
Maximizing the Bandwidth Multiplier Effect for
Hybrid Cloud-P2P Content Distribution

Zhenhua Li 1,2, Tieying Zhang 3, Yan Huang 4, Zhi-Li Zhang 2, Yafei Dai 1

1 Peking University 2 University of Minnesota 3 ICT, CAS 4 Tencent Research
Beijing, China Minneapolis, MN, US Beijing, China Shanghai, China

lizhenhua1983@gmail.com zhzhang@cs.umn.edu zhangtiey@gmail.com galehuang@tencent.com

Abstract—Hybrid cloud-P2P content distribution (“CloudP2P”)
provides a promising alternative to the conventional cloud-based
or peer-to-peer (P2P)-based large-scale content distribution. It
addresses the potential limitations of these two conventional
approaches while inheriting their advantages. A key strength
of CloudP2P lies in the so-called bandwidth multiplier effect:
by appropriately allocating a small portion of cloud (server)
bandwidth Si to a peer swarm i (consisting of users interested
in the same content) to seed the content, the users in the peer
swarm – with an aggregate download bandwidth Di – can then
distribute the content among themselves; we refer to the ratio
Di/Si as the bandwidth multiplier (for peer swarm i). A major
problem in the design of a CloudP2P content distribution system
is therefore how to allocate cloud (server) bandwidth to peer
swarms so as to maximize the overall bandwidth multiplier effect
of the system. In this paper, using real-world measurements, we
identify the key factors that affect the bandwidth multipliers
of peer swarms and thus construct a fine-grained performance
model for addressing the optimal bandwidth allocation problem
(OBAP). Then we develop a fast-convergent iterative algorithm
to solve OBAP. Both trace-driven simulations and prototype
implementation confirm the efficacy of our solution.

I. INTRODUCTION

Large-scale content distribution has become increasingly
prevalent and contributes to a significant portion of the In-
ternet traffic. Today’s large content providers (e.g., YouTube
and Netflix) typically employ a cloud-based approach which
relies on huge data centers for computing and storage and
utilizes geographically dispersed CDNs (content distribution
networks) to further meet users’ demand on content delivery
performance. Such an approach requires a massive and costly
computing, storage and delivery infrastructure. For instance,
YouTube, as a subsidiary of Google, utilizes Google’s own
massive delivery infrastructure [1], whereas Netflix employs
Amazon’s cloud services and third-party CDNs such as Aka-
mai and Limelight [2]. In contrast, the peer-to-peer (P2P)-
based content distribution [3], [4] incurs little infrastructure
cost and can scale with the user scale, as it utilizes individual
users’ machines (and their ISPs) for replicating and delivering
content to each other. However, P2P also suffers several
technical shortcomings such as end users’ high dynamics and
heterogeneity, difficulty to find “seeds” or other peers with
the content in which an end user is interested. As a result, the
working efficacy of P2P can be quite poor and unpredictable.

Cloud

Peer Swarm 2

Peer

Peer Swarm 1

Peer Swarm 3

data upload

Fig. 1. Hybrid cloud-P2P content distribution. Inside each swarm, peers
exchange data with others; meanwhile, they get data from the cloud. Different
peer swarms share different contents.

A third approach – hybrid cloud-P2P (“CloudP2P”) content
distribution – has recently emerged [5], [6], [7], [8], [9], [10],
[11], [12] as a promising alternative. It addresses the poten-
tial limitations of these two conventional approaches while
inheriting their advantages. As depicted in Fig. 1, CloudP2P
comprises of a cloud component as well as a number of peer
swarms. The cloud not only provides content “seeds” but
also assists end users to find other peers who are interested
in the same content. A peer swarm starts by obtaining a
content seed from the cloud, and subsequently, peers within
the swarm can exchange data among themselves. Compared to
the purely cloud-based approach, CloudP2P incurs far lower
infrastructure and network bandwidth costs (especially there
is no need for a large-scale CDN infrastructure). Take Youku
[13], the biggest video sharing site in China, as an example.
Since its startup, the cloud bandwidth expense of Youku has
consumed more than half of its total income. In the past two
years, Youku has been encouraging its users to install the iKu
accelerator [5], which changes its purely cloud-based content
distribution to a hybrid CloudP2P architecture. Meanwhile,
CloudP2P also effectively circumvents the key limitations of
P2P by providing extra cloud bandwidth to those peer swarms
who do not work well for lack of seed peers.

