Leopard: A Locality Aware Peer-to-Peer System
with No Hot Spot™*

Yinzhe Yu, Sanghwan Lee, and Zhi-Li Zhang

Department of Computer Science and Engineering,
University of Minnesota,
Minneapolis MN 55455, USA
{yyu, sanghwan, zhzhang}@cs.umn.edu

Abstract. Recent research [7,12,2] has shown that Internet hosts can
be efficiently (i.e., without excessive measurements) mapped to a virtual
(Euclidean) coordinate system, where the geometric distance between
any two nodes in this virtual space approximates their real IP network
distance (latency). Based on this result, in this paper, we propose an
alternative approach that inherently incorporates a virtual coordinate
system into a P2P network. In our system, called Leopard, a node is
assigned a coordinate in the so-called node geo space as it joins the net-
work, and obtains neighbor relationships that reflects network proxim-
ity from the beginning. The object id space and the node geo space are
then “weaved” together via a novel technique called geographically-scoped
hashing. Through analysis and simulation, we show three major desirable
properties of Leopard to exemplify the power of this paradigm shift: i) a
constant routing stretch, i.e., IP level network latency of object look-up
is proportional to the distance between a requesting node and the tar-
get object; ii) always locates a near-by copy when multiple copies exist;
and iii) effectively handles “flash crowd” traffic with near optimal load
balancing.

Keywords: peer-to-peer, lookup service, virtual coordinates, locality-
awareness.

1 Introduction

A fundamental challenge in Peer-To-Peer (P2P) systems is how to locate objects
of interest in the network, namely, the look-up service. A key break-through to-
wards a scalable and distributed solution of the lookup problem is the distributed
hash table (DHT) (including Chord[9], CANJ11], Tapestry[14] and Pastry[10],
among others). However, since both object (any entities of interest) id and net-
work node are randomly hashed to a same id space, “locality-awareness” is not
inherent in the basic design of DHT. As a result, routing stretch of object look-up,
defined by the ratio of the network distance traveled by a look-up query message

* This work was supported in part by NSF grant ITR-0085824 and CNS-0435444.

R. Boutaba et al. (Eds.): NETWORKING 2005, LNCS 3462, pp. 27-39, 2005.
© IFIP International Federation for Information Processing 2005

28 Y. Yu, S. Lee, and Z.-L. Zhang

and the distance between the requesting node and the nearest copy of the target
object, can be high. Another challenging problem is to effectively cope with the
so-called “flash crowd” or “hot spot” problem, namely, a sudden surge of user re-
quests for a popular object. Since in standard DHT an object is randomly hashed
to a single id (or a few id’s, if replicated using several hash functions) in the id
space, the node(s) responsible for storing or answering queries for that object
can be overwhelmed by a “flash crowd,” creating a “hot spot” in the system.

Recent research [7,12,2] has shown that Internet hosts can be efficiently
(i.e., without excessive measurements) mapped to a virtual (Euclidean) coor-
dinate system, such that the geometric distance between any two nodes in the
virtual space accurately approximates their real IP network distance (latency).
For example, [7] shows that with an 8-dimension virtual space, more than 90%
of inter-nodal distances in the virtual space are within 50% error margin of their
real network distances. One of the intended usage of such a virtual coordinates
system is to improve the neighbor relationship in the P2P overlay. For example,
a node can gradually select close-by fingers (routing neighbors) in the virtual
space to reduce routing stretch. However, such incremental change to existing
scheme may not be the best way to maximize the utility of this new facility.

In this paper, we propose to inherently incorporate locality-awareness into a
P2P system. We separate the object id space from the node space: each object
is assigned a unique id in an object id space; while each node is assigned a co-
ordinate in a so-called (node) geo space, as it joins the network. During the join
process, the node obtains neighbor relationships that reflects “network proxim-
ity” from the beginning. The object id space and the node geo space are then
“weaved” together via a technique called geographically-scoped hashing (GSH):
each object id is mapped into multiple points (i.e., coordinates) in the node
geo space with varying geographical scopes; the nodes that are closest to these
points are responsible for maintaining “pointers” to the object and performing
look-up queries for it. Through analysis and simulations, we demonstrate that:
i) Leopard has a constant IP-level routing stretch; this holds not only in an av-
erage or probabilistic sense, but also in the worst-case. ii) Leopard always locates
a near-by copy when multiple copies exist. iii) Leopard effectively handle “flash
crowd” with near optimal load balancing, without adding exogenous complexity
in look-up operations.

