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Abstract

One of key security issues on the current Internet is unwanted traffic, the forerunner
of unauthorized accesses, scans, and attacks. It is vitally important but extremely
challenging to fight such unwanted traffic. We need a series of defensive mechanisms
to identify unwanted packets, filter them out, and further defeat their associated
attacks. In this paper, we propose a lightweight, scalable packet authentication mech-
anism, named Lightweight Internet Permit System (LIPS), as a first line of defense
to effectively filter out the most common forms of unwanted traffic, spoofed and un-
solicited packets, such that in-depth security schemes can take care of the remaining
issues more efficiently. LIPS is a simple extension of IP, in which each packet car-
ries an access permit issued by its destination host or gateway, and the destination
verifies the access permit to determine to accept or drop the packet. LIPS provides
preliminary traffic-origin accountability that supports two salient features to con-
fine unwanted traffic: 1) filter out the most common forms of unwanted packets and
defeat associated attacks; 2) help us identify compromised hosts/domains such that
we are able to build active defense schemes to deal with various attacks through
real-time inter-domain collaboration. In this paper, we first present the design and
prototype implementation of LIPS on Linux 2.4 kernel, and then use analysis, sim-
ulations, and experiments to demonstrate the efficacy of LIPS in protecting critical
resources with light overheads.
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1 Introduction

Implicit in the original design of the Internet is open trust [1] – that end
hosts/end users are always trusted – with its associated lack of accountability.
Such an open trust model allows malicious users to exploit vulnerabilities of
networks and applications to launch various cyber attacks, while enjoying the
comfort of not being tracked down easily. In particular, on the current Inter-
net, a source IP address can be easily spoofed and manipulated, and unwanted
packets can intrude an unwary host with ease (despite firewalls), which is of-
ten tricked into unintentional “accomplice” (e.g., in the case of viruses and
worms), amplifying and spreading attacks to many other vulnerable hosts. To
combat this problem, many organizations choose to close off their networks
via mechanisms such as VPNs [2–4], or employ firewalls to block certain types
of packets (e.g., based on IP addresses, ports, or packet payload), regard-
less of senders and their intents. Clearly, such solutions are fairly limited in
their scope or effectiveness as worms and email viruses can routinely penetrate
firewalls. Furthermore, they are rather rigid, sometimes breaking existing ap-
plications and potentially impeding creation and deployment of new services
and applications. There is still much debate in the networking research com-
munity regarding how to secure and fortify the current Internet while without
jeopardizing its open architecture and end-to-end design principle [1].

As unwanted traffic becomes one of key security issues on the Internet, stop-
ping unwanted traffic is vitally important but extremely challenging. We need
to construct a series of security schemes to identify unwanted packets, fil-
ter them out, and further defeat their associated attacks. In this paper, we
propose a novel Lightweight Internet Permit System (LIPS) to provide pre-
liminary traffic accountability through simple, fast packet authentication for
getting rid of most unwanted packets. By unwanted packets, we mean packets
not intended for normal communications between hosts, such as packets with
spoofed IP addresses, or generated by compromised hosts for port scanning or
service probing. Such packets account for, or are forerunners of, most of unau-
thorized accesses, intrusion, disruption, DoS attacks and other cyber threats
in today’s Internet. For example, in analyzing the netflow data collected at
the University of Minnesota’s Internet border gateway, we have found that a
disproportionally large percentage of the flows consist of one or a few packets,
with no corresponding responsive flows in the reverse direction, and thus can
be deemed as “unwanted”. More in-depth investigation reveals that a majority
of these flows are port scanning or known attacks that are blocked by firewalls
and patched hosts.

LIPS is designed as a fast, scalable traffic authentication mechanism to filter
out most common illegitimate packets, with minor changes to current systems
and negligible overheads. We implement LIPS as a small patch to the IP layer
at a host or gateway. When a source wants to communicate with a destination,
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it first requests and obtains (if granted) an access permit from the destina-
tion. It then inserts a destination access permit into each packet sent to the
destination. Only packets with proper access permits will be accepted at the
destination. This simple architecture provides a scalable and flexible frame-
work for establishing preliminary traffic accountability among networks and
hosts, and for securing Internet resources without sacrificing their open and
dynamic nature. Furthermore, LIPS also simplifies and facilitates the early
detection of, and timely protection from, network intrusion and attacks by
requiring valid access permits before any data packets can be accepted and
processed. Hence by incorporating active monitoring and rapid response mech-
anisms with LIPS, we can build an effective and scalable first-line defense to
protect Internet resources from unwanted traffic. However, as a weak form
of authentication scheme, LIPS has its own limitations. First, it focuses on
confining randomly spoofing and probing traffic; for other security require-
ments such as confidentiality, integrity, and strong authentication, it must
be combined with in-depth security schemes. Furthermore, its lightweight na-
ture determines that it is able to address most common security threats such
spoofing and random probing, but not advanced attacks such as active replay
attacks, as discussed at the end of Section 3. It depends on other in-depth se-
curity schemes to completely defeat such active attacks, although in Section 4
we have shown that such active replay attacks may only cause rather limited
damages.

Related Works. Many security mechanisms have been proposed to defeat
unwanted traffic, IP spoofing, and trace back attacking sources. Firewalls are
broadly deployed with packet filters based on statically configured known sig-
natures. They are unable to response to emerging attacks and can not help in
automatic defense and inter-domain collaboration. Ingress filtering allows an
ISP to prevent attackers from spoofing IP addresses outside the address space
of a stub domain. It is effective for stub domains but not transit domains [5].
It also does not preclude an attacker spoofing within a legitimate address
range. Since an ISP does not directly benefit from ingress filtering, an ISP has
less incentives to deploy it. Spoofing Prevention Method (SPM) [6] enhances
ingress filtering by providing better deployment incentives for ISPs, since it
provides better protection for SPM-aware domains. A packet exchanged be-
tween two SPM domains is attached with a domain-specific temporal key,
and the key is verified at the destination domain. However, similar to ingress
filtering, SPM can not stop spoofing in a legitimate address space and does
not help trace back to compromised hosts. IPv6/IPsec Authentication Header
(AH) and associated VPNs establish shared keys to secure end-to-end com-
munications in an all-or-nothing fashion. Due to the rigid requirement of pre-
existing credentials, they are difficult to deploy. In the meantime, they all
bear heavy overheads [7,8] in Security Association (SA) management, heavy
cryptographic check, and maintaining per-flow states. Similarly, the visa pro-
tocols [9] use encryption and data signatures to authenticate a flow of pack-
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ets. They also require shared keys established between access-control servers
on a per-source-destination basis. Newly formed IETF Better-Than-Nothing-
Security (btns) [10] provides unauthenticated keying for IPsec to create SAs
between peers who do not possess pre-existing authentication credentials, e.g.,
self-signed certificates or bare public keys. It aims to address the deployment
issue of IPsec. It is similar to LIPS in not requiring pre-existing credentials.
In addition, Host Identity Protocol (HIP) [11] and Statistically-Unique-and-
Cryptographically-Verifiable (SUCV) identifiers [12] focus on the address own-
ership problem by using cryptographic name spaces to address the spoofing
issue.