A key strength of CloudP2P lies in the so-called bandwidth
multiplier effect: by appropriately allocating a small portion
of cloud (server) bandwidth Si to a peer swarm i (consisting
of users interested in the same content) to seed the content,
CloudP2P can attain a higher aggregate content distribution
bandwidth (Di) by letting peers to exchange data and distribute
content among themselves. Borrowing a term from economics,978-1-4673-1298-1/12/$31.00 c© 2012 IEEE

o

(a) Cloud (b) CloudP2P

o

Peer swarm 1

Peer swarm 2

Peer swarm 3

1

2

3

4 5

6
12

124 8

4

8

4 8

12

4

8

16
End hosts

marginal utility

and

S i

D iD

S

Fig. 2. The bandwidth multiplier (= D
S

) of (a) Cloud and (b) CloudP2P: a
simple example. S denotes the invested cloud bandwidth and D denotes the
end hosts’ aggregate download bandwidth. As to CloudP2P, S =

∑
i Si and

D =
∑
iDi where i denotes the i-th peer swarm. For each peer swarm, its

marginal utility at a certain point is the partial derivative: ∂Di
∂Si

. Here we use
∂Di
∂Si

rather than dDi
dSi

because Di is not fully dependent on Si.

we refer to the ratio Di/Si as the bandwidth multiplier (for
peer swarm i). A major problem in the design of a CloudP2P
content distribution system is therefore how to allocate cloud
(server) bandwidth to peer swarms so as to maximize the
overall bandwidth multiplier effect of the system – the optimal
bandwidth allocation problem (OBAP).

Below we use a simple (artificial) example to illustrate
the bandwidth multiplier effect of CloudP2P and argue why
in solving OBAP, one must consider the marginal utility of
cloud bandwidth allocation. As plotted in Fig. 2(a), in the
conventional cloud-based content distribution, the bandwidth
multiplier is usually 1.0 because each user typically downloads
content directly form the cloud content provider. In the case
of CloudP2P, the bandwidth multiplier can be much larger
than 1.0, since the data exchange among end host peers
can “multiply” the upload bandwidth of cloud servers. The
achievable bandwidth multiplier will hinge critically on the
bandwidth allocation scheme as well as individual peer swarm-
s. Depending on the specifics of each peer swarm (e.g., its
size, the bandwidth available among the peers, etc.), given the
same allocated cloud bandwidth, the bandwidth multiplier can
vary significantly from one peer swarm to another peer swarm.
Fig. 2(b) plots three hypothetical bandwidth multiplier curves
for three different peer swarms. Suppose the total invested
cloud bandwidth is S = 12 and the bandwidth allocation
scheme corresponds to points {1, 2, 3} in Fig. 2(b), and then
the overall bandwidth multiplier for all three peer swarms is
D
S =

∑
iDi∑
i Si

= 23+17+12
3+4+5 = 4.33.

