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Abstract—In this paper, we investigate the suitability of embed-
ding Internet hosts into a Euclidean space given their pairwise dis-
tances (as measured by round-trip time). Using the classical scaling
and matrix perturbation theories, we first establish the (sum of
the) magnitude of negative eigenvalues of the (doubly centered,
squared) distance matrix as a measure of suitability of Euclidean
embedding. We then show that the distance matrix among Internet
hosts contains negative eigenvalues of large magnitude, implying
that embedding the Internet hosts in a Euclidean space would incur
relatively large errors. Motivated by earlier studies, we demon-
strate that the inaccuracy of Euclidean embedding is caused by a
large degree of triangle inequality violation (TIV) in the Internet
distances, which leads to negative eigenvalues of large magnitude.
Moreover, we show that the TIVs are likely to occur locally; hence
the distances among these close-by hosts cannot be estimated accu-
rately using a global Euclidean embedding. In addition, increasing
the dimension of embedding does not reduce the embedding errors.
Based on these insights, we propose a new hybrid model for embed-
ding the network nodes using only a two-dimensional Euclidean
coordinate system and small error adjustment terms. We show that
the accuracy of the proposed embedding technique is as good as, if
not better than, that of a seven-dimensional Euclidean embedding.

Index Terms—Euclidean embedding, suitability, triangle in-
equality.

1. INTRODUCTION

STIMATING distance (e.g., as measured by round-trip
E time or latency) between two hosts (referred as nodes
hereafter) on the Internet in an accurate and scalable manner
is crucial to many networked applications, especially to many
emerging overlay and peer-to-peer applications. One promising
approach is the coordinate (or Euclidean embedding) based
network distance estimation because of its simplicity and
scalability. The basic idea is to embed the Internet nodes in a
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Euclidean space with an appropriately chosen dimension based
on the pairwise distance matrix. The idea was first proposed by
Ng et al. [2]. Their scheme, called Global Network Positioning
(GNP), employs the least square multidimensional scaling
technique to construct a low-dimensional Euclidean coordinate
system and approximate the network distance between any
two nodes by the Euclidean distance between their respective
coordinates. To improve the scalability of GNP, [3] and [4]
propose more efficient coordinate computation schemes using
principal component analysis. Both schemes are in a sense
centralized. Methods for distributed construction of Euclidean
coordinate systems have been developed in [5] and [6]. In
addition, [5] proposes to use height vector to account for the
effect of access links, which are common to all the paths from
a host to the others.

While most studies have focused on improving the accuracy
and usability of the coordinate-based distance estimation sys-
tems, others have demonstrated the potential limitations of such
schemes. For example, [7] shows that the amount of the tri-
angle inequality violations (TIVs) among the Internet hosts is
nonnegligible and illustrates how the routing policy produces
TIVs in the real Internet. They conjecture that TIVs make Eu-
clidean embedding of network distances less accurate. Refer-
ence [8] proposes new metrics such as relative rank loss to eval-
uate the performance and show that such schemes tend to per-
form poorly under these new metrics. A brief survey of various
embedding techniques is found in [8]. In addition, [9] claims
that the coordinate-based systems are in general inaccurate and
incomplete, and therefore proposes a lightweight active mea-
surement scheme for finding the closest node and other related
applications.

In spite of the aforementioned research on the coordi-
nate-based network distance estimation schemes, regardless of
whether they advocate or question the idea, no attempt has been
made to systematically understand the structural properties of
Euclidean embedding of Internet nodes based on their pairwise
distances: what contributes to the estimation errors? Can such
errors be reduced by increasing the dimensionality of embed-
ding? More fundamentally, how do we quantify the suitability
of Euclidean embedding? We believe that such a systematic
understanding is crucial for charting future research directions
in developing more accurate, efficient, and scalable network
distance estimation techniques. This paper is a first attempt in
reaching such an understanding and proposes a simple new
hybrid model that combines global Euclidean embedding with
local non-Euclidean error adjustment for more accurate and
scalable network distance estimation.
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The contributions of this paper are summarized as follows.
First, by applying the classical scaling and matrix perturbation
theory, we establish the (sum of the) magnitude of negative
eigenvalues of an appropriately transformed, squared distance
matrix as a measure of suitability of Euclidean embedding. In
particular, the existence of negative eigenvalues with large mag-
nitude indicates that the set of nodes cannot be embedded well
in a Euclidean space with small absolute errors.

Secondly, using data from real Internet measurement, we
show that the distance matrix of Internet nodes indeed contains
negative eigenvalues of large magnitude. Furthermore, we es-
tablish a connection between the degree of TIVs in the Internet
distances to the magnitude of negative eigenvalues and demon-
strate that the inaccuracy of Euclidean embedding is caused by
a large degree of TIVs in the network distances, which leads
to negative eigenvalues of large magnitude. We also show that
TIVs cause the embedding schemes to be suboptimal in that
the sum of estimation errors from a host is either positive or
negative (far from zero), which means that the estimations are
biased.

Thirdly, we show that a majority of TIVs occur due to
the nodes that are close by. By clustering nodes based on
their distances, we find that while the distances between the
nodes in the different clusters (the intercluster node distances)
can be fairly well approximated by the Euclidean distance
function, the intracluster node distances are significantly more
non-Euclidean, as manifested by a much higher degree of TIVs
andthe existence of negative eigenvalues with considerably larger
magnitude. Based on these results, we conclude that estimating
network distances using coordinates of hosts embedded in
a global Euclidean space is rather inadequate for close-by
nodes.

As the last (but not the least) contribution of this paper,
we develop a new hybrid model for embedding the network
nodes: in addition to a low-dimensional Euclidean embedding
(which provides a good approximation to the intercluster node
distances), we introduce a locally determined (nonmetric)
adjustment term to account for the non-Euclidean effect within
the clusters. The proposed hybrid model is mathematically
proved to always reduce the estimation errors in terms of stress
(a standard metric for fitness of embedding). In addition, this
model can be used in conjunction with any Euclidean embed-
ding scheme.

The remainder of this paper is organized as follows. In
Section II, we provide a mathematical formulation for embed-
ding nodes in a Euclidean space based on their distances and
apply the classical scaling and matrix perturbation theories to
establish the magnitude of negative eigenvalues as a measure
for suitability of Euclidean embedding. In Section III, we
analyze the suitability of Euclidean embedding of network
distances and investigate the relationship between triangle
inequality violations and the accuracy. Section IV shows the
accuracy of various Euclidean embedding schemes over various
real measurement data sets. We show the clustering effects on
the accuracy in Section V. We describe the new hybrid model
for the network distance mapping in Section VI and conclude
this paper in Section VII.
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II. EUCLIDEAN EMBEDDING AND CLASSICAL SCALING

In this section, we present a general formulation of the
problem of embedding a set of points (nodes) into a r-dimen-
sional Euclidean space given the pairwise distance between any
two nodes. In particular, using results from classical scaling
and matrix perturbation theories, we establish the (sum of the)
magnitude of negative values of an appropriately transformed,
squared distance matrix of the nodes as a measure for the
suitability of Euclidean embedding.