Moreover, several approaches have been proposed to modify intermediate
routers to defeat DoS attacks and IP-spoofing. Pushback [13] treats DDoS
as a congestion-control problem and requires each router to detect and pref-
erentially drop packets that probably belong to an attack. Upstream routers
are also notified to drop those packets such that the routers resources are
used to route legitimate traffic. The network capability scheme [14] inserts
special tokens into packets and requires intermediate routers to check these
tokens along forwarding paths for restricting unwanted packets. While these
routers authenticate packets and maintain per-flow states, destination hosts
also keep per-flow states for authentication using hash chains. Hop-integrity
protocols [15] provide secure communications between adjacent routers by
computing a message digest for each packet at each forwarding step. IP Easy-
Pass [16] aims to protect real-time priority traffic from Denial-of-QoS attacks
at an ISP edge router by maintaining per-flow states. SAVE [17] propagates
valid source addresses between intermediate routers on forwarding paths. Sev-
eral traceback schemes (e.g., IP traceback[18]) are proposed to track down
attacking sources. Since these schemes require to change intermediate routers
or maintain per-flow states, they are difficult to deploy. Furthermore, overlay
approaches (SOS and Mayday [19,20]) exploit a wide-area overlay infrastruc-
ture with a large number of intermediate nodes to hide critical servers and filter
out attacking traffic. Secure-i3 [21] also use an overlay network to hide the IP
addresses of end hosts and give them the ability to defend against attacks
by dynamically removing private triggers to stop unwanted flooding traffic.
However, the data transmission delay in Secure-i3 is relatively high. Client
puzzles [22] introduces a cryptographic-based challenge scheme against con-
nection depletion attacks, such as TCP SYN attacks. It increases the difficulty
for attackers but can not totally stop attacks.

The recently proposed Active Internet Traffic Filtering (AITF) [23] has a
similar goal as LIPS. It leverages the routes recorded on incoming packets to
identify the last point of trust on each attack path, and block attack traffic at
that point, with the help of collaborative routers across multiple intermediate
domains. Once the victim detects attack flows, it asks its gateway to block the
flows; the gateway then requests the farthest gateway in the route record to
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block all packets of these flows. If the gateway does not responds, the victim
gateway escalates the filtering request to the second farthest gateway in the
route record to block all traffic from the farthest gateway to the victim domain.
The escalation continues until a gateway along the attack path responds. The
key advantage of AITF is distributed filtering along the forwarding paths,
under the assumption that AITF is deployed in a significant portion of the
Internet. We will further compare AITF with LISP at the end of Section 4.

In summary, these approaches generally incur high computational overheads,
or heavy key management costs, or require modification of intermediate routers,
or broad infrastructure support. Therefore, they usually significantly degrade
end-to-end performance for security, and are difficult to deploy. On the con-
trary, LIPS does not require pre-existing shared secrets, i.e., no key manage-
ment costs; LISP uses secure hash instead of encryption or digital signatures,
hence the overheads of cryptographic check are significantly reduced; LIPS is
an end-to-end/edge-to-edge approach that does not require changes of inter-
mediate networks. Although LIPS is subject to two active attacks: payload
replacing and permit replay, as discussed later in this paper, the cost of suc-
cessful attacks is extremely high and the damage is fairly limited. Further-
more, these attacks can be easily taken care of by in-depth security schemes
commonly used in applications such as SSL.

The remainder of this paper is organized as follows. In Section 2, we present
the basic concepts and constructs of LIPS, illustrate how it works and why
it is useful. In Section 3, we present the design and implementation of LIPS.
In Section 4, we evaluate the performance and scalability of LIPS through
simulations and experiments on our prototype implementation. We conclude
this paper in Section 5.

2 Basics of LIPS Architecture

The idea of LIPS is simple: every LIPS packet carries an access permit issued
by its destination, and this permit is verified at the destination to determine
whether the packet is accepted or dropped. Hence for a source, it must first
obtain a valid destination access permit. This simple mechanism enables the
destination to easily eliminate illegitimate/spoofed packets and control who
has access to it, e.g., through a simple security policy database. Only data
packets with valid access permits will be accepted and passed to applications
on a destination host. Thus a malicious host cannot simply inject unwanted
traffic to harm a destination host without first requesting an access permit
and identifying itself to the destination. In the following, we first introduce
the basic constructs and operations of LIPS, and illustrate how access permits
are generated, exchanged, and verified. We then discuss the advantages and
limitations of LIPS at the end of this section.
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Fig. 3. Format of LIPS Permit.

LIPS Packet. LIPS is a simple extension of the IP protocol. We convert an
IP packet into a LIPS packet by inserting a LIPS header into the payload field
of the IP packet and changing the protocol type to 138 in the IP header, as
shown in Fig.1. To avoid the potential segmentation issue, we first perform
a path MTU discovery and then set a proper MTU for the connection. We
choose 138 as the protocol type of LIPS in our prototype implementation.
The format of a LIPS packet header is given in Fig.2, which includes four
control fields, a destination access permit (DAP), and a source access permit
(SAP). A DAP is issued by a destination to a source. It is carried in packets
from the source to the destination and verified at the destination. A SAP is
issued by the source to the destination for packets on the return path. The Ver
field holds a LIPS version number. The Type field specifies the type of a LIPS
packet, such as a permit request, a permit reply, or a LIPS data packet. Since
we replace the IP protocol type in the IP header to 138 when we translate an
IP packet into a LIPS packet, we use the Protocol field to hold the protocol
type of an original IP packet such that we can restore the original protocol
type after the LIPS packet is accepted at a destination. The Hdr CRC field is
a simple CRC for a LIPS packet header.

Access Permit. An access permit is constructed using keyed message au-
thentication code (MAC) [24] at a LIPS-aware host. This MAC is generated
through a secure hash function with two inputs: a plain hash message (chosen
by a permit issuer and carried in an access permit in plain text) and a secret
hash key held by the issuer. For example, we can simply use the IP address of
a permit requester as the hash message.

As shown in Fig.3, an access permit includes five main fields: a permit header, a
permit issuer’s ID, a permit requester’s ID (plus optional parameters), a secure
hash value, and a CRC checksum of the secure hash value. The permit header
contains an index (Key ID) of a secret key used for this permit at its issuer,
a hash length (Hash Len) that specifies the length of the secure hash value in
this permit, and a permit expire time (Expire Time) that defines the effective
duration of this permit. The length of secure hash value can be adjusted from
64 bits to 128 bits depending on the permit issuer’s security requirements.
The source information (denoted as M) includes, e.g., the source IP address
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Fig. 4. LIPS Message Exchanges for Setting up Access Permit.

and several optional security parameters. For example, an optional sequence
number can be used to deal with permit-replay attacks, which is activated only
when a replay attack is detected. Therefore, in the normal operations, no per-
connection states are maintained at a permit issuer. The source information is
used by the issuer as the input plain hash message to a secure hash function
to compute a message digest, H(M, Kt), where H() is a secure hash function,
e.g., HMAC-MD5 [25], and Kt is a secret key of the permit issuer at time t.
For ease of exposition, we use the source IP address as M in the following
presentation. Given that the hash length in the permit header is l, the secure
hash value of a permit is the first l bits of a message digest. For example, we
can choose the first 64 bits of a 128-bit HMAC-MD5 digest as a secure hash
value. This hash value will be used for validating the permit. Note that the
hash value is specific to the requester, and is valid only for a short period of
time, as Kt will be changed over time. Without knowing the secret key, it is
very difficult to forge a permit. The idea of using secure hash functions to avoid
storing states in LIPS is similar to the idea of SYN cookies [26]. However, a
LIPS permit works in the network layer for all protocols, while a SYN cookie
works in the transport layer for TCP only. Furthermore, a permit is highly
aggregated for all traffic to a domain/host, while a SYN cookie is for only a
TCP connection.

Exchange of Access Permits between a Source and a Destination.
We use a simple example to illustrate how access permits are set up between
two LIPS-aware hosts. As shown in Fig.4, when a source host H1 wants to
communicate with a destination host H2, H1 first sends a permit request to
H2, which carries H1’s SAP. The SAP contains a secure hash value generated
based on a secret hash key of H1 and a plain hash message about H2 (e.g., H2’s
IP address). Note that not all hosts will be allowed to access H2. A security
policy at H2 is checked to determine if H2 accepts this permit request. If it
does, it generates an access permit (H2’s DAP for H1), containing a secure
hash value generated based on a secret hash key of H2 and a plain hash message
about H1 (e.g., H1’s IP address). Then H2 sends the permit (as the SAP) in
a permit reply message back to H1, using H1’s SAP (attached in the permit
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Destination IP address Flag Destination Access Permit

172.10.10.1 1 xxxxxxxx

129.128.128.1 3 NULL

Fig. 5. Permit Cache Examples.

request from H1) as the DAP of the reply. This simple example shows the case
when a LIPS-aware host directly exchanges permits with another in a LIPS
host mode introduced in Section 3.1. We will further introduce domain-level
permit exchanges in Section 3.2 when we present the LIPS gateway mode.

