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Abstract—The Internet host cardinality, defined as the number be observed once.
of distinct peers that an Internet host communicates with, $ Being aware of the fact that most of the host profiling
an important metric for profiling Internet hosts. Some exampe applications can work just fine with approximated statistic

applications include behavior based network intrusion degction, isti K in literat h b d .
p2p hosts identification, and server identification. Howeve due existing work In literature have been proposed on using

to the tremendous number of hosts in the Internet and high sped  Sampling based method to identi$yperspreadersi.e., hosts
links, tracking the exact cardinality of each host is not feaible with very large cardinalities defined by a threshaldBy

due to the limited memory and computation resource. ~using a simple pair-based sampRngnly source hosts of the
Existing approaches on host cardinality counting have pri- g5 mpjed pairs will be tracked for their cardinalities [18].

marily focused on hosts of extremely high cardinalities. Tlese It i h h ith . I fth
methods do not work well with hosts of moderately large t s easy to show that, with a pair sampling raterofthe

cardinalities that are needed for certain host behavior prdiling ~chance that a host of cardinality whose corresponding pairs
such as detection of p2p hosts or port scanners. In this paper will be sampled at least oncejis= 1—(1—7)". For example
we propose an online sampling approach for identifying host \when the cardinality is 1, the probability is onty

whose cardinality exceeds some moderate prescribed thresla, Although a simple pair-based sampling maybe sufficient for

e.g. 50, or within specific ranges. The main advantage of our . .~ - . S )
approach is that it can filter out the majority of low cardinality ~€liminating hosts with low cardinalities in the identifitat

hosts while preserving the hosts of interest, and hence mimize Of super-spreaders, it is not sufficient for applicationsereh
the memory resources wasted by tracking irrelevant hosts. @  the thresholds are much smaller such as detecting p2p hosts

approach consists of three components: 1) two-phase filteygy (e .g., cardinality within [50, 500]), as too much memory are
for eliminating low cardinality hosts, 2) thresholded bitmap for wasted to track hosts with low cardinalities. This is a reséil

counting cardinalities, and 3) bias correction. Through bdh wo factors: a | . i ot that hosts with
theoretical analysis and experiments using real Internetraces, we wo factors: a larger pair sampling rate(so that hosts wi

demonstrate that our approach requires much less memory tha cardinalities above would not be erroneously eliminated),
existing approaches do whereas yields more accurate estites. and the Zipf or power law distribution of the number of hosts

with small cardinalities as evident in real Internet tra¢sse
o _ Fig. 1(a)). Fig. 1(b) demonstrate this phenomenon by shgwin
The Internet hostcardinality, defined as the number ofthe cumulative probabilities of the host cardinalities nfro
peers that a host communicates with, is an important metggmp|ed pairs, for the sampling rates= 0.1,0.01,0.001.
for host profiling. Identifying hosts with high cardinaé8 For instance, whem = 0.01, more than 75% hosts that are

in specific ranges is useful for many network operationseing tracked has a cardinality less than 20.
such as traffic classification and intrusion detection, &y th

are often associated with various network events of intered. Overview of Our Approach

For instance, when a worm scans the Internet to propagaten this paper, we present a new algorithm which is capable
itself, we can observe traffic originated from the IP address identifying high cardinality hosts defined byraoderately
hosting the worm towards a large number of peers. As anothgige threshold¢ or within predefined threshold ranges. Our
example, hosts running p2p applications usually origiaat® main idea is to use vo-phase filteringnethod for eliminating
receive traffic from amoderatelylarge number of peers. the majority of low cardinality hosts, so that we can reserve
One major challenge for identifying hosts with high carmore resource for each remaining candidate to obtain a more
dinalities in specific ranges is the scalability problem doie accurate estimate. Hence our method only needs a fraction of
the extraordinary number of hosts in the high speed Interngiemory as compared to existing approaches, and is not timite
which makes it either too slow or too expensive to track) very h|gh Cardina“ty thresholds as previous approadqes
the statistics of individual host exactly. This is espdgial A schematic representation of our overall approach is shown
true when the algorithm needs to be implemented inside tfe Fig. 2. Given a network stream, we first apply a two-
router or firewall with tight memory constraints. In additio phase filtering (pre-filtering and parallel filtering witk
the identification algorithm is often required to work in th@ependent pair Samp|er5) method to eliminate the ma]oﬂty 0
online setting due to the huge traffic volume on high speggly cardinality hosts. Only those hosts that have passed the

Internet links, i.e. on a sequence of source-destinatiors pawo-phase filtering will become candidates and are subgect t
extracted from the traffic stredmwhere each record can only
2pair-based sampling is referred to as distinct sampling airspi.e. we
1A traffic stream can be a packet trace or a flow (aggregatedepmok.g. sample a paitf if (hash(f) mod C)/C < r, whereC is a large constant
NetFlow) trace. Each pair consists of the source and déistinaddresses of andr is the sampling rate. Using pair-based sampling, only wnipairs are
the corresponding packet/flow. Notice that pairs may daf#idn the trace. considered during cardinality counting.