A. Classical Scaling

Given only the n x n, symmetric distance matrix D = [d;;]
of a set of n points from some arbitrary space, where d;; is the
distance'! between two points x; and x;, 1 <4, 7 < n, we are
interested in the following problem: can we embed the n points
{x1,X2,...,X,} in an r-dimensional space for some integer
r > 1 with reasonably good accuracy? To address this question,
we need to first determine what is the appropriate dimension 7 to
be used for embedding; given r thus determined, we then need
to map each point x; into a point X; = (Z;1,...,Z;-) in the
r-dimensional Euclidean space to minimize the overall error of
embedding with respect to certain criterion of accuracy.

Before we address this problem, we first ask a more basic
question. Suppose that the n points are actually from an r-di-
mensional Euclidean space, given only their distance matrix
D = [d;;]: is it possible to find out the original dimension r and
recover their original coordinates in the r-dimensional space?
Fortunately, this question is already answered by the theory of
classical scaling [10]. Let D(®) = [d%,] be the matrix of squared
distances of the points. Define Bp := —(1/2)JD?).J, where
J =T—n"1117, I is the unit matrix and 1 is an n-dimensional
column vector whose entries are all one. .J is called a centering
matrix, as multiplying .J to a matrix produces a matrix that has
zero mean columns and rows. Hence Bp is a doubly centered
version of D). A result from the classical scaling theory gives
us the following theorem.

Theorem 1: If a set of n points {x1, X2, . .., Xy } are from an
r-dimensional Euclidean space, then Bp is semidefinite with
exactly r positive eigenvalues (and all other eigenvalues are
zero). Furthermore, let the eigendecomposition of Bp be given
by Bp = QAQT = QA'?(QAY)T, where A = [\;] is a
diagonal matrix whose diagonal consists of the eigenvalues of
Bp in decreasing order. Denote the diagonal matrix of the first
r positive eigenvalues by A and @ ; the first r columns of ().
Then the coordinates of the n points are given by the n X r co-
ordinate matrix Y = Q+Ai/ > In particular, Y is a translation
and rotation of the original coordinate matrix X of the n points.

Hence the above theorem shows that if n points are from a
Euclidean space, then we can determine precisely the original
dimension and recover their coordinates (up to a translation and
rotation). The contrapositive of the above theorem states that if
Bp is not semidefinite, i.e., it has negative eigenvalues, then the
n points are not originally from an Euclidean space. A natural
question then arises: does the negative eigenvalues of Bp tell

I'We assume that the distance function d(-,-) satisfies d(x,2) = 0 and
d(z,y) = d(y,x) (symmetry) but may violate the friangle inequality
d(z,z) < d(z,y) + d(y, z); hence d may not be metric.
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Fig. 1. Scree plots of the eigenvalues on data sets. Random points are generated in d-dimensional Euclidean space. The noise is computed as dnoise,, =
dey +d.y X f, where the noise factor f is uniformly randomly selected from a range of [0,p). p = 0.05 and p = 0.1 are used. (a) Random points from Euclidean

space. (b) Random points with noise.

us how well a set of n points can be embedded in a Euclidean
space? In other words, can they provide an appropriate measure
for suitability of Euclidean embedding? We formalize this ques-
tion as follows. Suppose the n points are from an r-dimensional
Euclidean space but the actual distance d; ; between two points
x; and x; is “distorted” slightly from their Euclidean distance
d;;, e.g., due to measurement errors. Hence, intuitively, if the
total error is small, we should be able to embed the n points
into an r-dimensional Euclidean space with small errors. Using
the matrix perturbation theory, in the following we show that in
such a case, the (doubly centered) squared distance matrix must
have small negative eigenvalues.

Formally, we assume that J?J =d; + eij, where |e;;| < €/n
for some ¢ > 0. Hence D* := [d}}] D® 4+ E,
where £ := [e;;]. A frequently used matrix norm is

Vi rilel? < e

the Frobenius norm ||E|p :=

Then B; := —(1/2)JD®J = Bp + Bg, where
Bp = —(1/2)JEJ. It can be shown that ||Bg|[r < e
For i = 1,2,...,n, let A\; and \; be the ith eigenvalue

of Bp and Bp, respectively, where A\; > > )\, and
A1 > --- > A,. Then the Wiedlandt-Hoffman theorem [11]
states that Y. (A; — Xi)? < ||Bg||%. Since A; > 0, we have

<> (A= X) < |IBallF < €.

i=1

Hence the sum of the squared absolute values of the negative
eigenvalues is bounded by the squared Frobenius norm of the
(doubly centered) error matrix ||Bg||%, which is the sum of
the (doubly centered) squared errors. In particular, the absolute
value of any negative eigenvalue |\;| is bounded by ||Bg||r.
Hence if the total error (as reflected by ||Bg||%) is small and
bounded by ¢, then the negative eigenvalues of Bp are also small
and their magnitude is bounded by €. Hence the magnitude of
negative eigenvalues (and their sum) provides a measure of the
suitability of Euclidean embedding: if a set of n points can be
well- approximated by a Euclidean space with an appropriate

dimension, then their associated doubly centered squared dis-
tance matrix only has negative eigenvalues of small magnitude,
if any. On the other hand, the contrapositive of the above propo-
sition leads to the following observation.

Theorem 1: If the doubly centered squared distance matrix of
a set of n points has negative eigenvalues of large magnitude,
then the set of n points cannot be embedded into a Euclidean
space with a small total error (as measured by || Bg || ). In other
words, they are less amenable to Euclidean embedding.

In this derivation, we use total error . However, the total error
can be from only a few distance estimations so that eigenvalue
analysis can wrongfully conclude that the Euclidean embedding
is not good for this distance matrix. Actually, the meaning of
good fitting depends on the objectives of the embedding. Typ-
ical objective functions usually try to minimize the total sum of
squared absolute errors or relative errors. In such a case, even
if only a few distances happen to have really high error terms,
the errors are distributed to a large number of points because
these objective functions tend to prefer many small errors rather
than a few large errors. As a consequence, when the total error
is high (regardless of whether it is from a few sources or many
sources), the embedding is difficult to find the original positions
of the points in the Euclidean space. So the eigenvalue analysis
is useful to measure the suitability of the Euclidean embedding
computed by the embedding schemes of which objective func-
tions are to minimize the total (sum of squared) error.

B. Illustration

We now generate some synthetic data to demonstrate how
classical scaling can precisely determine the original dimen-
sionality of data points that are from a Euclidean space. First,
we generate 360 random points in a unit hyper cube with
different dimensions and compute the corresponding distance
matrix for each data set. Fig. 1(a) shows the scree plot of the
eigenvalues obtained using classical scaling. The eigenvalues
are normalized by the largest value (this will be the same for
the rest of thise paper). We see from Fig. 1(a) that the eigen-
values vanish right after the dimensionality of the underlying
Euclidean space where the data points are from, providing an
unambiguous cutoff to uncover the original dimensionality. We
now illustrate what happens when distances among data points
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Fig. 2. The eigenvalue scree plot of network distance matrices.