H1 will only accept a permit reply that carries a valid DAP, namely, a SAP
issued by H1 to H2 in an earlier permit request. This is done by computing
a secure hash value using the plain hash message carried in the DAP and a
secret key pointed by the key index. If this hash value matches the secure hash
value carried in the DAP, H1 accepts this reply and caches the SAP of the
packet (i.e., H2’s DAP) into a permit cache. For the subsequent data packets
sent to H2, H1 puts both H2’s DAP and its own SAP into the LIPS headers of
these packets. When H2 receives a LIPS packet from H1, it verifies the DAP
of the packet and accepts it only if the DAP is valid.

Security Policy. For a common host, a sample policy may be only accepting
permit requests from a local domain, including other local hosts and its secu-
rity gateway(s). As a result, such a host only accepts packets from other local
hosts, or its security gateway(s) when communicating with hosts in other do-
mains. As we introduced later in the LIPS gateway mode, remote hosts have to
go through the permit server of this host to gain accesses to it. This naturally
stops random scanning and worm spreading packets from other domains, i.e.,
an attacker outside the local domain can not directly discover vulnerabilities
via scanning, and a worm can not easily propagate across domains through
random probing. Consequently, potential damages are confined and localized.
For a server, a default policy is to accept permit requests from a set of known
domains (or all domains in the case of a web server). We design LIPS as the
mechanism to enforce chosen policies. We do not explore the details of pol-
icy management as it would be a whole set of different issues involved and is
needed to be addressed separately. We refer interested readers to the KeyNote
Trust-Management System [27].

Permit Cache. Each LIPS host maintains a permit cache with a format
shown as Fig.5. A cache entry contains a destination IP address, a Flag, and
a destination access permit. For incremental deployment, the cache not only
holds permits for LIPS-aware hosts, but also tracks non-LIPS hosts (if allowed
by security policies), using the destination IP address as its primary index.
The flag is used to distinguish the state of a cache entry: flag = 0, indicating
that the entry is in initialization, namely, a permit request has been sent to the
destination but the reply has not been received yet; flag = 1, a valid permit
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for the destination is available; flag = 2, the destination permit has expired;
and flag = 3, the destination does not supports LIPS.

Key Management. LIPS uses an extremely simple key management scheme:
each host keeps its own keys and no key exchanges are required. Each LIPS host
maintains a secret key pool of, say, 256 keys. Each key is uniquely identified by
a key index. When a host generates an access permit, it randomly chooses a
key from its key pool and records the key index in the Key ID field of a permit
header. When a host verifies an access permit, it retrieves a key using the Key
ID of the permit header. Note that in LIPS a key pool is not shared with any
other hosts, and no key exchange among hosts is required, contrary to the
complex key establishment procedures in other approaches. Although in the
LIPS gateway mode (see section 3.2) permit servers and security gateways do
share a secret key pool, conceptually they are two facets (control vs. data) of
the same security unit, and often can be implemented as a single box. Hence
the overhead of key management in LIPS is minimal.

Why LIPS. LIPS not only helps us to confine IP-spoofing, random probing,
and associated attacks, but also assists us to identify attacking sources such
that we can fix them through local and inter-domain collaboration. First, LIPS
supports simple traffic-origin accountability that allows destination domains
and hosts to deny illegitimate accesses and stop common unwanted traffic
such as IP-spoofed and random probing packets and associated attacks. This
gives ISPs strong incentives to deploy LIPS. Since packets without valid per-
mits are automatically discarded, LIPS naturally filters out random reflection
and probing packets (used in reflection attacks and worm spreading, or for
attackers to collect network information). Scanning attacks (such as worms)
generally rely on port scanning to find vulnerable hosts, tricking them to ex-
ecute the malcode carried in the payload, and thereby compromising them
as stepping stones or unintentional accomplices to further spread attacks. As
discussed earlier, a simple LIPS security policy at a host can help us restrict
random scanning packets and therefore defeat associated attacks.

More importantly, LIPS facilitates and simplifies the tasks of detecting unau-
thorized intrusion and attacks by forcing malicious hosts to first request ac-
cess permits and identify themselves to intended targets before launching at-
tacks. As a result, we can identify attacking sources, i.e., compromised hosts
or domains, and deploy real-time defense schemes that automatically fix these
sources through local measures and inter-domain collaboration. Since a ma-
licious host cannot simply inject unwanted traffic to harm a LIPS-protected
destination without first requesting an access permit, we can better defend
against such attacks by simply detecting anomalies in the permit request traf-
fic. For example, a sudden unusual surge of permit requests to one or more
hosts signifies suspicious activities. In particular, when implemented in the
gateway mode (as in Section 3.2), a source zone can detect attacks originating
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from malicious hosts within its zone and quarantine them by denying their
permit requests. Hence combined with network intrusion mechanisms, LIPS
can form an effective first line of defense against cyber attacks by stopping
most common unwanted traffic.

In addition, LIPS helps us to mitigate request-based DoS attacks, which trick
target hosts to expend their valuable resources by unnecessarily processing
bogus service requests. LIPS also helps us to reduce the damages of flood-
based DoS attacks, which intend to overwhelm a target host or link, since
flooding packets without valid permits are simply dropped without reaching
the target, and therefore cannot harm applications on targets, as shown in
Section 4. Moreover, as a domain-to-domain approach, LIPS is incrementally
deployable since it does not require changes in backbone networks as many
other approaches, and it only needs minor software patches on common plat-
forms. It also largely reduces the load of IDSs by filtering out most unwanted
packets and allowing IDSs to focus on serious threats.

3 LIPS Design and Implementation

For incremental deployment and scalability, we design LIPS operating in two
modes. The basic LIPS works in a host mode, in which a LIPS-aware host
directly communicates with another LIPS-aware host as illustrated in Sec-
tion 2. To improve its security strength and capability, we further develop the
LIPS gateway mode: We organize LIPS-aware hosts into secure zones based
on their network administrative domains or zones. For intra-zone traffic, hosts
communicate with each other in the host mode; for inter-zone traffic, we use
permit servers (PSs) to manage inter-zone permits and employ security gate-
ways (SGs) to verify inter-zone packets. The LIPS gateway mode can be easily
deployed in a large scale without changes of intermediate domains.

3.1 LIPS Host Mode

The LIPS host mode is used as an incremental approach to deploy LIPS
when LIPS-aware hosts directly communicate with each other in a small scale.
Eventually, when LIPS is adopted by many domains in a large scale, the host
mode will be used for intra-zone communications under the gateway mode.
To support the host mode, we install a Host Authentication Layer (HAL) at a
LIPS-aware host, which is a small patch to the IP layer. The main functions
of HAL include exchanging permits, maintaining a permit cache, attaching
permits to packets, and verifying access permits, as explained in the following.
We implemented HAL in Linux 2.4 kernel using Netfilter. The HAL uses 256
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128-bit secret keys and employs HMAC-MD5 [25] as the secure hash function.
As reported in Section 4, our software implementation on a common Linux
platform can achieve a packet authentication rate of 643 Mbps, which shows
the feasibility of LIPS on common hosts.

