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Abstract—The Internet host cardinality, defined as the number
of distinct peers that an Internet host communicates with, is
an important metric for profiling Internet hosts. Some example
applications include behavior based network intrusion detection,
p2p hosts identification, and server identification. However, due
to the tremendous number of hosts in the Internet and high speed
links, tracking the exact cardinality of each host is not feasible
due to the limited memory and computation resource.

Existing approaches on host cardinality counting have pri-
marily focused on hosts of extremely high cardinalities. These
methods do not work well with hosts of moderately large
cardinalities that are needed for certain host behavior profiling
such as detection of p2p hosts or port scanners. In this paper,
we propose an online sampling approach for identifying hosts
whose cardinality exceeds some moderate prescribed threshold,
e.g. 50, or within specific ranges. The main advantage of our
approach is that it can filter out the majority of low cardinal ity
hosts while preserving the hosts of interest, and hence minimize
the memory resources wasted by tracking irrelevant hosts. Our
approach consists of three components: 1) two-phase filtering
for eliminating low cardinality hosts, 2) thresholded bitmap for
counting cardinalities, and 3) bias correction. Through both
theoretical analysis and experiments using real Internet traces, we
demonstrate that our approach requires much less memory than
existing approaches do whereas yields more accurate estimates.

I. I NTRODUCTION

The Internet hostcardinality, defined as the number of
peers that a host communicates with, is an important metric
for host profiling. Identifying hosts with high cardinalities
in specific ranges is useful for many network operations
such as traffic classification and intrusion detection, as they
are often associated with various network events of interest.
For instance, when a worm scans the Internet to propagate
itself, we can observe traffic originated from the IP address
hosting the worm towards a large number of peers. As another
example, hosts running p2p applications usually originateand
receive traffic from amoderatelylarge number of peers.

One major challenge for identifying hosts with high car-
dinalities in specific ranges is the scalability problem dueto
the extraordinary number of hosts in the high speed Internet,
which makes it either too slow or too expensive to track
the statistics of individual host exactly. This is especially
true when the algorithm needs to be implemented inside the
router or firewall with tight memory constraints. In addition,
the identification algorithm is often required to work in the
online setting due to the huge traffic volume on high speed
Internet links, i.e. on a sequence of source-destination pairs
extracted from the traffic stream1, where each record can only

1A traffic stream can be a packet trace or a flow (aggregated packets, e.g.
NetFlow) trace. Each pair consists of the source and destination addresses of
the corresponding packet/flow. Notice that pairs may duplicate in the trace.

be observed once.
Being aware of the fact that most of the host profiling

applications can work just fine with approximated statistics,
existing work in literature have been proposed on using
sampling based method to identifysuperspreaders, i.e., hosts
with very large cardinalities defined by a thresholdt. By
using a simple pair-based sampling2, only source hosts of the
sampled pairs will be tracked for their cardinalities [15],[18].
It is easy to show that, with a pair sampling rate ofr, the
chance that a host of cardinalityN whose corresponding pairs
will be sampled at least once isp = 1−(1−r)N . For example
when the cardinality is 1, the probability is onlyr.

Although a simple pair-based sampling maybe sufficient for
eliminating hosts with low cardinalities in the identification
of super-spreaders, it is not sufficient for applications where
the thresholds are much smaller such as detecting p2p hosts
(e.g., cardinality within [50, 500]), as too much memory are
wasted to track hosts with low cardinalities. This is a result of
two factors: a larger pair sampling rater (so that hosts with
cardinalities abovet would not be erroneously eliminated),
and the Zipf or power law distribution of the number of hosts
with small cardinalities as evident in real Internet traces(see
Fig. 1(a)). Fig. 1(b) demonstrate this phenomenon by showing
the cumulative probabilities of the host cardinalities from
sampled pairs, for the sampling ratesr = 0.1, 0.01, 0.001.
For instance, whenr = 0.01, more than 75% hosts that are
being tracked has a cardinality less than 20.

A. Overview of Our Approach

In this paper, we present a new algorithm which is capable
of identifying high cardinality hosts defined by amoderately
large thresholdt or within predefined threshold ranges. Our
main idea is to use atwo-phase filteringmethod for eliminating
the majority of low cardinality hosts, so that we can reserve
more resource for each remaining candidate to obtain a more
accurate estimate. Hence our method only needs a fraction of
memory as compared to existing approaches, and is not limited
to very high cardinality thresholds as previous approachesdo.

A schematic representation of our overall approach is shown
in Fig. 2. Given a network stream, we first apply a two-
phase filtering (pre-filtering and parallel filtering withK
dependent pair samplers) method to eliminate the majority of
low cardinality hosts. Only those hosts that have passed the
two-phase filtering will become candidates and are subject to

2Pair-based sampling is referred to as distinct sampling on pairs, i.e. we
sample a pairf if (hash(f) mod C)/C < r, whereC is a large constant
andr is the sampling rate. Using pair-based sampling, only unique pairs are
considered during cardinality counting.



(a) Frequency distribution of the host cardinalities.
Notice both axes are in log scale, and hence that
the probability distribution is Zipf-like. The dotted
line is a linear regression curve for the frequencies.

(b) Cumulative probabilities of the host cardinali-
ties from sampled source-destination pairs, with the
sampling rater = 0.1, 0.01, 0.001, respectively.

Fig. 1. Characteristics of a university traceTR1 with 6.14 million hosts, which is studied in detail in
Section IV. See Table I for a detailed description.

Fig. 2. A schematic representation of our
approach.

further cardinality counting. We then apply a memory efficient
thresholded bitmap algorithm for estimating the cardinalities
of candidate hosts and thereafter identify high cardinality ones
above thresholdt or within specific ranges. In addition, we
notice that, in the online setting, our cardinality estimates
could be biased as there might be lost pairs for each candidate
host due to the filtering and counting process. To account
for the lost pairs, we obtain unbiased cardinality estimates
simultaneously for a small random sample of hosts, and use
the average number of missed pairs of those hosts which have
both kinds of cardinality estimates for bias correction.