TABLE I
DATA SETS USED IN THIS PAPER. THE NUMBER OF NODES IS
CHOSEN TO MAKE THE MATRIX COMPLETE AND SQUARE

Data Set Nodes Date
King4622 462 8/9/2004
King2305 ([12]) 2305 2004
PlanetLab? 148 | 9/30/2005
Ng024 19 | May 2001

are not precisely Euclidean (e.g., due to measurement errors).
We add noise to the synthetically generated Euclidean data sets
as follows: the noise component in the data is d x (1 + f),
where d is the original Euclidean distance and f is a randomly
selected number from (—p,p). We use p = 0.05 and p = 0.1
for the illustration below. We observe in Fig. 1(b) that the first
r eigenvalues are positive and are nearly the same as in the
case without noise, where 7 represents the actual dimension of
the data set. Beyond these eigenvalues, we observe only small
negative eigenvalues. As the noise increases, the magnitudes
of negative eigenvalues increase slightly. It is clear that as the
data set deviates from Euclidean more, the magnitudes of the
negative eigenvalues become larger.

III. SUITABILITY OF EUCLIDEAN EMBEDDING

To understand the suitability of Euclidean embedding of net-
work distances, in this section, we perform eigenvalue analysis
of the distance matrices and investigate how the TIVs affect the
accuracy of the embedding, and thus the suitability of Euclidean
embedding for a wide range of data sets.

To be specific, we apply eigenvalue analysis to show that the
(doubly centered, squared) distance matrices of the data sets
contain negative eigenvalues of relatively large magnitude. We
then attribute existence of the negative eigenvalues of relative
large magnitude to the large amount of triangle inequality vi-
olations existing in the data sets by showing i) embedding a
subset of nodes without triangle inequality violations in a Eu-
clidean space produces higher accuracy, and the associated dis-
tance matrix also contains only negative eigenvalues of much
smaller magnitude; and ii) by increasing the degree of TIVsin a
subset of nodes of the same size, the performance of Euclidean
embedding degrades and the magnitude of the negative eigen-
values also increases.

We use four different data sets, which we refer to as King462,
King2305, and PlanetLab, and Ng02, as listed in Table 1. The
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King462 data set is derived from the data set used by Dabek
et al. after removing the partial measurements to derive a 462
x 462 complete and square distance matrix among 462 hosts
from the original 2000 DNS server measurements. Using the
same refinement over the data set used in [12], we derive the
King2305 data set, which is a 2305 x 2305 complete and square
distance matrix. PlanetLab is derived from the distances mea-
sured among the PlanetLab nodes on September 30, 2005. We
chose the minimum of the 96 measurement (one measurement
per 15 min) data points for each measurement between node
pairs. After removing the hosts that have missing distance in-
formation, we obtain a 148 x 148 distance matrix among 148
nodes. The Ng02 data set is obtained, which contains a 19 x
19 distance matrix. Even though the number of hosts is small in
this data set, we have chosen this data set in order to compare
with the results in other papers.

A. Eigenvalue Analysis

First, we perform eigenvalue analysis of the doubly centered,
squared distance matrix Bp = —JD®).J. Fig. 2 shows the
scree plot of the resulting eigenvalues, normalized by the eigen-
value of the largest magnitude |A1|, in decreasing order in the
magnitude of the eigenvalues. We see that each of the data sets
has one or more negative eigenvalues of relatively large magni-
tude that are at least about 20% (up to 100%) of |A], and the
negative eigenvalue of largest magnitude is among the second
and fourth largest in terms of magnitude. This suggests that the
network distances are somewhat less suitable for Euclidean em-
bedding. Hence it is expected that embedding the nodes in a
Euclidean space would produce considerable amount of errors.

B. TIV Analysis

Motivated by earlier studies (e.g., [7]), which show that there
is a significant amount of TIVs in the Internet distance mea-
surement and attribute such TIVs to Internet routing policies,>
here we investigate how the amount of TIVs in the data sets
affects the suitability and accuracy of Euclidean embedding of
network distances. In particular, we establish a strong correla-
tion between the amount of TIVs and the magnitude of negative
eigenvalues of the associated distance matrix. First, we analyze
the amount of TIVs in the four data sets. For each dataset, we
take a triple of nodes and check whether they violate triangle
inequality. We then compute the fraction of such TIVs over all
possible triples. Table II shows the results for the four data sets.
We see that the fraction of TIVs in the King2305 data set is about
0.23, while for the other three data sets, it is around 0.12. Hence
the triangle inequality violations are fairly prevalent in the data
sets.

To investigate how the amount of TIVs affects the suitability
and accuracy of Euclidean embedding—in particular, its impact
on the magnitude of negative eigenvalues—we start with a
subset of nodes without any triangle inequality violation (we

2http://pdos.cs.mit.edu/p2psim/kingdata
3http://www.pdos.Ics.mit.edu/ strib/pl app/
4http://www-2.cs.cmu.edu/ eugeneng/ research/gnp/

SIn particular, [7] shows that the Hot Potato Routing policy and the interplay
between interdomain and introdomain routing can cause TIVs. It also shows
that private peering between small ASs is another source of TIVs.
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TABLE II
FRACTION OF TIVS OVER ALL TRIPLES OF NODES

Planetlab
0.131

Data Set
fraction

Ng02
0.116

King2305
0.233

King462
0.118

refer to such a subset of nodes as a TIV-free set). Ideally,
we would like this subset to be as large as possible, namely,
obtain the maximal TIV-free (sub)set. Unfortunately, finding
the maximal TIV-free subset is NP-hard, as is stated in the
following theorem (the proof of which is delegated to the
Appendix).

Theorem 2: Finding the maximal TIV-free set problem is
NP-complete.

Hence we have to resort heuristics to find a large TIV-free
set. Here we describe three heuristic algorithms. The basic al-
gorithm (referred to as Algo 0) is to randomly choose k& nodes
from a given set of n nodes and check whether any three nodes
of these randomly selected & nodes violates the triangle in-
equality. If the triangle inequality is violated, the process is re-
peated again by randomly selecting another set of £ nodes. If we
find a TIV-free set of size k, we increase k by one and try again
to attempt to find a larger set. Otherwise, the algorithm termi-
nates after a prespecified number of failed tries and returns the
TIV-free set of size k—1.

The second heuristic algorithm (Algo 1) is as follows. We
start with a TIV-free set (initialized with two randomly selected
nodes). From the remaining node set C' (initially with n—2
nodes), we then randomly pick a new node and check to see
whether it violates the triangle inequality with any two nodes in
the existing TIV-free set. If yes, this node is removed from the
remaining node set C. Otherwise, it is added to the TIV-free
set (and removed from the remaining node set). The process is
repeated until the remaining node set becomes empty.

The third heuristic algorithm (Algo 2) is slightly more sophis-
ticated and works in a similar fashion as Algo I, except that we
do not choose nodes randomly for consideration. We start with
an initial TIV-free set A of two nodes, where the two nodes are
chosen such that the pair of nodes has the least number of TIVs
with nodes in the remaining node set C'. Given this pair of nodes,
we remove all nodes in the remaining node set C' that violate the
triangle inequality with this pair of nodes. For each node ¢ in C,
we compute the number of nodes in C that violates triangle in-
equality with ¢ and any two nodes in A. We pick the node c that
has the smallest such number, add it to A, and remove it from
C. We then purge all the nodes in C that violate the triangle in-
equality with ¢ and any two nodes in A. We repeat the above
process until C' becomes empty.

