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ABSTRACT

In this paper we study the interaction patterns among traffic
from different application classes, namely, how they collab-

oratively form a mixed traffic activity graph (mixed TAG).
Utilizing real traffic traces from a major ISP and a large uni-
versity network, we show that densely connected subgraphs
or clusters are the building blocks for a mixed TAG. These
subgraphs can be either dependent or independent for differ-
ent application classes. In addition, clusters from different
application classes exhibit repulsive/attractive relationships
while they interconnect to form a mixed TAG. We then pro-
pose a variant of the Markov clustering algorithm to extract
these clusters. Analysis of the clusters show that though
mixed TAGs display similar structures, many core compo-
nents are time/location specific. The clustering results also
motivate us to develop an accurate, semi-supervised learning
based traffic classification algorithm.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms

Measurement, Management

1. INTRODUCTION
With increasing diversity and complex interactions among

network entities (e.g., p2p applications, web services with
interweaved webs of content providers and ad networks, so-
cial networks, and malicious botnets), characterizing and
understanding communication and interaction patterns in
network traffic from a network-wide perspective is imper-
ative. Such understanding is critical to managing and se-
curing today’s ISP networks, from traffic classification [1,2]
to network trouble-shooting and anomaly detection [3–5].
By representing the interactions of hosts engaging in the
same application in the network as traffic activity graphs
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(TAGs), recent studies in [6–8] demonstrate the effective-
ness of using graphs not only as a visualization tool but also
as an analysis tool to characterize the unique communica-
tion patterns of individual applications, analyze and extract
communities of interests therein, and study their evolution.
These prior studies, however, focus primarily on application-

specific TAGs, and thus presume that traffic from different
applications can be separated a priori in some fashion.

In this paper, we study the network-wide communication
and interaction patterns in network traffic with mixed appli-
cations, and introduce the notion of mixed TAGs (see Sec-
tion 2 for a formal definition). Unlike the application-specific

TAGs introduced in [6] where edges represent interactions
of hosts belonging to the same application, edges in a mixed
TAG can represent interactions of different applications. To
differentiate these applications, we visualize mixed TAGs as
if each edge were annotated with a label (or color), signify-
ing the application class it belongs to. The main focus of
this paper is to understand not only how hosts interact with
other hosts engaging in the same applications, but how they
interact with hosts engaging in different applications, and
how they collectively form a mixed TAG. For this purpose,
we collect real network traffic traces from a major ISP and
a large university network and apply a bottom-up approach
to study the formation of mixed TAGs. To describe various
application traffic in the network, we define 10 application
classes summarizing applications with similar functionality.
For example, P2P contains p2p applications like BitTorrent,
eMule, etc., and Chat includes IRC, MSN messenger and
Yahoo messenger, and so forth.

At the lowest level (see Section 2), we analyze the spatial
distribution of edges from different application classes. Us-
ing shortest path distance as a metric, we find that edges
from different classes often exhibit strongly connected sub-
graphs or clusters, and we interpret the interconnection of
clusters in application-specific TAGs using two generative
block models. The first model, dependent block model, de-
scribes the generation process of Mail, Chat and Web graphs,
where a few central clusters attract more connections than
others, resulting in a large and dense kernel in the graph.
In contrast, the second model, independent block model, ex-
plains the formation of Games, Media and P2P graphs, where
a number of dense clusters are connected by a few ran-
dom edges. In addition to this, we further show that edges
from different applications are not randomly connected. In-
stead, they display interesting relationships. For example,
P2P edges are less likely to connect to VoIP edges, thereby
exhibiting a repulsive relationship. In comparison, Games



and P2P edges are more likely to be neighbors, and hence
showing an attractive relationship.

