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Abstract—In this paper we develop a unified theoretical is hard, and simulation results often hinge on the settings
framework for estimating various transmission costs of paket and parameters used. We believe that analytical models and
forwarding in wireless networks. Our framework can be applied theories also play a critical role in the design of wireless

to the three routing paradigms-best path routing, opportunistic .
routing, and stateless routing-to which nearly all existing routing networks, complementing the roles played by real-world ex-

protocols belong. We illustrate how packet forwarding unde each  Perimentation and simulations. By generating performance
paradigm can be modeled asandom walks on directed graphs bounds and theoretical limits, they provide importantghss
(digraphs). By generalizing the theory of random walks that has on what is achievable and under what conditions, and produce
primarily been developed for undirected graphs to digraphs sefyl metrics for understanding the key design trade-offs

we show how various transmission costs can be formulated Such insiaht d understandi ticularly impoita
in terms of hitting times and hitting costs of random walks Y€ INSIGNLS and understanding areé particularly Imponan

on digraphs. As representative examples, we apply the thepr the early stage of wireless network design.
to three specific routing protocols, one under each paradigm Guided by this belief, in this paper we develop an unified

Extensive simulations demonstrate that the proposed digeh theoretical framework to quantify and estimate variousgra
based analytical model can achieve more accurate transmiss  ission costs of wireless routing protocols. To account for

cost estimation over existing methods. the stochasticand asymmetricnatures of wireless channels
Index Terms—Transmission cost, Digraph, Wireless routing, : Yy : u wi !

Random Walk, Spectral graph theory we model a wireless network asdirected graph (in short,
digraph), where each directed edge (link) is associated with
I. INTRODUCTION a packet delivery probability We consider three wireless

routing paradigms, the (traditional) best path routingy.(e.

Due to the unique characteristics of wireless technologiggpy, [21], DSR [14], and several energy-aware routing
and the dynamics in the environments (e.g., mobility and i'ﬁ'rotocols [2], [5]), opportunistic routing (e.g., EXOR [3]
t_erferenc_e) they operate in, wireless chf_;mnels are kno_vkmtoMORE [4]), and stateless (stochastic) routing (e.g., as pro
time-varying, unreliable, aqd asymmetric. Furthe_rmorec_aw posed in [7], [19])—nearly all existing routing protocolsilf
less networks are often designed to support certain apipltsa nder one of these paradigms, or use a combination thereof.
or missions, and deployed in specific environments. Forethegnger the (simplifying) assumption that packet delivergtpr
reasons, a plethora of wireless mechanisms—especialing  apilities are independent, we demonstrate how packet forwa
algorithms and protocols-have been proposed and developgdynder each paradigm can be modeled as a Markov chain on
to achieve a range of different objectives such as throughpy gigraph with an appropriately defined transition probigbil
latency, energy consumption, network life time, and sohfortynatrix capturing the specifics of the routing algorithm unde
Evaluating the efficacy of wireless protocols in terms Gfypsideration. In other words, the traversal of a packetdei
various transmission cost metrics, and deciding on whi¢§nvarded in a wireless network can be viewed asmadom
one to employ in a specific environment so as to attaf,k on a digraph Consequently, various transmission costs
certain performance objective, can be a challenging task dp and-to-end packet delivery (e.g., the expected number of
practice. The ability to analyze, estimate and quantifyots ansmissions, end-to-end packet delivery ratio, thrpugh

transmission costs is therefore imperative in the design I%Eency, energy consumptions) can therefore be formulated

wireless networks. o o using well-known notions such dstting times sojourn times
While experimentation and testing in realistic wireless ey gsgciated with random walks.

vironments are indispensable and provide the most definiterhe main contributions of this paper are summarized below.
and authoritative means to evaluate the efficacy of wireless, 1o our best knowledge, this is the first work that utilizes

routing protocols, they are in general very expensive aed ghe random walk (Markov chain) model to formulate the end-
typically utilized in the later stage of the network desigrla to_eng transmission costs for various types of wirelessimgu
evaluation process. Simulation-based evaluation is atgpmi- strategies.

tant and necessary; however, conducting realistic sinomst o The theory of random walks (and the closely relatpec-