In the remainder of the paper, we first present an overview of our scheme
in Section 2. The design details of Leopard are described in Section 3 and 4,
focusing on object operations and node space management respectively. Per-
formance evaluation results based on packet level simulations are included as
Section 5. Finally, we briefly compare our work with related works in Section 6
before concluding in Section 7.

2 Key Concepts: Area Hierarchy and GSH

Same as standard DHT, we assign each object a unique identifier from an id
space, based on either application semantics or random hashing. Without loss

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 29

Alevel-0 area, and the level-0

hash point of the object. | | | | | 9 | |
1 | | | X! I | |
- [it e = I R S I ai [
I I I I I I I
| = | | | a |)d
T T T T T T T T
b I I I I B I I I
o | | | p o I | | |
Ko R (S (. __ [E | Geographically scopea | 5 | L 1L [E [—
Alevel-1 area, and the level-1 Ie | | | | | | |
hash point of the object I c | | | e | | |
T T T T T T T T
| | | | | | | |
-~ [[l i [X X
X | ol I I I bel I I
| d® | | | dl | |
T T T T T T T T
I I I I b I I 4
I *e | | 2 I oe | | |
= [- -5 [[e A
I I I I I I I I
| | | | | | | |
Alevel-2 area, and the level-2
hash point of the object.
() (b) (c)

Fig. 1. An example of geographically-scoped hashing. (a) An object is hashed to dif-
ferent relative points in different levels of areas. (b) Locations of six owners (a— f) of a
same object w. Note that the level-0, 1,2 areas of node a are highlighted with different
shades. (c) Hash points (pointer nodes) of the six owners at various levels of area

of generality, we assume that the object id is a scalar (e.g., a 128-bit number).
We use w.ID to denote the identifier of an object w. On the other hand, nodes
form the node geo space — a finite d-dimensional metric space — upon which a
coordinate system is defined. A nodes’s coordinate is determined when it joins the
system. The coordinate can be the node’s actual geographical location obtained
via GPS, or a virtual coordinate obtained via a virtual coordinates service such
as GNP [7], Virtual Landmark [12] or Vivaldi [2]. For simplicity of exposition,
we assume that the node geo space is a d-dimensional Euclidean space, with
inter-nodal distance approximating IP level network distance.

We introduce a hierarchical grid over the node geo space by dividing it into
a hierarchy of (d-dimensional) areas: at the highest level, the entire space is
the level-L area, where L is a system parameter specifying the total number
of levels in the hierarchy. For 1 < [< L, each level-l area is divided into 2d
level-(I — 1) areas, obtained by cutting the level-l area into half along each of the
d dimensions. Fig.1(b) illustrates such a hierarchy of areas with L = 3,d = 2,
where square areas of different levels are delineated with different line styles. For
1=0,1,...,L, let A; be the level-l area containing a node a. In Fig. 1(b), we
use four different levels of shades to show Ay ... As. We see that A; C Ajy1,0l =
0,...,L—1, and Ay is the entire node geo space. Let r; denote the size of a level-1
area A; (i.e., its side length), then ;41 = 2r;. We will use O(4;) to denote A;’s
origin coordinate, i.e., point in A; with the smallest coordinates.

We now introduce the concept of geographically scoped hash functions. For
1=0,1,...,L, let H; be a d-dimensional random hash function! with the range
[0,7;)%. Given an object w and a level-lI area A;, the hash point of w under
(the geographical scope) A; is a point within A; given as H(w, 4;) = O(4;) +

1 A d-dimensional hash function can be constructed as a Cartesian product of d inde-
pendently 1-dimensional random hash functions.