Our main contribution can be summarized as follows:
1) We develop a memory efficient, sampling based, two-

phase filtering approach to eliminate the majority of low
cardinality hosts.

2) We propose a noveldependent pair samplingscheme
that we use in the two-phase filtering to significantly reduce
low cardinality hosts. We analyze the sampling performance
theoretically, and demonstrate the effectiveness of dependent
pair sampling over independent pair sampling.

3) We develop a thresholded bitmap algorithm to estimate
the cardinalities of candidate hosts after they passed the two-
phase filtering. Our method extends the work in [17], and
works especially well at identifying hosts with cardinalities
above a moderately large threshold or within specific ranges.

4) We derive an estimate of the average number of lost
pairs for high cardinality hosts, due to two-phase filteringand
thresholded bitmap. Such estimate requires very little extra
memory, and can correct the bias in the original estimates. To
our knowledge, we are the first to address this bias issue.

5) We demonstrate through experiments using real Internet
traces that our method requires much less memory than pre-
vious approaches do whereas yields more accurate estimates.

The rest of the paper is organized as follows. In Section II,
we introduce a memory-efficient two-phase filtering scheme to
eliminate the majority of low cardinality hosts. In SectionIII
we discuss the thresholded bitmap algorithm for cardinality
estimation and present our bias correction method. We show
the effectiveness of our approach with experiments on real
Internet traces in Section IV. Finally, we discuss other related

work in Section V and conclude the paper in Section VI.

II. T WO-PHASE FILTERING FOR ELIMINATING LOW

CARDINALITY HOSTS

In this section, we describe a two-phase filtering approach
for eliminating the majority of low cardinality hosts: onlyhosts
that have passed this stage are selected for further counting.

A. Two-Phase Filtering

The essence of our two-phase filtering process is toselect
hosts by sampling pairsand to increase the filtering power
toward low cardinality hosts by combining multiple pair
samplers. To select hosts by sampling pairs, for each pair
sampler, we record a host at the first time that one of its pairs
is sampled, and let the remaining pairs from that host (if any)
pass the sampler directly. Only hosts that are selected by all
pair samplers will become candidates for further counting.

Our two-phase filtering approach includes apre-filtering
step and aparallel filtering step. The pre-filtering step consists
of a single pair sampler with rater0, which is designed to
effectively shrink the size of candidate hosts before the parallel
filtering step (to remove hosts with very low cardinalities,e.g.
≤ 1/r0). As a result, the total required memory is dramatically
reduced3. Pairs passing through the pre-filtering step are then
sent to the parallel filtering step, where the candidate hosts are
further reduced by usingK parallel pair samplers, each with
a pair sampling rater. We assign a Bloom Filter [3] to each
of theK +1 pair sampler to record the sources hosts of those
sampled pairs. Pairs which have survived both filtering steps
(i.e. their source addresses present in allK +1 Bloom Filters)
are subject to further counting.

The idea of usingK, K ≥ 2, parallel pair samplers for
eliminating low cardinality hosts comes from the following
observations4. Given a host with cardinalityN , the probability
that at least one of its pairs will be sampled by one pair
sampler with rater is p1(N) = 1 − (1 − r)N . With K

3Due to space limitation, we do not demonstrate it here, but refer the readers
to the extended version of the paper[1]

4To analyze the host selection probability for parallel sampling, we tem-
porarily ignore the effect of false positives caused by the Bloom Filter.



independent pair samplers, the probability that the host is
selected by allK samplers is now reduced to

pK(N) = p1(N)K = (1 − (1 − r)N )K (1)

which is significantly less for a low cardinality host with
a small p1(N). On the contrary, for a high cardinality host
whosep1(N) is close to 1,pK(N) will remain close to 1. As
an example, assumeK = 2 andr = 0.1. Now for a host with
cardinality 1, the probability that it will be selected is reduced
to p2(1) = r2 = 0.01 from 0.1 of using one pair sampler.
For a host with cardinality 2, the probability is reduced to
p2(2) = (2r − r2)2 = 0.036 from 0.19. But whenN = 50
such thatp1(N) = 0.995, p2(N) = 0.99. Realizing that in
typical Internet traffic traces, the number of low cardinality
hosts dominates, thus, usingK parallel pair samplers will
significantly reduce the number of low cardinality hosts.

Though independent sampling method is capable of reduc-
ing low cardinality host, in this paper, we propose an alter-
native dependent sampling method which is computationally
cheaper and better at eliminating low cardinality hosts.

The new dependent sampling approach is presented as
follows. AssumeKr ≤ 15. For each pair, first we sample
it with a rate Kr. For each sampled pair, we then hash it
uniformly to an integeri between1 and K and record the
source host of that sampled pair in theith Bloom Filter,
1 ≤ i ≤ K. Now it is easy to see that each pair sampler
i still has a sampling rate ofKr × 1/K = r. The difference
of this from usingK independent pair samplers is that now
sampled pairs among theK samplers are negatively correlated,
as each pair can only be sampled once by theK parallel
samplers. Therefore, a host that appears in allK Bloom Filters
will have a cardinality of at leastK, which implies that we
will eliminate all hosts that have cardinalities smaller thanK.
Compared to Eq. 1 forK independent sampling, we have the
following results forK dependent sampling:

Theorem 1:For a host with cardinalityN , the host sam-
pling probability forK dependent pair samplers is:

pK(N) =

K∑

j=0

(
K

j

)
(−1)j(1 − jr)N (2)

Furthermore, for the same values ofK, N such thatK, N >
1, it can be shown thatpK(N) is always less for dependent
sampling than independent sampling.