_ _ _ _ , _ tral graph theoryhave been developed primarily fondirected
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(digraphs) with a more general definition of normalizedpath routing, opportunisticrouting, andstateless (stochastic)
(graph) Laplacian matrixC;. We also show how the hitting routing.
times, commute times and sojourn times (or hitting coste) ca The traditional best path routing protocols (e.g., AODV][21
be computed using the Penrose-Moore pseudo-inverse;of DSR [14] and their variations/extensions to multi-path or
e Using three representative routing protocols as examplkesergy-aware routing) typically select a singkestpath, some-
(one from each routing paradigm), we systematically itatgt times multiple paths, based on certain routing metric. kénli
how our proposed theoretical framework based on randowmired networks, these best paths are selected typically on-
walks on digraphs can be used to estimate various transmissiemand, instead of pre-computed. Depending on the obgectiv
costs. Our analysis subsumes earlier results obtained ugif the routing protocols, different routing metrics may be
more ad hoc methods. We also perform extensive simulatiotgsigned and used. For example, if the goal is to maximize
to show the relative errors in estimation when asymmetnksli the packet delivery probability and minimize the number of
are artificially symmetrized and undirected graphs are .usedransmission, the ETX metric [11] may be used which captures
The remainder of this paper is organized as follows. THbe expected number of transmissions per link, and the best
related works is briefly touched on below. In Section li(least-cost) path is the path that minimizes the overalh pat
we first describe three wireless routing paradigms. We th&d X. If the objective is to minimize the energy consumption
illustrate how packet forwarding under each of them caand maximize the network lifetime, an energy-aware metric
be modeled using Markov chains/random walks, and variogigould be used. For example, [6] has proposed a lifetime
transmission costs can be formulated using hitting times amaximization algorithm for energy-aware routing in wisde
hitting costs associated with the random walks. We outle tsensor networks.
theories of random walks on undirected and its generatimati The key idea behind opportunistic routing is to take ad-
to directed graphs in Section lIl. In Section IV, we apply thgantage of the broadcasting nature of wireless commubicati
theory of random walks on digraphs to three representatiggannels, while at the same time addressing the probabilist
routing protocols. Simulation results are reported in ®acy, nature of packet reception. Instead of selecting one oripheilt
and the paper is concluded in Section VI. fixedbest paths, opportunistic routing protocols (e.g., [3]) [4
Related Works. We will present the three wireless routingspecify a set of forwarders, often arranged in a prioritized
paradigms in Section Il and discuss some related wireldi, referred to as dorwarder list Using the (pre-specified)
protocols in that context. Hence we do not touch on them heferwarder list, after each packet transmission, the “bést”
Our paper is partly inspired by the work in [7] where result¢/arder among those which happen to receive the packet is
from random walks orundirected graphsire used to model used to forward the packet towards the destination. Hence
and derive a delay estimation formula for stateless routigpacket may opportunistically traverse any path from the
with heterogenous sojourn time. In contrast, our paper rgfurce, among the set of forwarders, to the destinatioteads
only supersedes the results in [7] which essentially assu®fea fixed path. Through experiments in the MIT Roofnet
symmetric wireless links, but develops a general theaktid22] testbed, EXOR [3]-one of the first practical opporttinis
frame based on random walks on digraphs for estimatifiguting protocols—is shown to increase the throughput by a
various transmission costs under all three wireless rgutifctor of two to four over traditional best path routing setes.
paradigms. As mentioned earlier, the theory of random walkgirther improvements to ExOR [4], [15], [17] have also been
has been developed primarily for undirected graphs. Relgti developed. For instance, in [15] the key problem of how to
fewer attempts have been made to extend it to digraphs. Jn [gptimally select the forwarder list is addressed, and amapt
Chung defines aymmetrized_aplacian matrix for directed algorithm (MTS) that minimizes the expected total number of
graph, and successfully generalizes the well-known Cheegf@nsmissions is developed.
Inequality to directed graphs. However, it is unclear weeth By its name, stateless (stochastic) routing does not main-
this generalization can be used to compute hitting times af@&n any routing state (e.g., topology, routing tables)d an

commute times for random walks on digraphs. performs packet forwarding in a purely “random” fashion.
In contrast to opportunistic routing, no forwarder list is
Il. WIRELESSROUTING, TRANSMISSION COSTS AND pre-specified in general; any node receiving a packet may
RANDOM WALKS IN DIRECTED GRAPHS decide to forward the packet (some mechanisms to avoid

, . . , , . and reduce unnecessary duplicate transmissions are fgnera
In th|s section we briefly describe the three wireless r@*'t'rbmployed). Stateless (stochastic) routing is typicallyigieed
para_ld|gms. We then show how packe_zt traversals “”F’ef €3HY best suited for resource-constrained, dynamicallyirvgr
routing paradigm can be modeled using Markov chains, agfly highly unreliable wireless network environments (e.g.
use the Markov models to estimate various transmissiors cogt,,<or or delay/disruption tolerant networks). For instan

in a wireless network. a stateless routing protocol is developed in [19] for wissle
sensor networks. Due to its stateless feature, statelesisgo
schemes can be highly scalable; however, due to the pure
The existing (unicast) wireless routing schemes can bendomness employed in these schemes, their efficacy, e.g.,
roughly classified into three categories: the traditiohabt in terms of end-to-end packet delivery and other perforraanc

A. Wireless Routing and Transition Costs



transmission range of nodg, we simply seta;; = 0. Hence
for any two distinct nodes, j € Vi # j, we haved < a;; <
1, anda;; > 0 if and only if (i, j) € E. Due to the asymmetric
nature of wireless communications, in general we haye#
aj;. In particular, we may have;; > 0 but a;; = 0. Further,
for any nodei € V, we definea;; = 0.

Let n = |V| denote the total number of nodes in the
wireless topology. Then the x n matrix, A = [a;;], gives
Fig. 1. An Example Wireless Topology us a matrix representation of (one-hop or link-level) packe
metrics, may suffer. delivery probabilities of a wireless network. In generdl,s