I. INTRODUCTION
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Fig. 1. Characteristics of a university tra@eRr; with 6.14 million hosts, which is studied in detail inFig. 2. A schematic representation of our
Section IV. See Table | for a detailed description. approach.

further cardinality counting. We then apply a memory effitie work in Section V and conclude the paper in Section VI.
thresholded bitmap algorithm for estimating the cardiresi

of candidate hosts and thereafter identify high cardipalites Il. TWO-PHASE FILTERING FORELIMINATING Low

above threshold or within specific ranges. In addition, we CARDINALITY HOSTS

notice that, in the online setting, our cardinality estiesat |n this section, we describe a two-phase filtering approach
could be biased as there might be lost pairs for each camdidgyr eliminating the majority of low cardinality hosts: ortipsts

host due to the filtering and counting process. To accoufat have passed this stage are selected for further cguntin
for the lost pairs, we obtain unbiased cardinality estimate

simultaneously for a small random sample of hosts, and use Two-Phase Filtering
the average numb_er o_f miss_ed pairs of those hosts_ which havghe essence of our two-phase filtering process isdlect
both kinds of cardinality estimates for bias correction. hosts by sampling pairand to increase the filtering power
Our main contribution can be summarized as follows:  igward low cardinality hosts by combining multiple pair
1) We develop a memory efficient, sampling based, tw@amplers. To select hosts by sampling pairs, for each pair
phase filtering approach to eliminate the majority of lowampler, we record a host at the first time that one of its pairs
cardinality hosts. is sampled, and let the remaining pairs from that host (ifyany
2) We propose a novedependent pair samplingcheme pass the sampler directly. Only hosts that are selectedlby al
that we use in the two-phase filtering to significantly redugsair samplers will become candidates for further counting.
low cardinality hosts. We analyze the sampling performanceQur two-phase filtering approach includespee-filtering
theoretically, and demonstrate the effectiveness of dég®n step and garallel filtering step. The pre-filtering step consists
pair sampling over independent pair sampling. of a single pair sampler with rate,, which is designed to
3) We develop a thresholded bitmap algorithm to estimatdfectively shrink the size of candidate hosts before thalfz
the cardinalities of candidate hosts after they passedwhbe t filtering step (to remove hosts with very low cardinalitiesy.
phase filtering. Our method extends the work in [17], and 1/r). As a result, the total required memory is dramatically
works especially well at identifying hosts with cardin@# reduced. Pairs passing through the pre-filtering step are then
above a moderately large threshold or within specific rangesent to the parallel filtering step, where the candidatesharst
4) We derive an estimate of the average number of ldstrther reduced by using’ parallel pair samplers, each with
pairs for high cardinality hosts, due to two-phase filteramgl a pair sampling rate. We assign a Bloom Filter [3] to each
thresholded bitmap. Such estimate requires very littleaextof the K + 1 pair sampler to record the sources hosts of those
memory, and can correct the bias in the original estimates. Jampled pairs. Pairs which have survived both filtering step
our knowledge, we are the first to address this bias issue. (i.e. their source addresses present ir/al- 1 Bloom Filters)
5) We demonstrate through experiments using real Inter@ée subject to further counting.
traces that our method requires much less memory than preThe idea of usingK, K > 2, parallel pair samplers for
vious approaches do whereas yields more accurate estimag@¥ginating low cardinality hosts comes from the following
The rest of the paper is organized as follows. In Section Rbservatiors Given a host with cardinalityv, the probability
we introduce a memory-efficient two-phase filtering scheme that at least one of its pairs will be sampled by one pair
eliminate the majority of low cardinality hosts. In Sectith sampler with rater is pi(N) = 1 — (1 — r)¥. With K
we discuss the thresholded bitmap algorithm for cardialit
estimation and present our bias correction method. We sh%)ve\'Pue to space limitation, we do not demonstrate it here, iat te readers
. . . 0 the extended version of the paper[1]
the effectiveness of our approach with experiments on reaj‘To analyze the host selection probability for parallel stmgp we tem-
Internet traces in Section IV. Finally, we discuss otheatel porarily ignore the effect of false positives caused by theoB Filter.
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independent pair samplers, the probability that the host is
selected by allX’ samplers is now reduced to

pr(N)=pi(N)* =1~ (1 -r)M)~ 1)

which is significantly less for a low cardinality host with
a smallp;(N). On the contrary, for a high cardinality host
whosep; (N) is close to 1px (N) will remain close to 1. As
an example, assum& = 2 andr = 0.1. Now for a host with
cardinality 1, the probability that it will be selected islteed
to p2(1) = r? = 0.01 from 0.1 of using one pair sampler. Gardinality

For a host with cardinality 2, the probability is reduced to Fig. 3. Host selection probability vs. cardinality.

p2(2) = (2r — %)% = 0.036 from 0.19. But whenN = 50 dinality, for both kinds of parallel sampling with = 0.1,

such thatp; (N) = 0.995, po(IN) = 0.99. Realizing that in and K < 4. It is easy to see that the rise of host selection

typical Internet traffic traces, the number of low cardityali probabilities is fairly fast when the cardinality increas&or

hosts dominates, thus, using parallel pair samplers will |arge cardinalities (say beyond 40), all selection prolitigs

significantly reduce the number of low cardinality hosts.  are close to 1 (It is easy to show that when the cardinality
Though independent sampling method is capable of redug- approaches infinity, the difference between independent

ing low cardinality host, in this paper, we propose an altegnd dependent sampling converges to 0). However, for small

native dependent sampling method which is computationai§rdinalities, the selection probabilities are much lesingi

cheaper and better at eliminating low cardinality hosts. dependent sampling method than those using independent
The new dependent sampling approach is presented nasthod. In other words, the dependent sampling approach is

follows. AssumeKr < 1° For each pair, first we samplecapable of eliminating more low cardinality hosts.

it with a rate K. For each sampled pair, we then hash it Another benefit from the dependent sampling scheme is the

uniformly to an integeri betweenl and K and record the increase of per-pair processing speed. For each pairkthe

source host of that sampled pair in tfith Bloom Filter, independent sampling requirds hash operations. Instead,

1 <1 < K. Now it is easy to see that each pair samplejnly one hash computation is needed usikg dependent

i still has a sampling rate ok'r x 1/K = r. The difference samplers. Hence, in our subsequent experiments, we focus on

of this from usingK" independent pair samplers is that novgependent sampling approach due to its superior perforeanc
sampled pairs among thé samplers are negatively correlated

as each pair can only be sampled once by ieparallel Algorithm 1 Two-phase Filtering