For the data sets PlanetLab, King462, and King2305 (the
Ng02 data set is not used since it is too small), the size of
largest TIV-free sets found using the three heuristic algorithms
is shown in Fig. 3. For each data set, Algo O only finds a TIV-free
set of about ten nodes. Algo 2 finds the largest TIV-free sets for
the King462 and King 2305 data sets, while Algo 1 finds the
largest TIV-free set for the PlanetLab data set. For the following
analysis, we use the largest TIV-free set found for each data set.
Fig. 4(a) shows the scree plot of the eigenvalues for the associ-
ated (doubly centered, squared) distance matrix of the TIV-free

o Algo 0 C—
80F Algo1c—— ;
70l Algo 2 I ]
60t e
50
40 ¢
30
20
10—

size of TIV-free set

King462
data sets

]

King2305

Planet.lab‘

Fig. 3. Performance of the three heuristic algorithms.

node sets. We see that they all have only a small number of neg-
ative eigenvalues, and the magnitude of all the negative eigen-
values is also fairly small. Comparing with Fig. 2, either the
number or the magnitude of negative eigenvalues is significantly
reduced.

The embedding accuracy of the TIV-free data sets is shown
in Fig. 4(b). The relative errors, which are defined precisely in
Section IV-A, are relatively small. For example, for the Plan-
etLab data set, in almost 98% of the cases, the relative errors are
less than 0.2. We see that the Euclidean embedding of the TIV-
free sets has a fairly good overall accuracy. However, Fig. 4(b)
still shows nonnegligible errors for the TIV-free data sets. Since
multidimensional scaling methods such as GNP can actually
embed Euclidean data set without any error, this means that the
errors of the TIV-free data set embedded by GNP are truly from
the non-Euclidean characteristics of Internet routing. Actually,
it is well known that the non-Euclidean metric space such as the
shortest path routing is hard to embed into a low-dimensional
Euclidean space without distortions or errors [13].

C. Correlation Between Negative Eigenvalues and Amount
of TIVs

Next, we show how the amount of TIVs in a data set con-
tributes to the magnitude of negative eigenvalues, and thereby
the suitability and accuracy of Euclidean embedding. We use
the King2305 data set as an example. The largest TIV-free set
we found has 81 nodes. We fix the size of the node sets and
randomly select six other node sets with exactly 81 nodes, but
with varying amount of TIVs. The scree plots of the eigenvalues
for the six node sets are shown in Fig. 5(a), and the cumulative
relative error distributions of the corresponding Euclidean em-
bedding are shown in Fig. 5(b). We see that with the increasing
amount of TIVs, both the magnitude and number of negative
eigenvalues increase. Not surprisingly, the overall accuracy of
the Euclidean embedding degrades. In fact, we can mathemat-
ically establish a relation between the amount of TIVs and the
sum of squared estimation errors as follows.

Lemma 1: If the distances t,, tp, t. among three nodes violate
the triangle inequality, i.e., t. > t, + 5, the minimum squared
estimation error of any metric (thus Euclidean) embedding of
the three nodes is (t. — t, — t)?/3.

Theorem 3: The sum of squared estimation errors
of any Euclidean embedding of n nodes is at least =
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Fig. 4. Performance of embedding the TIV-free node sets using GNP. (a) Eigenvalues and (b) relative errors.
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Fig. 5. Eigenvalue scree plots and cumulative distributions of relative errors of node sets with increasing fraction of TIVs. (a) Eigenvalues and (b) relative error.

(1/(3(n — 2))) > ey (te — ta — tb)?, where V' is the set
of triples that violate triangle inequality, t,, t3, and t. are the
three distances of a triple t € V, and ¢, > t, + 3.

The proofs are delegated to the Appendix. Theorem 3 shows
that as the amount of TIVs increases, the sum of the squared
estimation errors also increases. A similar result can also be
established for the sum of squared relative errors, the details of
which are omitted here. As an aside, we note that this theorem
holds not only for a Euclidean distance function but also for any
metric distance function where the triangle inequality property
is required. However, it should be noted that the lower bound
computed in Theorem 3 is loose in some cases. For example, the
lower bound for the TIV-free data set is zero, but the embedding
has nonnegligible errors. Nonetheless, Theorem 3 sheds new
light on the relationship between the accuracy and the amount
of TIVs.

IV. EUCLIDEAN EMBEDDING OF NETWORK DISTANCES

In this section, we examine the accuracy of Euclidean em-
bedding of network distances for a wide range of data sets. We
consider five different metrics that we believe are useful for a
variety of delay-sensitive applications.

A. Metrics for Goodness of Embedding

We consider four performance metrics—stress, (cumulative)
relative errors, relative rank loss (RRL), and closest neighbor
loss (CNL)—that have been introduced across various studies in

the literature (e.g., [2]-[4] and [8]), as well as a new fifth metric,
skewness, which we introduce in this paper to gauge whether an
embedding is more likely to over- or underestimate the distances
between the nodes. These five metrics are formally defined as
follows.
» Stress: This is a standard metric to measure the overall
fitness of embedding, originally known as Stress-1 [10]

Zm,y(dmy - dAl'?/)2 (1)
Day By

Stress — 1 =01 =

where d,, is the actual distance between = and y and dmy
is the estimated one.

e Relative error: This metric is introduced in [2] and is de-
fined as follows: for each pair of nodes z and y, the rela-
tive error in their distance embedding is given by re,, =
|dey — cZIy |/ min(dy,, (fzy) Note that the denominator is
the minimum of the actual distance and the estimated one.6
The cumulative distribution of relative errors re,,, provides
a measure of the overall fitness of the embedding.

* Relative rank loss [8]: RRL denotes the fraction of a pair
of destinations for which their relative distance ordering,
i.e., rank in the embedded space with respect to a source,

6In some literature, instead of min(d,,, d,, ), d., is used. This usually pro-
duces smaller relative errors.
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has changed compared to the actual distance measurement.
For example, for a given source node, we take a pair of
destinations and check which one is closer to the source in
the real distances and the estimated distances. If the closest
one is different, then the relative rank is defined to be lost.
We compute the fraction of such relative rank losses for
each source and plot the cumulative distribution of such
rank losses among all sources as a measure of the overall
fitness of the embedding.

e Closest neighbor loss [8]: For each source, we find the
closest node in the original data set and the embedded space.
If the two nodes are different, the closest neighbor is lost.
The CNL metric is then defined as the fraction of sources
that have the closest neighbor lost. As an extension to the
original CNL metric in [8], we introduce a margin parameter
6: if the closest neighbor nodes in the original data set and
the embedded space are different but the distance between
the two nodes in the embedded space is within ¢ ms, we
consider it as a nonloss; only if the distance between the two
is more than § ms do we consider it as a closest neighbor
loss. Hence with 6 = 0, we have the original CNL. We
expect that as ¢ increases, the CNL metric decreases.