Thanks to widely disparate wireless network environmenggymmetricWe call A the adjacency matrix of the (weighted)
and diverse application objectives, no one routing paradigjirected graphG = (V, E). In modeling packet forwarding
always over-performs the others in practice. For instanqgasing Markov chains, we assume that for dnyj) € V, when
traditional best path routing may work very well in a stati¢, packet is forwarded by nodethe probability that the packet
wireless environment with fairly stable and reliable wes3 s received by node, i.e.,a;;, does not depend on where the
channels, while opportunistic routing may perform bettgfacket was before reaching nodéNamely, except for node
where wireless channels are less reliable with frequently; does not depend on who and where the previous forwarders
varying conditions. Hence in the design of practical rogtinare. In other words, we assume that the Markov property holds
protocols for wireless networks, which routing paradigmdo In modeling opportunistic routing and stateless routing, w
hybrid combination thereof) to use will depend criticallythe will also make the simplifying assumption that the (link#)
specific wireless environment. The ability to analyze,reate packet delivery probabilities are independent. More sedyj
and quantify various transmission costs (e.g., the exgeciet N(i) = {j : (i,j) € E} be the direct neighbors of
number of transmissions, latency or energy consumption)rigde: that are within its transmission range. We assume that
therefore imperative in the design of wireless networkghe for any ji,jo € N(i), a;;, anda;;, are independent. We
next subsection we illustrate how we can model the packeinark that to model the time-varying dynamics of a wireless
traversal in a wireless network under each of the wireless ronetwork, we can introduce a series of time-dependent graphs
ing paradigms using Markov chains. Through these Markay, = (Vi, B¢, A;) with time-varying node and edge sets as
chain models, transactions costs incurred by differentimgu well as varying link-level packet delivery probabilities;’s.
schemes can then be computed using the notiohittihg For clarity and model simplicity, in this paper we focus only
timesand other related quantities (e.g., sojourn times or lgittiron one instanc@f such a time-varying graph, and assume that
costs). during this instance except for a few of them, the node/edge
sets andu;;’s are largely unchanged. Finally, we assume that
the digraph graplz = (V, E) is strongly connected, namely,

In this subsection, we illustrate how we can model packéiere is a (directed) path from any node to any other node in
forwarding under each of the three routing paradigms usirg)

Markov chains. Due to the probabilistic nature of wirelesBest Path Routing.Consider a specific source destination pair
transmissions, when a packet is forwarded from one node,d). Let R(s,d) = {up = $,u1, ..., Um, Um+1 = d} denote
say i, to another node, say, it only has some probability the route (i.e., a best path) selected by a best path routing
to “transit” from node: to nodej. This suggests that we protocol for forwarding packets from to d. We useGgr =
could model and trace the traversal of a packet when it (¥z, Fr) C G to denote the subgraph (a path or line sub-
forwarded from one node to another in a wireless netwogtaph) induced byR, whereVg = {u;,0 <i <m + 1}, and

as state transitions in a Markov chain. Before we proceed &y = {(u;,u;11),0 < i < m}. We can model the traversal
describe how packet forwarding under each routing paradigrha packet being forwarded fromto d as a Markov chain
can be modeled using Markov chains, we first present soméh the state spac&r and the transition probability matrix
general notations and basic assumptions. Pr = [p;;] defined as follows:

We model a wireless network as a (weightditgctedgraph

B. Modeling Packet Traversal using Markov Chains

(i.e., adigraph) G = (V, E), whereV is the set of wireless (1”71'“_ _ :]t )= H__i’(l): 0,...,m
nodes, andt is the set ofdirectedwireless links. Here each Dij = TGl =TT, Q)
) ) o . R J 1 if j=d,i=m+1
directed link,(i, j), represents the relation that nodes within ;
0 otherwise.

the transmission range of nodein other words, a packet
transmitted by node may be received by nodgwith some Using the wireless topology shown in Fig. 1 as an example, let
probability. We denote this probability by,;. Hence each R, 4 = {s, (u1 =)vs, (u2 =)v4,d} be the best path (route) for
link (3, j) is associated with a link weiglat;;. We will simply  the source-destination pais, d). The corresponding Markov
refer toa;; as the (link-level) packet delivery probability. Morechain is schematically depicted in Fig. 2, where the arrows
generally, we associate a weight to any (ordered) pair of indicate the state transitions. The transition probapitiatrix
nodes,(i,j). If (i,j) ¢ E (namely, nodej is not within the Pg captures the fact that when a packet is forwarded by node



Fig. 2. Markov chain for Best-Path Routingig. 3. Markov chain for Opportunistic RoutFig. 4. Markov chain for Stateless Routing
ing (FL = {s,v1,v3,v4,d})

u;, 0 < i < m, with probability p; ;+1 = a;,+1 the packet if node j is the highest priority node that receives the packet.
may be received by the next hapy; (thus it transits or This happens with probability;; = a;; H,Dj (1 —ai). The
“walks” from nodei to nodei+1 with probabilityp; ;+1), and packet will stay with node, if none of the higher priority
with probability p;; = 1 — a;,4+1 it is not received by node nodes have received it. This happens with the probability
i + 1 (thus it stays with nodé). Hence packet forwarding pi; = [],.-;(1 — a:). Hence we have a Markov chain defined
under best path routing can be viewed asaadom walkon on the state spacer; with the transition probability matrix
the line subgraptGr with Pr as the transition probability Pr;, = [p;;] given below,
matrix. We note that this is an absorbing Markov chain, with

nodes as the starting state, amalthe final absorbing state. As ij Hk>ﬂ' (1 —air) I; 0 f Z < ]<§ ZL +1
we will see later, using this Markov chain (or random walk .. — § ks (1 —air) tj=u0<ism 2)
Pij 1 if j=i,i=m+1

on a digraph) we can formulate various transmission costs in
terms of quantities associated with the Markov chain (ramdo