. . 1: Parameters: Pair sequengg, ro, r, K, C;
samplers. Therefore, a host that appears idxaBloom Filters 2: Initialization: K + 1 Bloom Filters BFy, - - - , BF', hash tableH F'.

will have a cardinality of at leask(, which implies that we 3: for eachf € 7, do

will eliminate all hosts that have cardinalities smallearittlX.  4:  ExtractsrcAddr, dstAddr from f;

. . 5: if srcAddr € HF then
Compared toEq. 1 foK’ mdependent sampllng, we have thee: Let f pass the two-phase filtering for cardinality estimation;

0.5
1

Selection Probability

0.2

0.1

following results for X' dependent sampling: 7 else
Theorem 1:For a host with cardinalityV, the host sam- SI ?enefsz aéagi?m nélmbﬂ[fg (hﬁr?(f) mod C)/C;
H il H [P . IT src T o andp € |0,7ro en
pling probability for K dependent pair samplers is: 10- Insertsre Addr into BFy:
K K 11: else if srcAddr € BFy andp € [ro,r0 + K x r) then
_ Vi1 _ AN 12: InsertsrcAddr into BF;, i = [r~1(p —ro)];
pK(N) - Z (j )( 1) (1 ]T) (2) 13: if srcAddr appears in alBF;,j =1,---, K then
j=0 14: Add srcAddr to hash tableH F;

Furthermore, for the same values &t N such thatk’, N > : _— S
. ’ . ’ A detailed description of our two-phase filtering is present
1, it can be shown thapx (N) is always less for dependent. b b gis prese

sampling than independent sampling in Algorithm 1. We use a hash tablé7T to store all candidate
The proof is provided in the appendix. For dependehOSts that have passed the two-phase filtering and are stijec

. L %untingf. Assuming thatry + Kr < 17. For each incoming
sampling, wheni' < 4, plugging into Eq. (2), we have pair f with source host address-cAddr, first we check if

p(N)=1—(1-n)7, srcAddr is in tableHT'. If yes, we let it directly pass the two-
pa(N)=1—2(1— T)N +(1- 2N phase filtering and start counting its cardinality. Otheeyi
N N N we check ifsrcAddr is present in the Bloom FilteBF; to
p3(N)=1-=3(1—r)" +3(1—2r)" —(1-3r) see whether that host has already passed the pre-fileripg ste
pa(N) =1—4(1 =)™ +6(1-2r)" —4(1 =31  Meanwhile, we generate a uniform random numpes [0, 1]
+ (1 —4r)N (3) based ory. If srcAddr is notin BFy, andp < rg, this implies

Fig. 3 plots the host selection probability against its car-éThe hash tableZT will be further used during counting step and it
facilitates the process for checking sampled hosts.
5The scheme can be adapted easily wién > 1 by splitting Kr into “The scheme can be easily adapted otherwise by splitting Kr into
multiples ofr that are smaller than 1. unit of 1s.



that f is sampled by the pre-filtering, so we recontAddr Furthermore, the cumulative distribution ofx can be
in BFy. If srcAddr is in BFy andry < p < rg + Kr, bounded by that ofmax(L'Y, L)) and L' + L'} for
this implies thatf is sampled by théth of the K dependent independent.!? and L'}, which can be computed using (5).

pair samplers, wherg= [(p —ro)/r|. We storesrcAddr in  For the host with infinite pairs, lefx, £\2 and£'Y be the
BF; and check whether or notrcAddr is present is alll  set jts pairs observed in the two-phase filtering, pre-filter
Bloom Filters BFj, 1 < j < K. If so, we add it toHT" and  and parallel filtering, respectively. The lemma can be gasil
start counting its cardinality in the remaining trace. Netthat jarived using the simple set relatiofye — ﬁgg) U cﬁ?.
since the sampling rate for all th€ parallel pair samplers are The reason that we can only derive bounds regarding o
the same, we can allocate the same amount of memory for;allyacause we do not know how the distinct pair Séig

the Bloom Filters. In addition, we only need two sets of hash_ | (1) . : . ;
: o , and £}’ interact with each other. Think of two scenarios. In
functions for Bloom Filter implementation, one f@tFy, the ) . : . .
_ the first scenario, pairs of a source host appear in order, i.e
other can be shared by F;,1 < j < K.

duplicates from 1st unique pair, du!:JIicates from 2nd unique
B. Number of Unique Pairs in Filtering pair, and so on. In this caséf{?) andﬁfp are exclusive. In the

In the online setting, we only see each record once. Theg&&cond scenario, each distinct pair duplicates infinite em
fore, any pair entering the two-phase filtering may nevéf times. In this casey) L1
appear later for cardinality counting, which will result in
estimation bias. For a host with cardinalify, let Ly (N)
be the number of distinct pairs observed in the trace urgil th Once a host has passed the two-phase filtering and becomes
host successfully passes the two-phase filtering. Obwipwsl & candidate, we start counting its cardinality. In thisisectve
do not like a large value af x (N) with respective taV, since firstly present the thresholded bitmap algorithm for caatiip
a largeLx (N) is likely to correspond to a high bias (we callestimation. In the later part of this section, we derive an
it filtering bias). Because it is very difficult to track theast estimate of the average missed pairs which we will use for
value of Lx (), in this section, we derive bounds fbi (V). ~ correcting bias in cardinality estimates.