» Skewness: We introduce a new metric skewness to gauge
whether an embedding is more likely to over- or underes-
timate the distances between the nodes. For each node z,
we define the skewness of embedding with respect to node
z as follows: s, = 3, ., (dzy — dyy)/(n — 1), where n
is the total number of nodes. In other words, s, is the av-
erage of the embedding errors between the real distances
and the estimated distances between node x to all the other
nodes. Clearly, when s, is a large positive, the embedding
method tends to underestimate the distances between node
x to other nodes, and if it is a large negative, it tends to over-
estimate the distances between node z to other nodes. Note
that s, = 0 does not mean that there is no error but that the
underestimates and overestimates are “balanced,” i.e., can-
celed out. The distribution of skewnesses of all nodes then
provides us with a measure of whether a given embedding
method tends to under- or overestimate the real distances
among the nodes.

B. Performance of Euclidean Embedding

We apply the three most commonly used embedding methods
proposed in the literature—GNP [2], Virtual Landmark (VL)
[3], [4], and Vivaldi [S]—to the four data sets and compute
their corresponding embedding errors as measured using the
aforementioned five metrics. Following the results in [2]-[4],
we choose seven as the dimension of Euclidean embedding for
the three embedding methods: GNP, VL, and Vivaldi. More
specifically, for the GNP and VL embedding methods, we
use 20 landmarks randomly selected from the data set for
computing the seven-dimensional Euclidean embedding. For
the Vivaldi embedding methods, for each node, 20 neighbors are
randomly selected and used for computing the seven-dimensional
Euclidean embedding plus the height vector.” For the purpose

TWe used the Vivaldi implementation from http://www.eecs.harvard.edu/
~syrah/nc/.
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Fig. 6. Performance embedding. The number of dimensions is seven. (a)
Stress, (b) relative error with King462, and (c) relative error with PlanetLab.

of comparison and to eliminate the effect of landmark selection
in the Virtual Landmark embedding method, we also use all
the nodes as landmarks to compute the seven-dimensional
Euclidean embedding8—this is referred to as VL-ALL in the
figures that follow.

Fig. 6(a) shows the resulting overall stress of embedding
using the four embedding methods GNP, VL, VL-ALL, and
Vivaldi. Except for the King2305 data set, we see that the
overall stress ranges from 0.2 to 0.5, which indicates that on
the average, the estimations deviate from the original distances
from 20% to 50%. For the King2305 data set, the overall stress
is much larger (above 0.9) for all three methods. This is possibly
due to the fact that in the King2305 data set, there are quite
a few links with more than 90 s round-trip time, which may

8Using all the nodes as landmarks (or “neighbors” in the case of Vivaldi) is
only computationally feasible for the Virtual Landmark embedding method,
not for GNP and Vivaldi.
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produce many outliers that can significantly affect the overall
stress—this is a major shortcoming of the stress metric (1).
Note that as the Ng02 data set has only 19 nodes, the results
for VL and Vivaldi are not available since there are fewer
nodes than the required number of landmarks and neighbors
(20 nodes). Fig. 6(b) and (c) shows the cumulative distributions
of relative errors using GNP, VL, VL-ALL, and Vivaldi for the
data sets King462 and PlanetLab, respectively. We see that all
the embedding methods produce a relative error less than 0.5
for more than 75% (up to 90% in the case of GNP and Vivaldi)
of the estimates.

Fig. 7(a) and (b) shows the cumulative distributions of rela-
tive rank losses using GNP, VL, VL-ALL, and Vivaldi for the
data sets King462 and PlanetLab, respectively. We see that for
all four methods, more than 70% of the sources have a fraction
of relative rank losses less than 0.3—in other words, with respect
to these sources, fewer than 30% of destination pairs have a dif-
ferent rank order in the embedded space from that in the original
data set.

In terms of the CNL metric, from Fig. 8(a) and (b), we see
that as the margin parameter ¢ increases, the fraction of CNLs
improves for all embedding methods: embedding the PlanetLab
nodes in a Euclidean space using GNP, 60% to 70% of the
sources have a different closest neighbor node in the embedded
space (i.e., when 6 = 0), but for only about 20% of the sources,
the closest neighbor node in the original data set is more than
15 ms (i.e., 6 = 15 ms) away from the closest neighbor node in
the embedded space. The CNLs of VL, VL-ALL, and Vivaldi
lie above that of GNP.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 1, FEBRUARY 2010

cnl

GNP —e—
Vivaldi
At 1 VL-ALL e
0 /I
0246 81012141618
& (ms)
(@)
=
[$]
GNP —e—
' Vivaldi
0.1 1 VL-ALL -
oL v VL scmpsss
0246 81012141618
& (ms)
(b)

Fig. 8. Closest neighbor loss. Closest neighbor loss with (a) King462 and (b)
PlanetLab.

Lastly, to compare the skewness of the embedding methods,
we use the King462 data set as a representative example. Fig. 9
shows the results for three embedding methods GNP, VL-ALL,
and Vivaldi (to avoid cluttering, we did not include the result
for VL in the figure, as it has slightly worse performance than
that of VL-ALL). To plot the distribution of the skewness s,
we use bins of size of 10 ms that are centered at multiple of 10
ms, such as [—15, —5), [-5, 5), and [5, 15). As can be seen in
the figure, the GNP and Vivaldi embedding methods have the
best performance, as the highest fraction of skewness values of
the nodes falls within [—5, 5), and the majority of the values are
within the interval [—5, 15). In contrast, however, the skewness
values of VL-ALL are more widely spread, indicating that for a
fraction of nodes, it tends to either under- or overestimate their
distances to other nodes.

V. LocAL NON-EUCLIDEAN EFFECT

In this section, we dissect the data set further to find out
whether the inherent clustering structure of Internet hosts con-
tributes to the errors in the Euclidean embedding—in particular,
what kinds of nodes are likely to contribute to the higher degree
of TIVs, and whether increasing the dimension of the embed-
ding helps improve the embedding performance.

The hosts in the Internet are clustered due to many factors
such as geographical location, network topology, and routing
policies. This clustering causes many hosts to have short dis-
tances among themselves and far longer distances to other hosts.
To investigate the effect of host clustering on embedding ac-
curacy, we first identify clusters within the network distances.
For this, we apply the spectral clustering algorithm [14] to the
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Fig. 9. Distributions of the skewness s, under GNP, VL-ALL, and Vivaldi for
the King462 data set.

King462 data set with the outliers® removed. In this experiment,
28 nodes out of 462 are removed. The algorithm!0 obtains four
clusters for the King462 data set. We use a grayscale plot to
show the existence of the clusters in the King462 data set with
the outliers removed.

The square image in Fig. 10 is a graphical representation of
the King462 distance matrix. In the square image, the vertical
axis represents the source nodes and the horizontal axis repre-
sents the target nodes. The nodes are sorted by their clusters in
such a way that the nodes in cluster 1 appear first, followed by
the nodes in cluster 2, and so on. The nodes in the vertical and
horizontal axes are in the same order. Each point (z,y) repre-
sents the distance between the corresponding two nodes x and
Y.

