such a manner that they cumulativelgrco Zfiﬁ fi is the total number of flows generated by all hosts
at least, say 95%, of all flows as well as of all “active” hostin the block. The left half (1-2000) of the x-axis represents
(an IP address which generates at least one flow during the source ports, where=2000 representall other source
time intervalt). Through experiments using our flow datasetgorts @oSrcpor}, and the right half (2001-4000) represents
we decide onV = 1999, which yields1999 top source ports the destination ports, where=4000all other destination ports
as well as1999 top destination’s and these ports cover nearly(aoDstPor). These figures visually illustrate that these blocks
98% of all the flows and close to 100% of all “active” hostsindeed exhibit distinct behaviors characteristics.

In addition, we group all remaining source/destinatiortpor To reduce the impact of “heavy-hitter hosts” and “inac-
as if they were special “virtual” source/destination pprtsive” hosts within a blockB, we introduce an appropriately
referred to as “all other source/destination ports” &mSr- normalizedand re-scaledversion of Fg defined asAg :=
cPortaoDstPortin short). We define a000-dimensionport  [s;p;jlmxn = [sifij/filmxn- Pi = fi/fB is the fraction of
feature vectorPF'V = [porty, ..., portsooo], where forl < flows generated by host and entp = — 3 ", p;logp;,

Jj < 1999, port; refers to one of the top 1999 source portd < entg < logm: is the (flow activity) entropyand the
(ordered in the increasing number of the port numbers), aolbserenty is to the upper bountbg m, the more uniformly
portapoo refers toaoSrcPorf and for2001 < j < 3999, port; distributed are the flows among the hosts; whereas the closer
refers to one of the top 1999 destination ports (ordereden thntg is to 0, the more skewed is the flow distribution among
increasing number of the port numbers), aratioo refers the hostss; := entg/(—logp;) if p; > 0, ands; = 0 other-

to aoDstPort wis€’. We see that the smallgx is, the smallers; is. On the

These dominant ports indeed reveal the popular activitiether hands; only grows inverse logarithmically withfs/ f;
in each block. For example, in blocks belonging to certaif@approximately logarithmically withf;), thus dampening the
department subnets which maintain their own web servers agftect of extremely active hosts.
email servers, service activities like web (80 and 443)(88) Extracting Typical Host Behaviors from BPAM. Given
and email (25 and 993) account for a high percentage of flowsis definition of BPAM, we apply SV} to A to extract
In contrast, in residential halls blocks, client actiétere more “significant” and “typical” host behaviors of a block. We
popular, with web (80 and 443) and messenger (AOL for 51@&note the rank-K approximation of the BPAM matrikg

and MSN for 1863) being the dominant ports. as: A ~ UgSgVE, whereUx = [u1, - ,uk], Xx =
diagloy, -+ ,ok], andVi = [v1, -+ ,vk].

I1l. BLOCK-WISE HOST PORT ACTIVITIES AND SUBSPACE Intuitively, the right singular vectorsy;’s, provide anor-

REPRESENTATION thogonalrepresentation of the port activities of the hosts

In this section, we introduce thblock-wise (host) port within a block. In a sense, eaeh can be viewed as wrtual
activity matrix (BPAM) to represent the port activities ofhost, wherduv;;| (orvfj) measures the magnitude of activities
individual hosts within a block. Using the SVD method, wen portj by this virtual host (note thaZ:?:1 vfj = 1; hence,
derive a low-rank approximation to the BPAM, and thus obtaifv? } can be viewed as a probability distribution). Unlike the
a low-dimensionsubspace representatioof the behaviors port activities of then original (real) hosts, then virtual hosts
of each block. Applying this technique to our campus flowave orthogonal port behaviors (i.e.pfv; = 0 for i # j).
data, we demonstrate that these subspaces indeed capure th
significant and typical activities of individual hosts within *Here we implicitly assume that each block has at least wiveatiosts,

a block that can be used to meaningfully characterize amqjsit{\’;éf Lfor all s, As — logp, is the entropy of an individual hosf
. . . . 2 y s; measures the contribution of individual hosts’ entropeshe
distinguish various block behaviors within a network. (average) entropy of the block.

4We conducted the same experiments using robust PCA [11], 4h@ the
2We refer to ICMP type numbers as the port numbers for ICMFidtaf results are similar, possibly due to the normalization gssowhich eliminates
e.g., ICMPO represents ICMP type 0 echo reply traffic. the effect of outliers.
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Fig. 1. Block-wise host port activities for two example tecand their subspace representations.