Packet Processing in HAL. The HAL intercepts each outbound packet in
the ip output() procedure of the IP layer, and looks up its permit cache based
on the destination IP address of the packet. If a valid permit is found, it
converts the IP packet into a LIPS packet, attaching a DAP (from the cache)
and a SAP (its own access permit generated for the destination); if the HAL
finds that the destination is non-LIPS host, it simply passes the packet back
to the IP layer without changes or drops the packet depending on its security
policy; if no entry is for this IP address in the cache, or we find an entry
expired or in initialization, the HAL puts this packet into a permit waiting
queue and initializes a permit setup procedure introduced in the following.

The HAL also intercepts each inbound packet in the ip rev() of the IP layer. If
it is a LIPS data packet, the HAL checks the DAP of the packet. If valid, the
packet is accepted and its SAP is refreshed in the permit cache based on the
source IP address. If it is not a LIPS packet, the HAL simply passes it to the
IP layer or drops it. If it is a LIPS permit request/reply, the HAL executes
the permit setup protocol as follows.

Permit Setup Protocol. To obtain a permit of a destination, the HAL at
a source sends a permit request to the destination, creates/updates a cache
entry with a flag of 0 (i.e., in setup), and sets a retransmission timer for the
request. Upon receiving this request, the HAL at the destination generates a
permit and sends a permit reply to the requester as introduced in Section 2.
When the HAL at the requester receives this reply, it first verifies the DAP of
the reply. If the DAP is valid, it searches through its permit waiting queue and
processes all packets destined to this destination. Then it stores this permit
into its permit cache and sets the status flag of the corresponding entry to 1
(i.e., a valid permit).

In case a permit request or reply is lost, a HAL may mistake a LIPS-ware host
as a non-LIPS host and may reject its accesses. We solve this issue by setting
an effective period for each cache entry. The HAL will activate the permit
setup protocol again once this entry is expired, such that it will eventually
obtain an access permit from a LIPS-aware destination and gain accesses 1 .

1 For incremental deployable, we may allow a LIPS-aware source host to initialize
a communication with a non-LIPS destination host (but not vice versa!). In this
case, the HAL at a permit requester will: 1) receive an ICMP protocol unreachable
message from the destination, and set the status flag of the corresponding entry to 3
(i.e., a non-LIPS host). 2) see a permit retransmission timeout due to no responses.
At the first two timeouts, the HAL resends the permit request to the destination. If
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Permit Lookup/Insertion. We have introduced the basics of a permit cache
in the previous section. For each LIPS data packet, we need to find a desti-
nation access permit at the sender’s permit cache and refresh/insert a source
access permit at the receiver’s permit cache. Therefore, we must minimize this
lookup delay. Furthermore, we must carefully use the kernel memory for a per-
mit cache. To shorten lookup delays and minimize memory costs, we organize
a permit cache using a linear hashing scheme with controlled-splitting [28],
which not only has O(1) expected lookup/insertion delay, but also is extremely
memory-efficient, as its table size linearly grows with its population. We refer
interested readers to [29] for the details of our permit lookup schemes. We
evaluate its performance in the next section.

The LIPS host mode has two limitations. First, it can not prevent a flood-
ing attack from directly hitting a LIPS host. Furthermore, it is not scalable
because maintaining a large number of host-specific permits will degrade the
performance of LIPS host-mode.

3.2 Design of LIPS Gateway Mode

To improve the scalability and security strength of LIPS host mode, we develop
the LIPS gateway mode, which employs a two-tiered trust model: LIPS-aware
hosts are organized into secure zones based on their network administrative
domains. We use zone access permits to authenticate inter-zone packets, and
use host access permits (as in the host mode) to authenticate intra-zone pack-
ets. Each zone has a permit server (PS) to manage inter-zone permits and a
security gateway (SG) to validate inter-zone packets based on inter-zone per-
mits. Once an inter-zone permit is established between a pair of zones, the
subsequent communications between them will take advantage of this permit
and avoid repeatedly setting up inter-zone permits, i.e., we only need to estab-
lish one inter-zone permit for all communications between them. As a result,
we not only reduce permit setup delays but also significantly reduce inter-zone
permit exchange traffic. Furthermore, we propose a unique and simple permit-
mutation method to transform zone permits and host permits back and forth
such that not only security gateways do not need to keep per-flow states but
also zone permits are not revealed to hosts. Since it is rather difficult to gain
accesses to intermediate routers and links, attackers have very little chances
to sniff zone permits. Therefore, permit-mutation localizes damage within a
zone. We will evaluate this limited damage in the next section. Within each
zone, LIPS-aware hosts still directly communicate with each other using the
LIPS host mode.

Permit Server, Intra-zone and Inter-zone Permit Setup Protocol. As
show in Fig.6, host H1 in zone Z1 wants to access host H2 (e.g., a protected

still no responses at the third timeout, the HAL treats the destination as a non-LIPS
host.
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Fig. 6. Illustration of LIPS Gateway Mode.

Table 1. Summary of Notations.
Notation Definition

P host
x→y Host Access Permit issued to host x by host y

P zone
x→y Zone Access Permit issued to zone x by zone y

IPx IP address of host x

⊕ Bitwise Exclusive OR

PSi Permit Server of Zone i

SGi Security Gateway of Zone i

KHx

t Secret hash key of Host Hx at time t

KZi

t Secret hash key of Zone Zi at time t

application server) in zone Z2. PS1 is the permit server of zone Z1, and PS2

is the permit server of zone Z2. Zone Z1 and zone Z2 are protected by secu-
rity gateways SG1 and SG2, respectively, which authenticate both ingress and
egress traffic originating from and destining to trusted hosts in these zones. To
obtain a permit to access remote host H2, H1 authenticates itself to its local
permit server PS1 (e.g., via a local authentication scheme). PS1 assists H1

to obtain an access permit to H2. Under the two-tiered model, we divide the
packet forwarding path from a local host H1 to a remote host H2 into three
segments: from H1 to SG1, from SG1 to SG2, and from SG2 to H2. Corre-
spondingly, we use three access permits at each of these segments for packet
authentication: an intra-zone host access permit P host

H1→H2
, an inter-zone permit

P zone
Z1→Z2

, and another intra-zone host access permit P host
Z2→H2

. We introduce the
setup protocols for these permits in the following. The setup of permits for the
reserve path from H2 to H1 is similar. Table 1 summarizes the key notations
used this discussion.

Each PS is assigned a zone ID. In this prototype design, we simply choose
the IP address of a PS as its zone ID since inter-zone permit requests and
replies are exchanged between PSs. We use this zone ID to generate a zone
access permit as follows. In response to a permit request from a trusted host,
the local PS passes the request to the corresponding (authoritative) PS in the
remote secure zone, together with its zone ID and other necessary credentials.
(For a PS to find an authoritative PS of another domain, we add a simple
resource record at the DNS of a domain such that a PS can find another PS
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through a simple DNS query, based on a simple name convention. We assume
that DNSsec will solve security issues related to current DNS and so we will
not discuss DNS security in this paper.) If the access is allowed, the remote PS
will generate a zone access permit (or zone permit in short) based on the local
PS’s zone ID. Hence the access permit is source-zone specific. The remote PS
returns the zone permit to the local PS together with its own zone ID. Instead
of directly passing the zone permit to the requesting host, the local PS creates
a new host access permit (or host permit in short) by adding some “random”
value generated based on the source and destination IP addresses as explained
in the following. This mutation of a zone permit into a host permit makes the
host permit specific to both source host and destination host, thereby rendering
it difficult to be spoofed by other hosts or to other destinations.