30 Y. Yu, S. Lee, and Z.-L. Zhang

H;(w.ID). In Fig. 1(a), we illustrate the hash functions for three areas (scopes)
of different levels. Fig. 1(b) shows the locations of six nodes (a — f), each owning
a copy of the object w. Fig. 1(c) shows the hash points of the six nodes in various
areas. The node in the node geo space that is closest? to the hash point H(w, 4;)
of object w is referred to as the level-l pointer node for object w in area A;, and is
denoted by P(w, A;). Pointer nodes of an object are responsible for maintaining
object “pointers” and answering look-up queries.

We now give a high-level illustration on how these hash points are used
for locating objects in Leopard. When a node a wishes to share object w, it
publishes w by “planting” a pointer at pointer node P(w, Ag). Forl =1,...,L—1,
each level-l pointer node P(w, 4;) in turn computes the next-level hash point
H(w, A;4+1) and plants a pointer at P(w, A;4+1). Now suppose a node b (let By
denote its level-l areas) is interested in w. It first sends a look-up query to
P(w, By). Note that if a and b reside in the same level-0 area, then P(w, By)
(=P (w, Ap)) will be able to direct node b to node a for the object. Otherwise,
P(w, Bg) computes the level-1 hash point and forwards the query to P(w, By).
The process goes on recursively. If nodes a and b reside in the same level-l
area, i.e., A; = By, then the level-l pointer node P(w, B;) (= P(w, 4;)) will
have a pointer to object w, and thus can direct node b to node a for object w.
As A; = By, in at most L steps, node b will be able to locate a pointer to
object w. In a sense the pointer nodes of an object w form a distributed search
tree (embedded in the node geo space), where each edge connects P(w, 4;) to
P(w, Ai11), as shown in Fig. 2(a).

3 Leopard Look-Up Service

In Leopard pointers — information about objects — are stored in various pointer
nodes. To reduce the storage cost in pointer nodes and to shield high level pointer
nodes from frequent publish/withdraw operations in the large area it is in charge,
Leopard only maintains precise information (the IP address) of individual object
owners at level-0 pointer nodes. Each level-0 pointer node of an object w has an
owner list that lists all the object owners of w in this level-0 area. In higher-level
pointer nodes Leopard maintains aggregate information: a TRUE/FALSE value
(called a branch indicator) for each of its 2¢ next lower level areas, indicating
whether that area contains at least one object owner. By following a series of
branch indicators with TRUE values down a branch of the object search tree the
IP address of an object owner can be obtained at the level-0 pointer node (leaf
of the tree).

Fig. 2(a)(left) depicts an object search tree with d = 2 and L = 3, for
five object owners a — e, located in positions as shown in Fig. 1. A black node
represents an active pointer node, a pointer node currently storing a pointer to
the object. A white node represents an inactive pointer node — a node closest to
a hash point in the area, but stores no pointer because there is no object owner

2 We will give a precise definition of closeness in Section 4.

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 31

f publishes
a wuhdraws

Fig. 2. (a) Initially, a object search tree (left) have five owners (a, b, ¢, d, and e). After
f publishes and a withdraws, the object search tree becomes the one on the right. (b)
Three examples (Q1, Q2, Q3) of query message path

in that area yet. Each active pointer node has 2% = 4 children. An active child
corresponds to a TRUE branch indicator and an inactive child corresponds to a
FALSE branch indicator. Note that not all the inactive pointer nodes are shown
in Fig. 2(a) (e.g., children of an inactive pointer node).

To publish an object w, an owner a in a level-0 area Ay first computes the
hash point H(w, Ap), and sends a publish request to its level-0 pointer node
n = P(w, Ag)3. If n is currently active, i.e., it already has a pointer for w, it
simply appends node a’s IP address and coordinate to the object owner list in
the existing pointer. Otherwise, it creates a new level-0 pointer, and notifies
the level-1 pointer node P(w, A1) that its area now contains an owner of w.
This process continues recursively until either an active pointer node or the root
(top-level) pointer node is reached. During the process, the corresponding branch
indicators at pointer nodes in every levels are set accordingly. Algorithm 1 list
the steps of a publish operation. It can be viewed as a recursive RPC(remote
procedure call). When a new owner a want to publish an object w, it simply
calls n.publish(w, 0, a.coord, a.I P), where n := P(w, Ap).