The proof is provided in the appendix. For dependent
sampling, whenK ≤ 4, plugging into Eq. (2), we have

p1(N) = 1 − (1 − r)N ,

p2(N) = 1 − 2(1 − r)N + (1 − 2r)N ,

p3(N) = 1 − 3(1 − r)N + 3(1 − 2r)N − (1 − 3r)N

p4(N) = 1 − 4(1 − r)N + 6(1 − 2r)N − 4(1 − 3r)N

+ (1 − 4r)N (3)

Fig. 3 plots the host selection probability against its car-

5The scheme can be adapted easily whenKr > 1 by splitting Kr into
multiples ofr that are smaller than 1.

Fig. 3. Host selection probability vs. cardinality.

dinality, for both kinds of parallel sampling withr = 0.1,
and K ≤ 4. It is easy to see that the rise of host selection
probabilities is fairly fast when the cardinality increases. For
large cardinalities (say beyond 40), all selection probabilities
are close to 1 (It is easy to show that when the cardinality
N approaches infinity, the difference between independent
and dependent sampling converges to 0). However, for small
cardinalities, the selection probabilities are much less using
dependent sampling method than those using independent
method. In other words, the dependent sampling approach is
capable of eliminating more low cardinality hosts.

Another benefit from the dependent sampling scheme is the
increase of per-pair processing speed. For each pair, theK
independent sampling requiresK hash operations. Instead,
only one hash computation is needed usingK dependent
samplers. Hence, in our subsequent experiments, we focus on
dependent sampling approach due to its superior performance.

Algorithm 1 Two-phase Filtering
1: Parameters: Pair sequenceF0, r0, r, K, C;
2: Initialization: K + 1 Bloom FiltersBF0, · · · , BFK , hash tableHF .
3: for eachf ∈ F0 do
4: ExtractsrcAddr, dstAddr from f ;
5: if srcAddr ∈ HF then
6: Let f pass the two-phase filtering for cardinality estimation;
7: else
8: Generate a random numberp = (hash(f) mod C)/C;
9: if srcAddr 6∈ BF0 andp ∈ [0, r0) then

10: InsertsrcAddr into BF0;
11: else if srcAddr ∈ BF0 andp ∈ [r0, r0 + K × r) then
12: InsertsrcAddr into BFi, i = ⌈r−1(p − r0)⌉;
13: if srcAddr appears in allBFj , j = 1, · · · , K then
14: Add srcAddr to hash tableHF ;

A detailed description of our two-phase filtering is presented
in Algorithm 1. We use a hash tableHT to store all candidate
hosts that have passed the two-phase filtering and are subject to
counting6. Assuming thatr0 + Kr < 17. For each incoming
pair f with source host addresssrcAddr, first we check if
srcAddr is in tableHT . If yes, we let it directly pass the two-
phase filtering and start counting its cardinality. Otherwise,
we check ifsrcAddr is present in the Bloom FilterBF0 to
see whether that host has already passed the pre-filering step.
Meanwhile, we generate a uniform random numberp ∈ [0, 1]
based onf . If srcAddr is not inBF0 andp ≤ r0, this implies

6The hash tableHT will be further used during counting step and it
facilitates the process for checking sampled hosts.

7The scheme can be easily adapted otherwise by splittingr0 + Kr into
unit of 1s.



that f is sampled by the pre-filtering, so we recordsrcAddr
in BF0. If srcAddr is in BF0 and r0 ≤ p ≤ r0 + Kr,
this implies thatf is sampled by theith of theK dependent
pair samplers, wherei = ⌈(p − r0)/r⌉. We storesrcAddr in
BFi and check whether or notsrcAddr is present is allK
Bloom FiltersBFj , 1 ≤ j ≤ K. If so, we add it toHT and
start counting its cardinality in the remaining trace. Notice that
since the sampling rate for all theK parallel pair samplers are
the same, we can allocate the same amount of memory for all
the Bloom Filters. In addition, we only need two sets of hash
functions for Bloom Filter implementation, one forBF0, the
other can be shared byBFj , 1 ≤ j ≤ K.

B. Number of Unique Pairs in Filtering

In the online setting, we only see each record once. There-
fore, any pair entering the two-phase filtering may never
appear later for cardinality counting, which will result in
estimation bias. For a host with cardinalityN , let LK(N)
be the number of distinct pairs observed in the trace until the
host successfully passes the two-phase filtering. Obviously, we
do not like a large value ofLK(N) with respective toN , since
a largeLK(N) is likely to correspond to a high bias (we call
it filtering bias). Because it is very difficult to track the exact
value ofLK(N), in this section, we derive bounds forLK(N).

It is obvious that LK(N) ≤ min(N, LK(∞)), where
LK(∞) is the number of distinct pairs seen in the two-phase
filtering before a host with infinite number of pairs passes the
filtering process. Notice whenN is large enough such that the
host selection probability is close to 1,LK(N) ≈ LK(∞).
To simplify the notation, let us redefineLK ≡ LK(∞). The
following discussions now focus onLK .

For a host with infinite pairs, letL(0)
K and L

(1)
K be the

number of distinct pairs seen during pre-filtering and parallel
filtering, respectively. We have the following two results.

Corollary 1: For n ≥ 1,

P (L
(0)
K = n) = (1 − r0)

n−1 − (1 − r0)
n, (4)

P (L
(1)
K = n) =

K∑

j=0

(
K

j

)
(−1)j+1jr(1 − jr)n−1,

and E(L
(0)
K ) = r−1

0 , (5)

E(L
(1)
K ) =

K∑

j=1

(−1)j+1

(
K

j

)
(j−1r−1 − 1).

The proof utilizes the following two facts. First notice that
L

(1)
K = n implies that the host finally appears in allK Bloom

Filters aftern but notn − 1 pairs, this implies that

P (L
(1)
K = n) = pK(n) − pK(n − 1). (6)

Second, notice from Eq. (6), the selection probabilitypK(n) of
a host with cardinalityn is 1 minus the cumulative distribution
of L

(1)
K , and therefore,E(L

(1)
K ) =

∑∞

n=1(1 − pK(n)). Now
the corollary can be easily shown applying Eq. (2).

