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Abstract—As a key approach to securing large networks,
existing anomaly detection techniques focus primarily on network
traffic data. However, the sheer volume of such data often renders
detailed analysis very expensive and reduces the effectiveness of
these tools. In this paper, we propose a light-weight anomaly
detection approach based on unproductive DNS traffic, namely,
the failed DNS queries, with a novel tool – DNS failure graphs. A
DNS failure graph captures the interactions between hosts and
failed domain names. We apply a graph decomposition algorithm
based on the tri-nonnegative matrix factorization technique to
iteratively extract coherent co-clusters (dense subgraphs) from
DNS failure graphs. By analyzing the co-clusters in the daily
DNS failure graphs from a 3-month DNS trace captured at
a large campus network, we find these co-clusters represent a
variety of anomalous activities, e.g., spamming, trojans, bots,
etc.. In addition, these activities often exhibit distinguishable
subgraph structures. By exploring the temporal properties of
the co-clusters, we show our method can identify new anomalies
that likely correspond to unreported domain-flux bots.

I. INTRODUCTION
The Internet Domain Name System (DNS) is a critical

infrastructure service used by nearly every Internet application
for locating various resources (e.g., web servers, mail servers,
individual endhosts) specified by their (host) domain names.
Typically, one endpoint first issues a DNS query to the DNS
system to locate the other endpoint before any subsequent
data transfer between the two communicating endpoints can
commence, be it web downloading, email transfer, instant
messaging, or a VoIP call placed on the Internet. A DNS
query failure often signifies that the requested resource does
not exist in the system when the query is issued. While such
a failure may be caused by a mis-typed host name or URL by
a human user or occasionally due to DNS misconfigurations
by human operators [1], a large portion of DNS query failures
can be attributed to other causes — as pointed out in several
recent studies [2], [3], [4]. For instance, several anti-spam
and anti-virus services employ DNS “overloading” to notify
a querying host whether the requested domain name belongs
to the blacklists they maintain (e.g., of email spam servers or
reported attack sites). In particular, as shown in [3], many DNS
query failures (termed “unproductive” DNS traffic) are caused
by “suspicious” and malicious cyber activities, e.g., fast-flux
web services, trojan malware and botnets [5], [6], [7], [8].
Inspired by these studies, in this paper we advance the no-

tion of DNS failure graphs as an effective means for analyzing
“unproductive” DNS traffic in a systematic manner and from
a network-wide perspective, and for detecting and identifying

(large-scale) suspicious and malicious cyber activities. A DNS
failure graph is a bipartite graph consisting of domain names
of failed DNS queries and hosts issuing such queries, with
an edge between a domain name and a host issuing a (failed)
DNS query for the name. Such a graph can be constructed
using “unproductive” DNS traffic collected at one or multiple
networks (or from any host on the Internet, if such data can
be collected). The basic intuition behind this notion is that
hosts infected by the same malware (e.g., belonging to the
same botnet) usually query for the same, similar or otherwise
correlated set of domain names, for instance, to locate the
Command & Control (C&C) servers, malware hosting sites,
stolen data storage servers, etc. To evade detection, the do-
main names used by these malicious activities often change
frequently (i.e., in domain-flux[9], [10], [11]); those that do
not flux frequently often are blacklisted and blocked after
detection. Hence queries for these domain names frequently
result in correlated failures, which manifest themselves as a
dense subgraph in a DNS failure graph. Such dense subgraphs
therefore capture the strong interaction patterns between a set
of hosts and a set of domain names. This observation gives rise
to a key research question that we address in this paper: Can
we effectively identify, differentiate and separate “subgraphs”
that are likely corresponding to different types of anomalies
(e.g., malware activities) based on the interaction patterns
between hosts and domain names in a DNS failure graph?
To answer this question, we utilize the DNS query data

collected at several major DNS servers of a large campus
network over a three-month period. Through systematic anal-
ysis of the “unproductive” DNS traffic contained in this three-
month DNS query data, we find that while the DNS failure
graphs (e.g., constructed using failed DNS queries each day)
typically consist of a large number of isolated (connected)
components, there often exist one or several “giant” connected
components involving a large number of hosts and domain
names. While these giant components are connected, they
themselves appear to be composed of a number of more
densely connected subgraphs. In other words, one cannot
simply take each isolated component – especially when such a
component is large and involves a significant number of hosts
and domain names – as representing and corresponding to a
single type of anomaly. We therefore apply a (statistical) graph
decomposition technique, which extends the tri-nonnegative
matrix factorization (tNMF) [12] algorithm, to recursively
decompose a DNS failure graph and extract dense (bipartite)
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subgraphs, or co-clusters, representing strong and coherent
interaction patterns. By analyzing their structural properties,
we classify the resulting co-clusters into three categories: 1) a
host-star, where a few hosts dominate by sending a large num-
ber of DNS queries; 2) a DNS-star, where a few domain names
attract queries from many hosts; 3) a bi-mesh, where strong
interaction patterns are observed between a group of hosts and
a group of domain names. Using external data sources such as
domain name blacklists, we find that most of the DNS-stars
are caused by instances of trojan malware accessing blocked
domain names. In comparison, the host-stars are primarily the
artifacts of spamming activities involving queries for expired
domain names of certain email servers. Most interestingly,
many bi-mesh structures are found to be associated with bot
activities, where the hosts infected by the same bots query a
list of domain names that are likely those of C&C servers,
malware hosting sites, and other suspicious resources.
We further characterize and distinguish the suspicious ac-

tivities associated with these co-clusters by exploring their
temporal properties and tracking their evolution over time. We
find that a majority of the co-clusters are associated with a
stable set of domain names, suggesting that the infected hosts
in each co-cluster likely belong to a botnet with a list of hard-
coded domain names for querying C&C and other servers. In
contrast, we also find that several co-clusters are associated
with a set of domain names that flux over time. Analyzing the
patterns of domain names involved, the rate they are generated,
and corroborating them with existing studies, we identify four
of them belonging to several known domain-flux bots. The
remaining ones have similar random-looking, but yet distinct
domain name patterns; further, their domain name flux rates
differ considerably from those of the known domain-flux bots.
These observations lead us to believe that they are plausibly
associated with domain-flux bots that are yet to be reported,
and hence require further scrutiny.