The object withdraw operation involves the similar recursive process to adjust
the object owner list and the branch indicators in pointers of various level of
pointer nodes. Figure 2(a) shows an example where node f publishes and node
a withdraws. The example shows that by storing the aggregate information of
“whether a branch contains an owner of w or not,” high-level pointer nodes are
often not affected when nodes publish and withdraw.

When a node z in a level-0 area X wants to look up for an object w, it sends
a query for object w to the pointer node P(w, Xp). If the pointer node contains a
level-0 pointer for w, it replies to x with the IP address of an owner. Otherwise,
the pointer node recursively queries the higher-level pointer nodes, until a pointer
to object w is found. Starting at that pointer node, the query is sent down to

3 As we will show in Section 4, by including a target point in the packet header and
performing greedy forwarding, a packet can be sent from any source node towards
any point (e.g., a hash point) in the node geo space.

32 Y. Yu, S. Lee, and Z.-L. Zhang

Algorithm 1 : n.publish(w, !, a.coord,a.IP) //obj,level,coordinate,IP addr

1: //lookup the pointer database for an entry with the three-field key
2: entry < lookupPointer(w, [, H(w, A;))

3: if [=0 then

4: //always create a new pointer and append it to owner list

5: storePointer(w, !, H(w, 4;), a.coord, a.IP)

6: if entry = NULL then

7 //publish at higher level recursively

8: n' < H(w, A1)

9: n’.publish(w, ! + 1, a.coord, n.I P)
10: else
11: if entry = NULL then
12: //create a new pointer only if it’s the first owner in the area
13: entry < storePointer(w, [, H(w, 4;))
14: n' <= H(w, A1)
15: n’.publish(w, ! + 1, a.coord, n.I P)

16: //determine branch indicator index using level 1 and a’s coordinate
17 br.id < getBranchID(l — 1, a.coord)

18: //set branch indicator accordingly

19: entry.branch[br_id| <= TRUE

20: return

the lower-level pointer nodes by following a branch where the branch indicators
are TRUE*, until a level-0 pointer node is reached. The level-0 pointer node then
replies node x with the IP address of an owner. Due to space limitation, we refer
the reader to the technical report version of this paper [13] for a detailed list of
Leopard Query algorithm. Figure 2(b) illustrates three examples (@1, Q2 and
Q3) of object query paths.

As shown in the example, when an owner a and a querying node x reside in
a common level-[area A;, the query can be performed in 2! (logical) steps in
the tree. In fact, the distance traveled by a query message is also bounded by
O(ry), where 7y is the size (side length) of a level-l area, as stated in the following
theorem?®:

Theorem 1. Suppose a node x queries for an object w in Leopard, and the
located object owner shares a level-l area with x. The total geometric distance
traveled by the query message (summing up all the 21 steps) in the node geo space
is bounded in worst case by 4\/dr;, where 1, is the size of a level-l area.

Notethat Theorem 1 gives a worst-casebound on the geometric distance traveled
by a query message from the requester to the located owner. Leopard can also be
optimized (using what we call “sibling indicators” as described in [13]) so that the

4 When there are multiple TRUE branch indicators, the pointer node can either choose
one of them randomly, or employ certain scheduling strategy, such as round robin.
® Due to space limit, we refer [13] for all proof of theorems in this paper.

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 33

located owner is near-optimal (by a constant factor) compared with the optimal
owner (closest to the requester). In particular, we have the following theorem.

Theorem 2. Suppose a node x is querying for an object w. Let the owner located
by Leopard be s1, and the closest owner in the network be sy. Let D(a,b) denote
the distance between two points a and b in the geo space. Then we have either

D(z,51) — D(z,55) < 2V/drg or g(; :13 < 4Vd.

We note that that from Theorems 1 and 2, the distance traveled by a query
message to locate an object in Leopard is at most a constant factor of the optimal
distance, i.e., the geometric distance between the requester and the closest object
owner in the node geo space. If we assume that the distance in the node geo
space accurately approximates IP level network distance, then Leopard achieves
a constant routing stretch at IP level even in the worst case.