walk). For instance, the expected number of transmissi®nsiiis not too hard to verify than pi; = 1. Using the topology
the expected number of steps for a packet to “walk” fronm fig.1 as an example, the corresponding opportunistigmgut
the sources to the destinationi. Lastly, the above Markov Markov chain is shown in Fig. 3. Again this is an absorbing
chain model can be also easily generalized to (best-pateel)a Markov chain, with node as the starting state, andhe final
multi-path routing. absorbing state. Using this Markov chain/random walk, we
Opportunistic Routing. Given a source destination pair, ), can again formulate various transmission costs using giemnt
let FL(s,d) = {ug = $,u1,....Um,Umy1 = d} denote associated with the chain/walk. As an aside, a key problem in
the (orioritized) forwarder list selected by an opportunisti®@pportunistic routing is to determine the “best” forwardist
routing protocol, say, EXOR. We first note that unlike traf'L, or subgraplGry, for a source and destination pair. This
ditional best path routing, the forwarder ligtL, , used in problem is addressed in [15], where an optimal algorithm is
opportunistic routing represents not a path, but a subgrag@gveloped. In this paper we will assume that the (optimal)
Grr = (Vrr, Err) connecting the sourceto the destination forwarder list is given and used.
d (see Fig. 3 for an example, whe®€L, ; = {s,(u; = Stateless (Stochastic) RoutingAs no routing states are
) = w1, (uz =)vs, (uz =)vy, d}). Within this subgraptGry, maintained or used, given a source-destination @aif), any
there are many (directed) paths franto d; which of them is node inG may be involved in the forwarding process of a
actually traversed by a packet—during the packet forwardifacket. Suppose that nodeis the current forwarder. After
process, depends on which nodes on the forwarder list mcei@dei’s transmission, a subset of its direct neighbavs;),
the packet and which nodes forward the packet. may receive the packet. Unlike opportunistic routing where
riorities are used to determine which node should be thé nex
8fwarder, any of these nodes may become the next forwarder
h equal probability. For example, the next forwarder may
e selected by using a random back-off mechanism where each
node randomly sets a back-off timer value uniformly chosen

priority thanu;.. Using these priorities, we can describe thgom [0, o] wheret, is an appropriately chosen contention

forwarding process of a single packet as follows: supposlenoSIOtt‘_ Hence to ttrr]a(tzlihthe plilcfe'i trave.rtials‘dléndedr st?teless
i, (0 < i < m) is the current node to forward the packef:Ou Ing, we see that the packet stays with nedeand only

After its transmission, if the destinatiehreceives it, then the i ngni_lc?f its niaighbors receivce) t:e pgcketr.] This kllapperis.wit
forwarding process for this packet ends. Otherwise, supp obability pi; = [T, (1 — aix). Otherwise, the packet transits

nodej, i < j < m, receives it. Nodej will be the next or “walks” from node: to nodej, j € N (i), with probability

forwarder if and only if no higher priority node; > j, has P4 — > ij, @i (1=IIx(1~aix)). Hence we have a Markov

received the packet. Hence to correctly capture the packégin defined on the state spake(the entire node set) with
forwarding process under an opportunistic routingg must the transition probability matric = [p;;] given below,
track which node is the next forwardirstead of simply which ais v,

nodes receive the packet. In other words, we say the packet Dy = { S am (1-T1I, A —ap)) ifi#j 3)
has successfully “walked” from nodeto node; if and only h [ (1 —ax) if 1 =7.

0 otherwise.

The priority of nodes is used in opportunistic routing t
decide which node should forward a packet when several
them on the forwarder list receive the same packet. Here
use the convention that a node on the right has higher prior
than a node to its left; namely, for any < j, u; has higher




It is easy to verify thatzj pi; = L.If the graph is strongly note that ifT;; = 1 for all ¢, 7, i.e., T is the all-1 matrix, then
connected, the Markov chain is irreducible. Especiallyewh H?; = H;;.

the graph is symmetric, then the Markov chain will be re-
versible. The traversals of a packet under stateless atia
thus modeled as a random walk on the digr&phwith the ) ] ) i
transition probability matrixPs. Using the topology in Fig. 1 In this section we briefly overview the random walk theory

as an example witlfs, d) as the source-destination pair, th&" undirected graphsand show how important quantities such
resulting Markov chain is shown in Fig. 4. as hitting, commute and sojourn times can be computed. We

Modeling the Transmission CostsGiven the Markov chain then outline a generalization of the random walk theory to
(or “random walk on a digraph”) models of wireless routingdi'écted graphs (digraphspind show how the same quantities

we now briefly discuss how various transmission costs sutfn P& computed. The detailed description of this genexliz
as the expected number of transmissions, latency, dutye cyfdndom walk theory on digraprend the associated proofs are
delay, or energy consumption, can be modeled using cert§iported in a separate paper [16].

standard notions or quantities associated with the Markpy Random Walks on Undirected Graphs

chain/rendom walk. o Given an undirected graplli = (V,E) that is finite
We first use the expected number of transmissions as &hnected (ie., any node can reach any other nodé)in

example, and show how this cost can be formulated as they |et 4 be a symmetric weight (or adjacency) matrix
hitting time In a Markov chain (or random walk), the h'tt'ngappropriately defined of, wheren = |V|. For1 < i < n

time H;; is defined as the (expected) number of transitiongsfine 4 — S ay;, the (weighted) degree of node
(i.e., steps) for a random walker that starts from nOdeq};taﬁnd J :Z s Zfl olfjten oferred to as theolume of G
1 to first reach (or h_it) nodg’_. The hitting time H,; satisfies janoted byvg(lG). Let D = diag|d;] be a diagonal matrix
the following recursive relation of node degrees. The?® = D~'A is a transition matrix
145" pHy, i+ associated with a Markov chain (a random walk)@nwhere
Hy = { 0 Lie=r Pit Hiy if Zii (4 pi; = ai/d;. Letm = [m;]1<i<n be its stationary distribution
probability vector. It is well known (see, e.g., [1]) thatgh
Given the appropriately defined Markov chain for a wireledglarkov chain (random walk) ol is reversible namely
routing scheme, it is not too hard to see that the (expected)