Zone Access Permits. Zone access permits are generated in the same fashion as
host access permits but use a zone ID as a plain hash message. For a packet,
let use IP1 to denote its source IP address of host H1 in zone Z1, and use IP2

to denote its destination IP address of host H2 in zone Z2. Let IPPS1
be the IP

address of a requesting PS (as a zone ID), and KZ2

t be a secret key maintained
by the queried PS2 at time t. Then the secure hash value of the zone permit is
P zone

Z1→Z2
= H(IPPS1

, KZ2

t ), where H() is a secure hash function, and the CRC
checksum of the permit is computed on P zone

Z1→Z2
. For ease of exposition, we

will also refer to the secure hash value contained in an access permit as simply
the access permit. As explained in the following, the CRC checksum is used
to verify the validity of the permit after the permit de-mutation for outbound
packets. Note that the generated permit is specific to the requesting zone, and
is valid only for a certain period of time, as KZ2

t changes over time. Without
knowing KZ2

t , it is very difficult to forge a zone permit.

Mutation of a Zone Permit to a Host Permit. Given the zone permit P zone
Z1→Z2

, the
requesting PS mutates it into a host permit P host

H1→H2
using the IP address of the

requesting (source) host, IP1, and the IP address of the queried (destination)
host IP2. Let KZ1

t be a secret key maintained at the requesting PS at time
t. We construct a host permit, P host

H1→H2
= P zone

Z1→Z2
⊕ H(IP1, IP2, K

Z1

t ). Note
that the host permit P host

H1→H2
is only valid for the source H1 to access the

destination H2 for a certain period of time. Again, without knowing the secret
key KZ1

t , it is also very difficult to forge a host permit. The host permit is
essentially the same as the zone permit, with the secure hash value P zone

Z1→Z2

replaced by P host
H1→H2

. Note that the CRC checksum is not re-computed.

Host and Gateway Operations. At both source and destination domains,
we establish lightweight packet authentication mechanisms for verifying and
filtering packets based on host and zone access permits.

Host Operations. In the gateway mode, we also install a host authentication
layer (HAL) at each host as in the host mode. However, this HAL works a
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little bit differently. During its initialization, a HAL authenticates itself to its
permit server and security gateways via a local authentication scheme, e.g.,
Kerberos [30]. This authentication only occurs once during its initialization.
In the meantime, it also issues host access permits to its PS and its SG for
authenticating permit replies and LIPS data packets from them, e.g., host H1

issues permit P host
Z1→H1

to PS1 and SG1.

The HAL layer at an end host x intercepts each outbound packet and then
looks up its permit cache based on the destination IP address of the packet.
Similarly to the HAL in host mode, if a destination access permit is found, it is
attached to the packet. In addition, the host will attach its source access permit
generated using its local zone ID IPPSi

, P host
Zi→x := H(IPPSi

, KHx
t ), where KHx

t

is a secret key kept by the host at time t. This source access permit is used
for authenticating packets from the security gateway to the host. For each
incoming packet, the HAL checks the validity of the destination permit using
the destination zone ID (carried in the permit) and its own secret key. (It
is the reverse operation of generating the source access permit in the above).
The packet is accepted only if it passes the verification. In this case, the source
access permit is cached in the permit cache (with a timer appropriately set,
in a manner similar to the ARP table used for IP and MAC translation).

Gateway Operations. The gateway authentication layer (GAL) is a LIPS realiza-
tion at a SG, which is a small patch to the IP layer. For outgoing packets, the
SG is responsible for ensuring that they are authorized to access the protected
remote zones and hosts. To verify this, it uses the source IP address IP1, the
destination IP address IP2, and the destination access permit P host

H1→H2
(carried

in the packet) to first compute X := P host
H1→H2

⊕ H(IP1, IP2, K
Z1

t ), where KZ1

t

is the secret key that the SG shares with the local PS. It then generates the
checksum on X. If the computed checksum does not match the checksum car-
ried in the destination access permit, the authentication fails and the packet is
dropped. Otherwise, the secure hash value in the destination access permit is
replaced by X (note that X = P zone

Z1→Z2
), and thus the destination access permit

is de-mutated back to the original zone access permit issued by the destination
zone. Furthermore, the (host) source access permit of H1, together with the
source host IP address, is cached in the LIPS permit cache at the gateway.
In addition, the gateway will replace the (host) source access permit in the
packet with a new (zone) source access permit, P zone

Z2→Z1
:= H(IPPS2

, KZ1

t ),
where IPPS2

is the IP address of PS2 as the destination zone ID. P zone
Z2→Z1

is
used to authenticate packets from the destination zone Z2 on the reverse path.

For packets entering a destination zone, the security gateway is responsible
for verifying that they carry proper zone access permits. This is done by
checking to see whether the destination permit carried in an incoming packet,
P zone

Z1→Z2
, is valid. If this verification fails, the packet is discarded. Otherwise,

the packet is allowed to enter the destination zone. Using the destination IP
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address IP2, the gateway looks up its permit cache and replaces the destination
zone permit with the corresponding destination host permit. Depending on
whether the destination host is a trusted host (e.g., a server) in a protected
(e.g., secluded) network, or a client host in a less secure environment, the
gateway may replace the source zone access permit, P zone

Z2→Z1
, with a mutated

source host access permit, P host
H2→H1

:= P zone
Z2→Z1

⊕H(IP1, IP2, K
Z2

t ). In the former
case, for scalability this operation is optional so that trusted servers and other
high-performance hosts in protected networks only need to maintain zone-
level access permits. In the latter case, this operation would prevent other
untrusted hosts to eavesdrop and forge (zone) access permits.

Illustration of LIPS Gateway Mode. Now let go through the LIPS gate-
way mode with a complete example shown in Fig.6. During the initiation of
host H1, host H1 authenticates itself to PS1 and SG1. It also issues a host
access permit 2 , P host

Z1→H1
, which it uses to authenticate packets from PS1 and

SG1 back H1, where P host
Z1→H1

:= H(IPPS1
, KH1

t ), IPPS1
is the IP address of

PS1, and KH1

t is a secret key of H1, which will be periodically refreshed. Sim-
ilarly, host H2 also authenticates itself to PS2 and SG2, and issues them a
host access permit, P host

Z2→H2
.

In order to access host H2 in zone Z2, host H1 (with an IP address of IP1)
sends a permit request to PS1 to obtain a permit of H2. On behalf of H1, PS1

contacts PS2 (whose zone ID is IPPS2
) if PS1 does not have a permit for zone

Z2 yet. PS1 finds PS2 via a simple DNS convention, and authenticates with it
by exchanging appropriate credentials. In response to the permit request, PS2

returns a zone access permit, P zone
Z1→Z2

, to PS1, where P zone
Z1→Z2

= H(IPPS1
, KZ2

t ),

and KZ2

t is a secret key of PS2 (and shared with SG2) at current time t. PS1

mutates the received zone permit P zone
Z1→Z2

into a host access permit, P host
H1→H2

:=

P zone
Z1→Z2

⊕H(IP1, IP2, K
Z1

t ), where KZ1

t is a secret key of PS1 (and shared with
SG1) at current time t, and returns it to host H1. PS1 also caches the zone
access permit P zone

Z1→Z2
. Upon receipt of the host access permit, H1 caches the

permit in its permit cache as an timed entry [IP2, P
host
H1→H2

].

When host H1 sends a packet to host H2, it looks up its permit cache, attaches
P host

H1→H2
as a destination access permit in the LIPS packet, and P host

Z1→H1
as the

source access permit. When this packet reaches the security gateway SG1, it
verifies the destination access permit based on the source and destination IP
addresses, IP1 and IP2, and its own secret key, KZ1

t . If the authentication suc-
ceeds, it restores the destination access permit to the destination zone access
permit by performing P host

H1→H2
⊕H(IP1, IP2, K

Z1

t ). Then SG1 updates its LIPS

2 A separate access permit can be issued to PS1 and SG1, using, e.g., their respec-
tive IP addresses. For simplicity of exposition, we treat PS1 and SG1 as if they
were a single unit, responsible for the secure control and data plane operations,
respectively.
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cache by refreshing the entry [IP1, P
host
Z1→H1

], and replaces the source access per-

mit in the packet to the source zone access permit, P zone
Z2→Z1

:= H(IPPS2
, KZ1

t ).