It is obvious thatLx(N) < min(N, Lg(o0)), where . . . .
Lk (o0) is the number of(digtinct pairs( seen i(n t)h)e two-phasAé' Range Estimation Using Thresholded Bitmap
filtering before a host with infinite number of pairs passes th To identify high cardinality hosts defined by threshald
filtering process. Notice whel is large enough such that thewe use the virtual bitmap algorithm proposed in [9]. It is
host selection probability is close to Ly (N) ~ Lx(co). establishedin [9] that for a target cardinality vatuéhe virtual
To simplify the notation, let us redefinkx = Ly (cc). The bitmap is the least memory consuming scheme for counting
following discussions now focus oh. cardinalities among the competing algorithms, with anropti

For a host with infinite pairs, le.!?’ and L' be the bitmap sampling ratef; = 1.594/n. Analysis shows that the
number of distinct pairs seen during pre_f”tering and paka] relative accuracy of the virtual bitmap estimate Changes le
filtering, respectively. We have the following two results. ~ on the right-side of the optimal sampling rate compared ¢o th

IIl. COUNTING CARDINALITIES OF CANDIDATES

Corollary 1: Forn > 1, left-side. To account for the missed pairs of candidateshost
) 1 . due to the two-phase filtering in the online setting, we use a
P(Ly' =n) = (L—ro)"" = (1 —ro)", (4)  somewhat smaller virtual bitmap sampling rate
K
K 1. e
P(LY =n) = Y (j ) (=1 jr( = jr)" fu=1.594/(t = BLY)) = BLY)). ®)
7= where E(L()), B(L(M") can be computed using Eq. (5), and
and E(Lﬁg)) = ot (5) fromLemma 1,L§?)+L%) is the maximum number of missed
. K . K pairs due to the two-phase filtering.
B(LY) = Z(—l)-7+1<j)(j_lr_l —1) Although a single virtual bitmap is sufficient to identify

high cardinality hosts, the cardinality estimates tend & b

The proof utilizes the following two facts. First notice thainaccurate if they fall outside of a narrow range arourjl],
Lg) = n implies that the host finally appears in &l Bloom [17]. In the following, we present an extension of the scaled

Jj=1

Filters aftern but notn — 1 pairs, this implies that bitmap algorithm proposed in [17], which we refer to as
) the thresholded bitmapalgorithm, and is designed to give
P(Ly" =n)=pk(n) —px(n—1). (6) reasonably good estimates of teardinality ranges It has

Second, notice from Eq. (6), the selection probability(n) of been established in [17] that it uses very little extra mgmor
a host with cardinality: is 1 minus the cumulative distribution compared with a single virtual bitmap, and is much more
of L%)' and thereforeE(Lg)) = 3% (1 - px(n)). Now memory efﬂqent than the competing algorlthms_ (e.g. multi-
the corollary can be easily shown a%})lying Eq. (2). resolution bitmap[9] and the Super-Loglog algorithm [8]).
Lemma 1:maX(L(O) L(l)) <Ly < .© +L(1), S0 Our thresholded bitmap algorithm is explained as follows
KomR =R = TR K (Algorithm 2). SupposeV,..x is the largest possible cardi-
Emax(LY, L)) < BE(Lk) < E(LY) + E(LY). (7) nality value. Split the intervalt, Ny, into logarithmically



equal size intervals using a multiplying factort, ct), [ct, c?t) H. For each hoshk € H, denote its cardinality by, and its
and so on. Suppose there afesuch intervals, and denotebiased estimate from the proposed proceduréViyised. Let
the boundary of the intervals bg,1 < ¢ < [ so that

t1 =t,to = ct and so on. Defing;,i = 2,...,I be b= (Npmviesed — N, ) /| H|
heH
fi=1.594/(t; — t;—1). (9) be the average bias @f, for h € H. In the following, we

. . . . : . shall show that it is possible to obtain an accurate estimate
Notice that f; is the optimal virtual bitmap sampling rate , . ) =
- . . of b under reasonable senarios. If so, we will be using
for the target cardinality;. Now we run the virtual bitmaps . )
corresponding to ratef. 1 < i < I (note thatf; is defined correct the bias for hosts it so that even though for each
P 9 L =t ! h(t)st it may be biased, as a group the average bias will be 0.

LCeEsqtéﬁtS&itlr? tii:q\lji?trcj (:,j g;;zllomzt i%rrreeascgnct?:?éd?rfz ]t:?st Our approach works as follows. For each host, in addition to
b P e biased estimat&/?@se?, we obtain an unbiased estimate

sampling ratef;. At any point if the cardinality estimate Vunbiased ysing the pair sampling method in [£5]Denote

exceedg, we set all bitmap bits to 0 and start with the ne . R -
virtual bitmap in sequence, which in this case is the one t)r(lt £ average difference between two cardinality estimayes b

corresponds to sampling rate. And then start the virtual b= Z(N,’zi““d — Npnbiasedy /94| (11)
bitmap with sampling rates if the estimate exceeds, and hen
so on. For a host, if the last bitmap corresponds to the sagpliet Ny = >, ,, Np, and letq be the pair sampling rate
rate f;, and letN'**" be the cardinality estimate from the lasthat is used to deriveVmbiesed ysing the method in [15].
virtual bitmap, then the cardinality estimate of the host is The following lemma states thatis an accurate estimate of

N = max(t;_1, Nlast) (10) b whengN;, — oo is large enough.

Lemma 2:If ¢Ny — oo, thenb — b — 0 almost surely.

Itis clear that to implement this, we do not consume additionLemma 2 can be easily shown due to the Poisson approxi-
space for the newer bitmaps, and all we need is to add sometion of 3°, _,, ﬁ;;”bmsed (with meangNy) and the law
extra bits {og(/)) to indicate the sequence numbers of thef large numbers. A consequence of Lemma 2 is that we
bitmaps. In practice, we have found that our method worksain use a cheap memory to derive the unbiased estimates
well for any multiplying factore that is larger than 5. However, Njnbiased ysing the pair sampling technique in [15], so that
since we reset the bitmap bits to zero if the cardinalityneate even though each estimate ﬁﬁmbiased maybe poor, as long
crosses thresholds, pairs seen before the reset may neveys ¢y, is large enoughb is still an accurate estimate éf
appear afterward. Those missed pairs lead to the second lgg instance, we only neegN, = 1000 to have the bias
of estimation, and we call counting bias. Fortunately, due hccurately estimated within 3%.
the logarithmic spacing of the thresholds, the lost paihén  we implement the bias correction using the average bias
online setting is only a small proportion when compared  thestimates as follows. First, to further reduce memory, iecse
thresholds. In addition, in the next SeCtion, we will deYEa) a representa’[ive Samp|e of hosts %h using host Samp”ng
bias correction method to address both the filtering bias ajgth probability s, and obtain unbiased cardinality estimates

the counting bias. only for those selected hosts using method proposed in [15].