Because of the nonlinear nature of the bandwidth multiplier
curves, it is clear that we must take into account the mar-
gianl utility (∂Di

∂Si
) of cloud bandwidth allocation in solving

the optimal bandwidth allocation problem. The commonly
used bandwidth allocation algorithms in commercial systems,
however, do not (well) consider the marginal utility of cloud
bandwidth allocation, thus leading to suboptimal or even poor
bandwidth multiplier effect. For instance, the free-competitive
strategy simply lets all the end hosts/peer swarms to compete
freely for the cloud bandwidth, whereas the proportional-
allocate scheme allocates cloud bandwidth proportionally to
peer swarms according to their size. As a result, an “over-

feeding” peer swarm may be allocated with too much cloud
bandwidth resulting in low marginal utility, while a “starving”
peer swarm may get little cloud bandwidth resulting in high
marginal utility. For example, see the other allocation scheme
corresponding to points {4, 5, 6} in Fig. 2(b) where the cloud
bandwidth (S = 12) is proportionally allocated into each peer
swarm. The overall bandwidth multiplier corresponding to {4,
5, 6} is 16+15+15

2+3.3+6.7 = 3.83 < 4.33 (the overall bandwidth
multiplier of {1, 2, 3}). Intuitively, we find larger bandwidth
multiplier implies more balanced marginal utilities among peer
swarms (which will be formally proved later).

In this paper, using real-world measurements, we identify
the key factors that affect the bandwidth multipliers of peer
swarms and thus construct a fine-grained performance mod-
el for addressing the optimal bandwidth allocation problem
(OBAP). This model takes into account the impact of both
outer-swarm and intra-swarm bandwidth provisions on a peer
swarm and can well match the measurement data. We further
prove that the bandwidth multiplier effect is closely related
to the marginal utility of cloud bandwidth allocation. To
solve OBAP, we develop a fast-convergent iterative algorithm
by finding the optimal direction and adaptively setting the
stepsize in each iteration step. Compared with the commonly
used iterative algorithms, our proposed iterative algorithm has
provable convergence, faster convergence speed and ease of
use (as to a large-scale highly dynamic CloudP2P system).
Our whole solution is named as “FIFA” which denotes the
combination of the fine-grained performance model (“FI”) and
the fast-convergent iterative algorithm (“FA”).

We use both large-scale trace-driven simulations and small-
scale prototype implementation to evaluate the bandwidth
allocation performance of FIFA. Simulation results based on
the log trace of around one million peers reveal that the overall
bandwidth multiplier of FIFA is 20%, 17% and 8% larger
than that of the existing bandwidth allocation algorithms: free-
competitive, proportional-allocate and Ration [8], respectively.
Meanwhile, the total control overhead bandwidth of FIFA
stays below 15 KBps – even less than a common user’s
download bandwidth. Small-scale prototype implementation
also confirms the efficacy of FIFA.

The remainder of this paper is organized as follows. Section
II reviews the related work. Through real-world measurements,
we construct a fine-grained performance model to address
OBAP in Section III. Then we propose a fast-convergent
iterative algorithm to solve OBAP in Section IV. After that,
the performance of our solution (FIFA) is evaluated in Section
V and VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

The commonly used bandwidth allocation algorithms of
CloudP2P generally adopt a coarse-grained performance mod-
el by making some ideal or simplified assumptions. For
example, most commercial systems (e.g., [7]) use the free-
competitive algorithm (or make some minor changes). Such
an algorithm simply allocates a certain amount of cloud band-
width for all peer swarms to compete freely. Obviously, free-

competitive benefits those aggressive or selfish peer swarms
who might set up numerous TCP/UDP connections to grasp as
much cloud bandwidth as possible. To alleviate the drawback
of free-competitive, some systems (e.g., [14]) employ the
proportional-allocate algorithm which proportionally allocates
cloud bandwidth to peer swarms based only on their swarm
scale. Proportional-allocate implies the assumption that the
demand of cloud bandwidth is only dependent on the number
of peers inside a swarm, which is deviant from reality.

A similar work to FIFA is AntFarm [15], which uses a cen-
tralized coordinator to dynamically split seed peers’ bandwidth
among peer swarms (AntFarm does not consider the outer-
swarm cloud bandwidth provision). The practical application
of AntFarm may be difficult for two reasons: 1) Accurately
splitting a seed peer’s bandwidth and allocating it into multiple
swarms is quite difficult due to the dynamic nature of end host
peers, so it is rarely supported by commercial P2P systems; 2)
The coordinator employs a centralized token protocol which
strictly controls the behavior of each peer (e.g., neighbor
selection and data exchange), which is not quite compatible
with the distributed working principle of P2P.