I1l. RANDOM WALKS ON DIRECTED GRAPHS. HITTING,
COMMUTE AND SOJOURNTIMES

total number of transmissions needed to forward a packet fro TiPij = TjPji- ©)

sources to destinationd is exactlyH,4. The recursive relation where forl < i < n,

eg.(4) plays a key role in computing the hitting tirilg,;. The d; d;

remainder of this paper is devoted to addressing this aref oth T = W = (7)
k

related computation problems. ) ) . L
To account for other transmission costs, we introduce &veNn ;[h's random walk on an undirected grapfiting gmﬁs
transition cost matrixl” = [T};] associated with each one-ij (cf. eq.(4)), commute time<’;; = Hi; + Hj; and the

hop transitionT%; > 0, i, j. For example, depending on thehitting costsor (heterogeneous) sojourn timég’; (cf. eq.(5))

context and modeling objectivéy; can be used to represen@’ Pe computed using a number of methods, through the

the per-node processing/transmission latency, duty clely well-known connections between the Markov chain/random
’ ' walk theory, electrical resistance theory [12] and spégtiaph

or per-node energy consumption; whéte, j € N(7) the one- X
hop forwarding latency, energy consumption, etc. Anal@goﬂﬂ'eory [8], [10]. Here we present the results using the spect
graph theory.

to the notion of hitting timeH;;, we define thehitting cost . . . .

H;, (also referred as theojourn timeassociated witll") as I.n (81, .thenormallzed Laplacian matrifor undirected graph
the (expected) total cost (or “delay”) incurred by a randorﬁ is defined as

walk that starts at nodgeto first reach nodg, where each state L— D% (D — A)D*% — D3 (I— p)D*%7 (8)
at any nodes incurring a cost (delayJx and each transition . . " o
from nodek to nodel incurring a cost (delay) of}. As in where L is symmetric and_posmve semi-definite. L&t and _
the case off;;, H;; satisfies the following recursive relation/’s> 1 < k < m, be the eigenvalues and the corresponding

wheres; = 3" p;;Ti; as the average transmission cost evef§/9eNVeCtors oL, where\;'s are arranged in the i_ncreesing
time a E)acl;(etj\zljigitgj 9 rder where\; = 0 < Ay < --- < \,,. Then the hitting time

H;; can be computed as follows (see [18]):

s = b 2o pin(Ti + Hiy) = s+ 300 punHiy Wi d 13 ke

ij 0 if i = j. Hijzz_(d_ﬂ_ LulTRY (9)

(5) =1 e di /did;

Hence given the appropriately deflneq Markov chain for @4 the commute timé;; = H;; + H;; is equal to
wireless routing scheme and the transition cost mdifrix we
can use{?, to capture the (expected) total cost of transmission Cyij = Z d ( Hki kg )2, (10)
when forwarding a packet from soureeo destinationd. We = M Vdi \/d;




In [7] Chau and Basu introduce(diagonal) sojourn timena- matrix £, in [16] we show that the hitting timeH,; as defined
trixt T = diag[T;], whereT; represents @er-nodetransition by the relation in eq.(4) can be computed usifig as stated
cost or “delay” incurred at nodé and define the following in the following theorem.

(T-extended) Laplacian matrig THEOREM 1 (Hitting and Commute Times for Ran-
L5 =T 30T 3. (11) dom Walks on Digraphs). Given the generalized normalized
Laplacian matrix£ defined in eq.(13) and eq.(14), and l&t

Let o (again arranged in the increasing order) amngd e jts pseudo-inverse. Then we have the hitting thipe as
1 < k < n, be the eigenvalues and eigenvectorsLéf Chau

and Basu [7] obtain the following solution for the hittingsto f:;r] f:fj
H s _ s i Hij:__—7 (15)
matrix H* = [H;], extending the above (homogeneous) result M N
for the hitting matrixd = [H,;], or in the matrix form,
s &, iy VriVk; H=J diag(II" 3 L1 3) — I3+ 16
Hijzza_k(d_T_ _ d_T_d_T_), (12) J - diag(II"2 LTI =) LTIz (16)
k>1 R S The commute times};; = H;; + Hj;, can be computed as
whered; =, diT. follows,
B. Random Walks on Directed Grap(Bigraphg Ch = ﬂ " 5 B [‘{; _ [";— (17)
We now outline the (generalized) random walk theory on Tom T TG /Ty

digraphs we have developed. Due to the space limitation, We note that if the underlying grapfi is undirected, and
the detailed description and proofs are omitted and can #e transition probability matri® of the Markov chain is? =
found in [16]. Given adirected graphG = (V,E) which D-1A (as defined in Section Ill-A, wherdl is symmetri,

is assumed to bstrongly connectedLet P be a transition then £ = £. Furthermore, one can show that egs.(16) and
matrix’ associated with a Markov chain defined 6h Let (17) are equivalent to egs.(9) and (10). Hence our theory of
7 = [mi]1<i<n b€ the stationary distribution probability vectorrandom walks on digraphs subsumes the existing theory of
namely,m = 7P. In general, the Markov chain (random walkyandom walks on undirected graphs as a special case.