Algorithm 2 Thresholded Bitmap Sepond, to improve.the_ effectiveness of the bias correctiqn

1: Parameters: Pair sequengeafter filtering, ¢;,0 < i < I, M; using the average b|a_5 in (11), we compute the average bias

2: Initialization: Sampling rateg; by Eq. (8) and (9). for all hosts in the estimated cardinality ranig t;11), i =

if ;é(r:eggé”hil'té ?Lé'g'”g 1,---,1I,and use it to correct the bias of all hosts in the range.

5. ExtractsrcAddr, dstAddr from f; The host sampling rate an_d the pa_lir sampling raig are

6: if srcAddr has not been recorddtien selected based on the following considerations. Frsgnnot

7: AssignsrcAddr with level 1; ; ; i aliti

o Allocate a bitmap with Sz for sreAddr: be too small in order to get hosts with large cardlna_\lltles.

9:  Identify the leveli of srcAddr: Second,sq should be small to conserve memory sineeis

10:  Update the corresponding bitmap with sampling rhte the average number of sampled pairs. Lastzannot be very

11: if bitmap estimate exceeds then . small to guarantee enough number of hosts with cardinglitie

12: UpgradesrcAddr to level i + 1, reset its bitmap; . . o

13: J/Estimation close tot. As a rule of thumb, we find choosingbetween 10%

14: for eachsrcAddr recordeddo to 50%, andg = O(1/t), say0.5/t gives good performance.

15: Identify the levelL of srcAddr;

16:  Count nonempty entries in the bitmay; IV. EXPERIMENTAL RESULTS

17:  N'est =log(1 — Y/M)/log(1 — f1)); (from [9]) _ _ _ _

18:  Nyreaddr = maz(ty—1, N'st); In this section, we discuss the experimental results ofyappl
ing our approach for identifying high cardinality hosts defi

B. Estimating the Number of Missed Pairs by various thresholds and cardinality ranges. We compare ou

Let by, be the number of missed pairs for hdss a result method to two alternative methods using real Internet traffi

of f'lt_e”ng bias and counting bias. As we |_<n0W it is difficudt t 8There is a small positive bias due to the Bloom Filter cailigibut this
obtainb;, exactly for each host. Now consider a group of hostan be overcome by increasing the Bloom Filter memory.



;f;cle #G.Sf:hrﬂce fll.jzaéﬁ 3>4§§4 ;211%3 2;%%0 sampling in Section IV-C. Then we discuss our experiment
TR, | 14.26M | 79.18M | 56681 | 41854 | 5947 settings in Section IV-D. In Section IV-E, we compare our
TRz | 1.35M | 3.96M | 2237 | 1422 116 algorithm to two alternative algorithms for identifyingghi
TRy | 1.53M | 49IM | 2401 | 1507 | 138 cardinality hosts defined by various threshaldSince one
TABLE | unique property of our algorithm is its ability to identifipéts

CHARACTERISTICS OFTRACES with cardinalities within predefined ranges, we study theye

traces. Experimental results show that our method outpedgo estimation results in Section IV-F. Finally, we discuss Ibiees
the existing methods in both accuracy and memory usage.correction results in detail in Section IV-G.

A. Datasets C. Evaluation ofK dependent sampling

In order to evaluate the performance of our algorithm underBefore evaluating our algorithm as a whole, we first study
real network environment, we choose two types of largene effectiveness of¢ dependent sampling method. The ex-
volume traces provided by a university network and an ISperimental result on trac& R, complements our theoretical
respectively. Table | shows the numbers of source hosts anshlysis (Fig. 3) in Section Il, and demonstrates the adggnt
pairs in those traces, along with the number of sources wigh dependent sampling on real traffic traces.
cardinalities greater than 50, 100 and 1000, respectiv@ly  Figure 5(a) displays the cumulative cardinality distribat
traces contain more than 1 million sources and a signifigandlf the candidates passing parallel pair samplers with
large number of hosts with cardinalities above 50. rate r = 0.1. The sampling rate is chosen such that all

University Tracesnclude a one-day flow tracd'(?;) and @ hosts with cardinality beyond 50 will be selected with 99%
one-week flow tracel(R,). Both traces consist afnsampled probability(Eq. 2). It is clear from the plot that the pertage
traffic flows captured at the border router of a large campus candidate hosts with small cardinalities decreasesifsign
network. Close examination of those traces reveals a Signiﬂantly whenK increases, and that dependent sampling works
cant amount of p2p and scanning traffic. significantly better than its independent counterpart. hSuc

ISP Tracesare provided by one of the major ISPs, captureghservations are confirmed by Fig. 5(b), which shows thé tota
at the Internet backbone. Two trac@%{; andT'R,) consist of number of candidates with cardinalify. Notice in Fig. 5(b)
sampledtraffic flows from two separate days. The ISP tracege have scaled the total number of hosts before filtering to 1
are different from those university traces in that they aomt million. Interestingly, whenk = 3, we can see that the curve
much more variety of traffic types, such as traffic related fattens for small cardinalities. This combined with thetfac
large commercial websites, or global malicious activiliks that the candidates with somewhat larger cardinalitiesrémo
botnets, worms and DDoS attacks, etc. than 20) do not change much for differefiit indicates that if
we further increasdy, the memory increase may outweigh
the benefit of host reduction. Tak€R; as an example,

