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Abstract—In this paper we develop a unified theoretical
framework for estimating various transmission costs of packet
forwarding in wireless networks. Our framework can be applied
to the three routing paradigms–best path routing, opportunistic
routing, and stateless routing–to which nearly all existing routing
protocols belong. We illustrate how packet forwarding under each
paradigm can be modeled asrandom walks on directed graphs
(digraphs). By generalizing the theory of random walks that has
primarily been developed for undirected graphs to digraphs,
we show how various transmission costs can be formulated
in terms of hitting times and hitting costs of random walks
on digraphs. As representative examples, we apply the theory
to three specific routing protocols, one under each paradigm.
Extensive simulations demonstrate that the proposed digraph
based analytical model can achieve more accurate transmission
cost estimation over existing methods.

Index Terms—Transmission cost, Digraph, Wireless routing,
Random Walk, Spectral graph theory

I. I NTRODUCTION

Due to the unique characteristics of wireless technologies
and the dynamics in the environments (e.g., mobility and in-
terference) they operate in, wireless channels are known tobe
time-varying, unreliable, and asymmetric. Furthermore, wire-
less networks are often designed to support certain applications
or missions, and deployed in specific environments. For these
reasons, a plethora of wireless mechanisms–especially, routing
algorithms and protocols–have been proposed and developed
to achieve a range of different objectives such as throughput,
latency, energy consumption, network life time, and so forth.
Evaluating the efficacy of wireless protocols in terms of
various transmission cost metrics, and deciding on which
one to employ in a specific environment so as to attain
certain performance objective, can be a challenging task in
practice. The ability to analyze, estimate and quantify various
transmission costs is therefore imperative in the design of
wireless networks.

While experimentation and testing in realistic wireless en-
vironments are indispensable and provide the most definite
and authoritative means to evaluate the efficacy of wireless
routing protocols, they are in general very expensive and are
typically utilized in the later stage of the network design and
evaluation process. Simulation-based evaluation is also impor-
tant and necessary; however, conducting realistic simulations
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is hard, and simulation results often hinge on the settings
and parameters used. We believe that analytical models and
theories also play a critical role in the design of wireless
networks, complementing the roles played by real-world ex-
perimentation and simulations. By generating performance
bounds and theoretical limits, they provide important insights
on what is achievable and under what conditions, and produce
useful metrics for understanding the key design trade-offs.
Such insights and understanding are particularly important in
the early stage of wireless network design.

Guided by this belief, in this paper we develop an unified
theoretical framework to quantify and estimate various trans-
mission costs of wireless routing protocols. To account for
the stochasticand asymmetricnatures of wireless channels,
we model a wireless network as adirected graph (in short,
digraph), where each directed edge (link) is associated with
a packet delivery probability. We consider three wireless
routing paradigms, the (traditional) best path routing (e.g.,
AODV [21], DSR [14], and several energy-aware routing
protocols [2], [5]), opportunistic routing (e.g., ExOR [3],
MORE [4]), and stateless (stochastic) routing (e.g., as pro-
posed in [7], [19])—nearly all existing routing protocols fall
under one of these paradigms, or use a combination thereof.
Under the (simplifying) assumption that packet delivery prob-
abilities are independent, we demonstrate how packet forward-
ing under each paradigm can be modeled as a Markov chain on
a digraph with an appropriately defined transition probability
matrix capturing the specifics of the routing algorithm under
consideration. In other words, the traversal of a packet being
forwarded in a wireless network can be viewed as arandom
walk on a digraph. Consequently, various transmission costs
of end-to-end packet delivery (e.g., the expected number of
transmissions, end-to-end packet delivery ratio, throughput,
latency, energy consumptions) can therefore be formulated
using well-known notions such ashitting times, sojourn times
associated with random walks.

The main contributions of this paper are summarized below.
• To our best knowledge, this is the first work that utilizes

the random walk (Markov chain) model to formulate the end-
to-end transmission costs for various types of wireless routing
strategies.
• The theory of random walks (and the closely relatedspec-

tral graph theoryhave been developed primarily forundirected
graphs (see, e.g., [8], [18]). We successfully extend the theory
of random walks on undirected graphs todirected graphs
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(digraphs), with a more general definition of normalized
(graph) Laplacian matrix̃LG. We also show how the hitting
times, commute times and sojourn times (or hitting costs) can
be computed using the Penrose-Moore pseudo-inverse ofL̃G.
• Using three representative routing protocols as examples

(one from each routing paradigm), we systematically illustrate
how our proposed theoretical framework based on random
walks on digraphs can be used to estimate various transmission
costs. Our analysis subsumes earlier results obtained using
more ad hoc methods. We also perform extensive simulations
to show the relative errors in estimation when asymmetric links
are artificially symmetrized and undirected graphs are used.

The remainder of this paper is organized as follows. The
related works is briefly touched on below. In Section II,
we first describe three wireless routing paradigms. We then
illustrate how packet forwarding under each of them can
be modeled using Markov chains/random walks, and various
transmission costs can be formulated using hitting times and
hitting costs associated with the random walks. We outline the
theories of random walks on undirected and its generalization
to directed graphs in Section III. In Section IV, we apply the
theory of random walks on digraphs to three representative
routing protocols. Simulation results are reported in Section V,
and the paper is concluded in Section VI.
Related Works. We will present the three wireless routing
paradigms in Section II and discuss some related wireless
protocols in that context. Hence we do not touch on them here.
Our paper is partly inspired by the work in [7] where results
from random walks onundirected graphsare used to model
and derive a delay estimation formula for stateless routing
with heterogenous sojourn time. In contrast, our paper not
only supersedes the results in [7] which essentially assume
symmetric wireless links, but develops a general theoretical
frame based on random walks on digraphs for estimating
various transmission costs under all three wireless routing
paradigms. As mentioned earlier, the theory of random walks
has been developed primarily for undirected graphs. Relatively
fewer attempts have been made to extend it to digraphs. In [9],
Chung defines asymmetrizedLaplacian matrix for directed
graph, and successfully generalizes the well-known Cheeger
Inequality to directed graphs. However, it is unclear whether
this generalization can be used to compute hitting times and
commute times for random walks on digraphs.