Summary and Contributions. The main contributions of
the paper are three-fold: i) we advance the notion of DNS
failure graphs for network-wide analysis of “unproductive”
DNS traffic; ii) we propose an extension of the tNMF graph
decomposition method and demonstrate how it can be applied
to extract dense subgraphs or co-clusters, which represent
strong and coherent interaction patterns between hosts and
domain names; and iii) we develop novel methods to sys-
tematically analyze, classify and track the structural and other
properties of the extracted co-clusters and their evolution over
time, and by corroborating with other data sources, deduce
that the extracted co-clusters capture correlated DNS failures
that are generally associated with same or similar types of
anomalies such as malware or botnet activities.
Unlike many existing anomaly detection techniques which

focus primarily on network traffic data – the sheer volume
of such data often renders detailed analysis very expensive
and reduces the effectiveness of these tools (e.g., too many
false positives or negatives), our work provides an effective
means to identify and detect large-scale exploits by analyzing

and decomposing unproductive DNS traffic – much of which
are “footprints” left by these exploits – from a network-wide
perspective. Clearly, analyzing DNS failure queries alone is
insufficient in detecting large-scale exploits; nonetheless, our
DNS failure graph analysis can help winnow down and zero
in on likely suspicious activities. Advanced anomaly detection
and malware analysis techniques using network traffic data can
then be effectively applied to these suspected malicious activ-
ities. In summary, our work adds a useful and complementary
tool to the existing arsenal of techniques for detecting and
combating large-scale exploits. We believe that it can be used
as a “first-line” defense in identifying emerging threats that
are constantly changing and evolving.
The remainder of the paper is organized as follows. We

first discuss the related work in Section II. In Section III, we
analyze the failed DNS queries and introduce the notion of
DNS failure graphs. We then propose a co-clustering algorithm
for decomposing DNS failure graphs into strongly connected
subgraphs in Section IV. Section V presents the classification
and interpretation of these dense subgraphs and their temporal
properties are studied in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK
As mentioned earlier, our work is motivated by prior work

such as [2] which first points out using DNS queries for
detecting bots, [3] which employs a supervised machine learn-
ing method to classify different attacks using a combination
of DNS query failures and network traffic data collected for
individual hosts, and [4] which provides a systematic analysis
and classification of DNS traffic. Building upon these earlier
studies, our work puts forth a novel and effective methodology
for network-wide analysis of unproductive DNS traffic via
DNS failure graph decomposition, and demonstrates how the
method can be used to identify and differentiate suspicious
activities using correlation between hosts and the failed DNS
queries. For instance, our analysis uncovers groups of hosts
with correlated DNS query failures that differ from known
domain-flux bots and are plausibly part of domain-flux or
similar botnets that are yet to be reported. Compared with [2],
[4], our method explores explicitly the correlation of failed
DNS queries (with small traffic volume) for detecting network
anomalies. Unlike [3], our method employs an unsupervised
machine learning approach and thus does not require training
data with expensive manual labels. Similar to our work, [13]
uses co-occurrence relation among DNS queries to extend
black domain name lists.
In addition to the study of unproductive DNS traffic,

there is a rich literature regarding anomaly detection by
monitoring “unwanted” traffic. Pang et. al. [14] study the
traffic towards unallocated IP blocks (dark space). Similar
approach has been applied for “trapping” unproductive traffic
using honeynet [15]. Jin et. al. [16] characterize and classify
the traffic towards temporally unassigned IP addresses(gray
space). Similar to these existing works, we demonstrate in
this paper that unproductive DNS traffic can also be used
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TABLE I: Categories of failed DNS queries.
Type Pct (%) Examples Description
DNS Overloading 32.37 anti-spam/anti-virus applications spamcop.net, surbl.org
Server errors 28.01 unresolvable domain names in a server farm crpkcmsaw00.bankofamerica.com
Misconfigurations 7.87 recursive DNS resolver www.example.com.example.com
Typos 2.26 misspelling of domain names googloe.com, encyclopiedea.net
Known Threats 2.08 blocked trojan/worm g43gwef.com, antispyware2008xp.com
P2P 0.75 failures in P2P related applications 66bt.cn, zingking.com
Unknown 27.33 unknown failures vuuewgkt.com, dehpydjsi.cn

to effectively detecting network anomalies, especially botnet
behaviors.
Our work is also related to botnet detection. There have

been quite a few studies focusing on p2p botnets [5] and
spam botnets [6], [7], [8]. These works either manually inject
bots into the botnets or use spamming behaviors to group bots
from the same botnet. For instance, Holz et al [5] examines
the details of the Storm Worm botnets. They proposes two
approaches to mitigate the botnets. The first is called eclipse
attack, a special form of the sybil attack. The goal is to separate
a part of the P2P network from the rest. The second approach
is called polluting attack, whose goal is to “overwrite” the
content previously published under a certain key. These at-
tacks are specific to P2P botnets, and they do not apply as
general botnet detection techniques. Many spamming botnets
detection methods [6], [7], [8] make use of similar spamming
behaviors to detect and classify bots from different botnets.
However, these measurements are more expensive and hard
to obtain compared to the DNS traffic. Moreover, our method
by passively monitoring failed DNS queries is a more light-
weight approach than the existing methods, given the much
lower volume of the DNS traffic.
There have been studies focusing on individual botnets

which maintain connections between the bots and the C&C
servers using techniques like domain-flux [9], [11], [10]
or fast-flux [17], [18]. These works rely on capturing bot
instances and identify bot signature or the domain name
generation (DGA) algorithms via reverse engineering. These
methods are in general very expensive and require strong prior
knowledge on the specific botnets. Hence, unlike our work,
these methods do not generalize.