3.1 Mitigating Hot Spots

To cope with the “flash crowd” problem, Leopard imposes the following simple
rule on nodes requesting for an object:A node x starting the transfer(downloading)
of an object w from another node (located through Leopard) must publish w for at
least the duration of the object transfer; in addition, x must honor any transfer
request accepted during its publishing period. This rule creates an object propa-
gation model similar to the popular Bit-Torrent system. However, since Leopard
always returns a nearby copy of an object, it not only releases the “hot spot” on
the hosting nodes (as also achieved by Bit-Torrent), but also greatly reduces the
routing cost of the “flash crowd”, since each request is resolved “locally.” The
object search tree embedded in the node geo space achieves good load balance
naturally without maintaining a complex object tracker, as Bit-Torrent does.

We next show that based on this rule, Leopard effectively mitigates the “flash
crowd” problem with excellent load balancing. We measure the balance of load
with two metrics. The first metric, owner service count, is defined as the number
of object transfer requests an object owner serves during its publishing time
(assuming it withdraws immediately after finishing downloading itself). Ideally,
this metric can be as low as 1 even with extremely high query rate, i.e., each
requesting node can serve the next requester. The second metric, pointer node
service count, is the number of query messages a pointer node of w serves during
its downloading period of w. We have the following theorem regarding the upper
bound of the two metrics.

Theorem 3. i) The number of object transfer requests an object owner a serves
during its publishing period is bounded by L + ng, where ng is the number of
nodes in the level-0 area Ag. ii) The number of queries a pointer node a serves
during one downloading period is bounded by L + ng (for level-0 pointer node)
or L+ 2% (otherwise).

Since we have L = O(M) (N being total node number), the two met-

rics are bounded by O(#) and O(# + 2%) respectively. Therefore, Theo-
rem 3 guarantees that regardless of the object request rate, the two metrics grow
proportional to %.

34 Y. Yu, S. Lee, and Z.-L. Zhang

4 Node Space Management

In Leopard each node a is not only assigned a d-dimensional coordinate, (de-
noted by (zf,...,x%)), but is also responsible for a portion of the node space
around its coordinate called a zone. The node geo space is divided into zones
that satisfy the following two properties: 1) the boundaries of a zone are hyper-
planes perpendicular to axis of dimensions; and 2) a node’s zone always con-
tain its coordinate. A node a’s zone, denoted by Z,, can be represented by d
ranges {[uf,v}), [ug,vs),...,[ud,v5)}, such that vl < zf < v, V1 <i<d A
neighbor zone of Z, is a zone adjacent to it on a boundary. Formally, Z; is a
neighboring zone of Z, if 3i € {1,...,d} such that u¢ = v? or v¢ = u?, and
Vie{l,...,d}\ {i}, [uf,v) N [ub,v?) # &, i.e., there exists a dimension where
the two zones are adjacent, for the remaining dimensions, the two zones overlap.
Each node maintains a neighbor table about neighbor zones: the ranges of neigh-
bor zones and the coordinate and IP address of the nodes owning them. Zones
are dynamically created and re-structured as nodes join and leave the node geo
space. Note also that the zone structure is independent of the area hierarchy
defined earlier.

4.1 Greedy Forwarding in Node Space

As we mentioned earlier, the actual packet forwarding in Leopard is based on
a greedy algorithm guided by a destination coordinate stamped in the packet
header. To forward a packet to a destination point p in node geo space, every
intermediate node simply forward it to the neighbor with a zone closest to p, until
the current node is already closest (than any neighbor), in which case the current
node is the destination. To measure the closeness between a zone and a point
in the node geo space, we define the distance D(Z,,p) = min{d,|Vq € Z,,d; =
[lg — pl|}, i-e., the distance between the closest point in the zone (to p) and the
point p. The rationale behind this definition of distance is two folded: 1) it’s
easy to calculate®; 2) based on this definition, our greedy forwarding algorithm
ensures delivery of packet, as guaranteed by Theorem 4. Theorem 4 rules out the
possibility of the local minima problem associated with many greedy algorithm,
and guarantees delivery of packet in finite number of steps.

Theorem 4. With the above definition of distance between a zone Z, and a
point p in the node space, a node always has a neighbor closer to p, unless it is
the destination node (p € Z,).