II. W IRELESSROUTING, TRANSMISSION COSTS AND

RANDOM WALKS IN DIRECTED GRAPHS

In this section we briefly describe the three wireless routing
paradigms. We then show how packet traversals under each
routing paradigm can be modeled using Markov chains, and
use the Markov models to estimate various transmission costs
in a wireless network.

A. Wireless Routing and Transition Costs

The existing (unicast) wireless routing schemes can be
roughly classified into three categories: the traditionalbest

path routing, opportunisticrouting, andstateless (stochastic)
routing.

The traditional best path routing protocols (e.g., AODV [21],
DSR [14] and their variations/extensions to multi-path or
energy-aware routing) typically select a singlebestpath, some-
times multiple paths, based on certain routing metric. Unlike
wired networks, these best paths are selected typically on-
demand, instead of pre-computed. Depending on the objective
of the routing protocols, different routing metrics may be
designed and used. For example, if the goal is to maximize
the packet delivery probability and minimize the number of
transmission, the ETX metric [11] may be used which captures
the expected number of transmissions per link, and the best
(least-cost) path is the path that minimizes the overall path
ETX. If the objective is to minimize the energy consumption
and maximize the network lifetime, an energy-aware metric
should be used. For example, [6] has proposed a lifetime
maximization algorithm for energy-aware routing in wireless
sensor networks.

The key idea behind opportunistic routing is to take ad-
vantage of the broadcasting nature of wireless communication
channels, while at the same time addressing the probabilistic
nature of packet reception. Instead of selecting one or multiple
fixedbest paths, opportunistic routing protocols (e.g., [3], [4])
specify a set of forwarders, often arranged in a prioritized
list, referred to as aforwarder list. Using the (pre-specified)
forwarder list, after each packet transmission, the “best”for-
warder among those which happen to receive the packet is
used to forward the packet towards the destination. Hence
a packet may opportunistically traverse any path from the
source, among the set of forwarders, to the destination, instead
of a fixed path. Through experiments in the MIT Roofnet
[22] testbed, ExOR [3]–one of the first practical opportunistic
routing protocols–is shown to increase the throughput by a
factor of two to four over traditional best path routing schemes.
Further improvements to ExOR [4], [15], [17] have also been
developed. For instance, in [15] the key problem of how to
optimally select the forwarder list is addressed, and an optimal
algorithm (MTS) that minimizes the expected total number of
transmissions is developed.

By its name, stateless (stochastic) routing does not main-
tain any routing state (e.g., topology, routing tables), and
performs packet forwarding in a purely “random” fashion.
In contrast to opportunistic routing, no forwarder list is
pre-specified in general; any node receiving a packet may
decide to forward the packet (some mechanisms to avoid
and reduce unnecessary duplicate transmissions are generally
employed). Stateless (stochastic) routing is typically designed
and best suited for resource-constrained, dynamically varying
and highly unreliable wireless network environments (e.g.,
sensor or delay/disruption tolerant networks). For instance,
a stateless routing protocol is developed in [19] for wireless
sensor networks. Due to its stateless feature, stateless routing
schemes can be highly scalable; however, due to the pure
randomness employed in these schemes, their efficacy, e.g.,
in terms of end-to-end packet delivery and other performance
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Fig. 1. An Example Wireless Topology

metrics, may suffer.
Thanks to widely disparate wireless network environments

and diverse application objectives, no one routing paradigm
always over-performs the others in practice. For instance,
traditional best path routing may work very well in a static
wireless environment with fairly stable and reliable wireless
channels, while opportunistic routing may perform better
where wireless channels are less reliable with frequently
varying conditions. Hence in the design of practical routing
protocols for wireless networks, which routing paradigm (or a
hybrid combination thereof) to use will depend critically on the
specific wireless environment. The ability to analyze, estimate
and quantify various transmission costs (e.g., the expected
number of transmissions, latency or energy consumption) is
therefore imperative in the design of wireless networks. Inthe
next subsection we illustrate how we can model the packet
traversal in a wireless network under each of the wireless rout-
ing paradigms using Markov chains. Through these Markov
chain models, transactions costs incurred by different routing
schemes can then be computed using the notion ofhitting
timesand other related quantities (e.g., sojourn times or hitting
costs).

B. Modeling Packet Traversal using Markov Chains

In this subsection, we illustrate how we can model packet
forwarding under each of the three routing paradigms using
Markov chains. Due to the probabilistic nature of wireless
transmissions, when a packet is forwarded from one node,
say i, to another node, sayj, it only has some probability
to “transit” from nodei to node j. This suggests that we
could model and trace the traversal of a packet when it is
forwarded from one node to another in a wireless network
as state transitions in a Markov chain. Before we proceed to
describe how packet forwarding under each routing paradigm
can be modeled using Markov chains, we first present some
general notations and basic assumptions.