III. DNS TRAFFIC AND FAILURE GRAPHS
In this section, we advance the notion of DNS failure

graphs, which capture the patterns that hosts query for non-
existing domain names. We first briefly describe the datasets
used in this paper. We then provide an overview analysis
of failed DNS queries in term of their plausible causes and
formally define DNS failure graphs. At the end of the section,
we present an analysis of the properties of DNS failure
graphs and demonstrate the community structures (or densely
connected subgraphs) in DNS failure graphs.
Datasets. Our study utilizes the DNS data collected at a large
university campus network over a 3-month period (from Jan.
2009 to Mar. 2009). The network contains around 20K hosts,
with IP addresses assigned either statically (e.g., lab machines,
web or mail servers) or dynamically (e.g., hosts on residential
dormitory networks or wireless LANs). The collected DNS

dataset contains DNS requests and responses from all hosts
within the campus network for locating resources outside the
campus network. The data is in the format of packet traces
collected using TCP dump. For DNS requests, we have the
information of (anonymized) hosts who initiate the queries and
the target domain names. For DNS responses, we have access
to resolved IP addresses and associated response codes (if
any). We focus on type A DNS requests only, which queries for
the IPv4 address(es) associated with a domain name. We refer
to the DNS queries for which the DNS responses contain a
response code other than “NOERROR” as failed DNS queries.
Each day approximately 2 million DNS queries are captured,
in which around 300K are failed DNS queries.

A. Analysis of Failed DNS Queries
We first investigate the plausible causes for such a large

number of failed DNS queries in the network by examining
patterns in the failed DNS queries as well as utilizing other
data sources. Table I shows a sample classification of the failed
DNS queries on 01/05/2009. We observe that a large portion
of failed DNS queries are due to the so-called “overloaded
traffic” [4], where several anti-spam and anti-virus services
employ DNS to notify a querying host whether the requested
domain name belongs to the blacklists they maintain (e.g.,
of email spam servers or reported attack sites). We observe
that this type of failed DNS queries involves only a small
number (fewer than 20) of hosts, mostly email servers for spam
filtering purpose. Server error is the second major contributor
to the failed DNS queries. Such failed DNS queries are caused
by one or a few domain names related to a popular web service
that are temporarily unresolvable. DNS misconfigurations such
as a query for www.example.com.example.com (such “recursive
domain names” are likely due to Windows default DNS suffix
configured at client machines) account for 7.87% of all the
failed DNS queries, while DNS typos, which are likely caused
by users mistyping a few alphabetics of the desired domain
names, account for 2.26%.
For the remaining failed DNS queries, we look up the target

domain names in each failed query in a number of auxil-
iary data sources, including various blacklists [19], security
logs [20], botnet related domain names obtained via reverse
engineering [21], and information obtained by googling the
Internet [22]. If a target domain name is used by a worm/trojan
and blacklisted, we attribute the failed DNS query as Known
Threats. We find that 2.08% of the failed DNS queries belong
to this category. Another 0.75% of the failed DNS queries
can be attributed to hosts participating in p2p activities, as the
target domain names are associated with p2p applications and
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services found on-line. Finally, we cannot properly attribute
the causes for the remaining 27.33% of the failed DNS
queries using various on-line sources mentioned above, and
thus classify them as Unknown. We manually inspect these
Unknown domain names and find that most of these targeted
domain names contain random-looking strings with distinct
patterns. As we shall see later in Section VI, most of them
are likely associated with suspicious activities, e.g., unreported
domain-flux botnet activities.

B. DNS Failure Graphs and Properties
So far, we identify potential threats in “unproductive”

DNS traffic by matching the target domain names in failed
DNS queries against data sources of known security threats.
However, such a method is rather time-consuming, whose ef-
fectiveness hinges highly on the availability of useful external
data sources. By its very nature, this method cannot be used
to detect emerging threats that are yet to be discovered and
reported. As shown in Table I, a significant portion (27%)
of failed DNS queries cannot be attributed to known threats.
The large majority of these failed DNS queries contain domain
names that are suspicious looking and are unlikely to represent
“legitimate” resources on the Internet, we have little informa-
tion regarding them. Hence we are interested in an automatic
method for identifying suspicious activities behind these failed
DNS queries. This motivates us to develop the DNS failure
graph analysis technique presented in this paper. Our basic
idea is that suspicious activities are often reflected as strong
correlations between hosts and failed domain names. This is
because hosts infected by the same malware or participating in
the same activity tend to access similar non-existing domain
names and hence generate same failed DNS queries. Using
a (bi-partite) DNS failure graph to capture the interactions
between hosts and domain names, a strong correlation between
hosts and the DNS query failures is reflected directly by a
densely connected subgraph in the corresponding DNS failure
graph. Thus the problem of identifying suspicious activities
can be casted as the problem of extracting strongly connected
subgraph components from the DNS failure graph.
Before we perform the DNS failure graph analysis, we