Knowing that mixed TAGs are built on top of intercon-
nected clusters, in Section 3 we propose an algorithm to
decompose mixed TAGs. Our algorithm is a variant of
the Markov Clustering (MCL) algorithm which incorporates
edge properties in the clustering process to obtain clean clus-
ters. Experiment results show that the proposed algorithm
can successfully decompose mixed TAGs into clusters with
high purity. These results also enable us to analyze the
mixed TAGs at the level of clusters. Ranking all the clusters
using the closeness metric, we identify “core” clusters that
contribute most to the global connectivity of mixed TAGs.
In addition to the common core clusters shared by different
TAGs, such as clusters of popular web/mail servers, CDN
and advertising servers, we observe core components that
are time/location dependent. For example, in mixed TAGs
from the university network in 2006, we find core clusters re-
lated to news websites and job hunting websites. In contrast,
clusters related to antivirus websites and Youtube show up
as core clusters in mixed TAGs from the ISP network in
2009. These results are presented in Section 4.

2. MIXED TRAFFIC ACTIVITY GRAPHS
In this section, we first introduce the datasets and advance

the notion of mixed traffic activity graphs (mixed TAGs) as
a tool for describing network traffic mix. We next study
the formation of mixed TAGs from two aspects: how each
application-specific TAG is generated and how these TAGs
are interconnected to form a mixed TAG.

2.1 Datasets and Application Classes
There are two datasets used in our study. The first dataset

(referred to as the ISP dataset) contains network flow records
from a major ISP over one month period in 2009. A flow
is a sequence of packets with a common key – namely, the
standard 5-tuple of IP protocol, source and destination IP
addresses, and TCP/UDP ports – that are localized in time.
Flow measurements comprise summary statistics that aggre-
gate information derived from a flow’s packet headers (in-
cluding the key, aggregate packet and byte counts for the
flow, and timing information) that are exported as IP flow
records to a collector. The second dataset (referred to as the
U dataset) comprises Cisco NetFlow records collected from a
large university network over a month period in 2006. One
out of 20 flow sampling is applied to the ISP dataset and
the U dataset is unsampled. In this paper, we only focus
on TCP traffic, however, similar approach can be readily
applied for analyzing UDP traffic.

Serving as the ground truth for our study, the flow records
in the ISP dataset are annotated with a number of broad
“application class” labels. Motivated by the management
tasks of large ISP networks, we define 9 broad application
class labels, as shown in Table 1. Similar to [1,9], the labels
are generated in an automated way by the measurement de-
vices, using a set of packet-level rules based on combinations
of packet signatures that operate on layer-4 packet header in-
formation, and layer-7 application protocol signatures. The
flow records do not include any application data; neither do
they report any user identity information. In comparison,
the U dataset is labeled manually based on popular service
ports associated with different application classes [10]. We
note there is no dominant service port for certain application

classes. Therefore, in the U dataset we only label a subset
of the application classes. In total, around 30% of the ISP
flows and 34% of the U flows cannot be classified, and we
assign them to an Unknown class.
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Figure 2: Pearson’s residuals.

2.2 Mixed TAGs
Application-specific traffic activity graphs (TAGs) have

been applied to characterize traffic from a single application
(class) [6]. However, real network traffic typically consists
of traffic from various application classes. Here we propose
the notion of mixed TAGs as an extension to the original
TAGs for describing and analyzing such traffic mix.

Given time T , let H denote the set of observed endpoints.
A mixed TAG, G = {H, E ,X , L}, is defined as follows: we
include an edge e

pq

i in the edge set E if and only if at least
one flow is observed between hp and hq. For simplicity, we
drop the superscript of e in the remainder of the paper.
We then define the mixed TAG by labeling each edge of
the TAG using the (dominant) application class label of the
flows between the two endpoints of the edge. We use L(ei)
as the (dominant) application class label associated with ei.
We note that we assume each communication peer is only
involved in one application, which accounts for more than
99.6% of the cases in our datasets, even when the observation
period T is extended to a day. As illustrated in Table 1,
there are 10 application classes (including Unknown). We
further define xi ∈ X as the traffic features associated with
ei, e.g., number of packets/bytes, packet interarrival rate,
etc., depending on application scenarios.