We model a wireless network as a (weighted)directedgraph
(i.e., a digraph) G = (V, E), whereV is the set of wireless
nodes, andE is the set ofdirectedwireless links. Here each
directed link,〈i, j〉, represents the relation that nodej is within
the transmission range of nodei; in other words, a packet
transmitted by nodei may be received by nodej with some
probability. We denote this probability byaij . Hence each
link 〈i, j〉 is associated with a link weightaij . We will simply
refer toaij as the (link-level) packet delivery probability. More
generally, we associate a weightaij to any (ordered) pair of
nodes,〈i, j〉. If 〈i, j〉 6∈ E (namely, nodej is not within the

transmission range of nodei), we simply setaij = 0. Hence
for any two distinct nodesi, j ∈ V, i 6= j, we have0 ≤ aij ≤
1, andaij > 0 if and only if 〈i, j〉 ∈ E. Due to the asymmetric
nature of wireless communications, in general we haveaij 6=
aji. In particular, we may haveaij > 0 but aji = 0. Further,
for any nodei ∈ V , we defineaii = 0.

Let n = |V | denote the total number of nodes in the
wireless topology. Then then × n matrix, A = [aij ], gives
us a matrix representation of (one-hop or link-level) packet
delivery probabilities of a wireless network. In general,A is
asymmetric. We callA the adjacency matrix of the (weighted)
directed graphG = (V, E). In modeling packet forwarding
using Markov chains, we assume that for any〈i, j〉 ∈ V , when
a packet is forwarded by nodei, the probability that the packet
is received by nodej, i.e.,aij , does not depend on where the
packet was before reaching nodei. Namely, except for nodei,
aij does not depend on who and where the previous forwarders
are. In other words, we assume that the Markov property holds.
In modeling opportunistic routing and stateless routing, we
will also make the simplifying assumption that the (link-level)
packet delivery probabilities are independent. More precisely,
let N(i) = {j : 〈i, j〉 ∈ E} be the direct neighbors of
nodei that are within its transmission range. We assume that
for any j1, j2 ∈ N(i), aij1 and aij2 are independent. We
remark that to model the time-varying dynamics of a wireless
network, we can introduce a series of time-dependent graphs
Gt = (Vt, Et, At) with time-varying node and edge sets as
well as varying link-level packet delivery probabilitiesaij ’s.
For clarity and model simplicity, in this paper we focus only
on one instanceof such a time-varying graph, and assume that
during this instance except for a few of them, the node/edge
sets andaij ’s are largely unchanged. Finally, we assume that
the digraph graphG = (V, E) is stronglyconnected, namely,
there is a (directed) path from any node to any other node in
G.
Best Path Routing.Consider a specific source destination pair
(s, d). Let R(s, d) = {u0 = s, u1, ..., um, um+1 = d} denote
the route (i.e., a best path) selected by a best path routing
protocol for forwarding packets froms to d. We useGR =
(VR, ER) ⊂ G to denote the subgraph (a path or line sub-
graph) induced byR, whereVR = {ui, 0 ≤ i ≤ m + 1}, and
ER = {〈ui, ui+1〉, 0 ≤ i ≤ m}. We can model the traversal
of a packet being forwarded froms to d as a Markov chain
with the state spaceVR and the transition probability matrix
PR = [pij ] defined as follows:

pij =















ai,i+1 if j = i + 1, i = 0, . . . , m
1 − ai,i+1 if j = i, i = 0, . . . , m
1 if j = i, i = m + 1
0 otherwise.

(1)

Using the wireless topology shown in Fig. 1 as an example, let
Rs,d = {s, (u1 =)v2, (u2 =)v4, d} be the best path (route) for
the source-destination pair(s, d). The corresponding Markov
chain is schematically depicted in Fig. 2, where the arrows
indicate the state transitions. The transition probability matrix
PR captures the fact that when a packet is forwarded by node
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Fig. 2. Markov chain for Best-Path RoutingFig. 3. Markov chain for Opportunistic Rout-
ing (FL = {s, v1, v3, v4, d})

Fig. 4. Markov chain for Stateless Routing

ui, 0 ≤ i ≤ m, with probability pi,i+1 = ai,i+1 the packet
may be received by the next hopui+1 (thus it transits or
“walks” from nodei to nodei+1 with probabilitypi,i+1), and
with probability pii = 1 − ai,i+1 it is not received by node
i + 1 (thus it stays with nodei). Hence packet forwarding
under best path routing can be viewed as arandom walkon
the line subgraphGR with PR as the transition probability
matrix. We note that this is an absorbing Markov chain, with
nodes as the starting state, andd the final absorbing state. As
we will see later, using this Markov chain (or random walk
on a digraph) we can formulate various transmission costs in
terms of quantities associated with the Markov chain (random
walk). For instance, the expected number of transmissions is
the expected number of steps for a packet to “walk” from
the sources to the destinationd. Lastly, the above Markov
chain model can be also easily generalized to (best-path-based)
multi-path routing.

Opportunistic Routing. Given a source destination pair(s, d),
let FL(s, d) = {u0 = s, u1, ..., um, um+1 = d} denote
the (prioritized) forwarder list selected by an opportunistic
routing protocol, say, ExOR. We first note that unlike tra-
ditional best path routing, the forwarder listFLs,d used in
opportunistic routing represents not a path, but a subgraph
GFL = (VFL, EFL) connecting the sources to the destination
d (see Fig. 3 for an example, whereFLs,d = {s, (u1 =
) = v1, (u2 =)v3, (u3 =)v4, d}). Within this subgraphGFL,
there are many (directed) paths froms to d; which of them is
actually traversed by a packet–during the packet forwarding
process, depends on which nodes on the forwarder list receive
the packet and which nodes forward the packet.