first “cleanse” the failed DNS queries by filtering the ones
that are attributable to “normal” network activities such as
DNS overloading, server errors and misconfigurations. We
note that we have developed a heuristic cleansing procedure
to automatically filter these “normal” DNS query failures. For
example, we filter overloaded DNS query failures by matching
the responders of these queries against a list of known anti-
spam/anti-malware sites, and adopt a similar approach as
proposed in [2] for filtering failed DNS queries due to server
errors. Due to space limitation, we do not provide the detailed
heuristics used here. Note that we do not automatically filter
failed DNS queries involving p2p activities, partly because
they are hard to filter automatically. More importantly, many
p2p applications or services are sometimes abused by malware
activities; some of them appear suspicious on their own.
Since our objective is to use failed DNS queries to identify

potentially suspicious activities, we perform this cleansing step
mainly to reduce the amount of data used in the DNS failure
graph analysis. The cleansing procedure is fairly conservative
in the sense that we only filter failed DNS queries that
can be confidently attributed to normal network activities. In
fact, as will be evident in our DNS failure graph analysis
later, most failed DNS queries due to normal activities are
well separated from suspicious ones. Hence this cleansing
procedure in general does not affect the effectiveness of our
DNS failure graph analysis technique.
We now formally define DNS failure graphs: Given an

observation period T (in our experiments, we always choose
T = 1 day to maximize the amount of correlations observed
and eliminate the effect of IP address churns [23]), let H
denote the set of hosts (IP addresses) making at least one
failed DNS query, and D be the set of (unique) domain
names in the failed queries. A DNS failure graph is a bipartite
graph G := {H × D, E}, where an edge e = (h, d) exists
between a host h ∈ H and a domain name d ∈ D, i.e.,
(h, d) ∈ E , if and only if host h makes at least one failed DNS
query1 for d during the observation time period T . Given this
definition, we construct daily DNS failure graphs (i.e., T =
1 day) using our datasets. We observe that in general there
are roughly 2,000 hosts connecting to around 3,000 failed
domain names each day. Each daily DNS failure graph is often
composed of 1000 or more isolated components (subgraphs):
each component is connected, but there is no edge connecting
any two (connected) components (i.e., the components are
isolated from each other). Despite the large number of isolated
components – a large majority of them are small, there exist
a few components that are significantly larger than the others.
We measure the size of each component in terms of the
percentage of hosts covered by the component out of all
hosts. Fig. 1 shows the sizes of the largest components over
a two-week period (from 01/05/2009 to 01/18/2009), where
the solid curve in the figure represents the size of the largest
components in the daily DNS failure graphs; for comparison,
the dotted curve represents the size of the largest component in
the cumulative DNS failure graphs constructed by varying T
from 1 day up to the entire two weeks. We see that the size of
the largest component in the daily DNS failure graphs ranges
from 14% to 37%. As the observation period T expands from
1 day up to the entire two weeks, more hosts (77% in the
entire two weeks) are included in the largest component; the
big jump in the curve is caused by two large components (in
two different days) connected by a single host.
Despite their large sizes, these connected components are

comprised of many loosely connected (e.g., via a few edges)
subgraphs, each of which is more densely connected. We
use the largest component in the daily DNS failure graph
on 01/05/2009 to illustrate this point by visualizing it using

1We remark that in this paper we consider the DNS failure graphs to
be unweighted, representing the absence/presence of a certain DNS query.
However, our method can be readily extended to weighted DNS traffic graphs,
where the weight of an edge (h, d) can be used to represent, e.g., the number
of failed queries from host h for d.

147



2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Day (01/05/2009 − 01/18/2009)

H
os

t P
er

ce
nt

ag
e

Daily size
Cummulated size
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Fig. 2: The largest DNS failure sub-
graph from 01/05/2009.
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Graphviz [24], as shown in Fig. 2, where the blue nodes and
red nodes represent hosts and domain names, respectively (For
clarity of visualization, we have randomly removed 60% of
nodes with degree 1 in Fig. 2). Clearly, this largest connected
component contains several dense subgraphs that are loosely
connected via a few edges. These dense graphs imply that there
exist strong correlated behaviors (“community structures” in
social network analysis jargons) among the hosts in these
dense subgraphs: the strong correlations manifest in the failed
domain names they query; in other words, there are strong
interaction patterns that connect the set of hosts and the set
of domain names they collectively query.
To further illustrate these “community structures,” we rep-

resent the same graph in Fig. 2 using its adjacency matrix
A = [aij ]. The rows and columns of A represent the hosts
(H) and the domain names (D), respectively; entry aij = 1
if edge (hi, dj) ∈ E, and aij = 0 otherwise. We rotate
the rows and columns in A to best reflect the “community
structures” in the graph. We plot the rotated A in Fig. 3, where
dots represent those non-zero entries in A. The “community
structures” (dense subgraphs) in the graph are now visible as
“blocks” in A. Further, we see that there are several types
of “community” or “block” structures: some contain a small
number of hosts but a large number of domain names, other
contain a large number of hosts but a smaller number of
domain names, and yet other contain both relatively large
numbers of hosts and domain names. These different inter-
action patterns between the hosts and domain names suggest
that the hosts involved are likely engaging in different kinds
of suspicious activities. These visual analyses suggest that the
largest connected component can be further decomposed into
dense subgraphs, which more likely correspond to correlated
behaviors. These dense subgraphs are connected by a few
weak links or random edges which are shown as the light
area in Fig. 3. Due to the existence of these weak links,
we cannot simple treat each subgraph as a single activity.
Instead, we need to extract these dense graph components or
“communities” to separate different activities.

IV. DECOMPOSING DNS FAILURE GRAPHS

In this section, we present an algorithm for automatically
decomposing, and extracting dense subgraphs from, DNS
failure graphs. This algorithm extends tNMF-based graph

decomposition technique developed in [12], and is capable
of identify coherent co-clusters with irregular shapes. An
overview of the algorithm is shown in Alg. 1. In the following,
we explain each step in detail.