Fig. 1[a] illustrates an instance of the mixed TAG con-
structed using the first 2000 edges in the ISP dataset from
04/06/2009, staring at 7PM. Both plots are drawn using
Graphviz tools [11] with default parameters. We annotate
different application classes with different colors. For better
visualization, we remove the dominant P2P, Web and Unknown

traffic and plot other traffic in Fig. 1[b]. We observe that
there are many densely connected subgraphs (of different
colors) in the mixed TAG, which are distributed at differ-
ent locations, with varying shapes and density. In addition,
most of the clusters are dominated by edges from a single
traffic class, though they often contain a few edges from
other classes.

When the observation time is extended, the large number
of edges in mixed TAGs prevents us from direct visualization
of them. In the following, we study the spatial distribution
of application classes in mixed TAGs in a quantitative way.



Index Class/Label Example Applications Ports
1 Business Middleware, VPN, etc. -
2 Chat Messengers, IRC, etc. 5222, 5190, etc.
3 P2P P2P applications 4661, 4662, etc.
4 FTP FTP application 21, 20
5 Games Online gaming applications, e.g., Everquest, WoW, Xbox, etc. -
6 Mail Email applications, e.g., SMTP and POP 25,993,etc.
7 Media Video/audio streaming applications, e.g., RTSP, MS-Streaming, etc. -
8 VoIP Voice-over-IP application -
9 Web HTTP application 80, 443
10 Unknown - -

Table 1: Broad Application Classes

(a) all applications (b) P2P, Web and Unknown removed

Figure 1: TAGs containing 2000 edges.

2.3 Quantifying Traffic Spatial Distribution
The spatial distribution of a traffic class can be charac-

terized by the distances among pairs of edges from the same
traffic class. In particular, we denote SPD(ei, ej) as the
shortest path distance from ei to ej in the TAG. Note a
shortest path may contain intermediate edges from other
classes.

Using a 10-minute ISP TAG (ISP-10) and a 20-minute
ISP TAG (ISP-20) collected on 04/06/2009, both beginning
at 7PM, we show the SPD distributions of all traffic classes
in terms of the 25% and 75% quantiles in Table 2. For
comparison purpose, we also show in the table the same
statistics for a 10-minute U TAG (U-10) and a 20-minute U
TAG (U-20), both starting from 10:00AM on 02/03/2006.

Class
ISP-10 ISP-20 U-10 U-20

.25 .75 .25 .75 .25 .75 .25 .75
Business 5 8 5 6 - - - -
Chat 7 9 6 7 6 8 5 6
P2P 6 8 6 9 6 8 7 8.5
FTP 6 9 6 7 4 9 - -
Games 8 10 9 10 - - - -
Mail 4 7 3 6 4 7 3 6
Media 5 6 5 7 - - - -
VoIP 6 8 6 8 - - - -
Web 5 6 4 5 4 7 4 6

Table 2: 25% and 75% quantiles of SPD’s.

An interesting observation is made when we compare the
results of the 10-minute TAGs with the 20-minute TAGs.
Notice that when the observation period is extended, the
density of TAGs, which is defined as the number of edges
divided by the maximum number of allowable edges in a

TAG, becomes lower in general. For example, the density
for the 10-minute ISP TAG is 7.3e-4 and the density for
the 20-minute ISP TAG is only 3.8e-4, nearly halves. If all
edges are distributed uniformly in the TAG, we expect an
increase in all the SPD’s. This assumption holds for P2P,
Games and Media. However, for Chat, FTP, Mail and Web,
the corresponding SPD’s decrease instead. In the following,
we propose two hypothetic models to explain the generative
process of these two types of TAGs.

2.4 Dependent/Independent Block Models
We conjecture there are two major types of formation of

(application-specific) TAGs. They both can be considered
as special forms of the classical block model [12].

The first model is referred to as the dependent block model,
with examples like Mail, Chat and Web TAGs, etc.. The
blocks (clusters or dense subgraphs) forming these appli-
cation TAGs are correlated, with a few “central” blocks at-
tracting more edges than others. Fig. 3 show the Mail TAGs
from the 10-minute and the 20-minute ISP TAGs as an ex-
ample. In these TAGs, the probability that an endpoint
accesses a central block, given it has accessed a peripheral
block, is large. Therefore, these TAGs often exhibit a dense
kernel. When more edges are added, we observe the kernel
to show stronger connectivity so that SPD’s are expected to
decrease.