The priority of nodes is used in opportunistic routing to
decide which node should forward a packet when several of
them on the forwarder list receive the same packet. Here we
use the convention that a node on the right has higher priority
than a node to its left; namely, for anyj′ < j, uj has higher
priority than uj′ . Using these priorities, we can describe the
forwarding process of a single packet as follows: suppose node
i, (0 ≤ i ≤ m) is the current node to forward the packet.
After its transmission, if the destinationd receives it, then the
forwarding process for this packet ends. Otherwise, suppose
node j, i < j ≤ m, receives it. Nodej will be the next
forwarder if and only if no higher priority node,k > j, has
received the packet. Hence to correctly capture the packet
forwarding process under an opportunistic routing,we must
track which node is the next forwarderinstead of simply which
nodes receive the packet. In other words, we say the packet
has successfully “walked” from nodei to nodej if and only

if node j is the highest priority node that receives the packet.
This happens with probabilitypij = aij

∏

k>j (1 − aik). The
packet will stay with nodei, if none of the higher priority
nodes have received it. This happens with the probability
pii =

∏

k>i(1− aik). Hence we have a Markov chain defined
on the state spaceVFL with the transition probability matrix
PFL = [pij ] given below,

pij =















aij

∏

k>j (1 − aik) if 0 ≤ i < j ≤ m + 1
∏

k>i (1 − aik) if j = i, 0 ≤ i ≤ m
1 if j = i, i = m + 1
0 otherwise.

(2)

It is not too hard to verify that
∑

j pij = 1. Using the topology
in fig.1 as an example, the corresponding opportunistic routing
Markov chain is shown in Fig. 3. Again this is an absorbing
Markov chain, with nodes as the starting state, andd the final
absorbing state. Using this Markov chain/random walk, we
can again formulate various transmission costs using quantities
associated with the chain/walk. As an aside, a key problem in
opportunistic routing is to determine the “best” forwarderlist
FL, or subgraphGFL, for a source and destination pair. This
problem is addressed in [15], where an optimal algorithm is
developed. In this paper we will assume that the (optimal)
forwarder list is given and used.
Stateless (Stochastic) Routing.As no routing states are
maintained or used, given a source-destination pair(s, d), any
node in G may be involved in the forwarding process of a
packet. Suppose that nodei is the current forwarder. After
nodei’s transmission, a subset of its direct neighbors,N(i),
may receive the packet. Unlike opportunistic routing where
priorities are used to determine which node should be the next
forwarder, any of these nodes may become the next forwarder
with equal probability. For example, the next forwarder may
be selected by using a random back-off mechanism where each
node randomly sets a back-off timer value uniformly chosen
from [0, t0] where t0 is an appropriately chosen contention
slot. Hence to track the packet traversals under stateless
routing, we see that the packet stays with nodei if and only
if none of its neighbors receive the packet. This happens with
probability pii =

∏

k(1 − aik). Otherwise, the packet transits
or “walks” from nodei to nodej, j ∈ N(i), with probability
pij =

aij
∑

k∈N(i)
aik

(1−∏

k(1−aik)). Hence we have a Markov

chain defined on the state spaceV (the entire node set) with
the transition probability matrixPG = [pij ] given below,

pij =

{

aij
∑

k
aik

(1 − ∏

k (1 − aik)) if i 6= j
∏

k (1 − aik) if i = j.
(3)
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It is easy to verify that
∑

j pij = 1.If the graph is strongly
connected, the Markov chain is irreducible. Especially, when
the graph is symmetric, then the Markov chain will be re-
versible. The traversals of a packet under stateless routing are
thus modeled as a random walk on the digraphG with the
transition probability matrixPG. Using the topology in Fig. 1
as an example with(s, d) as the source-destination pair, the
resulting Markov chain is shown in Fig. 4.
Modeling the Transmission Costs.Given the Markov chain
(or “random walk on a digraph”) models of wireless routing,
we now briefly discuss how various transmission costs such
as the expected number of transmissions, latency, duty cycle
delay, or energy consumption, can be modeled using certain
standard notions or quantities associated with the Markov
chain/random walk.

We first use the expected number of transmissions as an
example, and show how this cost can be formulated as the
hitting time. In a Markov chain (or random walk), the hitting
time Hij is defined as the (expected) number of transitions
(i.e., steps) for a random walker that starts from node (state)
i to first reach (or hit) nodej. The hitting timeHij satisfies
the following recursive relation

Hij =

{

1 +
∑n

k=1 pikHkj if i 6= j
0 if i = j.

(4)

Given the appropriately defined Markov chain for a wireless
routing scheme, it is not too hard to see that the (expected)
total number of transmissions needed to forward a packet from
sources to destinationd is exactlyHsd. The recursive relation
eq.(4) plays a key role in computing the hitting timeHsd. The
remainder of this paper is devoted to addressing this and other
related computation problems.

To account for other transmission costs, we introduce a
transition cost matrixT = [Tij ] associated with each one-
hop transition,Tij ≥ 0, ∀i, j. For example, depending on the
context and modeling objective,Tii can be used to represent
the per-node processing/transmission latency, duty cycledelay,
or per-node energy consumption; whereTij , j ∈ N(i) the one-
hop forwarding latency, energy consumption, etc. Analogous
to the notion of hitting timeHij , we define thehitting cost,
Hs

ij , (also referred as thesojourn timeassociated withT ) as
the (expected) total cost (or “delay”) incurred by a random
walk that starts at nodei to first reach nodej, where each state
at any nodek incurring a cost (delay)Tkk and each transition
from nodek to nodel incurring a cost (delay) ofTkl. As in
the case ofHij , Hs

ij satisfies the following recursive relation
wheresi =

∑

j pijTij as the average transmission cost every
time a packet visits.