A. Co-clustering using tNMF
Given a DNS failure graph G, as the first step in Alg. 1,

we extract all the isolated components from G. Though most
of the components are fairly simple and small, there exist
several large connected components which are comprised
of loosely connected dense subgraphs, and thus are further
decomposable. In the next step, we iteratively decompose each
of these large components using the tri-nonnegative matrix
factorization (tNMF) algorithm, which has been successfully
applied to decompose (application) traffic activity graphs
(TAGs) in [12]. In the following, we provide a brief overview
of the tNMF algorithm in the context of decomposing DNS
failure graphs.

Algorithm 1 Decomposing DNS failure graphs
1: Input: A DNS failure graph G;
2: Obtain disconnected subgraphs G := ∪iGi;
3: for each Gi in G do
4: Run tNMF to decompose Gi into k × l co-clusters;
5: Filter noise in Gi by removing co-clusters with low densities;
6: Merge dense co-clusters;
7: Output all coherent co-clusters;
8: end for

Given a DNS failure graph G (or rather, a large connected
component in G ) representing the interaction patterns of m
hosts and n domain names (For simplicity, we abuse the
notation by using G to represent a subgraph instead of the
original DNS failure graph). Let Am×n be the corresponding
adjacency matrix of G. The tNMF algorithm approximately
factorizes Am×n into three low-rank nonnegative matrices,
Rm×k, Hk×l, and Cn×l so as to minimize the following
objective function J , subject to the orthogonality constraints
on R and C:

min
R≥0,C≥0,H≥0,RT R=I,CT C=I

J(R, H, C) = ||A − RHCT ||2F

where || · ||F is the Frobenius norm, and k, l << min(m, n).
An algorithms is developed in [25] to solve this optimization
problem by iteratively updating R, C and H .
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In the context of our study, the decomposition results of the
tNMF algorithm can be interpreted as follows. The matrices
R and C divide the rows and columns into k host groups and
l domain name groups, where R·p, p = 1, · · · , k, and C·q,
q = 1, · · · , l, serve respectively as the “membership indicator”
functions of the row groups and column groups. Assuming a
hard co-clustering setting [12], we assign each host/domain
name to only one row/column group with the largest entry in
R/C (random assignment is used to break ties). We denote
the new row and column membership indicator matrices in
the hard co-clustering setting as R̂ and Ĉ, respectively.
One row group p and one column group q together form

a subgraph or a co-cluster in G (we use subgraph and co-
cluster interchangeably hereafter), and its density is computed
as follows:

Hpq :=
(R̂T AĈ)pq

||R̂·p||1 · ||Ĉq·||1
, 1 ≤ p ≤ k, 1 ≤ q ≤ l, (1)

where || · ||1 is the L1-norm. The co-clusters with high Hpq

(density) values correspond to dense subgraphs, while the ones
with low Hpq values can be viewed as a loosely connected
subgraphs with a small number of random links (or noisy
edges). By filtering these weak connections or noisy edges,
we can then extract the dense subgraphs from the DNS failure
graph (or each of its large connected components).

B. Obtaining Coherent Co-clusters

The parameters k and l are two key parameters that
determine the number of row groups and column groups,
and therefore the total number of resultant co-clusters. Many
approaches such as trial-&-error, model selection through
statistical testing, and so forth, can be applied for selecting
appropriate values for k and l. In this paper, we start with
larger (likely than the “true”) values for k and l (i.e., we first
over-estimate k and l)2, which yields finer-grained subgraphs
or co-clusters. We then apply a coherent co-cluster selection
process to merge these finer-fined subgraphs into more co-
herent subgraphs or co-clusters (with potentially “irregular”
shapes). A similar approach has been applied in [26], which
shows that such an approach is more effective in obtaining
more coherent co-clusters than attempting to directly find the
“true” values of k and l.

2In our experiments, we choose k = l = �min(m, n)/30�.

With such choices of k and l, we apply the tNMF algorithm
to decompose a given DNS failure graph. We compute the
densities for all the subgraphs Hpq’s thus extracted, and
rank them in a decreasing order. We then use the change in
the densities of subgraphs thus ranked to differentiate dense
subgraphs from non-dense subgraphs, i.e., those that consist
mainly of a few random, noisy edges. We use the graph in
Fig. 2 as an example to illustrate how this is done, where we
apply the tNMF method with k = l = 15. After ranking the
subgraphs based on their densities, Fig. 4 shows the change
in density of these subgraphs, where y-axis shows the relative
change (yi−yi+1)/yi+1 of the (non-zero) density. We observe
that the most significant change occurs between the 12th and
the 13th subgraphs, and after the densities are much smaller
after that.
After the noisy, non-dense subgraphs are removed, we can

check to see whether some of the dense subgraphs can be
merged to form more coherent co-clusters (with potentially
irregular shapes). We merge two subgraphs if they share either
a common host group or a common domain name group.
Hence the co-clusters are formed by adjacent dense areas
displayed in the density matrix H . Fig. 5 shows the merging
results for the graph in Fig. 2: although after removing the
noisy, non-dense subgraphs, we have obtained a total of 12
dense subgraphs; these 12 dense subgraphs essentially form
6 coherent co-clusters (after merging)– the numbers in Fig. 5
identify these 6 coherent co-clusters. Comparing to the other
four co-clusters, co-cluster 1 and 3 do not have a typical box
shape, thus they cannot be obtained with classical co-clustering
algorithms (e.g., the standard tNMF algorithm in [12], which
always produces box-(or rectangular) shaped co-clusters).
Until now, we can extract all the dense subgraphs (com-

munities) from DNS failure graphs. In the next section, we
analyze these subgraphs in detail and show that they are likely
corresponding to different anomalous activities in the network.