on G is no longer reversiblgand egs.(6) and (7) do not hold. We now extend the above results for hitting and commuting
The assumption that is strongly connected (or equivalentlytimes to hitting and commute costs. Given an (asymmetric)
P is irreducible) yields the following properties [1]: i) thetransition cost matriX’ = [T;;], T;; > 0, with T;; as the per-
Markov chain is irreducible with no transient states;fi)has link transition cost, and’; as the per-node transmission cost,
a simple eigenvalue equal towith right (column) eigenvector defineS = diag[s;] a diagonal matrix withs; = Z;‘:l T;ipij
e=1[1,1,---,1]7 and left (row) eigenvector, the stationary as the average transmission cost every time a packet Wdits.
probability vector; and iiiyr; >0, 1 <i <n. define the followingnormalized cost Laplaciamatrix, £°* as

Let IT = diag[r;] be a diagonal matrix withr;'s on the . s
diagonal. We introduce thgeneralized normalized LaplacianDEF”\”-I-IOI\I 2 (Normalized Cost Laplacian £°).

matrix for a strongly connected digrapghi = (V, E) (and L5 = S—%ﬁs—%, (18)
an associated Markov chain with the transition matfix as < . . . .
follows: where thel is the generalized normalized laplacian matrix.
R The corresponding scalar form is
DEFINITION 1 (Generalized Normalized Laplacian £). 1 e
~ ) ) ) 5; (} —1Pu‘) o if i =j,
E:H?(I—P)Hii, (13) Efj = _S;Eﬂ.fpmﬂ.;is;i if <Z,j>€ E,’L;A_], (19)
or in the scalar form, 0 otherwise.
1 — pi if i = 7, Let £+" be the (Penrose-Moore) pseudo-inverse (o
Lij = _ﬁ%p_ﬂf% if (i,j)ek,i#j (14) In [16] we show that the hitting costd;; as defined by the
1 I ’ ’ ’ 2
0 otherwise. relation in eq.(5) can be computed usitigJr as stated below

Let £t be the(Penrose-Moore) pseudo-inverfk3] of £. THEOREM 2 (Hitting Costs for Random Walks on Di-
We can show (in [16]) thalT = I — I12JII2, where graphs).
J = [J;;] is the all-1 matrix and/;; = 1. Using this relation Fst Fst
and other properties of the generalized normalized Lagtaci HY = d*(—2 - =

U T VTi8iT5S5

); (20)

1in contrast, in Section II-B we have introduced a generasition cost s _
matrix T' = [T;;], T;; > 0, with a transition cost associated with each nodé}Nhered o Zk Tk Ske
T“2 and each IinkT;;, whereT |s_n0t necessarily dlagor_lal nor sy_mmetnc. Analogous to the commute timéss}, we can also define the
For example,P can be derived from an appropriately defined (non- O — HS + H$ Jd h b d
negative) weight (or “adjacency”) matrid on G, where 4 is in general Commme. costasCy; = H;; +H7;, and they can be compute
asymmetric easily using eq.(20).



V. ESTIMATING TRANSMISSIONCOST FORDIFFERENT  B. Opportunistic Routing

ROUTING STRATEGIES ) o ) ) o
Following the description in Section 1I-B, given a (priori-

In this section we apply the theory of random walks ofized) forwarder listF'L(s,d) = {ug = 8, U1, ..., Urn, U s1 =
digraphs to various routing strategies and see how it can defor a source-destination pdis, d), let Pry, be the transition
used to estimate various transmission costs. We consice thmatrix for the Markov chain on the subgraghy; (with
specific examples: theeep-conneabuting, a class of energy- Vi, = {ug,u1,...,uns1}), as given in eq.(2). Hence the
aware best-path routing algorithms proposed in [20], thetal expected number of transmissions using this forwarde
opportunistic routingprotocol as defined in [3] and analyzedist F'L can be computed using the hitting time matfixasso-
in [15], and thestateless routingprotocol introduced and ciated with Pr;, defined onG'g;. In particular,Hsg = Ho 41
analyzed in [7]. is the total expected number of transmissions from source

to destinationd. We can apply the theory of random walks
A. Keep Connect Routing for Network Life Time Maximizatioon digraphs to computéi,,. In this case, we can explore

. thg special structure aPr;, and find aclosed formrecursive
Many energy-aware routing protocols have been deveIOpf%rmula for H directly. From eq.(2), we note thay, is

for energy-constrained wireless networks, such as Wh;elez_'lsn upper triangular matrix. Hence the hitting timds
sensor networks. These protocols take the energy COStsaﬁsfies the followin recu.rsive relations: hmtl

a key metric in selecting routes, and attempt to forwardh 9 '

packets along a path that minimizes the energy consumption a1

or maximizes the overall network life time. THheep-connect Hom+1 =1+ Zkzo PokHg,m+1,

routing (thereafter referred to &) is a class of energy-aware "

routing algorithms proposed in [20] that take into accourthb Himp =1+ ZZ;-I PikHp,m+1,

the energy cost and the “importance” of nodes in the overalf ---

network connectivity so as to maximize the network life time | Hm,m+1 = 1+ pmmHm m+1 + Pmm+1Hmt1,m+15

Here the network life time is defined as the time until the\ Hpt1,m+1 = 0.

network becomes disconnected. In [20], the authors apg@ly th ) _ (_22)
spectral graph theory—in particular, use the Fiedler vilne Ve observe that these (upper triangular) linear recursjvee
second smallest eigenvalue of a graph Laplacian)—to thigmiesions can be easily solved, starting from the bottom to tipe to
and analysis of the KC routing algorithms. We use KC d3lugging the transition probabilitigs;’s in, using eq.(2), we
a simple example to illustrate how to estimate the wirele§&n Write the above recursive equation as follows:
transmission costs (hitting costs).