Lemma 1:max(L
(0)
K , L

(1)
K ) ≤ LK ≤ L

(0)
K + L

(1)
K , so

E(max(L
(0)
K , L

(1)
K )) ≤ E(LK) ≤ E(L

(0)
K ) + E(L

(1)
K ). (7)

Furthermore, the cumulative distribution ofLK can be
bounded by that ofmax(L

(0)
K , L

(1)
K ) and L

(0)
K + L

(1)
K for

independentL(0)
K andL

(1)
K , which can be computed using (5).

For the host with infinite pairs, letLK ,L
(0)
K andL(1)

K be the
set its pairs observed in the two-phase filtering, pre-filtering
and parallel filtering, respectively. The lemma can be easily
derived using the simple set relation:LK = L

(0)
K ∪ L

(1)
K .

The reason that we can only derive bounds regarding toLK

is because we do not know how the distinct pair setsL
(0)
K

andL(1)
K interact with each other. Think of two scenarios. In

the first scenario, pairs of a source host appear in order, i.e.,
duplicates from 1st unique pair, duplicates from 2nd unique
pair, and so on. In this case,L(0)

K andL(1)
K are exclusive. In the

second scenario, each distinct pair duplicates infinite number
of times. In this caseL(0)

K ⊂ L
(1)
K .

III. C OUNTING CARDINALITIES OF CANDIDATES

Once a host has passed the two-phase filtering and becomes
a candidate, we start counting its cardinality. In this section, we
firstly present the thresholded bitmap algorithm for cardinality
estimation. In the later part of this section, we derive an
estimate of the average missed pairs which we will use for
correcting bias in cardinality estimates.

A. Range Estimation Using Thresholded Bitmap

To identify high cardinality hosts defined by thresholdt,
we use the virtual bitmap algorithm proposed in [9]. It is
established in [9] that for a target cardinality valuet, the virtual
bitmap is the least memory consuming scheme for counting
cardinalities among the competing algorithms, with an optimal
bitmap sampling ratef1 = 1.594/n. Analysis shows that the
relative accuracy of the virtual bitmap estimate changes less
on the right-side of the optimal sampling rate compared to the
left-side. To account for the missed pairs of candidate hosts
due to the two-phase filtering in the online setting, we use a
somewhat smaller virtual bitmap sampling rate

f1 = 1.594/(t− E(L
(1)
K ) − E(L

(0)
K )), (8)

whereE(L(0)), E(L(1)) can be computed using Eq. (5), and
from Lemma 1,L(0)

K +L
(1)
K is the maximum number of missed

pairs due to the two-phase filtering.
Although a single virtual bitmap is sufficient to identify

high cardinality hosts, the cardinality estimates tend to be
inaccurate if they fall outside of a narrow range aroundt [9],
[17]. In the following, we present an extension of the scaled
bitmap algorithm proposed in [17], which we refer to as
the thresholded bitmapalgorithm, and is designed to give
reasonably good estimates of thecardinality ranges. It has
been established in [17] that it uses very little extra memory
compared with a single virtual bitmap, and is much more
memory efficient than the competing algorithms (e.g. multi-
resolution bitmap[9] and the Super-Loglog algorithm [8]).

Our thresholded bitmap algorithm is explained as follows
(Algorithm 2). SupposeNmax is the largest possible cardi-
nality value. Split the interval[t, Nmax] into logarithmically



equal size intervals using a multiplying factorc: [t, ct), [ct, c2t)
and so on. Suppose there areI such intervals, and denote
the boundary of the intervals beti, 1 ≤ i ≤ I so that
t1 = t, t2 = ct and so on. Definefi, i = 2, . . . , I be

fi = 1.594/(ti − ti−1). (9)

Notice that fi is the optimal virtual bitmap sampling rate
for the target cardinalityti. Now we run the virtual bitmaps
corresponding to ratesfi, 1 ≤ i ≤ I (note thatf1 is defined
in Eq. (8)), in sequence as follows. For each candidate host,
we start with the virtual bitmap that corresponds to the first
sampling ratef1. At any point if the cardinality estimate
exceedst1, we set all bitmap bits to 0 and start with the next
virtual bitmap in sequence, which in this case is the one that
corresponds to sampling ratef2. And then start the virtual
bitmap with sampling ratef3 if the estimate exceedst2, and
so on. For a host, if the last bitmap corresponds to the sampling
ratefi, and letN̂ last be the cardinality estimate from the last
virtual bitmap, then the cardinality estimate of the host is

N̂ = max(ti−1, N̂
last) (10)

It is clear that to implement this, we do not consume additional
space for the newer bitmaps, and all we need is to add some
extra bits (log(I)) to indicate the sequence numbers of the
bitmaps. In practice, we have found that our method works
well for any multiplying factorc that is larger than 5. However,
since we reset the bitmap bits to zero if the cardinality estimate
crosses thresholdsti, pairs seen before the reset may never
appear afterward. Those missed pairs lead to the second bias
of estimation, and we call counting bias. Fortunately, due to
the logarithmic spacing of the thresholds, the lost pairs inthe
online setting is only a small proportion when compared to the
thresholds. In addition, in the next section, we will develop a
bias correction method to address both the filtering bias and
the counting bias.