Hs
ij =

{

∑n

k=1
pik(Tik + Hs

kj) = si +
∑n

k=1
pikHs

kj if i 6= j
0 if i = j.

(5)
Hence given the appropriately defined Markov chain for a
wireless routing scheme and the transition cost matrixHs, we
can useHs

sd to capture the (expected) total cost of transmission
when forwarding a packet from sources to destinationd. We

note that ifTij = 1 for all i, j, i.e.,T is the all-1 matrix, then
Hs

ij = Hij .

III. R ANDOM WALKS ON DIRECTED GRAPHS: HITTING ,
COMMUTE AND SOJOURNTIMES

In this section we briefly overview the random walk theory
on undirected graphs, and show how important quantities such
as hitting, commute and sojourn times can be computed. We
then outline a generalization of the random walk theory to
directed graphs (digraphs), and show how the same quantities
can be computed. The detailed description of this generalized
random walk theory on digraphsand the associated proofs are
reported in a separate paper [16].

A. Random Walks on Undirected Graphs

Given an undirected graphG = (V, E) that is finite
connected (i.e., any node can reach any other node inG),
and let A be a symmetric weight (or adjacency) matrix
appropriately defined onG, wheren = |V |. For 1 ≤ i ≤ n,
define di =

∑n

j=1 aij , the (weighted) degree of nodei,
and d =

∑n

i=1 di, often referred to as thevolume of G,
denoted byvol(G). Let D = diag[di] be a diagonal matrix
of node degrees. ThenP = D−1A is a transition matrix
associated with a Markov chain (a random walk) onG, where
pij = aij/di. Let π = [πi]1≤i≤n be its stationary distribution
probability vector. It is well known (see, e.g., [1]) that this
Markov chain (random walk) onG is reversible, namely

πipij = πjpji. (6)

where for1 ≤ i ≤ n,

πi =
di

∑

k dk

=
di

d
. (7)

Given this random walk on an undirected graph,hitting times
Hij (cf. eq.(4)), commute timesCij = Hij + Hji and the
hitting costsor (heterogeneous) sojourn timesHs

ij (cf. eq.(5))
can be computed using a number of methods, through the
well-known connections between the Markov chain/random
walk theory, electrical resistance theory [12] and spectral graph
theory [8], [10]. Here we present the results using the spectral
graph theory.

In [8], thenormalized Laplacian matrixfor undirected graph
G is defined as

L = D− 1
2 (D − A)D− 1

2 = D
1
2 (I − P )D− 1

2 , (8)

whereL is symmetric and positive semi-definite. Letλk and
µk, 1 ≤ k ≤ n, be the eigenvalues and the corresponding
eigenvectors ofL, whereλk ’s are arranged in the increasing
order whereλ1 = 0 < λ2 ≤ · · · ≤ λn. Then the hitting time
Hij can be computed as follows (see [18]):

Hij =
∑

k>1

d

λk

(
µ2

kj

dj

− µkiµkj
√

didj

), (9)

and the commute timeCij = Hij + Hji is equal to

Cij =
∑

k>1

d

λk

(
µki√

di

− µkj
√

dj

)2. (10)
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In [7] Chau and Basu introduce a(diagonal) sojourn timema-
trix1 T = diag[Ti], whereTi represents aper-nodetransition
cost or “delay” incurred at nodei, and define the following
(T -extended) Laplacian matrixLs

Ls = T− 1
2LT− 1

2 . (11)

Let σk (again arranged in the increasing order) andγk,
1 ≤ k ≤ n, be the eigenvalues and eigenvectors ofLs. Chau
and Basu [7] obtain the following solution for the hitting cost
matrixHs = [Hs

ij ], extending the above (homogeneous) result
for the hitting matrixH = [Hij ],

Hs
ij =

∑

k>1

ds
o

σk

(
γ2

kj

djTj

− γkiγkj
√

diTidjTj

), (12)

whereds
o =

∑

k dkTk.

B. Random Walks on Directed Graphs(Digraphs)

We now outline the (generalized) random walk theory on
digraphs we have developed. Due to the space limitation,
the detailed description and proofs are omitted and can be
found in [16]. Given adirected graphG = (V, E) which
is assumed to bestrongly connected. Let P be a transition
matrix2 associated with a Markov chain defined onG. Let
π = [πi]1≤i≤n be the stationary distribution probability vector,
namely,π = πP . In general, the Markov chain (random walk)
on G is no longer reversible, and eqs.(6) and (7) do not hold.
The assumption thatG is strongly connected (or equivalently,
P is irreducible) yields the following properties [1]: i) the
Markov chain is irreducible with no transient states; ii)P has
a simple eigenvalue equal to1 with right (column) eigenvector
e = [1, 1, · · · , 1]T and left (row) eigenvectorπ, the stationary
probability vector; and iii)πi > 0, 1 ≤ i ≤ n.

Let Π = diag[πi] be a diagonal matrix withπi’s on the
diagonal. We introduce thegeneralized normalized Laplacian
matrix for a strongly connected digraphG = (V, E) (and
an associated Markov chain with the transition matrixP ) as
follows:

DEFINITION 1 (Generalized Normalized Laplacian L̃).