When the packet reaches the destination security gateway SG2, it first verifies
the destination access permit. If the authentication succeeds, SG2 looks up its
permit cache using the destination IP address, IP2, and replaces the destina-
tion access permit in the LIPS packet with host H2’s access permit P host

Z2→H2
.

In the meantime, it also mutates the source access permit in the LIPS packet
into the source access permit, P host

H2→H1
:= P zone

Z2→Z1
⊕ H(IP2, IP1, K

Z2

t ). (This
last step can be optional if SG2 and H2 are located in a secure network for
performance concerns.) Finally, when the LIPS packet reaches H2, it verifies
the destination access permit. If the authentication succeeds, it caches the
source access permit in its permit cache with a (timed) entry [IP1, P

host
H2→H1

].
When H2 wants to send a packet back to H1, it follows the same procedure
described above, reversing the role of host H1 and host H2.

3.3 Advantages and Limitations of LIPS Design

The design and implementation of LIPS have several advantages. As noted ear-
lier, a key feature of LIPS is that no secret is shared across network domains,
which makes the architecture more scalable and flexible 3 . Packet authenti-
cation is performed using only information carried in the header of a packet
and secret keys held locally by security gateways and hosts. (Note that permit
servers and security gateway do need share secret keys. However, they are
conceptually two facets, control vs. data plane of the same security unit, and
often can be implemented in a single box.) Thus packet operations can be done
efficiently – our initial experimental testing in Section 4 shows that even with
software implementation on common Linux platforms, it can be done at near
line speed. Apart from maintaining their own secret keys, the only other infor-
mation hosts need to maintain is an access permit cache: a security gateway or
host maintains access permits for destination zones or hosts, respectively, with
which it is currently communicating. The size of such caches are much smaller
than routing tables in today’s routers. Our architecture is also incrementally
deployable. First, it is purely edge-to-edge (or “end-domain-to-end-domain”),
as it does not require intermediate networks for assistance. Furthermore, only
those hosts that need to be secured have to be patched with simple protocol
enhancement, i.e., the HAL layer and LIPS permit servers, and to be placed
“behind” security gateways for authentication and protection. In addition, no

3 In his keynote at the ACM SIGCOMM 2003 Conference, Prof. David Cheriton of
Stanford University succinctly summarizes the challenges in designing secure large-
scale distributed systems: “trust 6= security 6= encryption” and “secret does not
scale”.

17



modification to applications is required.

Limitations. Since our goal is to get rid of the huge volume of most common
unwanted packets on the current Internet, as a fist-line of defense, we choose
a weak-form packet-origin authentication in LIPS. As a result, when attackers
have the accesses to the forwarding paths of LIPS packets, they may conduct
active attacks, such as payload replacing and replay permits. Since applica-
tions always use their own security schemes (e.g., SSL) for confidentiality and
integrity, these active reply attacks are taken care of by these schemes, and
their damages are limited to mostly the waste of bandwidth.

We have developed several schemes in LIPS to increase the difficulties of active
attacks and minimize their damages. First, through separate zone-level and
host-level access permits, LIPS isolates “bad” packets originating in one’s own
zone from those outside, and limit the abilities of attacks to mostly “man-in-
the-middle” active replay attacks by real-time “sniffing” permits. Given that
most attacks today are launched by end users, such attacks can be isolated
within their originating domains, and can be more easily tracked down and
taken care of. In addition, the “man-in-the-middle” replay attacks (such as re-
placing payload and replaying packets) in intermediate domains are in general
much difficult to launch, as border gateway routers are typically connected via
high-speed fiber optical links, and they are extremely hard to gain access to.
Furthermore, to replay a valid permit, an attacker must have accesses to the
forwarding paths of LIPS packets since a permit is domain- or host-specific;
he also has to real-time sniff the permit since it is valid for a short period.
We will examine the limited damages of these attacks in Section 4. Moreover,
permit- or packet-replay attacks can be further mitigated by including, e.g.,
sequence numbers or random bits, in the security parameter fileds of access
permits. For example, when a replay attack between zones is detected, LIPS
will enable a sequence number in a zone permit such that attack traffic can be
easily identified. As such a sequence number is for a zone instead of a flow, a
security gateway only needs to maintain a limited amount of states. Lastly, by
augmenting LIPS with active monitoring and rapid response defense mech-
anisms, we can quickly detect and throttle such attacks (e.g., by detecting
duplicate access permits and adjusting timed keys). With such mechanisms,
replay attacks will have only localized effect for a short period of time, with
only “sniffed” hosts/domains being affected, due to the host-specific/domain-
specific feature of access permits. We are further investigating active defense
schemes that utilize the preliminary traffic accountability provided by LIPS.

Permit request floods may be another potential threat. However, as discussed
in [31], attackers always have chances to attack the first handshaking of trust
management procedure in an open distributed system. To our best knowledge,
no effective methods can totally prevent such attacks. We use a few mecha-
nisms to deal with permit request attacks. First, a security policy at a host
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or a permit server limits who can issue permit requests to it. Therefore, only
legitimate hosts/domains can issue permit requests. For host permit requests
from a local domain, a host can monitor the request rates and identify attacks
from its local domain. Since we have the complete control of the local domain,
we can easily trace back and disconnect attack hosts. For domain permit re-
quests, we require that each permit server uses a pair of public/private keys
for its first zone authentication. In the case that a permit server is compro-
mised, we can detect its request flood attack by monitoring its request rate,
and deny its requests by setting up a filter or set a request rate limit until it
is back to normal. In summary, all current open distributed systems suffer the
problem in the trust initialization phase of control plane. Various intelligent
methods have been proposed to mitigate this issue, but no methods can com-
pletely solve the problem as long as we allow unknown sources to initialize the
handshaking procedure.

4 Performance Evaluation

In this section, we first evaluate the basic overhead of the LIPS framework it-
self, and then examine the effectiveness of LIPS in protecting server resources.

4.1 Basic LIPS Performance: Operation Overhead

Permit Generation and Verification Delay. The main cost in permit
generation and verification is to compute a secure hash value using HMAC-
MD5 [25]. It is performed twice for each LIPS packet in the sender’s HAL for
generating a source access permit and in the receiver’s HAL for verifying a
destination permit. The mean delay of generating a secure hash value in our
implementation is about 3190 clock cycles, i.e., 1.14µs on a 2.8GHz Pentium
running Linux. Using this measurement, we can estimate the mean response
delay of permit requests. Assume that permit requests arrive at a host as
a Poisson process with a mean arrival rate λ. Using the M/D/1 queueing
model [32], the average permit processing time (including queueing delay) is

2−λ/µ
2µ(1−λ/µ)

. Plugging in the above measurement as the permit generation rate µ,

and assume the offered load λ/µ is as high as 0.95, we have a average permit
processing delay of 10.5 µs, i.e., we can process 95K permit requests per second
on a common PC. With such a high request processing rate, combined with a
rate limit scheme and multiple high-end PCs to support the operations, we can
easily handle a high volume of requests to mitigate request flooding attacks.

It also tells us that we can authenticate 95K packets per second at a destination
(domain) with a Poisson input. With the average packet size of 844 bytes [33],
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Table 2. HMAC Computation and Related.
Computing Permit Request Authentication Permit Mutation

HMAC Process Bandwidth Demutation

1.14 µs 95K per sec 640 MBps 815K per sec

Table 3. Memory Cost and Lookup Delay.
Uniform Pareto UMN WorldCup

Mcache (Mbytes) 3.1 4.6 1.6 2.2

Dlookup (cycles) 270 280 158 177

Table 4. Comparison: with and without LIPS over a dedicated link.
Effective Bandwidth Loss Rate Jitter

With LIPS 90.7 Mbps 0.005% 0.025ms

W/O LIPS 93.7 Mbps 0.005% 0.022ms

our LIPS implementation can authenticate traffic at a rate around 640 Mbps
on a common Linux PC, far beyond a common user’s requirement.