Algorithm 2 Thresholded Bitmap
1: Parameters: Pair sequenceF after filtering, ti, 0 ≤ i ≤ I, M ;
2: Initialization: Sampling ratesfi by Eq. (8) and (9).
3: //Cardinality counting
4: for eachf ∈ F do
5: ExtractsrcAddr, dstAddr from f ;
6: if srcAddr has not been recordedthen
7: AssignsrcAddr with level 1;
8: Allocate a bitmap with sizeM for srcAddr;
9: Identify the leveli of srcAddr;

10: Update the corresponding bitmap with sampling ratefi;
11: if bitmap estimate exceedsti then
12: UpgradesrcAddr to level i + 1, reset its bitmap;
13: //Estimation
14: for eachsrcAddr recordeddo
15: Identify the levelL of srcAddr;
16: Count nonempty entries in the bitmap:Y ;
17: N̂ last = log(1 − Y/M)/ log(1 − fL)); (from [9])
18: N̂srcAddr = max(tL−1 , N̂ last);

B. Estimating the Number of Missed Pairs

Let bh be the number of missed pairs for hosth as a result
of filtering bias and counting bias. As we know it is difficult to
obtainbh exactly for each host. Now consider a group of hosts

H. For each hosth ∈ H, denote its cardinality byNh, and its
biased estimate from the proposed procedure byN̂ biased

h . Let

b̄ =
∑

h∈H

(N̂unbiased
h − Nh)/|H|

be the average bias ofbh for h ∈ H. In the following, we
shall show that it is possible to obtain an accurate estimate
of b̄ under reasonable senarios. If so, we will be usingb̄ to
correct the bias for hosts inH so that even though for each
host it may be biased, as a group the average bias will be 0.

Our approach works as follows. For each host, in addition to
the biased estimatêN biased

h , we obtain an unbiased estimate
N̂unbiased

h using the pair sampling method in [15]8. Denote
the average difference between two cardinality estimates by

b̂ =
∑

h∈H

(N̂ biased
h − N̂unbiased

h )/|H| (11)

Let NH =
∑

h∈H
Nh, and let q be the pair sampling rate

that is used to derivêNunbiased
h using the method in [15].

The following lemma states that̂b is an accurate estimate of
b̄ whenqNH → ∞ is large enough.

Lemma 2: If qNH → ∞, then b̂ − b̄ → 0 almost surely.
Lemma 2 can be easily shown due to the Poisson approxi-
mation of

∑
h∈H

N̂unbiased
h (with meanqNH) and the law

of large numbers. A consequence of Lemma 2 is that we
can use a cheap memory to derive the unbiased estimates
N̂unbiased

h using the pair sampling technique in [15], so that
even though each estimate of̂Nunbiased

h maybe poor, as long
as qNH is large enough,̂b is still an accurate estimate ofb̄.
For instance, we only needqNH = 1000 to have the bias
accurately estimated within 3%.

We implement the bias correction using the average bias
estimates as follows. First, to further reduce memory, we select
a representative sample of hosts inH using host sampling
with probability s, and obtain unbiased cardinality estimates
only for those selected hosts using method proposed in [15].
Second, to improve the effectiveness of the bias correction
using the average bias in (11), we compute the average bias
for all hosts in the estimated cardinality range[ti, ti+1), i =
1, · · · , I, and use it to correct the bias of all hosts in the range.

The host sampling rates and the pair sampling rateq are
selected based on the following considerations. First,s cannot
be too small in order to get hosts with large cardinalities.
Second,sq should be small to conserve memory sincesq is
the average number of sampled pairs. Last,qt cannot be very
small to guarantee enough number of hosts with cardinalities
close tot. As a rule of thumb, we find choosings between 10%
to 50%, andq = O(1/t), say0.5/t gives good performance.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results of apply-
ing our approach for identifying high cardinality hosts defined
by various thresholds and cardinality ranges. We compare our
method to two alternative methods using real Internet traffic

8There is a small positive bias due to the Bloom Filter collision, but this
can be overcome by increasing the Bloom Filter memory.



Trace # Source # Pairs > 50 > 100 > 1000
TR1 6.14M 31.26M 34484 22154 2283
TR2 14.26M 79.18M 56681 41854 5947
TR3 1.35M 3.96M 2237 1422 116
TR4 1.53M 4.91M 2401 1507 138

TABLE I
CHARACTERISTICS OFTRACES

traces. Experimental results show that our method outperforms
the existing methods in both accuracy and memory usage.

A. Datasets

In order to evaluate the performance of our algorithm under
real network environment, we choose two types of large-
volume traces provided by a university network and an ISP,
respectively. Table I shows the numbers of source hosts and
pairs in those traces, along with the number of sources with
cardinalities greater than 50, 100 and 1000, respectively9. All
traces contain more than 1 million sources and a significantly
large number of hosts with cardinalities above 50.

University Tracesinclude a one-day flow trace (TR1) and a
one-week flow trace (TR2). Both traces consist ofunsampled
traffic flows captured at the border router of a large campus
network. Close examination of those traces reveals a signifi-
cant amount of p2p and scanning traffic.

ISP Tracesare provided by one of the major ISPs, captured
at the Internet backbone. Two traces (TR3 andTR4) consist of
sampledtraffic flows from two separate days. The ISP traces
are different from those university traces in that they contain
much more variety of traffic types, such as traffic related to
large commercial websites, or global malicious activitieslike
botnets, worms and DDoS attacks, etc.

B. Characteristics of Cardinality Distributions

Even though these four traces come from two heterogeneous
sources, they demonstrate high similarity in their cardinality
distributions. Fig. 4 depicts the cumulative distributionof
source cardinalities. We observe in Fig. 4 that hosts with small
cardinalities dominate in all four traces. There are greater
than 75% of hosts with cardinalities less than 3; greater than
97% of hosts with cardinalities less than 8. In addition, those
cardinality distributions are heavy tailed. A noticeably large
number of hosts are observed to have large or extremely large
cardinalities (also see Table I).

Analysis on these traces reveals the causes of low cardi-
nality hosts: 1) Limited number/location of vantage points.
2) Sampling effect during traffic trace collection. 3) Specific
network activities like backscatters and p2p applications. In a
word, traffic dominated by low cardinality hosts is a common
property of Internet traffic, which makes our algorithm supe-
rior over other existing methods, since our algorithm is able
to significantly reduce the number of low cardinality hosts to
reserve resource for high cardinality host identification.