Another similar work is Ration [8], a cloud bandwidth allo-
cation algorithm for P2P live TV streaming. Ration constructs
its CloudP2P performance model by using the impact factors
Si and li, where Si denotes the cloud bandwidth allocated
to peer swarm i and li denotes the number of online leechers
inside peer swarm i. Since Ration works in a live TV streaming
environment where most viewers devote their bandwidth to
downloading and would leave their peer swarm as soon as they
finish viewing (that is to say, si � li, where si is the number
of online seed peers inside peer swarm i.), Ration does not
(need to) consider the impact of seed peers – the intra-swarm
bandwidth provision. In our work, the impact of seed peers
is also taken as a key factor and we find it is nontrivial for
modeling a large-scale CloudP2P file-sharing system. Given
that a P2P file-sharing system usually accommodates much
more dynamics and heterogeneity than a P2P live streaming
system, our proposed performance model should be more fine-
grained and general.

To solve the optimal bandwidth allocation problem, Ant-
Farm employs the “hill-climbing” iterative algorithm (“HC”)
while Ration employs the “water-filling” iterative algorithm
(“WF”) [16]. Both HC and WF are commonly used iterative
algorithms to solve optimization problems; however, we find
their convergence speeds might be quite slow on handling a
large number of highly dynamic peer swarms, mainly because
they have to use a very short stepsize to make their iteration
progress converge. We note that Ration had realized the
problem of WF and thus proposed an incremental version of
WF to increase its convergence speed, but the incremental
version only alleviates rather than resolves its problem. By
finding the optimal direction and adaptively setting the stepsize
in each iteration step, our proposed fast-convergent iterative
algorithm (FA) has provable convergence, faster convergence
speed and ease of use.

III. FINE-GRAINED PERFORMANCE MODEL

A. Key Impact Factors

A number of factors may affect the bandwidth multiplier of
a peer swarm, such as the allocated cloud bandwidth, number
of leechers, number of seeders1, available bandwidth of each
peer, connection topology among peers and distribution of
unique data blocks. Obviously, it is impossible to take all these
factors into account, and considering too many detailed/trivial
factors will bring the bandwidth allocation algorithm un-
bearable communication/computation overhead. Instead, our
methodology is to find out the key impact factors that influence
the bandwidth multiplier of a peer swarm.

To find the key impact factors, we utilize the real-world
measurements from QQXuanfeng [11], a large-scale CloudP2P
file-sharing system [17]. We track 1457 peer swarms in one
day (involving around one million peers), record their respec-
tive working parameters: Di, Si, si and li per five minutes,
and then analyze the relationships between these parameters.
The meanings of these parameters are listed as follows:
• Di: the aggregate download bandwidth of the peers inside

(peer) swarm i.
• Si: the cloud bandwidth allocated to swarm i. Si denotes

the outer-swarm bandwidth provision to swarm i.
• si: the number of online seeders in swarm i. si denotes

the intra-swarm bandwidth provision to swarm i.
• li: the number of online leechers in swarm i. li denotes

how many peers are the bandwidth consumers that benefit
from Si and si. (Note that a leecher also uploads data to
others.)

As depicted in Fig. 3(a), we discover approximate expo-
nential relationship between Di

li
and Si

li
, which is further

confirmed by the corresponding log-log curve in Fig. 4(a).
Thus, as to a typical peer swarm i:

Di

li
∝ (

Si
li

)αi , 0 < αi < 1;

on the other hand, from Fig. 3(b) and Fig. 4(b) we find that
the exponential relationship also approximately holds between
Di

li
and li

si
, except that the exponent is negative:

Di

li
∝ (

li
si

)−βi , βi > 0.