L̃ = Π
1
2 (I − P )Π− 1

2 , (13)

or in the scalar form,

L̃ij =







1 − pii if i = j,

−π
1
2

i pijπ
− 1

2

j if 〈i, j〉 ∈ E, i 6= j,
0 otherwise.

(14)

Let L̃+ be the(Penrose-Moore) pseudo-inverse[13] of L̃.
We can show (in [16]) thatL̃L̃+ = I − Π

1
2 JΠ

1
2 , where

J = [Jij ] is the all-1 matrix andJij = 1. Using this relation
and other properties of the generalized normalized Laplacian

1In contrast, in Section II-B we have introduced a general transition cost
matrix T = [Tij ], Tij ≥ 0, with a transition cost associated with each node
Tii and each linkTij , whereT is not necessarily diagonal nor symmetric.

2For example,P can be derived from an appropriately defined (non-
negative) weight (or “adjacency”) matrixA on G, where A is in general
asymmetric.

matrix L̃, in [16] we show that the hitting timesHij as defined
by the relation in eq.(4) can be computed usingL̃+ as stated
in the following theorem.

THEOREM 1 (Hitting and Commute Times for Ran-
dom Walks on Digraphs). Given the generalized normalized
Laplacian matrixL̃ defined in eq.(13) and eq.(14), and letL̃+

be its pseudo-inverse. Then we have the hitting timeHij as

Hij =
L̃+

jj

πj

−
L̃+

ij√
πiπj

, (15)

or in the matrix form,

H = J · diag(Π− 1
2 L̃+Π− 1

2 ) − Π− 1
2 L̃+Π− 1

2 . (16)

The commute times,Cij = Hij + Hji, can be computed as
follows,

Cij =
L̃+

jj

πj

+
L̃+

ii

πi

−
L̃+

ij√
πiπj

−
L̃+

ji√
πiπj

. (17)

We note that if the underlying graphG is undirected, and
the transition probability matrixP of the Markov chain isP =
D−1A (as defined in Section III-A, whereA is symmetric),
then L̃ = L. Furthermore, one can show that eqs.(16) and
(17) are equivalent to eqs.(9) and (10). Hence our theory of
random walks on digraphs subsumes the existing theory of
random walks on undirected graphs as a special case.

We now extend the above results for hitting and commuting
times to hitting and commute costs. Given an (asymmetric)
transition cost matrixT = [Tij ], Tij ≥ 0, with Tij as the per-
link transition cost, andTii as the per-node transmission cost,
defineS = diag[si] a diagonal matrix withsi =

∑n

j=1 Tijpij

as the average transmission cost every time a packet visits.We
define the followingnormalized cost Laplacianmatrix, L̃s as

DEFINITION 2 (Normalized Cost Laplacian L̃s).

L̃s = S− 1
2 L̃S− 1

2 , (18)

where theL̃ is the generalized normalized laplacian matrix.
The corresponding scalar form is

L̃s
ij =











s−1
i (1 − pii) if i = j,

−s
− 1

2
i π

1
2
i pijπ

− 1
2

j s
− 1

2
j if 〈i, j〉 ∈ E, i 6= j,

0 otherwise.

(19)

Let L̃s
+

be the (Penrose-Moore) pseudo-inverse ofL̃s.
In [16] we show that the hitting costsHs

ij as defined by the

relation in eq.(5) can be computed using̃Ls
+

as stated below

THEOREM 2 (Hitting Costs for Random Walks on Di-
graphs).

Hs
ij = ds(

L̃s
+

jj

πjsj

−
L̃s

+

ij√
πisiπjsj

), (20)

whereds =
∑

k πksk.

Analogous to the commute timesCs
ij , we can also define the

commute costsasCs
ij = Hs

ij +Hs
ji, and they can be computed

easily using eq.(20).
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IV. ESTIMATING TRANSMISSION COST FORDIFFERENT

ROUTING STRATEGIES

In this section we apply the theory of random walks on
digraphs to various routing strategies and see how it can be
used to estimate various transmission costs. We consider three
specific examples: thekeep-connectrouting, a class of energy-
aware best-path routing algorithms proposed in [20], the
opportunistic routingprotocol as defined in [3] and analyzed
in [15], and thestateless routingprotocol introduced and
analyzed in [7].

A. Keep Connect Routing for Network Life Time Maximization

Many energy-aware routing protocols have been developed
for energy-constrained wireless networks, such as wireless
sensor networks. These protocols take the energy cost as
a key metric in selecting routes, and attempt to forward
packets along a path that minimizes the energy consumption
or maximizes the overall network life time. Thekeep-connect
routing (thereafter referred to asKC) is a class of energy-aware
routing algorithms proposed in [20] that take into account both
the energy cost and the “importance” of nodes in the overall
network connectivity so as to maximize the network life time.
Here the network life time is defined as the time until the
network becomes disconnected. In [20], the authors apply the
spectral graph theory–in particular, use the Fiedler value(the
second smallest eigenvalue of a graph Laplacian)–to the design
and analysis of the KC routing algorithms. We use KC as
a simple example to illustrate how to estimate the wireless
transmission costs (hitting costs).