In contrast, the second model (e.g. Games, Media and
P2P TAGs) is referred to as the independent block model,
where the corresponding TAGs are formed as a combina-
tion of multiple blocks which are independent of each other.
Fig. 4[a,b] show the Games TAGs from the 10-minute and
the 20-minute ISP TAGs as an example. We observe that



(a) 10-minute Mail TAG

(b) 20-minute Mail TAG

Figure 3: TAGs for Mail traffic.

with the increase in the number of edges, new clusters ap-
pear. However, only a few random edges connect these clus-
ters and most clusters are isolated (connected through edges
from other classes). When the TAG expands, these blocks
generally become more dispersed in the TAG, resulting in
an increase in the corresponding SPD’s.

Knowing that the application-specific TAGs are likely gen-
erated by the two block models, the next question we want
to answer is: are these application-specific TAGs connected
randomly to form the mixed TAG? In the following, we
study the correlation of different application classes.

2.5 Application Class Relationships
Let πi, 1 ≤ i ≤ 9 denote the proportions of edges be-

longing to the 9 application classes, excluding Unknown. We
measure the correlation between two classes i and j using
standardized Pearson’s residuals defined below:

rij =
nij − µij

p

µij(1 − πi)(1 − πj)
,

where nij is the number of occurrence that an edge from
class i and an edge from class j are neighbors, and µij =
Nπiπj is the expected number of neighboring edge pairs
from these two classes, under the hypothesis that edges from
i and j are randomly distributed in the TAG. The magnitude
of rij stands for the deviation from the hypothesis of random
class distribution, and the sign of rij indicates whether the
correlation is positive or negative.

We show the standardized Pearson’s residuals in Fig. 2.
For better visualization, we bound the residuals within [-
10, 10]. A light/dark grid represents a positive/negative
residual. We summarize three major types of correlations
below.

Clustering Effect. Most of the diagonal grids show a
strong positive self-correlation of the corresponding traffic

(a) 10-minute Games TAG

(b) 20-minute Games TAG

Figure 4: TAGs for Games traffic.

classes. In other words, edges from the same class tend to
cluster together, thereby showing dense subgraphs or block
structures. This validates the existence of clusters in mixed
TAGs. Detailed inspection further shows that many (large)
uni-labeled clusters are due to the inherent client/server or
p2p structure in the applications. For example, given a Web

edge, we know that one of the endpoints must be an HTTP
server. Since most HTTP servers support Web traffic exclu-
sively, other edges connect to the same HTTP server are
more likely to be Web.

Repulsive Relationship. In addition to the clustering ef-
fect, there are also strong repulsive and attractive effects ap-
pearing in the colored TAGs. By the repulsive relationship,
we mean that given edges from two application classes, the
presence of one significantly reduces the chance the other ap-
pears among the edges incident on one of the endpoints (or
equivalently, increases the probability that the other class
is absent among those edges). The repulsive relationship is
likely due to that servers typically provide only one particu-
lar type of service exclusively. For instance, Web, Games and
Mail are likely served by different servers (whether they be-
long to the same or different content providers). As another
example, VoIP has a strong negative correlation with P2P.
This might be due to frequent use of VoIP for business re-
lated teleconferencing, often using a laptop and sometimes
in a more mobile environment. These endpoints are thus
unlikely to run P2P applications.

Attractive Relationship. In contrast to the repulsive re-
lationship, by the attractive relationship, we mean that given
edges from two classes, the presence of one significantly in-

creases the chance the other appears among the edges inci-
dent on one of the endpoints. For example, Games and P2P

exhibit an attractive relationship. We speculate that end-
points generating online Games traffic are likely client desk-
top machines with high-speed connections, a configuration



also well suited to downloading files through P2P.
In summary, we have demonstrated that mixed TAGs are

formed by application-specific TAGs, each of which contains
strongly connected clusters (subgraphs), that are linked to-
gether in a variety of manners. Some of them exhibit a
strong attractive relationship, and thus closer to each other,
while others show a repulsive relationship, thus farther apart.
Some clusters appear to be independent of each other, but
linked together randomly; while others are linked together
via a non-random, dependent structure. Next, we first pro-
pose a variant of the Markov clustering (MCL) algorithm for
decomposing mixed TAGs (Section 3), and then analyze and
characterize mixed TAGs at the level of clusters (Section 4).