Even though these four traces come from two heterogene@ys number of candidates recorded by dependent sampling
sources, they demonstrate high similarity in their carifina (number of hosts recorded by each of tiiebloom filters), for
distributions. Fig. 4 depicts the cumulative distributiof 7~ — 1,...,4 are:5M, 1.01M, 0.62M, 0.48M, respectively,
source cardinalities. We observe in Fig. 4 that hosts withlsmyyhich translates to the overall host selection probabiti
cardinalities dominate in all four traces. There are greatg 15 0.034,0.019,0.015. In comparison, the number of hosts
than 75% of hosts with cardinalities less than 3; greatem thgecorded by independent sampling M, 1.45M, 0.75M,
97% of hosts with cardinalities less than 8. In additionsto g 55M for K — 1,...,4. The difference betweeR = 1 and
cardinality distributions are heavy tailed. A noticeablyde f — 2 is certainly striking. Considering both memory usage

number of hosts are observed to have large or extremely lagggy filtering efficiency, we fixk’ = 3 for all the subsequent
cardinalities (also see Table I). experiments.

Analysis on these traces reveals the causes of low cardi-
nality hosts: 1) Limited number/location of vantage paintd. Experiment Settings

2) Sampling effect during traffic trace collection. 3) Sfieci  To highlight the ability of our algorithm for identifying
network activities like backscatters and p2p applicatidn® hosts with moderately large cardinalities, we let threghol
word, traffic dominated by low cardinality hosts is a commog, pe 50, 100 and 1000, which are selected for detecting p2p
property of Internet traffic, which makes our algorithm supeyosts and scanners. To achieve a fair comparison among all
rior over other existing methods, since our algorithm iseabthe candidate algorithms, we choose the optimal configurati
to significantly reduce the number of low cardinality hosts tfor each individual algorithm to attain the sar2@% expected
reserve resource for high cardinality host identification. relative error rate

In the following subsections, we evaluate our approachTaple I shows the configurations of our algorithm given
from various perspectives. We first evaluate fiedependent yarious threshold, wherer,, » and f1 denote the sampling

o . rates for pre-filtering, parallel filtering and thresholdstinap
All the traces are in Cisco NetFlow format. However, our noethwill

also work on packet traces. In fact, due to more duplicatibpairs within ~ COUNtING, _respgctlvely. Since many high cardinality hosty
packet traces in general, our method is expected to achietter esults. have cardinalities much beyond the thresholal (L i ) value

B. Characteristics of Cardinality Distributions
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7 P m T 3 q is to randomly group sources into buckets, then estimate
50 | 0.150 | 0.200 | 0.040 | 0.100 | 0.010 the source cardinality by the minimum cardinalities of #os
100 | 0.075| 0.120 | 0.020 | 0.100 | 0.010 groups that contain the source. Tak&1 as an example. Since
1000 | 0.008 | 0.015 | 0.002 | 0.500 | 0.001 .
the average number of peers that each source communicates
TABLE Il with is about 5, therefore, for a threshale- 50, the expected

CONFIGURATIONS OF OUR ALGORITHM FOR DIFFERENT THRESHOLD .
number of sources that falls into each group has to be less tha

(the expected number of pairs seen during two-phase fitgprinl0 in order for this to produce any meaningful result. This
between20% or 30% oft may be good enough. We use thémplies that the number of groups that we need to provision
worst bound in Eq. (7) to choose, andr such that both iS at least6A//10 = 600/ This coupled with the fact that
E(L(;?)) andE(L(Ii)) is about half ofE(L). In addition, f; for each group we need at least 400 bits to reach a relative
is determined by applying Eq. 9. precision of 10%, meaning that the memory is at least 30M

In addition, to estimate the number of missed pairs, wh&Yen in the best possible scenario. This is fer too expensive
t = 50, we samples = 10% of all the hosts and apply compared to both our approach and [15]. During experiments,

the sampling algorithm in [15] to obtain unbiased cardiyali the second alternative aIgorithm elso_ performs much worse
estimates for these 10% hosts. The pair samplinggaseset then the others. Due to space I|rr_1|tat|on, we d_o not include
to 1% and the Bloom Filter is configured using 3 independeme results for the second alternative algorithm in our pape
hash functions. In addition to the cost of the new Bloor&. Results for Identifying High Cardinality Hosts

Filter, this bias correction method requires one more bit in |, this section. we present the results of comparing our

each entry of th_e originel hash table, which indicates V\EIethapproaCh to the alternative algorithm in [15] for identifgi
the corresponding host is among these 10% sampled ones,Q&ts with cardinalities greater tharfor ¢ = 50, 100, 1000.

not. When any of the 10% hosts starts to be sampled by #3g choose a university tracER; and an ISP trac& R; as
pair sampler, we append another 16 bits to the hash emryré‘bresentatives for our experimefits
count its cardinality. Fot = 100 andt = 1000, s andgq are set 1) Accuracy

according to Table II. Notice these parameter settings mpery evaluate the identification accuracy, we focus on theefals
on the cardinality distribution of the traffic trace. In ptiae, positive rate {p.r) and false negative ratef.if.f) of each
these parameters can be chosen using historical traffic datﬁlgorithm. For each threshold we define positive instances
For comparison purpose, the first alternative algorithnt thep.i) as the hosts whose real cardinalities are abpwéile the
we select is the sampling approach introduced by [15]. Thiglse positivesf(p) refer to those hosts whose real cardinalities
algorithm samples pairs with a ratg and store the sampledexceed, but their estimated cardinalities are belowhe false
pairs in a Bloom Filter. Meanwhile, a hash table is used tfegatives f(n) and negative instances.{) can be defined in
count the cardinalities of those source hosts correspgndihe similar way. The false positive rate and false negative r
to the sampled pairs. We configure the Bloom Filter to usge defined asf.p.r := |f.p|/|n.i| and f.n.r := |f.n|/|p.i|.
3 independent hash functions as in our algorithm. In ordghe estimation results are shown in Table III. It is easy to
to reduce the memory usage by the Bloom Filter, we stge that about half of the time, results from our approach are

recording all the remaining pairs associated with a spefedst — significantly better than the alternative algorithm in [1&hd
whenever its cardinality estimate equals or exceed$ence, for the other half, results are comparable.