The abovementioned exponential relationships basically
comply with our intuitive experiences obtained from Fig.
2 – when a peer swarm is allocated with too much cloud
bandwidth or contains too many seeders, the marginal utility
for increasing its aggregate download bandwidth will become
trivial. Now that the above exponential relationships are mere-
ly approximate, we still have a problem whether we should use
Si

li
, lisi , both or even more parameters to well model Di

li
. To this

end, we use Si

li
, lisi and both, respectively, to model Di

li
, where

the corresponding constant parameters (αi, fi), (βi, fi) and
(αi, βi, fi) are computed based on the one-day measurements
of peer swarm i. From Fig. 5 and Table I we confirm that the

1“seeder” has the same meaning with “seed peer”.

0 50 100 150
0

50

100

150

200

S/l (KBps)

D
/l

(K
B

ps
)

measurement data
exponential fitting

(a) Si
li

vs Di
li

.

0 5 10 15
0

50

100

150

200

l/s

D
/l

(K
B

ps
)

measurement data
exponential fitting

(b) li
si

vs Di
li

.

Fig. 3. Relationships between (a) Di
li

and Si
li

, (b) Di
li

and li
si

, as to a typical
peer swarm i.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

S/l (KBps)

D
/l)

 (
K

B
ps

)

measurement data
exponential fitting

(a) log(Si
li
) vs log(Di

li
).

10
0

10
1

10
0

10
1

10
2

10
3

l/s

D
/l)

 (
K

B
ps

)

measurement data
exponential fitting

(b) log(li
si
) vs log(Di

li
).

Fig. 4. Relationships between (a) log(Di
li

) and log(Si
li
), (b) log(Di

li
) and

log(li
si
), as to a typical peer swarm i.

key impact factors should include both Si

li
and li

si
. Therefore,

we get the following equation:

Di

li
= (

Si
li

)αi · (li
si

)−βi · fi, 2 (1)

where 0 < αi < 1, βi > 0 and fi > 0. Then the aggregate
download bandwidth of peer swarm i is:

Di = Sαi
i · l

1−αi−βi

i · siβi · fi. (2)

Since Si is the only decision variable that we can schedule,
we also write Di as Di(Si). Finally, the bandwidth multiplier
of peer swarm i is:

Di

Si
= Sαi−1

i · l1−αi−βi

i · siβi · fi. (3)

To compute the constant parameters αi, βi and fi, we first
transform Equation (1) into its “log” form:

log
Di

li
= log

Si
li
· αi − log

li
si
· βi + log fi, (4)

so that αi, βi and fi can be computed by using the measure-
ments of Di, li, Si and si, via the classical linear regression
method. One thing to note is that the abovementioned constant
parameters (αi, βi and fi) can only be taken as “constant”
during a certain period (typically one day or several hours),
so they need to be periodically updated using the latest
measurements.

2If si = 0, we just let li
si

= 1 so that (li
si
)−βi is ignored.

0 10 20
0

100

200
(a) measurement data

time (hour)

D
/l

(K
B

ps
)

0 10 20
0

100

200
(b) only using l/s

time (hour)

D
/l

(K
B

ps
)

0 10 20
0

100

200
(c) only using S/l

time (hour)

D
/l

(K
B

ps
)

0 10 20
0

100

200
(d) using both l/s and S/l

time (hour)

D
/l

(K
B

ps
)

Fig. 5. Modeling Di
li

using (b) li
si

(i.e., Di
li

= (li
si
)−βi · fi), (c) Si

li
(i.e.,

Di
li

= (Si
li
)αi · fi) and (d) both (i.e., Di

li
= (Si

li
)αi · (li

si
)−βi · fi), as to

a typical peer swarm. Clearly, the key impact factors should include both Si
li

and li
si

so that the model can match the (a) measurement data well.