In KC, the “importance” of a node in terms of its 3 s e I, 0= aia) Himo O<i<ma+l
connectivity in a graph = (V, E) is defined as follows: Hi.m+1 = -1, 0-am) o ’
W (i) = 1/X2(L(G_;)), whereG_; is a graph resulting from 0 t=m +(12-3)

G with nodei and its adjacent edges removdd,G_;) is
the graph Lapalician of7_;, and \2(L(G_;)) is the secon
smallest eigenvalue (the Fiedler value) bfG_;). For each

g The above equation is exactly the same formula obtained
in [15], through an event-based direct probability analysi
link (z,7) € E, lete;; denote the one-hop transmission energ?ipproaCh' The random walk method proposed here is far

cost fromi to j. We introduce the following transition cost>Impler. We can further e>_<te_nd the above a”a'¥3'$ of the
matrix T = [T},;], where T, = e, ;W(i), if (i,j) € E expected number of transmissions to other transmissicis.cos
- 71 1y 1] ’ 9 1

Let S = [s;] be a diagonal average transition cost matrix in
subgraphG rr,, as defined in section I1I-B. We can derive the
following recursive formula for computing the expectecatot
transmission cost matrix defined &y, :

andT;; = 0, otherwise. Given a path or rou® = {ug =
S, UL, -« Um, Um41 = d} fOr a source-destination paig, d).
Then using the Markov chain transition matig defined on
the line (sub-)grapltzr (with Vg = {ug,u1,...,Um+1}) @S
given in eq.(1) of Section II-B, we can easily solve the hti

m+1 s
cost equation (5) and compute the hitting cost matfix for - B 54D ems ain [ [0 =0 Hi 0<i<m+l,
Gr as follows: Gm4l = =TI, (—ai)

0 i =m+ 1.
m .
73 _ Do ek 1 Wi(k) ak,iﬂ 0<i<m+1 _ (24)
i,m+1 0 otherwise. Hence for a givert'L(s, d) = {uo = 8, u1, ..., Um, Umy1 =
(21) d}, the total expected transmission cost B is H?, =
In particular, H?, = HS is the expected total costH{ . In [15], using the recursive relations egs.(23) and
sd 0,m+1 0,m—+1

associated with the rout&®. Hence to find the best path in(24), an optimal algorithm (MTS, stands farinimum trans-
KC that minimizes the energy consumption and maximizesission selectionand generalized MTS algorithms have been
the network life time is equivalent to finding the best routdeveloped to minimize respectively, the total expectedlmem
R that minimizesH?,, for any given source-destination pairof transmission, total expected energy consumption, totelt
(s,d). to-end transmission latency, and so forth.



C. Stateless routing 0.

. -v-15 nodes
In [7], Chau and Basu analyze the stateless routing algo- \ -0-25 nodes

rithm using the random walk theory fandirected graphsand & 40 nodes
apply eq.(12) to derive an end-to-end delay estimation fidam
with heterogenous sojourn times. Since the undirectedhgrap
model, they assume that wireless links are symmetric. Given
the theory of random walks on digraphs we have developed,
we can now solve the same problem using eq.(20), where
the transition matrixP for the Markov chain/random walk

is given in eq.(3). A step-by-step procedure for constngrti
the Markov chain and then computing the hitting time matrix Fig. 5. Distribution of ERR

H is given in Algorithm 1. and H}, the hitting time computed using the undirected graph
model. We use the following definition ofelative error
Algorithm 1 Delay Estimation Algorithm for Stateless routing,for comparing and measuring the inaccuracy in hitting time

o
o)

ERR: [H-HY|/H
o

o

0.5
Distribution of the Node Pairs

given the adjacency matrix. computation introduced by the symmetrization of link gtiedi
1: Form the transition probability matri® using eq.(3). (i.e., when using the undirected graph model).
2: Compute the stationary probability matrik
3: Compute the generalized normalized Laplacian matrix ERR;; = |Hj; — Hjj|/H{, (25)
£L(See DEFINITION 1.)' ~ A. Effect of Network Density oBRR
4: Compute the pseudo-inverse 6f. . )
5. Compute the hitting time matri¥l using eq.(15). Fig. 5 shows the results obtained for the three network