The distance is represented in a grayscale: white represents
distance zero and black represents a distance larger than the
ninety-fifth percentile. The interval between zero and the
ninety-fifth percentile distance is divided into ten grayscales
(with a total of 11 grayscales), with increasing darkness from
white to black (beyond the ninety-fifth percentile distance). We
can clearly see the four white blocks on the diagonal, each of
which represents the distance matrix of each cluster. The table
in Fig. 10 shows the median distances between the nodes within
and across the four clusters in a numeric form. As is expected,
the intracluster median distances shown in the diagonal entries
of the table are much smaller than the intercluster median
distances.

To illustrate the characteristics of the individual clusters, in
Fig. 11, we show the eigenvalue scree plots of the distance ma-
trices obtained from the four clusters in the King462 data set.
Compared to Fig. 2, we see that the magnitudes of the negative
eigenvalues of the clusters are larger than those of the whole
data set. The “non-Euclideanness” amplifies within each cluster.
It suggests that the intracluster distances are much harder to
embed into the Euclidean space. This can be easily observed by
looking at the relative errors of the embedding. Fig. 12 shows

90utliers are defined as those nodes whose distance to the eighth nearest
nodes is larger than a threshold. The reason to choose the eighth node is that
we want the node to have at least a certain number of neighbors (in this paper,
the number is eight) within the threshold.

10The algorithm takes as input a parameter %, the number of clusters, and
produces up to K as a result. We have experimented with A~ = 3 to 7, and the
algorithm in general produces three to four “relatively big” clusters for the three
data sets King462, King2305, and PlanetLab.

> 95th

0

cl c2 c3 c4
cl 62.099 | 154.287 | 254.469 | 212.538
c2 | 154.287 60.681 | 376.146 | 321.508
c3 | 254.469 | 376.146 61.194 | 238.938
c4 | 212.538 | 321.508 | 238.938 | 61.950

Fig. 10. Distances between each pair of nodes in King462 data set after re-
moving outliers. White represents distance zero and black represents ninety-fifth
percentile or higher distances. Median distances (in milliseconds) among the
nodes of the intra- and interclusters are shown in the table.
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Fig. 11. Scree plot of the eigenvalues of CS on the four clusters of the King462

data set after removing 28 outliers : Cluster 1 (261 nodes), Cluster 2 (92 nodes),
Cluster 3 (22 nodes), and Cluster 4 (59 nodes).

>1

Fig. 12. Relative errors between each pair of nodes in King462 data set without
outliers. White represents relative error zero and black represents relative error
one or larger. Virtual Landmark method with seven dimensions is used.

the relative errors in a grayscale matrix for the King462 data set,
where VL-ALL is used for the embedding. The pure black color
represents the relative error of 1.0 or larger, and ten grayscales
are used for relative errors between zero and one. We see that
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the relative errors of the intracluster estimations are larger than
those of intercluster estimations.

We next examine which nodes are more likely to contribute
towards the TIVs. As we shall illustrate next, the high errors in
the intracluster distance estimation and the large magnitudes of
the negative eigenvalues can be explained by the varied number
of TIVs over the different distances. Intuitively, a TIV is likely
to occur if the distance between two nodes is very short or very
large compared to the other two distances for a given triple of
three nodes. Using this intuition, we proceed with our data anal-
ysis as follows: we divide the distances into six intervals: [0 ms,
25 ms), [25 ms, 50 ms), [SO ms, 100 ms), [100 ms, 200 ms),
[200 ms, 400 ms), and [400 ms, co). We group all the pairs of
nodes by their distance intervals. Then, for each pair of nodes,
we compute the fraction of TIVs in conjunction with the rest of
the nodes, i.e., we count how many nodes violate triangle in-
equality with the given pair. Lastly, we compute the average of
the fractions of all the pairs in each interval. Fig. 13 shows the
average fraction of TIVs in each distance interval. We observe
that higher fractions of TIVs occur in the intervals [0, 25 ms)
and [400, co) compared to other intervals. Since the fractions of
pairs in [400, co) are quite small in all the data sets, reducing
the errors in short distance estimations is thus much more cru-
cial for the overall performance of embedding.

The above analysis illustrated that the distances among the
intercluster nodes are more likely to be better approximated by
their Euclidean coordinates, whereas Euclidean embedding of
nodes within a cluster would likely provide a poor estimate
of their distances. This seems to suggest that there is much
stronger local “non-Euclidean effect” on the network distances.
By local non-Euclidean effect, we mean that the embedding of
local (short) distances into a Euclidean space is much harder
than global (long) distances.

The “local non-Euclidean” effect can be also illustrated using
the skewness metric. For each node, we compute its skewness
to the nodes within the intervals mentioned in the previous sec-
tions. Then we plot the thirtieth percentile, the median, and
the seventieth percentile of the skewness measures of all nodes
using GNP, VL-ALL, and Vivaldi. As can be seen in Fig. 14,
more skewnesses exist in the intervals [0, 25 ms) and [400, co)
compared to other intervals. Furthermore, for short distances,
the skewness measures are likely to be negative; and for large
distances, the skewness measures are likely to be positive. Since
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each of the embedding methods tries to embed the nodes of TIVs
in a Euclidean space by minimizing an error function, it is nat-
ural to lengthen the short distances and to shorten the long dis-
tances. This observation is also evident in the proof of Lemma
1 using the stress error function.

Furthermore, we have examined the impact of increasing di-
mension and using non-Euclidean distance functions such as the
Minkowski p-norm on the accuracy of the estimation. Similar to
the result in other papers such as [2], increasing dimension does
not increase the accuracy, and the Minkowski p-norm does not
help, either. We omit the result due to the page limitation.

VI. A HYBRID MODEL FOR LOCAL ADJUSTMENT

The results from previous sections show that the existence
of TIVs highly affects the accuracy of the Euclidean embed-
ding (for that matter, any metric embedding). In particular, Eu-
clidean embedding is fairly good at estimating network dis-
tances between nodes that are relatively far away (in different
clusters), whereas it is rather poor at estimating local network
distances (distance between nodes within a cluster). These ob-
servations inspire us to develop a hybrid embedding model,
which incorporates a (non-Euclidean) localized adjustment term
(LAT) into the distance estimation. We show that using only a
two-dimensional Euclidean embedding plus the localized ad-
justment terms, we can obtain better performance than a pure
Euclidean embedding with seven dimensions.

A. The Hybrid Model

The basic ideas behind our hybrid model are as follows: we
first embed the network distances in a Euclidean space of d di-
mensions, and then for each node, we compute an adjustment
term to account for the (local) non-Euclidean effect. Hence in
our hybrid model, each node z has a d-dim Euclidean coordi-
nate, (z1, %2, ..., %q), and a (non-Euclidean) adjustment e.: we
use (z1, T2, ..., T4; ;) to denote the total “coordinate” of node
z. The distance d,, between two nodes x and ¥ is then estimated

by szy =df, +e.+ey, wheredl = Zizl(wk — )2 is

the Euclidean distance between x and y in the embedded d-dim
Euclidean space. At first glance, e, may look similar to the
height vector in Vivaldi system [5], but actually it is quite dif-
ferent, as will be discussed later in this section. The key question
in this model is how to define and determine e, for each node
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x. Ideally, we would like e, to account for the “non-Euclidean”
effect on the distance estimation errors to nodes within its own
cluster. However, this requires us to know which cluster node x
is in as well as the other nodes in its cluster. For simplicity, we
derive e, using all nodes as follows. We first compute ¢,,, which
minimizes the error function E(z) = 3 (duy — (df, + €))%,
where d,, is the actual distance between x and y. It can be
shown that the optimal €, is given by the average error in es-
timation
Ll = d5) o
n

We then set e, to the half of ¢, namely, e, = ¢, /2. In other
words, cizy can be rewritten as dgy + (€z + €2)/2. In short, we
adjust the Euclidean estimation by the average of the two error
terms of x and y. We have the following theorem that establishes
the advantage of the hybrid model. The proof sketch is provided
in the Appendix.