V. ANALYSIS OF CO-CLUSTERS
After decomposition, the DNS failure graphs break into

multiple coherent co-clusters (dense subgraphs). In this sec-
tion, we provide a detailed analysis of the co-clusters extracted
from our 3-month DNS trace.

A. Categorizing Co-clusters
We categorize different co-cluster structures based on

whether there are a few dominant hosts or a few dominant
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TABLE II: Categorization of identified co-clusters.
ID Root cause Pct.(%) Details Bi-mesh Host-star DNS-star
1 Trojan (Backdoor) 28.1 Variants of Dropper, Pakes!sd6, Rustock.E, Tidserv, WinFixer, 63.2% 26.3% 10.5%

Ertfor.A, Kraken, FakeAlert.a, Anti-Virus2008, Crypt.ta, etc.
2 Spamming 25.2 Hosts querying for non-existing mail servers. 29.9% 70.1% 0
3 Domain-flux botnets 13.3 Conficker A/B, Torpig. 66.1% 33.9% 0
4 Peer-to-peer 5.2 Hosts querying for non-existing p2p servers. 100% 0 0
5 Unknown 28.1 Domain names not found in the data sources. 72.2% 20.1% 7.7%

Total 100

(a) Host-star (spamming) (b) Bi-mesh (bot: Conficker A) (c) Bi-mesh (trojan: Srizbi) (d) DNS-star (spyware: Webhancer)

Fig. 7: Example of DNS failure subgraph structures.

domain names in the co-cluster. More specifically, let Am×n

denote the adjacency matrix corresponding to a particular
co-cluster consisting m hosts and n domain names. Let
pi· :=

∑
j ai·/

∑
i,j ai,j and p·j :=

∑
i a·j/

∑
i,j ai,j be

the marginal probabilities of the rows and the columns,
respectively. We define the dominant host ratio (dhr) as
dhr := −(

∑
i pi· log pi·)/ log m, which varies between 0

and 1. A dhr close to 0 implies there are a few dominant
hosts that connect to far more domain names than other
hosts in the same co-cluster; while a dhr close to 1 means
all the hosts query approximately equal number of domain
names. Similarly, we define the dominant DNS ratio (ddr) as
ddr := −(

∑
j p·j log p·j)/ log n to identify dominant domain

names. We say a co-cluster has a (likely) host-star structure if
dhr < δ and ddr > 1− δ. In comparison, a (likely) DNS-star
structure is defined if dhr > 1 − δ and ddr < δ. If dhr > δ
and ddr > δ, we call such a structure a bi-mesh.
In Fig. 6, we show the distributions of dhr and ddr of all

the co-clusters extracted from the daily DNS failure graphs in
our dataset. We note that when a co-cluster is too small, we
usually do not have enough evidence to interpret the meaning
of that co-cluster. Meanwhile, the three structures are also less
meaningful for small co-clusters. Therefore, we filter the co-
clusters which contain less than 5 nodes (hosts plus domain
names). Though the remaining co-clusters account for only
8% of all the co-clusters, they cover more than 42% hosts and
53% domain names. From the strong bi-modal shapes of both
dhr and ddr distributions in Fig. 6, we choose δ = 0.1 to
separate the three types of structures.
We illustrate examples of the three different subgraph struc-

tures in Fig. 7[a-d], where blue boxes and red circles represent
hosts and domain names, respectively. A link means a host
has queried for the corresponding domain name. The host-star
structure in Fig. 7[a] is due to a host querying for many non-
existing domain names containing keywords like mail, mx, etc,

most likely an instance of spamming activities. We show in
Fig. 7[b] a bi-mesh structure caused by a set of domain-flux
bots (Conficker A [9]). As we shall see in Section VI, this is
because these bots access the domain name list from the same
DGA algorithm. Another example of the bi-mesh structure is
shown in Fig. 7[c], which corresponds to the activity of the
trojan Srizbi [27]. An example of the DNS-star structure is
displayed in Fig. 7[d], corresponding to 7 hosts querying for
a non-existing domain name webhancer.com, which is related
to a reported spyware activity [28].

B. Interpreting Co-clusters

Given the three types of co-cluster structures (or interaction
patterns) between hosts and domain names, we next study the
root causes of these different co-cluster structures. For each
co-cluster, we first extract all the associated domain names.
We then match these domain names against all the external
data sources we have. For a matched domain name, we label
it with the root cause specified by the data source. We then
assign the co-cluster with the most dominant root cause. In
Table II, we summarize all the co-clusters extracted from
the daily DNS failure graphs using our dataset. Each row
describes a specific category of co-clusters classified by the
root cause. The second column shows the root cause of the
co-cluster. The third column indicates the proportion of the
co-clusters belonging to that category over all the observed co-
clusters. We provide examples or explanation of each category
in column 4. We further identify the percentages of co-clusters
in each category that are bi-meshes, host-stars and DNS-stars
(column 5-7).
From Table II, we observe that trojan (backdoor) is the

most common root cause of the co-clusters, which accounts
for 28.1% of the co-clusters in total. These detected trojan
instances maintain a (usually hard-coded) list of domain names
of the C&C servers where they can upload sniffed privacy
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information and download commands or updates. The domain
names are associated with the C&C servers either through
standard DNS registrar or using fast-flux mechanism [17]. The
domain names hardly change after the trojans are released.
Therefore, such domain names can be easily blocked or
removed from the registrar once the trojan malware is detected.
The failed DNS queries are caused by trojans querying the
domain names that are already blocked or deleted from the
DNS registrar. In general, these trojan instances contain a
limited number of domain names, and hence the co-clusters
in this category often exhibit bi-mesh (63.2%) or host-star
(26.3%) structures. We note that although these trojan in-
stances are detached from the C&C servers, they still remain
as a threat since the specific exploits are not fixed on these
hosts, therefore they are vulnerable to future attacks.
The second major root cause (25.2%) is the spamming