We refer to thesubspacespanned by the firsi' dominant opposite signs) to that of,. Hence, the subspace spanned

virtual hosts,v, ..., vk, as a subspace representation of thay the top three singular vectors captures the prevaleméser

(significant and typical) behaviors of a block. behaviors of the hosts within the block, where web, emat, an

Significant Block Behaviors and Interpretations We em- ssh server activities dominate.

ploy the standard scree plot method to chodse With

e = 0.05, most blocks have at least 95% of the energy in

the original BPAM captured by the first few singular values. The examples in the previous section show that blocks

For the two blocks in Fig. 1(a,b), we obtaii = 3 for both with hosts running different applications exhibit distirze-

of them. In Figs. 1(c,d), we plot the “energy” of the ports;, havioral characteristics, and the principal subspace igesv

in the top three singular vectors; (the top panel)p, (the a succinct way to extract, characterize and represent the

middle panel), and; (the bottom panel) for both blocks.  significant and typical behaviors of a block. In this sec-
For the client-centered block in Fig. 1(c), we first note thdton, we compare and classify block-wise behaviors based

most points with high energy (i.e., with large non-zero ealuon their subspace representations and group them based on

v%) in vi-v3 are concentrated in the destination port rangéeir behaviors. Since’() is the resulting subspace repre-

[2001-4000], except for one major point gt = 2000 (in Sentation of blockB;, we can utilize the subspace distance

v1) corresponding t@oSrcPort In addition toaoSrcPorf the metric in [13] as follows: For anyK;-dimensional V(1)

other two largest points in; correspond to destination port 80and K,-dimensionalV’ () subspaces ik, let v{”, ... 7’01(;2

(j = 2020) and port 443 { = 2033). Hence,v; captures the be an orthonormal basis of/(?), i = 1,2. The sub-

web-related client activities of the hosts. Whereaszontains space distancéetweenV ) and V® is d(V(), V() =

a number of large nonzero points corresponding to variou _ K Kz (1) (2)\y2

destination service ports such as AOL Instant Messaging (II\*{i,Tt1 a;(h(fls’ﬁi)pac%iailst%ézé(<:j}iefir’1?d >a)\b'ove[1i:s3] ashsl\j\(/jid ean

port 5190 § = 3728), in add_ltlon to destl_nauon ports 80distance function, ands independent of the choices of the
and 443 (when the same point appears in bethand v-, rthonormal basesy'® NO)
15 Uk,

) . . 0

it has opposite signs); also corresponds to other IM, such . o _

as YahopopMesser?ger)J;ort 5050 £ 3F;21) MSN Messenger Usmg_the above definition, we compute the pairwise sub-
port 1863 § = 3004) in addition to remote desktop port 3389; (laoalflfs d;;agﬁce)v\?ﬁtivxegig a;é)p\?\;;]ig:] t\t;iesu4ag|’|§/ zﬁe)ﬁ?g g;gups
(j = 3561). Therefore, the subspace spanned by the top th gtésblocks that have shorter distances and have similar host

singular vectors captures the prevalent client behavibtheo . .

o .. hehaviors. We then apply spectral clustering [14], [15]ewreh
hosts within the block, where web-related and IM activitie : : 2L
are most significant and typical. the corresponding eigenvalues are shown in Fig. 2(b) and the

- clustering results shown in Fig. 2(c) fdt® (r = 3).
In contrast, for the server-centered block in Fig. 1(d), mos The 10 clusters are represented by either “0” or “+” with

points with high energy in botl; and v, are concentrated different colors, where “+" stands for dense or seemingly

m Tefource port rag_ge [1'2080]&) exclept for ;[]he p(r)]'nt ﬁtense clusters, and “0” stands for loose clusters. We have
J = 000 corresponding toaoDstPort In vy, the other performed K-means clustering algorithms with differerads
major nonzero points correspond to major source Servigsin - — 3 6. andK — 5 25. The overall observation

ports .SUCh as source ports 80 € 11) in vy, wherea_s,vg_ remains the same: there are about 3 tightly clustered blocks
contains a humber of considerably large nonzero points in

corresponding to various source ports Sl.JCh as email Port 25We only focus on 492 blocks which contains at least 10 acta&tshwith
(j = 8), and ssh port 22j(= 7). v has similar ports (with at least 10 observed flows originating from each host in a day.