In the following subsections, we evaluate our approach
from various perspectives. We first evaluate theK dependent

9All the traces are in Cisco NetFlow format. However, our method will
also work on packet traces. In fact, due to more duplication of pairs within
packet traces in general, our method is expected to achieve better results.

sampling in Section IV-C. Then we discuss our experiment
settings in Section IV-D. In Section IV-E, we compare our
algorithm to two alternative algorithms for identifying high
cardinality hosts defined by various thresholdt. Since one
unique property of our algorithm is its ability to identifiy hosts
with cardinalities within predefined ranges, we study the range
estimation results in Section IV-F. Finally, we discuss thebias
correction results in detail in Section IV-G.

C. Evaluation ofK dependent sampling

Before evaluating our algorithm as a whole, we first study
the effectiveness ofK dependent sampling method. The ex-
perimental result on traceTR1 complements our theoretical
analysis (Fig. 3) in Section II, and demonstrates the advantage
of dependent sampling on real traffic traces.

Figure 5(a) displays the cumulative cardinality distribution
of the candidates passingK parallel pair samplers with
rate r = 0.1. The sampling rater is chosen such that all
hosts with cardinality beyond 50 will be selected with 99%
probability(Eq. 2). It is clear from the plot that the percentage
of candidate hosts with small cardinalities decreases signifi-
cantly whenK increases, and that dependent sampling works
significantly better than its independent counterpart. Such
observations are confirmed by Fig. 5(b), which shows the total
number of candidates with cardinalityN . Notice in Fig. 5(b)
we have scaled the total number of hosts before filtering to 1
million. Interestingly, whenK = 3, we can see that the curve
flattens for small cardinalities. This combined with the fact
that the candidates with somewhat larger cardinalities (more
than 20) do not change much for differentK, indicates that if
we further increaseK, the memory increase may outweigh
the benefit of host reduction. TakeTR1 as an example,
the number of candidates recorded by dependent sampling
(number of hosts recorded by each of theK bloom filters), for
K = 1, . . . , 4 are: 5M, 1.01M, 0.62M, 0.48M, respectively,
which translates to the overall host selection probabilities:
0.16, 0.034, 0.019, 0.015. In comparison, the number of hosts
recorded by independent sampling is:5M, 1.45M, 0.75M,
0.55M for K = 1, . . . , 4. The difference betweenK = 1 and
K = 2 is certainly striking. Considering both memory usage
and filtering efficiency, we fixK = 3 for all the subsequent
experiments.

D. Experiment Settings

To highlight the ability of our algorithm for identifying
hosts with moderately large cardinalities, we let threshold t
to be 50, 100 and 1000, which are selected for detecting p2p
hosts and scanners. To achieve a fair comparison among all
the candidate algorithms, we choose the optimal configuration
for each individual algorithm to attain the same20% expected
relative error rate.

Table II shows the configurations of our algorithm given
various thresholdt, wherer0, r and f1 denote the sampling
rates for pre-filtering, parallel filtering and thresholdedbitmap
counting, respectively. Since many high cardinality hostsmay
have cardinalities much beyond the thresholdt, aE(LK) value



Fig. 4. Cumulative cardinality distributions.
(a) Cumulative cardinality distribution (b) No. of candidates after filtering vs. cardinalities.

Fig. 5. Performance results ofK (K ≤ 4) parallel pair samplers.

t r0 r f1 s q
50 0.150 0.200 0.040 0.100 0.010
100 0.075 0.120 0.020 0.100 0.010
1000 0.008 0.015 0.002 0.500 0.001

TABLE II
CONFIGURATIONS OF OUR ALGORITHM FOR DIFFERENT THRESHOLDt

(the expected number of pairs seen during two-phase filtering)
between20% or 30% of t may be good enough. We use the
worst bound in Eq. (7) to chooser0 and r such that both
E(L

(0)
K ) andE(L

(1)
K ) is about half ofE(LK). In addition,f1

is determined by applying Eq. 9.
In addition, to estimate the number of missed pairs, when

t = 50, we samples = 10% of all the hosts and apply
the sampling algorithm in [15] to obtain unbiased cardinality
estimates for these 10% hosts. The pair sampling rateq is set
to 1% and the Bloom Filter is configured using 3 independent
hash functions. In addition to the cost of the new Bloom
Filter, this bias correction method requires one more bit in
each entry of the original hash table, which indicates whether
the corresponding host is among these 10% sampled ones or
not. When any of the 10% hosts starts to be sampled by the
pair sampler, we append another 16 bits to the hash entry to
count its cardinality. Fort = 100 andt = 1000, s andq are set
according to Table II. Notice these parameter settings depend
on the cardinality distribution of the traffic trace. In practice,
these parameters can be chosen using historical traffic data.

For comparison purpose, the first alternative algorithm that
we select is the sampling approach introduced by [15]. This
algorithm samples pairs with a raterp and store the sampled
pairs in a Bloom Filter. Meanwhile, a hash table is used to
count the cardinalities of those source hosts corresponding
to the sampled pairs. We configure the Bloom Filter to use
3 independent hash functions as in our algorithm. In order
to reduce the memory usage by the Bloom Filter, we stop
recording all the remaining pairs associated with a specifichost
whenever its cardinality estimate equals or exceedst. Hence,
comparing to the original algorithm in [15], we decreased the
number of pairs recorded and hence the memory used by the
Bloom Filter. Based on the criteria of 20% relative error rate,
we choose the sampling raterp = 0.18 for t = 50, rp = 0.10
for t = 100 andrp = 0.015 for t = 1000, respectively.