Computing HMAC is also the main cost in permit mutation/demutation. The
measured mean delay of mutation/demutation is about 3433 clock cycles in our
implementation, i.e., a rate of 815,613 packets per second. Table 2 summarizes
all computation related to HMAC. It also shows that we can achieve much
better performance when using a high-end PC.

Insertion/Lookup Delay and Memory Cost of Permit Cache. As
introduced in Section 3.1, we use a linear hashing scheme with controlled
splitting to manage a permit cache. Let denote the mean delay of permit
lookups/insertions delay as Dlookup and the memory cost of a permit cache as
Mcache. We use two traffic models (uniform and pareto) and two real traces
(UMN and WorldCup) as the input of our simulations to examine our design.
Trace UMN is a real packet trace from a subnet at the University of Min-
nesota, which includes 90 hosts across a period of 40 days. Trace WorldCup
is a web server trace from World Cup 98 site in its busiest day [34], including
73 millions web requests and more than two millions different destinations.
We refer interested readers to [29] for the details of these models and traces.
As summarized in Table 3, our permit cache management schemes performs
reasonably well under both theoretical models and real traces.

Overall Overhead of LIPS. We conduct experiments to measure the overall
overhead introduced by our LIPS implementation in data transmission, com-
pared with IP. In these experiments, we use Iperf [35] to send an CBR UDP
flow from a host to another via a dedicated 100 Mbps link. When the CBR
rate is lower than 100 Mbps, there are almost no differences between the trans-
missions with or without LIPS. Table 4 shows the Iperf measurements when
the CBR rate is 100 Mbps. Even in this stress test, the difference between the
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transmission bandwidth with LIPS and that without LIPS is negligibly small,
about 3%.

4.2 Effective LIPS Protection

We use simple analytical models to show how LIPS helps stop DoS attacks
from two aspects: the chances for zombies to start DoS floods and the proba-
bilities of successful attacks. We focus on the replay of host permits in LIPS
domains because it is rather difficult to gain access to inter-domain links to
sniff a domain permit 4 . The real time and host-specific nature of permits dra-
matically increases the difficulty to generate attacking traffic. Furthermore, a
fast response mechanism helps us quickly stop floods. Therefore, it is extremely
difficult to bring down a LIPS-protected target via permit replay.

LIPS significantly reduces the chances for zombies to spoof IP ad-
dresses and generate permit-replay floods. We first examine the spoofing
chances for a zombie in a LIPS domain. Assume that an egress filter is de-
ployed for the domain. Hence a zombie can only spoof IP addresses in the
domain. Under IP with ingress/egress filtering[5], a zombie can spoof any IP
address in the domain with a probability of 1, once it finds out which ad-
dresses are allowed to access a target. Under LIPS, the chances of IP spoofing
is significantly limited. Since each host permit has an effective period and is
domain-specific, to sniff host permits for spoofing, a zombie must have access
to the path to a destination in real time. In addition, because each permit is
only valid for a short period of time in a specific domain, a zombie has to real
time sniff a valid host permit to spoof/replay in the specific domain, and it is
impossible for zombies to accumulate a large number of host permits ahead of
time to launch flooding attacks. Permit replay is automatically stopped when
there is no legitimate traffic to a destination.

We define pz as the probability that a host is compromised as a zombie in
a domain, and ps as the probability that a zombie can sniff a valid permit
to a target in the domain. Assume that a legitimate host communicates with
a target server as a Poisson process, i.e., both the intervals between sessions
and the durations of these sessions are exponentially distributed. As shown in
Fig.7(a), given different pz and ps, the spoofing probabilities for zombies under
LIPS are far lower than 1, the chance under IP with ingress/egress filtering.
We choose the mean arrival rate as two sessions per minute and the mean
duration as three seconds in these tests.

4 To defeat domain-permit-replay attacks, we use a security association between
two domains plus a sequence number to deal with the replay of domain permits.
Since this type of attack is very unlikely to occur, we only activate the protection
scheme when a domain permit replay attack is detected.
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Consequently, LIPS dramatically suppresses zombies’ capabilities to launch
flooding attacks to a target. To avoid being easily detected and taken out,
assume each zombie only spoofs an IP address by replaying a sniffed valid
permit at the similar rate of a legitimate flow. Under LIPS, a zombie will not
have a valid permit to replay when it can not find an active permit. While
under IP with ingress/egress filtering, a zombie can spoof a source at any
time. Assume we have a domain of 100 hosts; those hosts communicate with
a remote server as Poisson processes; the mean flow rate of a legitimate ses-
sion is 128Kbps. Fig.7(b) shows that the aggregate flooding bandwidth to the
server, which can be generated by zombies in the domain. The top four lines
are flooding rates under IP with ingress/egress filtering at various pz, while
the bottom four lines are flooding rates under LIPS with the same conditions.
Note that the Y-axis is in a log scale. Clearly, it is very difficult for zombies
to generate sufficient traffic to flood the server under LIPS; while it is fairly
easy under IP with ingress/egress filtering. Furthermore, Fig.7(c) shows the
ratio of the aggregate flooding capability of the above domain under IP with
ingress/egress filtering to that under LIPS. Apparently, LIPS significantly re-
duces the flooding capability, especially when ps is small. In addition, Fig.7(d)
shows that an attacker needs about 104 to 105 domains as the above to flood a
LIPS-protected 1 Gbps link with over 100% unwanted packets. It is extremely
difficult for an attacker to collect such huge amount of resources. Besides,
when we have multiple incoming links for a protected server, it will be even
more difficult for such attacks to be successful.

Furthermore, we use a simple Stochastic Knapsack framework to model a
DoS attack to a protect incoming link of a target [19]. Assume a DoS attack
is launched by a set of zombies at various times, and each zombie launches its
attack independently, e.g., attack codes is activated by user operations, say
opening a file or email. We use C to denote the total amount of incoming
bandwidth available. Assume legitimate flows (or attacking flows) have an
exponential arrival rate with a mean of λl (or λa), a bandwidth requirement bl

(or ba), and an exponential service time with a mean of µl (or µa). The system
admits an arrival whenever bandwidth available. In this model, the probability
of a successful DoS attack is the blocking probability corresponding to the
legitimate traffic, defined as follows:

Pb = 1 −

∑
S(ρnl

l /nl!) · (ρ
na
a /na!)

∑
S′(ρnl

l /nl!) · (ρna
a /na!)

where S is the set of cases that an arriving legitimate flow can be admitted,
and S ′ is the set of cases that either a legitimate flow or an attacking flow is
admitted; in each case, nl is the number of legitimate flows admitted, and na

is the number of attacking flows admitted; and offered load ρl = λl/µl, ρa =
λa/µa. Here we assume bl = ba, since zombies are in the same population as
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Fig. 7. LIPS significantly reduces spoofing chances and restricts flooding capability.

the legitimate users [19]. The load level of attack traffic has to be significantly
higher than that of legitimate traffic in order to blocking legitimate traffic.
Fig.8 shows the blocking probability of legitimate flows as we increase the
load of attacking traffic. We choose C = 100 Mbps, bl = ba = 1 Mbps, and
legitimate load ρl = 1. To block 90% of legitimate traffic, the attacking load
has to be 1000 times heavier than the legitimate traffic.

Stopping Permit-Replay Flooding Attacks in LIPS domains. Since
zombies have to generate very high attacking load to launch successful attacks
as shown in the above, it is easy to identify them at source domains through
traffic monitoring schemes, and then isolate them through local defense mech-
anisms, e.g., instantly reconfiguring filters at routers to drop all packets from
these zombies and taking further actions later with more advanced approaches.
We can also detect flooding attacks at a destination domain and inform a
source domain to fix corresponding zombies through inter-domain collabora-
tion. In this case, we first detect a flood at a destination domain via, e.g.,
observing a sharp increase of packets from a source or using a bloom filter to
detect replayed packets. Then, the destination permit server (PS) informs the
source PS this event through their security association. Once the source PS
confirms this event, it revokes the host permit at its SG(s) that automatically
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(b) 10,000 relaying sources: 100
sources in each of 100 domains.