TABLE I
RELATIVE ERRORS OF THE THREE MODELS APPLIED TO ALL THE 1457

PEER SWARMS, COMPARED WITH THEIR MEASUREMENTS DATA.

Model Avg (relative error) Min Max
(b) only using li

si
0.1391 0.006 0.9036

(c) only using Si
li

0.0738 0 0.2366

(d) using both Si
li

and li
si

0.0308 0 0.0972

B. OBAP and Its Optimal Solution

Till now, the optimal bandwidth allocation problem (OBAP)
of CloudP2P can be formalized as follows:

OBAP

Maximize the overall bandwidth multiplier (DS)

subject to the following conditions:
D =

∑m
i=1Di, where m is the number of swarms;

S =
∑m
i=1 Si, where S is taken as a constant during

an allocation period;
Si ≥ 0, ∀i ∈ {1, 2, · · · ,m};
Di = Sαi

i · l
1−αi−βi

i · siβi · fi, ∀i ∈ {1, 2, · · · ,m};
with decision variables S1, S2, · · · , Sm.

We can see that OBAP is a constrained nonlinear optimiza-
tion problem [18]. Given that S is taken as a constant during
an allocation period, maximizing D

S is equal to maximizing
D. When the optimal solution of OBAP exists, suppose
the optimal solution is S∗ = (S∗1 , S∗2 , · · · , S∗m) 3 and the
corresponding aggregate download bandwidth of each swarm
is (D∗1 , D∗2 , · · · , D∗m). Thus, according to the optimality

3The bold font is used to represent a vector. It is possible that OBAP has
no optimal solution within its constrained set.

o 4 8

12

4

8

16 Maximum Di

Current status

Ideal status

S i

D i

Fig. 6. An exceptional case in which the peer swarm cannot be adjusted to
its ideal status.

condition of constrained nonlinear optimization [18], we have:
m∑
i=1

∂Di(S
∗
i)

∂Si
(Si−S∗i) ≤ 0, ∀Si ≥ 0 with

m∑
i=1

Si = S. (5)

Then fixing an arbitrary i and letting j be any other index, we
construct a feasible solution S′ to the constraints as:

S′i = 0, S′j = S∗i + S∗j , S
′
k = S∗k , ∀k 6= i, j.

Applying S′ to Equation (5), we get:

(
∂Dj(S

∗
j)

∂Sj
− ∂Di(S

∗
i)

∂Si
) · S∗i ≤ 0, ∀i, j (i 6= j).

If S∗i = 0, peer swarm i gets no cloud bandwidth and thus
we do not need to consider such a swarm for cloud bandwidth
allocation. Consequently, we have ∀i ∈ {1, 2, · · · ,m}, S∗i >
0, and then

∂Dj(S
∗
j)

∂Sj
≤ ∂Di(S

∗
i)

∂Si
, ∀i, j (i 6= j). (6)

Therefore, the optimal solution S∗ has the following form:

∂Dj(S
∗
1)

∂S1
=
∂D2(S∗2)

∂S2
= · · · = ∂Dm(S∗m)

∂Sm
, (7)

which means the marginal utility of the cloud bandwidth
allocated to each peer swarm should be equal in the optimal
solution (if it exists). In practice, there is an exceptional case
in which a peer swarm i cannot be adjusted to its “ideal” status
(i.e., the marginal utility of the cloud bandwidth allocated to
peer swarm i is equal to that of the other swarms), and this
exceptional case will cause OBAP to have no optimal solution
in the form of Equation (7). As illustrated in Fig. 6, for some
reasons peer swarm i has an upper bound of its aggregate
download bandwidth (“Maximum Di”), which prevents the
bandwidth allocation algorithm from adjusting peer swarm i
to its ideal status. In this situation, we just allocate the least
cloud bandwidth to improve its aggregate download bandwidth
to “Maximum Di” so that the relative deviation of marginal
utility among all the peer swarms can be as little as possible.
In conclusion, we have the following theorem:

Theorem 1. For CloudP2P content distribution, the maximum
bandwidth multiplier implies that the marginal utility of the
cloud bandwidth allocated to each peer swarm should be
equal. In practice, we want the relative deviation of marginal
utility among all the peer swarms to be as little as possi-
ble, i.e., larger bandwidth multiplier implies more balanced
marginal utilities among peer swarms.