We choose the top-k cardinality estimating algorithm in [13]
as the second alternative for comparison. There the approach

is to randomly group sources into buckets, then estimate
the source cardinality by the minimum cardinalities of those
groups that contain the source. TakeTR1 as an example. Since
the average number of peers that each source communicates
with is about 5, therefore, for a thresholdt = 50, the expected
number of sources that falls into each group has to be less than
10 in order for this to produce any meaningful result. This
implies that the number of groups that we need to provision
is at least6M/10 = 600K. This coupled with the fact that
for each group we need at least 400 bits to reach a relative
precision of 10%, meaning that the memory is at least 30M
even in the best possible scenario. This is far too expensive
compared to both our approach and [15]. During experiments,
the second alternative algorithm also performs much worse
then the others. Due to space limitation, we do not include
the results for the second alternative algorithm in our paper.

E. Results for Identifying High Cardinality Hosts

In this section, we present the results of comparing our
approach to the alternative algorithm in [15] for identifying
hosts with cardinalities greater thant for t = 50, 100, 1000.
We choose a university traceTR1 and an ISP traceTR3 as
representatives for our experiments10.

1) Accuracy
To evaluate the identification accuracy, we focus on the false
positive rate (f.p.r) and false negative rate (f.n.r) of each
algorithm. For each thresholdt, we define positive instances
(p.i) as the hosts whose real cardinalities are abovet; while the
false positives (f.p) refer to those hosts whose real cardinalities
exceedt, but their estimated cardinalities are belowt. The false
negatives (f.n) and negative instances (n.i) can be defined in
the similar way. The false positive rate and false negative rate
are defined as:f.p.r := |f.p|/|n.i| and f.n.r := |f.n|/|p.i|.
The estimation results are shown in Table III. It is easy to
see that about half of the time, results from our approach are
significantly better than the alternative algorithm in [15], and
for the other half, results are comparable.

2) Memory Usage
The memory consumption of our algorithm consists of two
parts: theK + 1 Bloom Filters and the hash table for thresh-
olded bitmap counting. The memory used byK + 1 Bloom

10SinceTR3 only contains few hosts with cardinality above 1K, we exclude
them from the experiment fort = 1000. For the same reason, we do not
considerTR3 for estimating hosts within ranges of [1K, 5K] and [5K, 25K].



Our Algorithm Alternative Algorithm
t f.p.r (%) f.n.r (%) f.p.r (%) f.n.r (%)

TR1 TR3 TR1 TR3 TR1 TR3 TR1 TR3

50 0.02 0.08 5.60 6.53 0.07 0.01 5.31 5.45
100 0.02 0.01 3.88 2.85 0.04 0.01 6.30 8.72
1000 0.002 NA 5.7 NA 0.04 NA 6.31 NA

TABLE III
ESTIMATION RESULTS FOROUR ALGORITHM TO THE ALTERNATIVE

ALGORITHM BY KAMIYAMA ET .AL

Filters are determined by the total number of source hosts
recorded by those Bloom Filters. Since all Bloom Filters are
configured using 3 independent hash functions with2−3 =
0.125 expected collision probability, from [3], we need to
assign3/ ln 2 = 4.32 bits per recorded host. The total memory
consumed by the two-phase filtering is4.32(H0 + KH ′

0),
whereH0 andH ′

0 stand for the number of hosts recorded by
the pre-filtering step and the parallel filtering step, respectively.
During the counting stage, we apply a chained hash table for
storing the thresholded bitmap counters. The memory required
by the hash table can be estimated by counting the total
number of entries in the hash table. In our experiment, we
use a virtual bitmap of 40 bits for counting the cardinality of
each individual host. From [9], 40 bits corresponds to a relative
accuracy of about 20% at the thresholdt. Therefore, each entry
in the hash table consumes 32 bits for storing the host address
(IP address) as a key, 40 bits for the virtual bitmap counter and
log2 H bits for the pointer connecting the key to the counter,
whereH stands for the total number of entries (candidates) in
the hash table. Therefore, the memory usage by the counting
process is(72 + log2 H)H . The bias correction consumes a
small extra memory comparing to the filtering and counting
process, which we will discuss separately in Section IV-G.

The memory usage of the algorithm in [15] also consists
of a Bloom Filter for pair sampling with raterp and a hash
table for cardinality estimation. However, the Bloom Filter in
the alternative algorithm records pairs instead of source hosts,
hence the total memory usage for the Bloom Filter is 4.32 bits
per recorded pair. Obviously, with the same collison rate, the
Bloom Filter for recording pair requires far more memory than
the Bloom Filter for storing hosts as in our approach, since the
number of pairs is in general 5 times more than the number
of hosts. To count the memory requirement for the hash table,
each entry in the hash table needs 32 bits for the host address
as a key, an average oflog2(t·rp) bits for cardinality counting,
and log2(H) bits for the pointer. The total memory used by
the hash table is(32 + log2(t · rp) + log(H))H .

Table IV presents comparisons between our approach and
[15] in terms of the number of finally selected hosts (with non-
zero cardinality estimates) and total memory consumption.A
key observation is that, for applications of identifying high
cardinality hosts, with equivalent or even better accuracy, we
achieve on average a factor of 12 reduction in the number of
candidate hosts, and a factor of 4.5 reduction in memory usage,
regardless of traces and thresholds. Clearly, our algorithm out-
performs the alternative algorithm, since we have significantly
reduced the low cardinality hosts, thus we can devote more
resource to each candidate to obtain a more accurate estimate.

t Trace Our Algorithm Alternative Algorithm
Memory Number of Memory Number of

(KB) Hosts (103) (KB) Hosts (103)
50 TR1 2840 139 12992 1640
100 TR1 1679 85 7917 990
1000 TR1 278 14 1517 187
50 TR3 776 35 3321 415
100 TR3 324 11 2013 253

TABLE IV
COMPARISON OFMEMORY USAGE AND NUMBER OF CANDIDATE HOSTS

Range Missed SD Pairs f.p.r % f.n.r %
TR1 TR3 TR1 TR3 TR1 TR3

50-250 16.68 25.89 0.12 0.06 3.63 1.3
250-1250 87.68 120.85 0.04 0.01 1.59 0.7
100-500 36.87 52.39 0.08 0.03 3.00 2.0
500-2500 97.39 141.17 0.01 0.002 4.44 5.0
1K-5K 241.52 NA 0.006 NA 4.44 NA
5K-25K 1501.38 NA 0.001 NA 5.29 NA