density settings. Here, we sort the node pairs in each tggolo
by their ERR values, so that we can plot thERR’s in
Moreover, by introducing an arbitrary transmission matriy monotonically decreasing order. We see that the relative
T = [I;],T;; > 0 to represent per-node and/or per-noyrors are overall lower in denser networks. To bettertilats
transmission cost, we can apply Algorithm 1 (withand f7'  the effect of network density, we group the node pairs based
replaced byC* and H*) to compute various transmission costgn the ranges of theiZ RR’s: [0,30%), [30%,60%), and
associateq with the stateless routing, such as Iatencyg;enqﬁo%voo)’ and compute the percentage of node pairs fall
consumption, and so forth. within each range, and the results are shown in Fig. 6. We
see that using the undirected graph model, from 25% up to
50% of all node pairs have an average relative error at least
In this section, we compare the transmission cost estimati®0%, and a few percentage have an average relative error of
results obtained using tmandom walks on digraphsiodel vs. more than 60%. Both figures indicate that when the network
using therandom walks on undirected grapimsodel, where density increases, the percentage of node pairs having larg
the asymmetric packet delivery probabilities of a link; and relative errors decreases. This is in fact not surprisingthfe
a;; are symmetrized using their average; = a;; = (a;; + network is dense (e.g40 nodes in &00m x 300m area, each
a;i)/2. We use the stateless routing [7] as the example. Similaaving transmission radius d00m), path diversity is high.
results are obtained for other routing schemes, which ate me other words, the number of random (and shorter) paths
presented here due to space limitation. between two nodes are typically high, thus reducing thénlitt
The wireless topologies are generated i808m x 300m time between them. The asymmetric links thus likely have
area, where nodes are randomly placed. The transmissiess impact on the overall results. On the other hand, when
radius of each wireless nodeli80m. The density (the number the network is relatively sparse, the asymmetric links have
of nodes;n) of the topology are varied in three settings= much higher impact, and therefore how to perform routing
15,25, 40. In the first set of reported results (Section V-A)effectively becomes more critical.
the link qualities between nodes are randomly assigned. In ) ) o
the second set of reported results (Section V-B), we contfdl Effect of Degree of Asymmetry and Link Quality Variation
and vary both the degree of asymmetry (the percentage ofn this second set of evaluation, we fix the network density
asymmetric links) and the (asymmetric) link quality vainat to n = 25, and vary the degree of asymmetry (percentage of
(the extent to whiclu;; anda;; differ), and randomly generateasymmetric links) and the (asymmetric) link quality vaoat
link qualities that meet these constraints. For each nétwdthe extent to whichz;; and aj; differ). For the former, we
density, we randomly generat800 topologies with a specific utilize the asymmetric distribution probability% to control
parameter setting, and compute the average of the restitis distribution of asymmetric links in the topology. Foeth
obtained for thesd 000 topologies. Due to space limitation,latter, we use a parameter defined below to control the
we focus on the hitting time estimation (namely, the expictéink variation: for each node pair chosen to have a pair
number of transmissions). Léf;ij represent the hitting time of asymmetric links (determined by a give$ft), we first
from nodei to node; computed using the digraph modelrandomly generatei;;, and then randomly generatg;(#

V. PERFORMANCEEVALUATION AND COMPARISON
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Fig. 6. ERR distribution for different network Fig. 7.
densities.

Effect of degree of asymmetry. Fig. 8.

Effect of (asymmetric) link quality
variation.

a;;) such thata;; € [(1 — €)a;j, min ((1 + €)a;;,1)]. In the for studying the dynamics and evolution of wireless network

simulations, we selec6% = 0,25%, 50%, 75%, 100%, and

e = 0,25%,50%, 75%, 100%. We randomly generate 1000
topologies for each combinatioi5%,e¢) and compute the
average of relative erroE RR’s for each node pair. In the [
following, the node pairs with the worst average performnnc[z]
are used.

Fig.7 shows the effect of the degree of link asymmeti
on the worst-case ERR performance. Here weefio 25%,
75% and100%, and vary the degree of link asymmet§f.
We see that as the degree of asymmeify increases, the
(worst-case) ERR increases rapidly, up to more th&rwhen
S% = 100% ande = 75% or 100%.

Fig. 8 shows the effect of the (asymmetric) link quality[6]
variation on the worst-case ERR performance. Here wé %ix
to 50%, 75% and 100%, and varye from 0 to 1. Similarly, [7]
we see that when we allow a larger extent that the qualities
of asymmetric link paira;; anda;;, can differ, the higher the g
(worst-case) ERR is. All in all, we conclude that when the
degree of asymmetry is high, and the link qualities of asyng]
metric link pairs can differ to a larger extent, it is imparta [1)
to take into account the asymmetric link qualities in rogtin
decision making and estimation of various transmissionscos 1]
This is especially the case in a relatively sparse network.

(3]
(4]

(5]

[12]

VI. CONCLUSION [13]

In this paper we have developed a unified theoreticgly
framework for estimating various transmission costs okpac
forwarding. We illustrated how packet forwarding underheacilS]
of three routing paradigms—best routing, opportunistidiray,
and stateless routing—can be modeledrasdom walks on [16]
digraphs By generalizing the theory of random walks that has
primarily been developed for undirected graphs to digraphsg
we showed how various transmission costs can be formulated
in terms of hitting times and hitting costs of random walks 0@8]
digraphs. As representative examples, we applies the ytheor
to three specific routing protocols, one under each paradigi®]
Extensive simulations demonstrate that the proposed mhgra
based analytical model can achieve more accurate trarismissgyg)
cost estimation over existing methods. As part of futurekyor
we plan to apply the theory of random walks on digrapiEl]
for analysis of the transmission costs under various wseele
broadcastingstrategies, by considering theover timesof
random walks. We are also interested in extending the theé@]

incorporating the time dimension into the model.
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