Theorem 4: The hybrid model using a d-dim Euclidean space
and the adjustment term defined above reduces the squared
stress of a pure d-dim Euclidean embedding by

Any, ez + 2n°Var(es) o 0
Day Ty -

where Var(e;) = Y. €2/n— (3, ex/n)%

Hence the larger the individual adjustment term |e;| (thus
the average estimation error for each node x using the pure
Euclidean embedding), the more performance gain the hybrid
model attains. It should be noted that e, can be positive or neg-
ative.!!

In (2), e, is determined by the measurement to all the other
nodes in the system. In practice, however, this is not feasible
nor scalable. Instead, we compute ¢, based on sampled mea-
surements to a small number of randomly selected nodes. Let .S
denote the set of randomly sampled nodes. Then

Zyes(dzy - dfy)
€y =
2|5

3)

Hence, in practice, the hybrid model works as follows.

a) A number of landmarks are preselected and perform dis-
tance measurements among themselves to obtain a dis-
tance matrix. Using either Virtual Landmark or GNP, a
d-dim Euclidean embedding of the landmarks is obtained
and its coordinates determined.

b) Each node x measures its distance to the land-
marks and computes its d-dim Euclidean coordinate

xq); it then measures its distance to a small

number of randomly selected nodes and computes €,
using (3).

Note that, in a sense, the adjustment term is similar to the
“height vector” introduced in Vivaldi [5]. However, there are
several key differences. First, the computation of the local ad-
justment term is very simple and does not depend on the ad-
justment term of other nodes. Hence it does not require any it-
erative process to stabilize the adjustment term. In contrast, in

It is possible that the estimated distance is negative due to negative LAT. In
this case, we use the estimation of the Euclidean part as the estimated distance.
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Fig. 15. Stress of Virtual Landmarks method over the number of dimensions.
Both LAT and SLAT options are shown together.

Vivaldi—partly due to its distributed nature—a small change
in the height vector of a node would affect the height vectors
of the other nodes and requires an iterative process to stabilize
the height vectors of all nodes. Secondly, the local adjustment
terms provably improve the performance of network distance
embedding, as shown in the above theorem. Another good fea-
ture of the local adjustment term is that it can be used with any
other schemes, not just the coordinate-based schemes. As long
as dfy is the estimated distance based on the original scheme,
the adjustment term can be computed as described above. In this
sense, LAT is an option that can be used in conjunction with
other schemes rather than a totally new scheme. Note that LAT
can be used even with Vivaldi.

B. Evaluation

We evaluate the performance gain obtained by using the LAT
option in network distance embedding. For this purpose, we
compare the stress of the VL-ALL method without LAT and the
VL-ALL method with LAT, where the local adjustment term is
computed using all the nodes. We vary the number of dimen-
sions from two to seven. As can be seen in Fig. 15, the use of
adjustment term (keys with LAT) reduces the stress significantly
compared to the VL-All without LAT. In particular, when the
original Euclidean embedding has high stress (large error), the
reduction of stress is significant, which is expected from The-
orem 4. Next, we evaluate the performance of LAT using only a
small number of randomly selected nodes as in (3); we call this
option sampled LAT (SLAT). Fig. 15 shows the stress of em-
bedding using SLAT (keys with SLAT) over a different number
of dimensions, where the adjustment term is computed using
the measurement to ten randomly selected nodes. We see that
the performance between LAT and SLAT is very close. This is
quite expected because the average of a randomly sampled set is
an unbiased estimation of the average of the entire set. This re-
sult indicates that the adjustment term can actually be computed
quickly with a small number of additional measurements. The
results also show that increasing the dimension of the Euclidean
embedding does not help very much; in fact, a lower dimension
Euclidean embedding plus the local adjustment terms is suffi-
cient to improve the accuracy of the embedding significantly.

In addition to the improved overall stress, the local adjustment
terms also improve the relative errors. As an example, Fig. 16(a)
compares the cumulative distribution of the relative errors of
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Fig. 16. Performance of VL-All method with SLAT on King462 data set. (a) Relative error, (b) CNL, and (c) RRL.
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the VL-ALL with seven dimensions (denoted “VL-ALL,7D”)
with that using the same method with seven dimensions plus
SLAT (denoted as “VL-ALL,7D,SLAT”) and with only two
dimensions plus SLAT (denoted as “VL-ALL,2D,SLAT”)
for the King462 data set.2 The VL-ALL with two dimen-
sions plus SLAT attains better performance than that of the
pure VL-ALL with seven dimensions. For example, ninetieth
percentile relative error of “VL-ALL,2D,SLAT” is less than
0.6, but that of “VL-ALL,7D” is larger than 1.0. The per-
formance of “VL-ALL,2D,SLAT” is even better than that of
“VL-ALL,7D,SLAT,” where seven dimensions is used. We
conclude that adding a (non-Euclidean) local adjustment term
is far more effective in improving the accuracy of embedding
than adding additional dimensions. More in-depth analysis
demonstrates that the performance gain comes largely from
improved distance estimation for nodes within the same cluster.
However, for the metric CNL, as can be seen in Fig. 16(b),
the performance degrades with SLAT. It means that the SLAT
option is not good for choosing the closest node. For the metric
RRL, the performance with SLAT is a little better than that
without SLAT, as can be seen in Fig. 16(c).

As implied in Theorem 4, a key reason that the hybrid model
improves the performance (in relative error) of any Euclidean
embedding method lies in the fact that it mitigates its “imperfect
estimation”—namely, overestimates or underestimates—by in-
troducing a (non-Euclidean) local adjustment term that smooths

12The Euclidean coordinates of the SLAT (2D41) are the first two coordi-
nates of the Virtual Landmark seven-dimensional embedding.

out (via averaging) the over- and underestimates. This effect can
be seen using the skewness metric. Fig. 17 shows the resulting
skewness measures of the various embedding methods with the
SLAT option on, when applied to the King462 data set. Com-
pared with the results in Fig. 9, we see that the fraction near zero
increases considerably. The reduction in skewness is common
to all the schemes.

However, it should be noted that if an embedding scheme has
large errors but the sum of errors is zero (not skewed) for all the
nodes, LAT cannot improve the performance of the original em-
bedding. For example, in (3), the €, can be zero even if there are
errors. Then, there cannot be any improvement from the original
embedding scheme.