P(0)

P(1)

P(2)

P(3)
P(4)

P(5)

Iteration space

Equal-effect

surface

Sd

Fig. 7. A demo iteration process. The equal-effect surface is the set of all
the points P that have the same performance value f(P).

IV. FAST-CONVERGENT ITERATIVE ALGORITHM

In last section we have formulated the optimal bandwidth
allocation problem (OBAP) into a constrained nonlinear op-
timization problem. The optimal solution of such a problem
is typically obtained via iterative operations in multiple steps
until the algorithm converges [18]. Therefore, the convergence
property of the iterative algorithm is critical in solving OBAP.

The convergence property of an iterative algorithm mainly
depends on two aspects: iteration direction and iteration step-
size. For a d-dimension4 constrained nonlinear optimization
problem, all its feasible solutions compose a d-dimension
iteration space Sd. Suppose the iterative algorithm starts at
an arbitrary point P(0) = (P

(0)
1 , P

(0)
2 , · · · , P (0)

d)∈ Sd. Then
in each subsequent iteration step, the algorithm must determine
an iteration direction and an iteration stepsize to go further to
a new point P(k) = (P

(k)
1 , P

(k)
2 , · · · , P (k)

d)∈ Sd so that P(k)

is closer to the optimal point P∗ than P(k−1), as shown in
Fig. 7. Specifically, the iteration process can be formalized as:

P(k+1) = P(k) + t(k)(P
(k) −P(k)),

until |f(P(k+1))− f(P(k))| < ε.
(8)

where f(.) is the performance function, ε is a very small
constant, (P

(k) − P(k)) is the iteration direction, and t(k)

is the iteration stepsize in the k-th step. The task of our
fast-convergent iterative algorithm (FA) is to determine
appropriate P

(k)
and t(k) in the k-th step so that the iteration

process can be as fast as possible.

Iteration direction. For a nonlinear optimization problem,
usually it is impossible to directly find the ultimate direction
P∗ − P(0) (or P∗ − P(k) for a certain k) because this is
basically as difficult as to directly find P∗. Instead, FA utilizes
the conditional gradient method [18] to determine the iteration
direction in each step. For a function f(P), it is well known
that f(P(k+1)) can be approximated via the Taylor expansion:

f(P(k+1)) = f(P(k)) +∇f(P(k))(P(k+1) −P(k))T+

1

2
(P(k+1) −P(k))∇2f(P(k))(P(k+1) −P(k))T + · · · .

(9)

4d-dimension means the optimization problem deals with d decision vari-
ables in total. As to OBAP, d is the total number of peer swarms.

where ∇f(X) = (∂f(X)
∂X1

, ∂f(X)
∂X2

, · · · , ∂f(X)
∂Xd

). The conditional
gradient method uses the first-order Taylor expansion to ap-
proximate f(P(k+1)):

f(P(k+1)) ≈ f(P(k)) +∇f(P(k))(P(k+1) −P(k))T . (10)

As to the OBAP problem, the dimension (d) is just the
number of peer swarms (m), so that P(k) = S(k), f(P(k)) =

f(S(k)) = D(k)

S =
∑m

i=1Di(Si)

S and Di(Si) = Sαi
i · l

1−αi−βi

i ·
si
βi · fi. Then we have:

f(S(k+1)) ≈ f(S(k)) +∇f(S(k))(S(k+1) − S(k))T . (11)

Since our goal is to maximize f(S) on condition that∑m
i=1 Si = S and Si ≥ 0,∀i ∈ {1, 2, · · · ,m}, we need to

(greedily) maximize f(S(k+1)) in Equation (11) in the k-th
iteration step. Thus, we must find the specific S that satisfies
the following problem:

Maximize ∇f(S(k))(S− S(k))T

subject to
∑m
i=1 Si = S and Si ≥ 0,∀i ∈ {1, 2, · · · ,m}.