3. EXTRACTING CLUSTERS WITH MCL
In this section, we propose a variant of the Markov clus-

tering (MCL) algorithm for decomposing mixed TAGs, and
then analyze and characterize mixed TAGs at the level of
clusters in Section 4.

3.1 MCL Algorithm
The MCL algorithm [13] is developed for graph partition-

ing, based on the assumption that random walks tend to stay
in the same cluster for a longer time rather than traversing
across clusters. In order to apply MCL to decompose mixed
TAGs, we define the Markovian matrix A as follows. Each
row/column represents an edge in the TAG, and an entry aij

is non-zero if edge i and edge j share a common endpoint.
Rows in A are normalized so that each aij corresponds to
the probability of a random walk from edge i to j. As we
shall see later, this definition enables us to compute aij from
traffic properties so as to emphasize the difference of various
application traffic during the clustering process.

MCL iterates two processes: expansion and inflation. Ex-
pansion takes the power of the Markovian matrix using the
normal matrix product. For instance, taking the square of
the matrix will compute random walks of length two. Since
higher length paths are more common within clusters than
between different clusters, expansion will increase the prob-
abilities of intra-cluster walks. Inflation is the element-wise
power to α (we use α = 1.8 in our experiment) followed by a
diagonal scaling (to make the resulting matrix Markovian).
Inflation changes the probabilities associated with the col-
lection of random walks departing from one particular edge
by favoring more probable walks. MCL terminates when two
processes converge. Cluster memberships can be identified
by extracting connected components from the MCL result.

In preliminary experiments, we implemented the basic

MCL algorithm, where the edge properties are not used and
thus aij = 1. In this case, the adjacency matrix of G can
be treated as a symmetric binary matrix. Therefore, direct
clustering on the defined TAG implicitly allows host partic-
ipating in multiple applications. This could enable us to use
more scalable hard-clustering algorithms (instead of expen-
sive soft co-clustering algorithms, e.g., [6,14,15]) to extract
clusters from the graph.

Due to the fact that endpoints may participate in multiple
applications, application of the basic MCL to mixed TAGs
often lead to polluted clusters, i.e., each cluster consists of
a large portion of traffic from non-dominant classes, which
is not a satisfactory result in term of decomposing mixed
TAGs. However, we can remedy this by augmenting MCL
with traffic attributes into the clustering process, given the

Algorithm 1 MCL with edge features.

1: Input: a mixed TAG G, α = 1.8, β = 1;
2: //Construct weighted adjacency matrix A := {aij};
3: Initialize aij = 0 for all entries in A;
4: for each pair of edges ei and ej in G do
5: if ei and ej share a common endpoint then
6: aij := exp(−β||xi − xj ||

2

2);
7: end if
8: end for
9: repeat

10: Normalize rows in A;
11: A := A2; //expansion
12: aij := aα

ij , for all entries in A;//inflation
13: until A converges
14: Extract connected components in A as the clustering

result;

fact that traffic from different application classes often ex-
hibit distinguishable properties.

Name Type Name Type
min duration numeric max duration numeric
min pkt size numeric max pkt size numeric
min pkt rate numeric max pkt rate numeric
symmetry numeric

Table 3: Edge features derived from basic flow fea-
tures.

Our basic idea is to assign weights to the Markovian ma-
trix A, and conduct the basic MCL on the weighted matrix.
We define the weight between two adjacent edges i and j as
aij := exp(−β||xi − xj ||

2

2), where two edges have a higher
weight (or a higher probability for a random walk to tra-
verse between ei and ej) if they have similar traffic prop-
erties. We summarize the augmented MCL algorithm with
edge features in Alg. 1.