IV. CLASSIFYING BLOCK BEHAVIORS
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matrix.
Fig. 2. Clustering and Labeling of Blocks
ID Label Intra-dist. | Inter-dist. # Dominant Src. Ports | Dominant Dst. Ports
1 web client-centered 0.28 1.26 83 aoSrcPort 80
2 web server-centered 0.99 1.29 13 80, 25, 443 aoDstPort
3 non-web-dominated 1.01 1.42 28 | Mail, p2p (no port 80) aoDstPort
4 mixed web clients/web server: 1.1 1.59 51 80, aoSrcPort 80, aoDstPort
5 mixed web clients/servers 1.09 1.34 57 80, 25, 22 80, aoDstPort
6 diversified web clients 1.32 1.48 69 random ports 80, random ports
7 web and p2p clients 1.31 1.44 79 p2p 80 and p2p
8 mixed client behaviors 1.63 1.61 9 p2p and IM 80, p2p, mail and IM
9 mixed clients and servers 1.52 1.59 16 80, 25, IM and p2p 80,IM and p2p
10 outliers 1.64 2.13 6 special-service-ports | special-service-ports
TABLE |

SUMMARY OF CLUSTERING RESULTS R=3, K=10

and a small group of “outliers” blocks, while other blocksietwork operators and security analysts to better monitdr a
belong to somewhat more loosely associated clusters. Thanage the network. We have conducted the same study
number of clusters and membership of blocks hinge on ther data collected from an enterprise network and were able
parametefs, the seeds, but less so on the dimensicfable | to articulate similar high-level “descriptive” labels, thihese
summarizes sample clustering results. Each cluster igress$i results are not presented due to space limitation.

a “high-level” descriptive label based on the interpretation

of common behaviors shared by most blocks in the cluster. V. DETECTING CHANGE IN BLOCK BEHAVIOR

The interpretation is derived by manually examining thetpor | this section, we show how to utilize the subspace rep-
with high energy (i.e., v};) in the top singular vectors of resentation to detect change in a block’s behavior over time
the blocks within a cluster. The blocks within the first thregpich may be indicative of potentially suspicious actisti
clusters are most tightly clustered, exhibiting more ceher pjethods for Tracking Behavior Changes over Time.Given
behaviors. They correspond to predominantly client blpcks block B, let V(*) denote the subspace representation of its
predominantly server blocks and blocks which belong to 13lshaviors at theth time interval (say, theth day). We can
machines (e.g., CSE and IT labs) and the supercomputifg the subspace distanc&) ), V(#+D), to compare and
center, where users of these machines do not routinely ysg&-k the change in the behavior of blodk over time. Let
them for web surfing. VO = [vy,..., 5] and VD = [wy, ..., wg]. Clearly, if

The fourth cluster contains blocks comprised of clienk £ 1, thend(V, W) > 1, a relatively large distance. Fig. 3(a)
machines with predominantly web surfing activities togethehows an example of the subspace distance of each of the 492
with at least one web server which is similar to blocks withinlocks in two consecutive days along withi — L|. Generally,
the fifth cluster with the difference in that blocks Withinas|K_L| increases, the subspace distance increases, however,
the fifth cluster include mail and ssh servers in additiofor some blocks even thougli = L, they still have relatively
to web servers. Behavior of blocks within the sixth clustqarge distance which implies change in activities.
include clients that initiate web connections using random To have an insight on what has changed in the block’s
yet frequently-used ports in our campus traffic. Blocks mith behaviors as evident by the distance, we develop two methods
the next three clusters are more loosely clustered and thgiiich provide more detailed information to quantify anccka
behavior is characterized by far less dominant web clieffe behavioral dynamics of blocks over time. In the first
activities and no dominant web server activities. Thesstels method, we compute the distance of each singular vectait
include blocks with various source and destination p2psportime ¢ + 1 to the entire subspadé at timet and based on the
or IM or both. The last cluster contains blocks in which theidistance, we labeb; as eithenearly containeddistance close
behaviors are quite distinct due to being used for spectal0), partially associatedr nearly orthogonalIn the second
purposes such as PlanetLab or machines used to condudt crig@ithod, we go one step further by comparing distance between
card transactions. [16] provides details of these clusters individualw;’s to v;’s for the same block and recursively select