5 Let ¢* denote the closest point in Z, (to p), we can obtain its coordinates as follows.

P s p a ,a
. P if «f € [uf,vf)
z! =

a : P a
] uy if o} < ug

i

v if 2 > of

i

Therefore, D(Z4,p) = D(q", p). Fig. 3(a) shows the corresponding closest point ¢*’s
from three different points p1, p2 and ps to a rectangular zone.

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 35

“p, -p: ‘ -
dimension 1
: o 0.9 dimension 2 -
! dimension 3
o 5 O8[dimension4
e 5 07 dimension 5 -------
£ dimension 6 ------
§ 06 dimension7
@ a dimension 8
o 05
2
i § 04
: g 03
: 6 0.2
Iyl y
¢ ¥ 0.1
a

0 ——
b 800 -600 -400 200 O 200 400 600
(b) Coordinates

Fig. 3. (a) Determine closest point in a zone Fig. 4. Cumulative distribution of co-
to a target point. (b) Zone splitting example ordinates in a GNP data set

4.2 Node Join and Leave

When a node a wants to join Leopard, it follows the procedure below.

1.
2.

a obtains its coordinates through an external service such as GNP.

a finds a bootstrap node b in Leopard, through a well-known rendezvous point
(e.g., a URL).

a sends out a Join Request message through the bootstrap node b, carrying
a’s coordinate as the destination. Using the greedy forwarding algorithm, the
Join Request message will arrive at the node currently owning a zone that
contains a’s coordinate, denoted by c.

a and c split the zone. To do so, they first choose a dimension in which a and
¢’s coordinates have the largest difference. They then divide the zone into
two parts at the mid-point along the chosen dimension. Each part serves as
one node’s new zone. Figure 3(b) shows an example of zone splitting.

After obtaining new zones, a and ¢ each updates its neighbor table. Note that
both a and ¢’s new neighbor sets are subsets of node ¢’s original neighbor
set.

When a node a leaves the network gracefully, it performs the following pro-

cedure.

1.
2.

5

a withdraws all objects it is currently publishing.

a notifies its neighbors of its intention to withdraw. Those neighbors with
zones mergable with a’s zone will take over, appropriately dividing a’s zone
into sub-zones if necessary, so that they can be merged with their own zones.
(The sub-division of the zone is necessary to maintain the zone properties
postulated at the beginning of this section.)

a transfers all the state information (pointers) to those nodes that are taking
portion of its zone.

Simulation Experiments

We vary three key parameters in our packet level simulation experiments: number
of dimensions d, number of levels L, and the node distribution in geo space. We

36 Y. Yu, S. Lee, and Z.-L. Zhang

700
median,85th,99th percentile —s—

Average -
600 5 percentile o
95 percentile e
500

400
300 f
200 $

100 é “%

Min,Median,Max —&— J

Query Distance

Nearness factor
o - N w > (& o ~ =]

0
0 50 100 150 200 250 300 2 4 8 16 32 64 128 256 512
Side of the least common hypercube Number of copies
Fig. 5. Query distance vs. smallest com- Fig. 6. Nearness factor vs. number of ob-
mon area size. d=2, L=8, uniform ject copies. d = 2, L = 8, uniform

use d = 2 and 8 as d = 2 reflects the actual geographical coordinates; while d = 8
is shown [7,12] to be enough for accurate approximation. The hierarchy level L
is determined such that the number of nodes in level-0 areas does not exceed a
small constant. In addition to the simple uniform node distribution, we generate
node distributions that model realistic Internet nodes to address the concern of
pointer node load balancing. This is done by using the coordinate distributions
of the GNP data sets [1]. Fig. 4 shows the coordinate distribution on each of the
8 dimensions for the 869 virtual coordinates generated by GNP.