activities. Hosts involved in such activities periodically query
for a large number of non-existing mail servers, thereby
showing dominant host-star structures. Most of these mail
servers belong to large ISP networks and somehow have their
domain names changed. We suspect the hosts are infected
by certain worms or bots, which use a list of common mail
servers. During certain time periods, these worms/bots become
active and query for the mail server addresses to propagate
spams. We also observe 29.9% of the co-clusters are bi-
meshes, possibly due to different hosts equipped with the same
email server list. No DNS-star is found in this category.
The third category is caused by domain-flux botnets. The bot

master of a domain-flux botnet uses a domain name generation
algorithm (DGA) to periodically create a new domain name
list for the C&C servers and select a few of them to register.
To avoid conflict with the existing registered domain names,
the domain names from the DGA algorithm often consist of
random-looking strings with either variable or fixed lengths.
Every bot belonging to the same botnet is equipped with the
same DGA to continually generate domain name list of the
C&C servers. A bot tries to connect to the domain names in
the list to reach the C&C servers. Since most domain names
on the list are not registered, such bot activity often leads to
a large number of (correlated) DNS query failures. For some
of the domain-flux botnets, the DGA algorithms have been
successfully reverse engineered [9], [11], [10]. We employ
these reverse-engineered DGA algorithms to precompute the
domain name list and use it to identify co-clusters caused by
domain-flux bots. With this method, we find that in total 13.3%
of all the co-clusters are due to domain-flux bots. Because the
same bot instances utilize the same DGA algorithm, they hence
show strong correlation. As a result, 86% of the co-clusters
are bi-meshes, with another 14% are host-stars when only one
bot instance from a particular domain-flux botnet is observed.
P2P activities contribute to 5.2% of all the co-clusters. The

correlated DNS query failures happen when more than one
hosts look up for the same p2p servers that no longer exist.
All of the identified p2p activities are bi-meshes, accessing the
same domain names, such as 66bt.cn and zingking.com, etc.
The last category consists of 28.1% of all the co-clusters

that we cannot identify their root causes based on the domain
names. 72% of these co-clusters are bi-meshes, which we sus-
pect are possibly caused by unreported anomalous activities.
As we shall see in Section VI, we find a number of them may
correspond to the activities of unreported domain-flux bots.
How are these dense subgraphs connected? Because the
subgraphs represent heterogeneous suspicious activities and
hence ideally they are isolated subgraphs in a DNS failure
graph. However, by studying the removed weak links, we find
that under several circumstances they will be connected to
form large subgraphs. One possible reason is that a host may
be infected by multiple malwares. For example, in Fig. 2,
we find two hosts that are multiple infected, one of them
is infected by both Conficker B and Horse, and the other
is infected by Horse and Torpig. Another possible reason is
that hosts infected by different malwares may share some
other common behaviors. For example, we observe that P2P
related DNS failures are likely to appear together with other
infections, such as confickerB, Horse, Win32/Polip. As another
example, hosts infected by different trojans may query the
same (non-existing) mail servers for spamming purpose. In
addition, a few edges are caused by hosts changing their
dynamic IP addresses within the observation period.

VI. EVOLUTION OF DNS FAILURE GRAPHS
In this section, we explore the temporal properties of the

DNS failure graphs. We first propose a best-effort linking
algorithm to correlate co-clusters identified from daily DNS
failure graphs on various days. We then differentiate subgraphs
experiencing significant changes over time from the stable
ones. At the end of the section, we show that many of the
dynamic subgraphs are likely unreported domain-flux bots.

A. Tracking Co-cluster Changes
For a particular co-cluster, either hosts or domain names

may change over time due to dynamic address allocation or
the domain name generation schemes used by bots. In order
to track the changes of co-clusters over time, we employ a
best-effort approach which takes both factors into account.
Given a particular co-cluster Gi,t from day t, let Hi,t and

Di,t be the sets of hosts and the domain names associated with
Gi,t, respectively. We use the Jaccard Similarity Coefficient
(JSC)3 to measure the similarity between Gi,t and every
subgraphs Gj,t+1 from the following day (t + 1) to find the
best match in terms of both the hosts and the domain names.
In particular, we call Gj,t+1 the best match of Gi,t if

j = argmaxj max(JSC(Hi,t,Hj,t+1), JSC(Di,t, Dj,t+1))

and max(JSC(Hi,t,Hj,t+1), JSC(Di,t,Dj,t+1)) > θ. Fig. 8
shows the distribution of the JSCs for the best matches be-
tween the subgraphs on 01/05/2009 and those on 01/06/2009.
Due to the bimodal shape, we choose θ = 0.6 as the cut-
off threshold in our experiments, i.e., a co-cluster has no best
match if the maximum JSC value is less than 0.6. In this way,

3For two sets A and B, the JSC is defined as |A ∩ B|/|A ∪ B|.
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we can track the changes of a particular subgraph by finding
its best matches in the subsequent days recursively.
We use a simple criterion to differentiate stable co-clusters

and dynamic ones based on the change of the domain names.
We consider a co-cluster to be unstable over time if the
maximum JSC between the domain name sets appearing at the
first day and any of the subsequent days is less than 0.14. In
addition, we only focus on the co-clusters that last for more
than one week. For co-clusters with a shorter life, we need
more observations to study their changes.
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Fig. 8: Maximum JSC.

There are totally 20 co-clusters that last for more than 1
week, where 12 of them are stable co-clusters. Not surpris-
ingly, these stable co-clusters are caused by correlated trojan
malware activities, which access the same set of domain names
all the time. However, we identify 8 co-clusters that are more
dynamic (i.e., with significant domain name changes). We next
study and interpret these dynamic co-clusters.