We consider the worst case scenario while selecting edge
features, where transport layer headers are missing, e.g., due
to IPv6 tunneling or IPSec. The edge features are listed in
Table 3, which are derived from the remaining basic flow
features, namely, IP addresses, flow packets, bytes and du-
ration (see [16] for detailed definition of these features).

4. ANALYZING MCL RESULTS
Using the decomposition results from the MCL algorithm,

in this section, we study mixed TAGs at the level of clusters.

4.1 Analysis of Clusters
After applying MCL to the 10-minute ISP TAG (with

22,176 edges), we obtain 4,098 clusters. To access the clean-
liness of a cluster, we define the purity of a cluster as the
percentage of edges belonging to the dominant application
class in the cluster. We show the cluster size (x-axis) vs.
purity (y-axis) for these clusters in Fig. 5. We can see that
a majority of the clusters have purity greater than 0.5, and
for those large clusters (with more than 100 edges), the pu-
rity is more than 0.9. We also see that there are many small
clusters. This observation indicates that the proposed MCL
algorithm, by incorporating the edge properties, successfully
separates the mixed clusters into smaller but clean clusters.

To characterize the shapes of the clusters from different
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Figure 5: Cluster size vs. purity.

application classes, we use the diameter metric. The diam-
eter of a cluster c is defined as:

diameter(c) := argmaxi,jSPD(ei, ej),

i.e., the longest shortest path distance among edges in c.
We focus on clusters with more than 10 edges. We see that
Chat, FTP, Mail and Web clusters tend to have larger diam-
eters (with the median ranges from 3 to 5). In compari-
son, Business, P2P, and Media clusters have median diame-
ters less than 3. This observation can also be explained by
the proposed two block models. For example, strongly con-
nected clusters in the dependent block model are expected
to be extracted as a single cluster, and thereby showing a
larger diameter. In contrast, blocks in the independent block
model form separate clusters, due to their independent na-
ture (only a few links connect these blocks, thereby random
walks tend to stay within the block). Hence their diameters
are generally small.

4.2 Analysis of Core Clusters
So far our analysis of mixed TAGs has focused primarily

on the aspect of graph structures. In this section, we inves-
tigate the semantics behind the formation of mixed TAGs,
i.e., what are the core clusters and how do they contribute
to the global connectivity in different mixed TAGs.

ID 10-minute ISP TAG 10-minute U TAG
1 P2P Yahoo, Level3
2 Yahoo, PhotoBucket P2P
3 LLNW Yahoo Mail, HotMail, MSN
4 McAfee CareerCast, HotJobs
5 Google, Akamai DoubleClick, LLNW

Microsoft, Live AOL, ImageShack
6 Yahoo Mail MktLadder, LawLadder
7 Youtube, LLNW CNN, MCI
8 P2P Yahoo, Amazon
9 AOL, DoubleClick Google
10 EBay, Amazon ChicagoSunTimes, Bullz-Eye

Table 4: Top core clusters ranked by closeness.

To identify core clusters, we rank all the clusters from a
mixed TAG using the closeness metric, which is defined as:

closeness(c) :=
1

P

j
SPD(c, cj)

.

A high closeness value means the corresponding cluster is

located more centrally in a mixed TAG, and hence is more
important to the global connectivity. Table 4 lists the top
10 core clusters (ranked by closeness) from the 10-minute
ISP TAG and the 10-minute U TAG.

Though two TAGs are from different geolocations with
a time gap of 3 years, we see that these two TAGs share
many core clusters. These clusters include popular Web/Mail
servers (Yahoo/Yahoo Mail, Google, AOL), E-commerce web-
sites (Ebay, Amazon) and photo sharing websites (Image-
Shack, PhotoBucket). Internet users generally have a high
chance of visiting these servers, and hence they become
centers of the TAGs. In addition, clusters consisting of
CDN and advertising servers, e.g., LLNW, Akamai and Dou-
bleClick, also appear in the centers of TAGs. This is not sur-
prising, because users accessing other websites often oblivi-
ously connect these servers to retrieve data content, making
them more central compared with the other clusters.