Query Distance. To verify Leopard routing stretch, we define query distance,
computed by summing up the geometric distances in node geo space of each
forwarding hop of a query message. Provided that the virtual coordinate system
is accurate, query distance is a reliable indicator of real network distance. We
construct a network of 10° uniformly distributed nodes, and distribute 1,000
objects into random nodes such that the ith (1 <4 <1000) object has i copies.
We generate 100, 000 queries from random node for a random target object, and
record the query distances for every query. Fig. 5 shows the distribution of the
query distances grouped by the smallest common areas of the querying nodes
and the located owner. The z-axis in Fig. 5 represents the size (i.e., side length)
of the smallest common area, normalized by . We observe a clear linear relation
between the query distance and the common area size, which strongly support
our analysis results about Leopard’s constant routing stretch. In addition, the
actual value of that “constant stretch” is small: less than 2 for average, and less
then 2.5 for 95 percentile.

Locating Nearby Copies. We first define a metric called nearness factor,
which is the ratio of the distance from the querying node to the located owner
and that distance to the actual nearest owner in the network. We construct a
system (d = 2,L = 8) with 10° uniformly distributed nodes and 100 unique
objects, each with 2* copies in the network (we vary the value of k& from 1 to
9 in nine different experiments). For each experiment, we generate 5000 queries
from random nodes for a random object. Fig. 6 shows the statistics of nearness

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 37

factors. The average, median, 85th percentile and 99th percentile are computed
for the nine experiments with different k’s. We see that the nearness factor is
small: the medians are 1 for all k values, indicating at least half of the querying
nodes being able to find the actual nearest copy.

Flash Crowd Mitigation. We generate queries to a single popular object with
different query rates and measure the object owner service count (OSC) and
pointer-node service count (PSC). The simulation starts with a 10° node net-
work, and a randomly chosen node publishes the target object. Random queries
are then generated with a Poisson distribution with a mean of 29 queries per
second (¢ = 0...6). We performs five runs of the experiment. Each run lasts
1,000 seconds, i.e., for ¢ = 6 per second, 64,000 nodes obtain a copy. Since
we fix object downloading time at 100 seconds, and node always withdraws im-
mediately after downloading, the system maintains 100 x 29 copies in steady
state. Two different sets of system parameters are used: i) d = 2, L = 8, uni-
form node distribution and ii) d = 8, L = 13 with non-uniform distribution.
Table 1 shows the histograms (accumulated over five runs) of nodes with dif-
ferent OSCs. For example, when query rate is 1/s (uniform), a total of 4991
(2654 + 2 x 948 + 3 x 133 + 4 x 8 + 5 X 2) requests are served in five runs.
Only two nodes ever served five requests. For all query rates, vast majority of
nodes (99.5%+ and 99.9%+ in two distributions) serve three requests or less.
Based on Table 1, we plot the fraction of nodes has OSCs of 1 through 5, as
shown in Fig.7. We observe that the fractions are almost identical, indicating
Leopard’s capability to achieve near-optimal load balancing regardless of query
rate. Finally, we note that we also observe similar pattern in our analysis of

PSC [13].

Table 1. Histogram of owner service counts at different query rates. Left: uniform
distribution; Right: non-uniform distribution

rate\count 1 2 3 4 5 | 6]7|8[9[11[12[13[15[21[25[28|[rate\count 1 2 3 4 [5]6|7|9[10{11[12]19
1 2654 948 | 133 | 8 2 |(0|o0jojojofOjOfO|OfO]|O 1 3160 830 64 2 |0|0|0j0jOfO|O]|O
4 10762 | 3847 | 472 |48 | 5 [3 |2 |0|0j0|0O|0O|0O|0O|O]|O 4 12869 | 3144 | 205 | 16 | 5 |0{0(0| 0|0 |0 | O
16 42635 |15419(1734|177| 29 |3 |5 |1|2[1|0|0|1|0|0O]|O 16 53232 (12203 679 | 59 | 7 [3|0{0[1[0 [0 |0
64 165901(62293|8192(902{138|29(10|0|1| 1|2 1|1 |2|1|1 64 216818(47483(2278|160|13|5|1|1| 2|1 |1 |1
0.9 09
0.8 0.8 Bl
s 07 - B 1 quarylsec é 07 81 queryisee
"g‘ :: W 4 queriesisec 8 gg B4 quaciesten:
S vk (116 queriesisec E 04 ok qusiatons
S 03 = [164 queriesisec 2 03 _
% 02 % 02 . €164 queriesisec
b1 sl
o 1l L ey o 0 1 R
1 2 3 4 5 1 2 3 4 5
owner service count owner service count