Fig. 10. Static Attacks: Delays to shut off all replaying sources.

drops outgoing packets with the specific host permit; it also can instantly
reconfigure filters at local routers to drop packets from the zombie.

We use the following example to show the effectiveness of the above mechanism
in protecting a server and its critical link at a destination domain, which
services clients from Nd domains. We assume that the incoming link of the
server has a rate of Rin, say, 100 Mbps, 1Gbps, or 10 Gbps, respectively; the
delay of shutting off a zombie is exponential distributed with a mean Df . Note
that different source domains can take actions parallelly. Assume a zombie has
an outgoing link 10 Mbps and can generate at a rate of Rz, say, 400 packets
per second. Assume that no new zombies are added after an attack is started.
The load on the incoming link of a server is defined as L0 − Lr(t), where
L0 = Rz · Nz · Nd, where Nz is the average number of zombies in a source
domain; Lr(t) is the reduced load by revoking zombies at source domains and
it is determined by Nd, Rz, t, and Df ; and t is the time after the attack is
started. As shown in Fig. 10(a) and Fig. 10(b), we can quickly shut off these
replaying source in 10 seconds, with Df = 0.1 second.

Stopping flood attacks from non-LIPS domains. Here we use a simple
experiment setting to show how the LIPS protects a incoming link of a server
from flooding by traffic from non-LIPS domains. The experimental setting
is shown in Fig.9. Host H1 transmits a real-time CBR flow Fl to host H2,
e.g., a surveillance video stream, while host H3 tries to flood H2 with a CBR
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Table 5. Measured Bandwidth (in Mbps).

Attacking Flow Fl Without LIPS Flow Fl With LIPS

Rate 0.4Mbps 1.0Mbps 1.8Mbps 0.4Mbps 1.0Mbps 1.8Mbps

1.0 Mbps 0.400 1.000 1.290 0.400 1.000 1.800

2.0 Mbps 0.315 0.693 0.92 0.400 1.000 1.800

4.0 Mbps 0.208 0.376 0.667 0.400 1.000 1.800

6.0 Mbps 0.164 0.275 0.489 0.400 1.000 1.800

8.0 Mbps 0.149 0.199 0.371 0.400 1.000 1.800

Table 6. Measured Packet Loss (Percentage).

Attacking Flow Fl Without LIPS Flow Fl With LIPS

Rate 0.4Mbps 1.0Mbps 1.8Mbps 0.4Mbps 1.0Mbps 1.8Mbps

1.0 Mbps 0 0 27 0 0 0

2.0 Mbps 21 30 49 0 0 0

4.0 Mbps 48 62 63 0 0 0

6.0 Mbps 59 73 73 0 0 0

8.0 Mbps 63 80 79 0 0 0

Table 7. Packet Jitter (in milliseconds).

Attacking Flow Fl Without LIPS Flow Fl With LIPS

Rate 0.4Mbps 1.0Mbps 1.8Mbps 0.4Mbps 1.0Mbps 1.8Mbps

1.0 Mbps 0.011 0.005 8.79 0.016 0.010 0.024

2.0 Mbps 9.08 19.78 20.3 0.006 0.007 0.049

4.0 Mbps 1.60 19.33 12.93 0.024 0.034 0.023

6.0 Mbps 1.98 4.67 12.54 0.017 0.008 0.100

8.0 Mbps 8.64 18.7 4.96 0.008 0.011 0.027

non-LIPS attacking traffic. We set the capacity of H2’s incoming link to 2
Mbps using Linux CBQ. We tested three different rates of Fl at 0.4, 1.0,
and 1.8 Mbps under five attacking rates at 1.0, 2.0, 4.0, 6.0, and 8.0 Mbps.
When the total traffic rate is higher than the link capacity capacity, without
LIPS, we see significant damages on Fl in bandwidth, packet losses, and packet
jitters, as shown in the second super-columns of Table 5, Table 6, and Table 7,
respectively. On the contrary, when we use a LIPS gateway protect the link,
flow Fl was able to reach H2 at its required bandwidth with no packet losses
and negligible jitters, as shown in the third super-columns in the tables.

Comparing LISP with AITF. Both AITF and LIPS are designed as sim-
ple enhancements of current systems to distributedly filter out common flood
packets. They both are subject to advanced active replay attacks if attack-
ers can access their packet forwarding paths, and are dependent on in-depth
security schemes to address this issue and achieve other security requirements.

There are a few differences between LIPS and AITF. First, LIPS is an edge-
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Fig. 11. Comparing the effective bandwidth of LISP with that of AITF: given the
same number of attack sources.

to-edge approach, while AITF is an infrastructure-like cross-domain approach
that requires the changes of a significant portion of intermediate routers. Ex-
ploiting the trust of these intermediate routers in the forwarding paths, AITF
provides more filtering power on forwarding paths across intermediate do-
mains. However, this protection comes with a price as discussed in [23], due
to its filtering escalation. The filtering escalation may cause collateral dam-
ages when both legitimate traffic and attack traffic share the same interme-
diate routers that do not cooperate, i.e., AITF may block all packets from
non-cooperative routers. In addition, the overhead of route records in AITF
is about 10% of payload and grows with the increase lengths of forwarding
paths, e.g., if a packet goes through 8 hops, a packet carries a route record of
87 bytes. A LIPS header is fixed as 24 bytes.

We conduct simple tests to compare the effective bandwidth of LIPS and
AITF. The results show that, when all intermediate routers cooperate, AITF
performs better than LISP; when intermediate routers do not always cooper-
ate, LISP performs better. Assume that 60,000 attack sources aim at a victim
with a total of 600 Mbps attack traffic. The victim’s gateway has an OC-48
ingress link of 2.488 Gbps, and the victim has an ingress link of 100 Mbps
from the gateway. Legitimate sources are co-located with attack sources in
source domains. When no attacks, the victim has an effective bandwidth of
80 Mbps. Once detecting attacks, the victim can send 10,000 filter requests
per second to its gateway; its gateway is able to filter attack flows and re-
quest the gateways at sources domains to stop attack flows. Each gateway
can filter out 10,000 flows for the victim. In the first case, we assume that all
gateways cooperate with the victim gateway to block attack flows. Fig.11(a)
shows that the effective bandwidth of the victim under LIPS is generally the
same as that of AITF. In the second case, when 75% of end-domain gateways
cooperate and all intermediate gateways cooperate, as shown in Fig.11(b),
AITF performs better than LIPS because the intermediate routers provide
more filtering power without collateral damages. In the third case, when 75%
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of all source and intermediate gateways cooperates, as shown in Fig.11(c),
LIPS performs better than AITF, because of the collateral damages caused
by some intermediate routers in AITF.

5 Conclusions

LIPS is a simple packet authentication mechanism which provides preliminary
traffic accountability for restricting most common unwanted traffic. We pre-
sented the basic design of LIPS and a prototype implementation on a Linux
platform. Our analytical, simulation and experimental results show that LIPS
is capable of confining common spoofed and unsolicited packets with light over-
heads. It can be incrementally deployed on a large scale with small patches
to end hosts and no changes in intermediate routers. Currently, we are incor-
porating active monitoring and rapid-response defense mechanisms into LIPS
for exploiting its preliminary traffic accountability to further improve its ef-
fectiveness. In the meantime, we are also developing an overlay inter-domain
service to protect the traffic between two end domains. Combining the inter-
domain protection with LIPS, we have a more complete scheme to deal with
common spoofing and flood traffic.
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