Our results suggest that due to the existence of prevalent TIVs
in the Internet host distance measurement data sets, instead of
attempting to develop more sophisticated Euclidean (or metric-
based) embedding method that minimizes a global error func-
tion (such methods are likely to be more expensive and time-
consuming), it is far better to incorporate simpler and less ex-
pensive mechanisms to reduce the inevitable (local) estimation
errors. Clearly, our proposed hybrid model with LATs is an ex-
ample of such a simple yet effective mechanism.

VII. CONCLUSION

This paper investigated the suitability of embedding Internet
hosts into a Euclidean space given their pairwise distances
(as measured by round-trip time). Using the classical scaling
and matrix perturbation theories, we established the (sum of
the) magnitude of negative eigenvalues of the (doubly cen-
tered, squared) distance matrix as a measure of suitability of
Euclidean embedding. Using data sets from real Internet host
distance measurements, we illustrated that the distance matrix
among Internet hosts contains negative eigenvalues of large
magnitude, implying that embedding the Internet hosts in a
Euclidean space would incur considerable errors. We attributed
the existence of these large-magnitude negative eigenvalues
to the prevalence of triangle inequality violations in the data
sets. Furthermore, we demonstrated that the TIVs are likely to
occur locally; hence the distances among these close-by hosts
cannot be estimated very accurately using a global Euclidean
embedding. In addition, increasing the dimension of embedding
does not reduce the embedding errors.
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Based on these insights, we proposed and developed a simple
hybrid model that incorporates a localized (non-Euclidean) ad-
justment term for each node on top of a low-dimensional Eu-
clidean coordinate system. Our hybrid model preserves the ad-
vantages of the Euclidean coordinate systems while improving
their efficacy and reducing their overheads (by using a small
number of dimensions). Through both mathematical analysis
and experimental evaluation, our hybrid model improves the
performance of existing embedding methods while using only
a low-dimension embedding. Lastly, our model can be incor-
porated into any embedding system (not necessarily Euclidean
embedding).

APPENDIX

Proof of Theorem 2: First, verifying whether there exists a
maximal TIV-free set of size k& among a set of nodes with a
distance matrix can be done in polynomial time by enumerating
all set of size k and checking the TIVs in a nondeterministic
machine. Hence this problem is NP.

Now we prove that the problem is NP-hard by reducing the
MAX-CLIQUE problem (namely, finding the maximal clique
in a graph GG, a well-known NP-complete problem [15]) to the
maximal TIV-free set problem. Let G be a connected undirected
graph with n > 2 nodes. We assume that the size of maximal
clique of G is k > 2. (The case k = 2 is trivial, as any pair
of vertices with an edge is a maximal clique.) We construct a
distance matrix D = (d;;) among the set of vertices of G as
follows, where d;; will be the defined distance between vertices
i and j. For each vertex ¢, we set d;; = 0. For each edge e;; be-
tween vertices ¢ and j, we set d;; = 1 and d;; = 1. Note that for
any triangle in G, the corresponding distances in DD do not vio-
late triangle inequality. For the pair of vertices 7 and j that do not
have an edge between them in G, we first set d;; :=undefined.
Now, we define all the undefined d;; as follows. For an unde-
fined d;;, we compute ¢ = maxy(d;x + dy;) for all & such that
d;i, and dy; are already defined. If no such c can be computed
because d;, and dy,; are undefined for all k, we set ¢ = 0. Then,
we set d;; := dj; := c+ 1. This transformation takes polyno-
mial time O(n?) since there are n? entries in D and, for each
entry, O(n) computation is required.

It can be easily shown that a triple of nodes (7,7, k) in G
forms a triangle if and only if 4, 7, and k£ do not violate triangle
inequality with d;;, d;i,, and dj;, in D (we omit the detailed proof
for the sake of space). This means that the maximal TIV-free
set with the distances defined as D is the maximal clique in
G. We conclude that finding a maximal TIV-free set problem
is NP-hard. Since the maximal TIV-free set problem is NP and
NP-hard, it is NP-complete. ]

Proof of Lemma 1: Note that t, > t,+t;. Let (t,, 3, t.) be a
metric embedding of the three nodes. Then, they should satisfy
the triangle inequality constraint as follows:
b+te>te @

ta+ty >te, to+itc>1t,

The squared estimation error e in this embedding is

e=(ta —ta)” + (ty — 1)” + (tc — tc)”. )

Let k := [t, — t:,| + |ty — tA;,| + |t — t;|. We now show
that k > (¢t. — t, — tp). Suppose k < (t. — t, — tp). There
are eight cases based on the signs of (¢, — t4), (t, — t3), and
(te — tc). First, consider the case where (t, > t,), (tp > tp),
and (t. > t.). Then

k= (te —ta — 1)
= (ta = ta) + (b — o) + (tc — Lc) =
=2ty +1ty) —tq — 1y — L,
> 2ty + ) =t — fy — e
>ty +1t, — 1. > 0.

(tc - tﬂ, - tb)

So k > (t. — tq — tp), a contradiction. It can be easily shown
that all the other seven cases contradict too. So we conclude that
k> (te —tq —t3).

Now, for any such k > (t. —t, — t;), consider another em-
bedding (ta,tp,to) such that t, = t, +k/3,ty =ty + k/3, and
te=t.—k / 3. Since it can be easily shown that (, fy, £, ) satis-
fies the triangle inequality constraint, it is a metric embedding.

Furthermore, for any such k > (t.—t,—t), (5) is minimized
with this embedding because

. . - k
|ta—ta|:|tb—tb|:|tc—tc|:g. (6)

Therefore, e > (k/3)* + (k/3)? + (k/3)* = (k*/3)> (t. —
ty —tp)%/3. [ ]

Proof of Theorem 3: Let E be the sum of squared error of n
nodes. £ =) L(cL —d;)?, where d; is a distance between a pair
of nodes (called z) and dAL is the embedded distance of the pair
i. There are n(n—1)/2 pairs. Since there are n(n —1)(n—2)/6
triples among n nodes, F can be rewritten by the triples of nodes
asfollows: £ = (1/n—=2) 3, cr((ta—ta)? + (t —ts)> + (t. —
t.)?), where T is the set of triples; t,, t;, and t. are the three
distances of a triple #; and t,, f;, and £, are the corresponding
embedded distances. Clearly, E > (1/n—2) Yoy ((fa—ta)*+
(fp — ty)? + (f. — t.)?), where V C T is the set of TIV triples.
From Lemma 1, we have E > (1/3(n —2)) >, oy (te — ta —
tb)g. |

Proof of Theorem 4: We just described a sketch of the proof.
Let s1 be the stress of using the pure Euclidean-based scheme.
Let so be the stress of using the pure Euclidean-based scheme
with the adjustment term

2
S%ZZLW(d _dg) @)
Zzy Ty
d.r'l - dE — Cx T Gy 2
S% _ Zzy ( y Ty € eJ) (8)

E.r,y dg‘y

Since the denominators are the same,

(.., d3,) (57 — s3) to compute 57 — 53

(St ) 3
:g (dyy — dF

Using (2) and reformatting the formula, the final result can be
easily obtained. [ |

we compute

e —ey)°.

2—Z(dzy_dwa_

z,y
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