B. Analyzing Dynamic Co-clusters
For the 8 co-clusters with significant domain name changes,

using the reverse-engineered DGA algorithm, we find that
four co-clusters are related to three types of domain-flux bots:
Conficker A, Conficker B and Torpig (the Conficker B bots
form two separate co-clusters, due to one particular day when
no bot instance sends out DNS queries). In fact, these 4 co-
clusters cover all the domain-flux bots belonging to these three
botnets without any false alarm. In other words, our method
can identify these three types of bots with 100% accuracy
purely by exploring the correlation in DNS failure graphs.
In addition, the remaining 4 co-clusters are labeled as

unknown and cover 53.2% of the unknown domain names.
These co-clusters demonstrate similar patterns as those of
the reported domain-flux bots. We next provide a detailed
analysis of these co-clusters to show that they are also likely
corresponding to unreported domain-flux bots.
We start by examining at the patterns in the domain names.

Table III shows some examples of domain names from these
4 candidates. Candidate A uses .com, .net or .cc for the top
level domain name while the other three candidates only use
.com. The second level domain names from these 4 candidates

4We note that the threshold 0.1 is set to address the cases of domain-flux
bots with different domain name generation cycles.

TABLE III: Domain name patterns.
Candidate A Candidate B Candidate C
gkymopkcffqt.com guxwivkb.com aufutmguua.com
ymtyupvty.net sbttwbkh.com ncamnsdtxa.com
fqhfaia.cc xbhsxdgk.com hlhxeezzsd.com
tbllutksqg.com svvwdddw.com lpqrmgiwln.com

Candidate D
guyyruldrbrbqyfxdtnb.com, dlqrhudtjiajuopbagwg.com
hqcwbspyvdpmhrejvhdi.com, wvkafndfedfoxkcdlimw.com

are apparently random strings of a variable length (candidate
A) or a fixed length (B of length 8, C of length 10 and D of
length 20). This indicates that these domain names are likely
generated by machines (using certain algorithms) other than
by human beings.
We next study the cycles of domain name changes of the

4 candidates. Fig. 9[a] shows different lengths of cycles of
these 4 candidates, where the x-axis represent the number of
days (relative to the time when the bot instances begin to be
observed) and the y-axis stands for the cumulative number of
unique domain names appearing over time. We observe that
except for the candidate B which has a cycle length of 1 week,
all the others have a cycle length of 1 day. In comparison, we
show the cycles of the three known bots in Fig. 9[b]. All the
three known bots have a cycle length of 1 day.
At the end of the two-week period, the total number of

unique domain names observed for each candidate also varies
significantly compared with the known bots. For example,
Torpig bots only have 42 unique domain names after 2 weeks
(3 new domain names generated by the DGA per day). In
contrast, candidate C has more than 42K in 2 weeks, where
around 3K new domain names are observed per day. To
further differentiate whether 4 candidates are the variants of
the known bots, we compare the hosts associated with each of
them. In fact, there is no IP address shared by the candidates
and the known bot instances, suggesting these candidates are
plausibly unreported domain-flux bots.
Unlike the large number of failed domain names, the

registered domain names and the successful queries are of
special interest to us, because they provide hints on the IP
addresses of the C&C servers as well as the botmasters (who
registered these domain names). For all these 4 candidates, we
extract the associated domain names with similar patterns (as
identified in Table III) from both successful and failed DNS
queries. We find there is no successful domain name query for
candidate A, C and D, possibly due to the short observation
time period and the small sample size. We do observe 1
IP address returned for candidate B, which is registered 7
days before the first access toward this address. However,
since the host may be infected by multiple malwares, we
need further evidence to verify that this address is indeed a
C&C server address for a domain-flux botnet. An interesting
observation for candidate B is that a few of the failed domain
names are indeed registered. For example, xnihxzatff.com and
sjfnannvwv.com are registered on 01/06/2009. However, the
hosts are observed to access them only on 01/01/2009, which
results in failed DNS queries. We suspect that this may be
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(a) Domain-flux bot candidates (b) Known domain-flux bots.

Fig. 9: Identifying cycles of domain name changes.

caused by either the synchronization problem between the
registration process and the DGA algorithm, or the DGA may
generate domain names that may repeat in future.
In summary, even though the use of DGA algorithms to

generate domain name lists and query accordingly is a com-
mon characterization of domain-flux bots, the query patterns
in term of number of domain names and frequency may
vary for different kinds of domain-flux bots. Existing studies
detect domain-flux bots by identifying a significant increase in
DNS query failures [3]. Such methods may miss the domain-
flux bots with less intensive activities, such as the Torpig
bots [10], which only generate 3 domain names per day.
Reverse engineering based methods (e.g., [9], [11]) have a
much higher accuracy, but are more expensive. In contrast,
by correlating DNS activities among hosts, our method can
detect domain-flux accurately without the need to access to
extra traffic information or knowledge about individual bots.

VII. CONCLUSION

In this paper, we proposed an approach for identifying and
classifying network anomalies based on unproductive DNS
traffic. We advanced the notion of DNS failure graphs to
capture the interaction between hosts and failed domain names.
We then applied a statistical tri-nonnegative matrix factor-
ization technique for extracting coherent co-clusters (dense
subgraphs) from DNS failure graphs. Analysis on a 3-month
DNS trace captured at a large campus network indicated
most of such co-clusters correspond to a variety of network
anomalies which often exhibit different subgraph structures.
Temporal analysis on these co-clusters identified 8 persistent
co-clusters representing groups of hosts collectively query for
different sets of domain names over time. Four of them belong
to known domain-flux bots; while the remaining four co-
clusters are plausibly due to unreported domain-flux bots.
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