Fig. 7. Fraction of nodes that has various owner service counts. Left: Uniform dist.;
Right: Non-Uniform dist

38 Y. Yu, S. Lee, and Z.-L. Zhang

6 Related Works

Tapestry [14] and Pastry [10] are early DHT systems that can locate nearby
object. However, since they use randomly hash node id, the “nearby” copy lo-
cated is in the sense of the node virtual space.More recent efforts of reducing
routing stretch and locating nearby object include Coral [3], Canon [4]and Bee-
Hive [8]. Coral divides the P2P network into several levels of self-similar network,
each level employs an original chord network. As Coral relies on a mechanism
to gradually cluster nodes and split/merge clusters as the network evolves, its
effectiveness hinges largely on the efficiency of the cluster algorithm. BeeHive
advocates proactive caching in the P2P network to alleviate hot spot problem,
relating the amount caching to the query rate. However, in the real world, it may
be difficult to decide the query rate a priori, especially in the sudden surge of a
flash crowd. The main contribution of this paper is to demonstrate the feasibility
of inherently incorporating locality-awareness into P2P overlay. Finally, we note
that the hierarchical area structure adopted in Leopard has also been used in
other routing/loop-up schemes. For example, GLS [5] uses it in mobile node lo-
cation lookup. However, as we have shown, P2P look-up service has many unique
problems, such as managing multiple copies of an object, constructing a node
overlay that preserves neighbor proximity. Leopard is also superficially similar
to DIM [6], proposed for sensor networks, with similar terminologies like “zone,”
“sibling node,” etc. In DIM, node neighbor relationships are formed based on
geographical closeness (rather than random hashing). However, DIM is mainly
designed for range queries, and always stores one copy of an object/event, while
Leopard aims to find the nearest copy of an object in the network.

7 Conclusion and Future Work

We have proposed to incorporate locality-awareness inherently into the P2P net-
work and have demonstrated many desirable properties of Leopard. Our future
plan includes detailed comparisons between Leopard and Pastry/Tapestry on IP
level stretch and capability of finding nearby copy, Leopard operation issues such
as dynamically determining level number, and their efficient implementations.

References

1. Global Nework Positioning. http://www-2.cs.cmu.edu/ eugeneng/research/gnp/.

2. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network
coordinate system. In Proc. of ACM SIGCOMM, 2004.

3. M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratizing content publi-
cation with coral. In Proc. of USENIX NDIS, 2004.

4. P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in g major: Designing
dhts with hierarchical structure. In Proc. of IEEE ICDCS, 2004.

5. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proc. of MobiCom, Aug. 2000.

10.

11.

12.

13.

14.

Leopard: A Locality Aware Peer-to-Peer System with No Hot Spot 39

X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in
sensor networks. In SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 63-75. ACM Press, 2003.

T. E. Ng and H. Zhang. Predicting Internet network distance with coordinates-
based approaches. In Proc. of IEEE INFOCOM, June 2002.

V. Ramasubramanian and E. G. Sirer. Beehive: Design and implementation of
next generation name service for the internet. In Proc. of ACM SIGCOMM, 2004.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proc. of ACM SIGCOMM, Aug. 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale p2p systems. In Proc. of IFIP/ACM Middleware, 2001.

I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman. Chord: A scal-
able P2P lookup protocol for Internet applications. In Proc. of ACM SIGCOMM,
2001.

L. Tang and M. Crovella. Virtual landmarks for the Internet. In Proc. of ACM
IMC, Oct. 2003.

Y. Yu, S. Lee, and Z.-L. Zhang. Leopard: A locality-aware peer-to-peer system
with no hot spot, Tech. Report CSE Dept., U of Minnesota, 2004.

B. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: A global-scale overlay for rapid service deployment. IEEE J-SAC, 22(1),
2004.

	Introduction
	Key Concepts: Area Hierarchy and GSH
	Leopard Look-Up Service
	Mitigating Hot Spots

	Node Space Management
	Greedy Forwarding in Node Space
	Node Join and Leave

	Simulation Experiments
	Related Works
	Conclusion and Future Work