comparing to the original algorithm in [15], we decrease&l th 2) Memory Usage

number of pairs recorded and hence the memory used by e memory consumption of our algorithm consists of two
Bloom Filter. Based on the criteria of 20% relative erroerat parts: the/l’ + 1 Bloom Filters and the hash table for thresh-
we choose the sampling ratg = 0.18 for ¢t = 50, r, = 0.10  olded bitmap counting. The memory used By+ 1 Bloom

for t = 100 andr, = 0.015 for ¢ = 1000, respectively.
L . . . . 10SinceT R3 only contains few hosts with cardinality above 1K, we exelud
We choose the toﬁ'cardma“ty estimating algorlthm n [13] them from the experiment fot = 1000. For the same reason, we do not

as the second alternative for comparison. There the approaensider’ R; for estimating hosts within ranges of [1K, 5K] and [5K, 25K].



Our Algorithm Alternative Algorithm t Trace Our Algorithm Alternative Algorithm
t f.p.r (%) f.n.r (%) f.p.r (%) f.n.r (%) Memory | Number of | Memory | Number of
TRy | TR3 | TRy | TRs | TRy | TR3s | TRy | TR3 (KB) Hosts (03) (KB) Hosts (03)
50 0.02 | 0.08 | 560 | 6.53 | 0.07 | 0.01 | 531 | 545 50 TRy 2840 139 12992 1640
100 | 0.02 | 0.01 | 3.88 | 285 | 0.04 | 0.01 | 6.30 | 8.72 100 | TRy 1679 85 7917 990
1000 | 0.002 | NA 5.7 NA 0.04 | NA 6.31 | NA 1000 | TRy 278 14 1517 187
50 TR3 776 35 3321 415
TABLE Il 100 | TR3 324 11 2013 253
ESTIMATION RESULTS FOROUR ALGORITHM TO THE ALTERNATIVE
ALGORITHM BY KAMIYAMA ET .AL TABLE IV

COMPARISON OFMEMORY USAGE AND NUMBER OF CANDIDATE HOSTS
Filters are determined by the total number of source hosts

. . . Range Missed SD Pairs f.p.r % f.n.r %
recorded by those Eloom Filters. Since all I3Ioom I_:llters are TR, | TRs | TR, | TRs | TR, | Ths
configured using 3 independent hash functions it = 50-250 16.68 | 25.89 | 0.12 | 0.06 | 3.63 | 1.3

0.125 expected collision probability, from [3], we need to | 250-1250| 87.68 | 12085] 0.04 [ 0.01 [ 159 [ 0.7
assign3/ In 2 = 4.32 bits per recorded host. The total memory 100-500 | 3687 | 5239 | 0.08 | 0.03 | 300 | 2.0

500-2500| 97.39 | 141.17| 0.01 | 0.002 | 4.44 5.0

consumed by the two-phase filtering 4s32(H, + K H), TK5K 24152 | NA | 0006 NA | 444 | NA
where H, and H/; stand for the number of hosts recorded by [ 5K-25K" | 1501.38] NA [ 0001 NA [ 529 [ NA
the pre-filtering step and the parallel filtering step, respely. TABLE V

During the counting stage, we apply a chained hash table for CARDINALITY RANGE ESTIMATION RESULTS

storing the thresholded bitmap counters. The memory requifr, Results of Range Cardinality Estimation
by the hash table can be estimated by counting the totalo
number of entries in the hash table. In our experiment, wen
use a virtual bitmap of 40 bits for counting the cardinalify o
each individual host. From [9], 40 bits corresponds to airada

ne major advantage of our algorithm is its ability to
tify the hosts with cardinalities within specific rasge
using the thresholded bitmap algorithm presented in Sectio

[1I-A which only requires a negligible amount of extra mem-
accuracy of about 20% at the threshald@ herefore, each entry : : : .
. . ; t le bit .0 Igorithm f
in the hash table consumes 32 bits for storing the host asidrgg comparing %o @ singie bitmap. \JUr aigorithm for range

; . . imation works as follows: we first partition all possible
(IP address) as a key, 40 bits for the virtual bitmap courdr .ardinalities intol ranges, like {, 51), [5¢, 5%) and so on.

log, H bits for the pointer connecting the kgy to the_counte{Ne choosel sampling rates for the virtual map counting
where H stands for the total number of entries (candidates) Lrbrresponding to those ranges using Eq. 9. The cardinality

the hash table. Therefore, the memory usage by the count imates from (10) are corrected using an estimate of the

process IS(72 + log, H)H. The bias correct!on consumes aaverage number of missed pairs discussed in Section I1kB. T
small extra memory comparing to the filtering and countin maining components are configured according to Table II.

pr?r%ess, which we wil d]ischuss lsepgrr]ate!y InlSSecluon lV'G_' The estimation results are summarized in Table V. We can see
f Elmemgly usfage of the algorlt !“h'” [15] adso (i]on‘?:sfﬁat our algorithm has the capability of accurately idsftid)
of a Bloom Filter for pair sampling with rate, and a has high cardinality hosts within specific ranges, with all &als

tﬁblelfor ca_rdlnalllty _ers]tlmatlon(.j HOV\_/eV(_ar, thedBI?om Fnlt'; negative rates below 5% and negligible false positive rates
the alternative algorithm records pairs instead of sounsts, We measure the estimation error of individual hosts using

hence the total memory usage fpr the Bloom Filt_er is 4.32 biltﬁe mean square relative errpwhich is defined as:
per recorded pair. Obviously, with the same collison rdie, t