Despite these similarities, these two TAGs contain core
clusters that are location/time specific. For example, in
the U dataset, we observe clusters related to news websites
(ChicagoSunTimes, Bullz-Eye, CNN) and job hunting web-
sites (CareerCast, HotJobs, MktLadder, LawLadder). In
comparison, McAfee and Youtube show up as central clus-
ters in the ISP dataset (note that the U dataset was collected
in 2006, and Youtube was not as popular at that time).

4.3 Application of Traffic Classification
Based on the observation that clusters extracted by the

MCL algorithm have generally high purity, we can utilize
the MCL results to conduct traffic classification in a semi-
supervised setting. The basic idea is to decompose a TAG
into clusters using MCL, and then manually classify individ-
ual clusters. Recall that the accuracy (or purity) of a cluster
is defined as the proportion of edges from the dominant ap-
plication class in the cluster. The rest of the non-dominant
edges in a cluster are treated as classification errors. There-
fore, the accuracy of a particular application class is defined
as one minus the proportion of erroneous edges from that
class. We show the traffic classification accuracy of the 10-
minute and the 20-minute ISP datasets in Fig. 6. We see
that the overall accuracy is around 97% for both datasets.
In terms of the per-class accuracy, the two largest classes,
Web and P2P, have an accuracy of 98%. Even for classes with
less than 50 edges, such as FTP, Games and VoIP, we obtain
an accuracy of more than 50%. Such accuracy is quite im-
pressive given the best reported accuracy in a supervised
setting using basic flow features is only 90% [16].

We argue that our method is not an ultimate solution
for the traffic classification problem, but rather a way to
“compress” the data before other sophisticated classification
methods can be applied. For example, in the 10-minute
ISP dataset, instead of classifying 22K edges, we can sim-
ply classify 4K clusters by randomly selecting an edge from
each cluster to determine the labels for other edges in the
same cluster. In this way, our method can provide a com-
pression rate of 20% (4K/22K). This result can be further
improved as follows. Based on the observation that each pair
of endpoints is only involved in a single type of application
over a long duration (e.g., a day), we can use the clusters
from other time periods to calibrate the current clustering
results. For example, if edges from two separate clusters are
observed to be within the same cluster in other time slots, we
merge these two clusters. In our experiment, using a whole



Figure 6: Accuracy.

day data (144 time periods), we can improve the compres-
sion rate to 8:1 by only increasing the error rate from 4.8%
to 5.6%. As a salient feature, our method still works even
when a portion of the edges cannot be classified by tradi-
tional methods based solely on traffic features. For example,
we find that 9% of the Web edges in our datasets do not use
port 80 or 443 as service ports, thus are typically misclas-
sified by port-based methods. However, our method can
classify them accurately based on their neighboring edges in
the same clusters.

5. RELATED WORK
Our work is motivated by the analysis and modeling of

application-specific traffic activity graphs [6–8, 17]. Our fo-
cus in this paper is primarily on explaining the formation of
mixed TAGs as a combination of various application-specific
TAGs. Our work is also related to BLINC [1]. However,
BLINC emphasizes more on the description of various types
of network activities, not the formation of traffic graphs.
From the perspective of graph decomposition, various algo-
rithms have been proposed [13–15, 18]. Our MCL method
differs in that we take into account the traffic properties
associated with individual edges to obtain unpolluted sub-
graphs. In terms of traffic classification, our method differs
from other techniques [2, 16, 19–22] in that we use a semi-
supervised learning approach and the clusters are formed by
both the traffic properties and edge interaction patterns.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we studied the formation of mixed traffic

activity graphs (mixed TAGs). A mixed TAG comprises
a number of densely connected subgraphs or clusters from
various application classes, which are either dependent or
independent. We found that different application classes
exhibited repulsive or attractive relationships when they in-
terconnect to form a mixed TAG. We also proposed a vari-
ant of the Markov clustering algorithm to decompose mixed
TAGs. Analysis on these resulting clusters showed that
though mixed TAGs display similar structures, some core
components in these TAGs are time/location dependent.
Our work in the future will concentrate on mathematical
modeling of the generation process of mixed TAGs. In ad-
dition, we will develop more effective way of classifying net-
work traffic by combining both network traffic statistics and
network structure information.
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