In KC, the “importance” of a nodei in terms of its
connectivity in a graphG = (V, E) is defined as follows:
W (i) = 1/λ2(L(G−i)), whereG−i is a graph resulting from
G with node i and its adjacent edges removed,L(G−i) is
the graph Lapalician ofG−i, andλ2(L(G−i)) is the second
smallest eigenvalue (the Fiedler value) ofL(G−i). For each
link 〈i, j〉 ∈ E, let eij denote the one-hop transmission energy
cost from i to j. We introduce the following transition cost
matrix T = [Tij ], where Tij = eijW (i), if 〈i, j〉 ∈ E,
and Tij = 0, otherwise. Given a path or routeR = {u0 =
s, u1, . . . , um, um+1 = d} for a source-destination pair(s, d).
Then using the Markov chain transition matrixPR defined on
the line (sub-)graphGR (with VR = {u0, u1, . . . , um+1}) as
given in eq.(1) of Section II-B, we can easily solve the hitting
cost equation (5) and compute the hitting cost matrixHs

R for
GR as follows:

Hs
i,m+1 =

{
∑m

k=i ek,k+1W (k) 1
ak,k+1

0 ≤ i < m + 1

0 otherwise.
(21)

In particular, Hs
sd = Hs

0,m+1 is the expected total cost
associated with the routeR. Hence to find the best path in
KC that minimizes the energy consumption and maximizes
the network life time is equivalent to finding the best route
R that minimizesHs

sd, for any given source-destination pair
(s, d).

B. Opportunistic Routing

Following the description in Section II-B, given a (priori-
tized) forwarder listFL(s, d) = {u0 = s, u1, ..., um, um+1 =
d} for a source-destination pair(s, d), let PFL be the transition
matrix for the Markov chain on the subgraphGFL (with
VFL = {u0, u1, . . . , um+1}), as given in eq.(2). Hence the
total expected number of transmissions using this forwarder
list FL can be computed using the hitting time matrixH asso-
ciated withPFL defined onGFl. In particular,Hsd = H0,m+1

is the total expected number of transmissions from sources
to destinationd. We can apply the theory of random walks
on digraphs to computeHsd. In this case, we can explore
the special structure ofPFL and find aclosed formrecursive
formula for H directly. From eq.(2), we note thatPFL is
an upper triangular matrix. Hence the hitting times,Hi,m+1

satisfies the following recursive relations:































H0,m+1 = 1 +
∑m+1

k≥0 p0kHk,m+1,

· · ·
Hi,m+1 = 1 +

∑m+1
k≥i pikHk,m+1,

· · ·
Hm,m+1 = 1 + pm,mHm,m+1 + pm,m+1Hm+1,m+1,
Hm+1,m+1 = 0.

(22)
We observe that these (upper triangular) linear recursive equa-
tions can be easily solved, starting from the bottom to the top.
Plugging the transition probabilitiespij ’s in, using eq.(2), we
can write the above recursive equation as follows:

Hi,m+1 =







1+
∑

m+1

k>i
aik

∏

j>k
(1−aij)Hk,m+1

1−
∏

k>i
(1−aik)

0 ≤ i < m + 1,

0 i = m + 1.
(23)

The above equation is exactly the same formula obtained
in [15], through an event-based direct probability analysis
approach. The random walk method proposed here is far
simpler. We can further extend the above analysis of the
expected number of transmissions to other transmission costs.
Let S = [si] be a diagonal average transition cost matrix in
subgraphGFL, as defined in section III-B. We can derive the
following recursive formula for computing the expected total
transmission cost matrix defined onGFL:

Hs
i,m+1 =







si+
∑

m+1

k>i
aik

∏

j>k
(1−aij)H

s
k,m+1

1−
∏

k>i
(1−aik)

0 ≤ i < m + 1,

0 i = m + 1.
(24)

Hence for a givenFL(s, d) = {u0 = s, u1, ..., um, um+1 =
d}, the total expected transmission cost ofFL is Hs

sd =
Hs

0,m+1. In [15], using the recursive relations eqs.(23) and
(24), an optimal algorithm (MTS, stands forminimum trans-
mission selection) and generalized MTS algorithms have been
developed to minimize respectively, the total expected number
of transmission, total expected energy consumption, totalend-
to-end transmission latency, and so forth.
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C. Stateless routing

In [7], Chau and Basu analyze the stateless routing algo-
rithm using the random walk theory forundirected graphs, and
apply eq.(12) to derive an end-to-end delay estimation formula
with heterogenous sojourn times. Since the undirected graph
model, they assume that wireless links are symmetric. Given
the theory of random walks on digraphs we have developed,
we can now solve the same problem using eq.(20), where
the transition matrixP for the Markov chain/random walk
is given in eq.(3). A step-by-step procedure for constructing
the Markov chain and then computing the hitting time matrix
H is given in Algorithm 1.

Algorithm 1 Delay Estimation Algorithm for Stateless routing,
given the adjacency matrixA.

1: Form the transition probability matrixP using eq.(3).
2: Compute the stationary probability matrixΠ.
3: Compute the generalized normalized Laplacian matrix

L̃(See DEFINITION 1).
4: Compute the pseudo-inverse ofL̃ .
5: Compute the hitting time matrixH using eq.(15).

Moreover, by introducing an arbitrary transmission matrix
T = [Tij ], Tij ≥ 0 to represent per-node and/or per-hop
transmission cost, we can apply Algorithm 1 (with̃L andH
replaced byL̃s andHs) to compute various transmission costs
associated with the stateless routing, such as latency, energy
consumption, and so forth.

V. PERFORMANCEEVALUATION AND COMPARISON

In this section, we compare the transmission cost estimation
results obtained using therandom walks on digraphsmodel vs.
using therandom walks on undirected graphsmodel, where
the asymmetric packet delivery probabilities of a link,aij and
aji are symmetrized using their average,āij = āji = (aij +
aji)/2. We use the stateless routing [7] as the example. Similar
results are obtained for other routing schemes, which are not
presented here due to space limitation.