Bloom Filter for recording pair requires far more memoryrtha 1 Ny N, 2

the Bloom Filter for storing hosts as in our approach, sihee t ] Z <Th>

number of pairs is in general 5 times more than the number her

of hosts. To count the memory requirement for the hash tabighere i, and IV, denote the estimated cardinality and real
each entry in the hash table needs 32 bits for the host addr@&%inality of hosth, respectively, and{ stands for the set of
as a key, an average big, (t-_rp) bits for cardinality counting, nhosts whose cardinalities are within the predefined range. T
and log, (H) bits for the pointer. The total memory used byexperimental result shows that regardless of the choseyeran
the hash table 1§32 + log, (¢ - 1) + log(H))H. our algorithm always gets a mean square relative error aroun

Table 1V presents comparisons between our approach argbs, consistent with our 20% design goal.
[15] in terms of the number of finally selected hosts (with hon

zero cardinality estimates) and total memory consumpt@on.G- Bias Correction with the Average Number of Missed Pairs
key observation is that, for applications of identifyingghi ~ Another contribution of our paper is the bias correction
cardinality hosts, with equivalent or even better accura@y method for estimating the number of missed pairs in the
achieve on average a factor of 12 reduction in the numberfifering and counting process. In this section, we study the
candidate hosts, and a factor of 4.5 reduction in memoryaysagignificance of bias correction in our estimation results.
regardless of traces and thresholds. Clearly, our alguoriht- Table VI depicts the number of false positivefisp) and
performs the alternative algorithm, since we have signifiga false negativesf ) before and after we apply bias correction
reduced the low cardinality hosts, thus we can devote mara traceTR;. We observe that before the bias correction
resource to each candidate to obtain a more accurate estimaitocedure, the estimation results tend to have more false




N — f.;B)eforef.S}:orrecft.llcc)).r: f.IC,)’After i%rrecu(f).g.r In the following, we shall show howP({1,...,1}) (which is same
50 | 75KB | 958 | 2848 | 0.083 | 1708 | 1932 | 0.056 as px(N) in Theorem 1) can be derived from manipulations with
100 | 59KB | 468 | 2095 | 0.095 | 1457 | 860 | 0.039 respect toP({0, ...,0}) in (12). We illustrate the proof fok = 2

TABLE VI and K = 3. The general case can be shown via similar induction.

With the pair sampling rate, from (12),

EFFECT OFBIAS CORRECTION
negatives. It means that we underestimate the cardirsatifie P({0,0}) = (1—2n)", P{0})=(1-n".
those candidates due to the missed information at the fileriNow with K = 2 parallel pair samplers, there are four outcomes for
stage. However, after bias correction we obtain a more evahost with cardinalityN: {0, 0}, {0, 1}, {1,0}, {1, 1}. It is obvious
distribution of false positives and false negatives. Theefa that:
negative rates change from 10% to around 5% in geheral P({0,1}) = P({1,0}) = P({0})—P({0,0}) = (1—r)N —(1—2r)~

Moreover, fort = 50, we observe a 4.4% decrease of the
and thus

number of total errors (the number of false positives plus
the number of false negatives) after applying bias comacti
For t = 100, the decrease of total errors reaches 9.6%. We

P({1,1}) = P({1}) - P({0,1}) = 1 - P({0}) — P({0,1})
1—2P({0}) — P({0,0}) = 1—2(1 —r)N +(1—2r)".

conclude that with a small amount of additional memory (18hen k' — 3, there are 8 outcomes. From (12({0,0,0}) =

- 3%, see Table IV and Table VI), the bias correction procegs—

help reduce a significant portion of the total errors.

V. OTHER RELATED WORK

There are a large body of work on sampling methods related
to network traffic analysis [5], [7], [6], [10]. In a streangin
context, many effective stream sampling methods have been
developed for estimating specific aggregates such as tpgnti
[11], heavy hitters [16], distinct counts [10], subset-sum
[7], set resemblance and rarity [4] etc., as well as generig]
sampling such as fixed-size reservoir sampling [19], adepti [2]
geometric sampling [2], [12], etc. Implementation of these
stream sampling techniques has been addressed in [14]. [3]

VI. (4]

In this paper, we have developed a sampling approagh
to identify high cardinality hosts defined by a moderately
large threshold or predefined ranges. We proposed a two 6!
phase filtering approach which significantly reduce the nemb (7]
of low cardinality hosts. We also designed a thresholded
bitmap method for estimating host cardinalities. In addifi 8
we developed a bias correction method to compensate fér]
the bias caused by the filtering and counting process. THé]
experimental results on real Internet traces indicatetlaha
algorithm noticeably reduced the memory consumption whijey
achieving better accuracy comparing to alternative aflgors.

CONCLUSIONS

[11]
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APPENDIX

Proof of Theorem 1. [14]
Proof: For a host with cardinalityv, and for K parallel samplers

each with a sampling rate, let {I1,..., Ik} represent the filtering (15]
outcome of the hostf; = 1 means at least one of its pair is sampled
by the ith sampler, andl; = 0 otherwise. LetP({I,...,Ix}) [16]
denote the probability of this filtering outcome (for sinuily, we
omit the dependency aP on N, r). It is easy to show that [17]

P({0,...,0}) = (1 — Kr)V. (12) [18]

11The false positive rates are too small due to the large dematori (the (19]

number of negative instances) and hence are not listed ile Wb

P({1,1,1})

3r)N. It is now easy to see that
P({1,1}) = P({0,1,1})
1 -2P({0}) — P({0,0})

—(P({0} —2P({0,0}) — P({0,0,0}))
1—(1=3)" +301-2r)" =301 -7r)".
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