TABLE V
CARDINALITY RANGE ESTIMATION RESULTS

F. Results of Range Cardinality Estimation

One major advantage of our algorithm is its ability to
identify the hosts with cardinalities within specific ranges,
using the thresholded bitmap algorithm presented in Section
III-A which only requires a negligible amount of extra mem-
ory comparing to a single bitmap. Our algorithm for range
estimation works as follows: we first partition all possible
cardinalities intoI ranges, like [t, 5t), [5t, 52t) and so on.
We chooseI sampling rates for the virtual map counting
corresponding to those ranges using Eq. 9. The cardinality
estimates from (10) are corrected using an estimate of the
average number of missed pairs discussed in Section III-B. The
remaining components are configured according to Table II.
The estimation results are summarized in Table V. We can see
that our algorithm has the capability of accurately identifying
high cardinality hosts within specific ranges, with all false
negative rates below 5% and negligible false positive rates.

We measure the estimation error of individual hosts using
the mean square relative error, which is defined as:
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whereN̂h and Nh denote the estimated cardinality and real
cardinality of hosth, respectively, andH stands for the set of
hosts whose cardinalities are within the predefined range. The
experimental result shows that regardless of the chosen range,
our algorithm always gets a mean square relative error around
18%, consistent with our 20% design goal.

G. Bias Correction with the Average Number of Missed Pairs

Another contribution of our paper is the bias correction
method for estimating the number of missed pairs in the
filtering and counting process. In this section, we study the
significance of bias correction in our estimation results.

Table VI depicts the number of false positives (f.p) and
false negatives (f.n) before and after we apply bias correction
on traceTR1. We observe that before the bias correction
procedure, the estimation results tend to have more false



Before Correction After Correction
t Memory f.p f.n f.p.r f.p f.n f.p.r

50 75KB 958 2848 0.083 1708 1932 0.056
100 59KB 468 2095 0.095 1457 860 0.039

TABLE VI
EFFECT OFBIAS CORRECTION

negatives. It means that we underestimate the cardinalities of
those candidates due to the missed information at the filtering
stage. However, after bias correction we obtain a more even
distribution of false positives and false negatives. The false
negative rates change from 10% to around 5% in general11.

Moreover, fort = 50, we observe a 4.4% decrease of the
number of total errors (the number of false positives plus
the number of false negatives) after applying bias correction.
For t = 100, the decrease of total errors reaches 9.6%. We
conclude that with a small amount of additional memory (1%
- 3%, see Table IV and Table VI), the bias correction process
help reduce a significant portion of the total errors.

V. OTHER RELATED WORK

There are a large body of work on sampling methods related
to network traffic analysis [5], [7], [6], [10]. In a streaming
context, many effective stream sampling methods have been
developed for estimating specific aggregates such as quantiles
[11], heavy hitters [16], distinct counts [10], subset-sums
[7], set resemblance and rarity [4] etc., as well as generic
sampling such as fixed-size reservoir sampling [19], adaptive
geometric sampling [2], [12], etc. Implementation of these
stream sampling techniques has been addressed in [14].

VI. CONCLUSIONS

In this paper, we have developed a sampling approach
to identify high cardinality hosts defined by a moderately
large thresholdt or predefined ranges. We proposed a two-
phase filtering approach which significantly reduce the number
of low cardinality hosts. We also designed a thresholded
bitmap method for estimating host cardinalities. In addition,
we developed a bias correction method to compensate for
the bias caused by the filtering and counting process. The
experimental results on real Internet traces indicated that our
algorithm noticeably reduced the memory consumption while
achieving better accuracy comparing to alternative algorithms.
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APPENDIX

Proof of Theorem 1.
Proof: For a host with cardinalityN , and forK parallel samplers

each with a sampling rater, let {I1, . . . , IK} represent the filtering
outcome of the host:Ii = 1 means at least one of its pair is sampled
by the ith sampler, andIi = 0 otherwise. LetP ({I1, . . . , IK})
denote the probability of this filtering outcome (for simplicity, we
omit the dependency ofP on N, r). It is easy to show that

P ({0, . . . , 0}) = (1 − Kr)N
. (12)

11The false positive rates are too small due to the large denominator (the
number of negative instances) and hence are not listed in Table VI.

In the following, we shall show howP ({1, . . . , 1}) (which is same
as pK(N) in Theorem 1) can be derived from manipulations with
respect toP ({0, . . . , 0}) in (12). We illustrate the proof forK = 2
andK = 3. The general case can be shown via similar induction.

With the pair sampling rater, from (12),

P ({0, 0}) = (1 − 2r)N
, P ({0}) = (1 − r)N

.

Now with K = 2 parallel pair samplers, there are four outcomes for
a host with cardinalityN : {0, 0}, {0, 1}, {1, 0}, {1, 1}. It is obvious
that:

P ({0, 1}) = P ({1, 0}) = P ({0})−P ({0, 0}) = (1−r)N−(1−2r)N

and thus

P ({1, 1}) = P ({1}) − P ({0, 1}) = 1 − P ({0}) − P ({0, 1})

= 1 − 2P ({0}) − P ({0, 0}) = 1 − 2(1 − r)N + (1 − 2r)N
.

When K = 3, there are 8 outcomes. From (12),P ({0, 0, 0}) =
(1 − 3r)N . It is now easy to see that

P ({1, 1, 1}) = P ({1, 1}) − P ({0, 1, 1})

= 1 − 2P ({0}) − P ({0, 0})

−(P ({0} − 2P ({0, 0}) − P ({0, 0, 0}))

= 1 − (1 − 3r)N + 3(1 − 2r)N − 3(1 − r)N
.
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