The wireless topologies are generated in a300m × 300m
area, where nodes are randomly placed. The transmission
radius of each wireless node is100m. The density (the number
of nodes,n) of the topology are varied in three settings,n =
15, 25, 40. In the first set of reported results (Section V-A),
the link qualities between nodes are randomly assigned. In
the second set of reported results (Section V-B), we control
and vary both the degree of asymmetry (the percentage of
asymmetric links) and the (asymmetric) link quality variation
(the extent to whichaij andaji differ), and randomly generate
link qualities that meet these constraints. For each network
density, we randomly generate1000 topologies with a specific
parameter setting, and compute the average of the results
obtained for these1000 topologies. Due to space limitation,
we focus on the hitting time estimation (namely, the expected
number of transmissions). LetHd

ij represent the hitting time
from node i to nodej computed using the digraph model,

0 0.5 1
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0.4

0.6

0.8

Distribution of the Node Pairs

E
R

R
: |

Hd −
H

u |/H
d

15 nodes
25 nodes
40 nodes

Fig. 5. Distribution ofERR

andHu
ij the hitting time computed using the undirected graph

model. We use the following definition ofrelative error
for comparing and measuring the inaccuracy in hitting time
computation introduced by the symmetrization of link qualities
(i.e., when using the undirected graph model).

ERRij = |Hd
ij − Hu

ij |/Hd
ij , (25)

A. Effect of Network Density onERR

Fig. 5 shows the results obtained for the three network
density settings. Here, we sort the node pairs in each topology
by their ERR values, so that we can plot theERR’s in
a monotonically decreasing order. We see that the relative
errors are overall lower in denser networks. To better illustrate
the effect of network density, we group the node pairs based
on the ranges of theirERR’s: [0, 30%), [30%, 60%), and
[60%,∞), and compute the percentage of node pairs fall
within each range, and the results are shown in Fig. 6. We
see that using the undirected graph model, from 25% up to
50% of all node pairs have an average relative error at least
30%, and a few percentage have an average relative error of
more than 60%. Both figures indicate that when the network
density increases, the percentage of node pairs having large
relative errors decreases. This is in fact not surprising: As the
network is dense (e.g.,40 nodes in a300m×300m area, each
having transmission radius of100m), path diversity is high.
In other words, the number of random (and shorter) paths
between two nodes are typically high, thus reducing the hitting
time between them. The asymmetric links thus likely have
less impact on the overall results. On the other hand, when
the network is relatively sparse, the asymmetric links have
much higher impact, and therefore how to perform routing
effectively becomes more critical.

B. Effect of Degree of Asymmetry and Link Quality Variation

In this second set of evaluation, we fix the network density
to n = 25, and vary the degree of asymmetry (percentage of
asymmetric links) and the (asymmetric) link quality variation
(the extent to whichaij and aji differ). For the former, we
utilize the asymmetric distribution probabilityS% to control
the distribution of asymmetric links in the topology. For the
latter, we use a parameterǫ defined below to control the
link variation: for each node pair chosen to have a pair
of asymmetric links (determined by a givenS%), we first
randomly generateaij , and then randomly generateaji(6=
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aij) such thataji ∈ [(1 − ǫ)aij , min ((1 + ǫ)aij , 1)]. In the
simulations, we selectS% = 0, 25%, 50%, 75%, 100%, and
ǫ = 0, 25%, 50%, 75%, 100%. We randomly generate 1000
topologies for each combination(S%, ǫ) and compute the
average of relative errorERR’s for each node pair. In the
following, the node pairs with the worst average performance
are used.

Fig.7 shows the effect of the degree of link asymmetry,S%
on the worst-case ERR performance. Here we fixǫ to 25%,
75% and100%, and vary the degree of link asymmetry,S%.
We see that as the degree of asymmetryS% increases, the
(worst-case) ERR increases rapidly, up to more than0.6 when
S% = 100% andǫ = 75% or 100%.

Fig. 8 shows the effect of the (asymmetric) link quality
variation on the worst-case ERR performance. Here we fixS%
to 50%, 75% and 100%, and varyǫ from 0 to 1. Similarly,
we see that when we allow a larger extent that the qualities
of asymmetric link pair,aij andaji, can differ, the higher the
(worst-case) ERR is. All in all, we conclude that when the
degree of asymmetry is high, and the link qualities of asym-
metric link pairs can differ to a larger extent, it is important
to take into account the asymmetric link qualities in routing
decision making and estimation of various transmission costs.
This is especially the case in a relatively sparse network.

VI. CONCLUSION

In this paper we have developed a unified theoretical
framework for estimating various transmission costs of packet
forwarding. We illustrated how packet forwarding under each
of three routing paradigms–best routing, opportunistic routing,
and stateless routing–can be modeled asrandom walks on
digraphs. By generalizing the theory of random walks that has
primarily been developed for undirected graphs to digraphs,
we showed how various transmission costs can be formulated
in terms of hitting times and hitting costs of random walks on
digraphs. As representative examples, we applies the theory
to three specific routing protocols, one under each paradigm.
Extensive simulations demonstrate that the proposed digraph
based analytical model can achieve more accurate transmission
cost estimation over existing methods. As part of future work,
we plan to apply the theory of random walks on digraphs
for analysis of the transmission costs under various wireless
broadcastingstrategies, by considering thecover timesof
random walks. We are also interested in extending the theory

for studying the dynamics and evolution of wireless networks,
incorporating the time dimension into the model.
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