We conclude this section by emphasizing that the goal ind remove) pairs in the order of increasing pairwise dista
our clustering of block behaviors is not to generate a peeciand label them in a similar fashion. (please refer to [16] for
classification, but to produce some high-level “descrigtiv more details).
labels and provide a “big picture” view of the block-wise The results of applying these two methods are shown in
behaviors in a campus/enterprise network so as to ass$ig. 3(b) and Fig. 3(c), respectively, where the number of
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Fig. 3. Subspace distance between two consecutive days

w;'s or (w},v;) pairs belong to each of the three categorieactivities targeted at the outside Internet.
is plotted in which the x-axis is fixed in the same order
(i.e., increasing subspace distance) as in Fig. 3(a). As is VI. CONCLUSIONS

clear from Fig. 3(b) and Fig. 3(c), for blocks with very In this paper, we developed a novel methodology for
small subspace distance ali;’s are nearly containedn v  profiling and tracking network activities at thalock-level

of the previous day (the dark shaded area under the culve applied methods to capture significant and typical host
in Fig. 3(b)). Furthermore, most “best-match” vector pairgehavioral activities of the block to help us cluster andvjite
(vF,w})'s arenearly identical(the dark shaded area under th&igh-level descriptive labels of blocks. We also developed
curve in Fig. 3(c)), with the remaining pairs at leastrtially methods to track and quantify changes in block’s behaviors
similar. As the subspace increases, morés becomepartially —over time, and demonstrated the use of these methods to
associatedwith 7/, suggesting thatv;’s capture some new identify major changes and anomalies. The proposed method
activities or changes in behaviors in the underlying ho$ts was validated using a month-long flow data captured at the
these blocks and for cases whefieé # L, at least onew; border router of a large university campus network.

or at least one paifv},w;) is nearly orthogonal Having

morenearly orthogonalv; or (v}, w;) suggests a more drastic
[1] K. Xu, Z. Zhang and S. Bhattacharyya. Profiling Internetckbone

Change in the block's be-ha-wor. ) ) traffic: behavior models and applications. Pmoc. of ACM SIGCOMM
We have performed similar analysis to compare, quantify August 2005.

and track the changes in block behaviors over time using! T Karagiannis, K. Papagiannaki and M. Faloutsos. BLiNdLltilevel
. . . traffic classification in the dark. IRroc. of ACM SIGCOMM August
two-week long data, and obtained qualitatively similamuitss 2005,

that enabled us to identify specific activities that caus@ma [3] K. Xu, Z. Zhang, and S. Bhattacharyya. Internet traffibdeor profiling

changes. Due to space limitation, we do not present them here for network security monitoring. IfEEE/ACM Trans. Netw.2008.
4] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. \Wber.

. . I [
Detection of Suspicious ActivitiesWe show how the methods How dynamic are IP addresses?Rroc. of ACM SIGCOMM2007.
we have developed above can be used to detect potential Y. Jin and E. Sharafuddin and Z. Zhang. Identifying dyfaff® address
anomalies and attacks. We demonstrate this capabilityitfiro ggﬁl'l‘scze,\:ggggtggg'%’ through background scanning Tralii Proc. of
attack emulation where we inject certain types of attacksig) p. Haffner, S. Sen, 0. Spatscheck, and D. Wang. ACAS: wated
or other anomalous activities into a block with otherwise construction of application signatures. Broc. of MineNet 2005.
“normal” activities. We have performed this study using a7l A. Moore and D. Zuev. Internet traffic classification ugibayesian
f l includi tsid inaback-d analysis techniques. IRroc. of ACM SIGMETRICS2005.

rar_]ge 0 _a_n_oma|es Includingutside Sc_ann'n'g ack- OOI‘_ [8] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Trafficlassification
trojan activities and ddos attacksWe notice that change in through simple statistical fingerprinting. ACM SIGCOMM Comput.
subspace representation caused by new activity in the block EOEWT#H- R;Mg7(1)15—16,k2_0&7-c Ia. C. Diot. E. Dokécavk. and
H H H . Laknina, K. Papaglannaki, . Crovella, C. Diot, E. Do CZyK, an
IS rath_er_ minor _co_r_npared to the_ more draSt,IC Chang_? Causg’éj N. Taft. Structural analysis of network traffic flows, 2004.
by malicious ?C“Wt'es trans_formmg th_e block’s behasiorto [10] E. Sharafuddin, Y. Jin, N. Jiang, and Z. Zhang. Siftihgptigh network
completely different behaviors in which a source or a desti- data to cull activity patterns with heaps. Froc. of ICDCS 2010.

; inifi ; ] H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sentitiof pca for
nat|or_1 port .SUddenIy becomes most S|gn|f|cant and do.mlna[ﬂﬂ' traffic anomaly detectionrSIGMETRICS Perform. Eval. Re85(1):109—
Full discussion of these emulated attacks can be found i [16 15 2097,

Clearly, the resulting anomaly and attack detection uncoi2] B. Rubinstein et al. ANTIDOTE: Understanding and defieg against
poisoning of anomaly detectors. Rroc. of ACM IMG 2009.
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