By expanding S, S(k) and ∇f(S(k)), we transform the
above problem into

Maximize
∑m
i=1

∂Di(S
(k)
i)

∂Si
(Si − S(k)

i)

subject to
∑m
i=1 Si = S and Si ≥ 0,∀i ∈ {1, 2, · · · ,m}.

It is not difficult to find that the above problem is a linear
optimization problem and the optimal solution S

(k)
is:

S
(k)

j = S, for the j = arg maxi∈{1,2,··· ,m}
∂Di(S

(k)
i)

∂Si
;

and S
(k)

i = 0,∀i ∈ {1, 2, · · · , j − 1, j + 1, · · · ,m}.
(12)

So we get the optimal iteration direction in the k-th step:

d(k) = S
(k) − S(k). (13)

Iteration stepsize. Till now we have got that the k-th step of
our FA iterative algorithm proceeds as:

S(k+1) = S(k) + t(k)d(k)

where d(k) is determined in Equation (12) and (13). Ideally,
the stepsize t(k) should satisfy the following conditions:

Maximize f(S(k) + t(k)d(k))

subject to S(k) + t(k)d(k) is a feasible solution.

Unfortunately, the above problem is still a nonlinear opti-
mization problem and thus it is impossible to directly obtain
its optimal solution. Instead, we utilize the Armijo rule [19] to
adaptively set the iteration stepsize t(k), in order to guarantee
that f(S(k+1)) is at least larger than f(S(k)) by a bound:

f(S(k) + τ jd(k))− f(S(k)) ≥ |στ j∇f(S(k))d(k)T | (14)

where the two constant parameters τ, σ ∈ (0, 1), and j is
tried successively as 0, 1, 2, . . . , until the above inequality is

satisfied for a certain j (which is j(k)). As a result, we get the
adaptive iteration stepsize in the k-th step for FIFA:

t(k) = τ j
(k)

(15)

Summary of FA. The fast-convergent iterative algorithm
(FA) efficiently solves OBAP by finding the optimal direction
and adaptively setting the stepsize in each iteration step. First,
the convergence of FA is provable due to its combinatory
use of the conditional gradient method and the Armijo rule
(refer to Proposition 2.2.1 in [18]). Second, FA is easy to use
because all the related parameters, τ and σ, can be easily
configured. For example, we simply configure τ = 0.5 and
σ = 0.01 for FA, and then it is well applicable to all the
simulation/implementation scenarios in Section V and VI.
Finally, although the accurate convergence speed of FA cannot
be theoretically proved, FA exhibits nearly-linear convergence
speed in our performance evaluation (refer to Section V-C).
That is to say, for a CloudP2P system consisting of m peer
swarms, FA converges in nearly Θ(m) steps.

Comparisons of WF, HC and FA. The “water-filling” algo-
rithm (WF) is a classical iterative algorithm in solving con-
strained nonlinear optimization problems (e.g., [8]) for its sim-
plicity and intuitive explanation. In each iterative step, WF on-
ly finds two components of S(k), i.e., S(k)

h and S(k)
l satisfying

the following conditions: h = arg maxi∈{1,2,··· ,m}
∂Di(S

(k)
i)

∂Si

and l = arg mini∈{1,2,··· ,m}
∂Di(S

(k)
i)

∂Si
. Then WF moves a

constant portion δ from S
(k)
l to S

(k)
h : S(k)

h ← S
(k)
h + δ and

S
(k)
l ← S

(k)
l − δ. This movement looks like “filling some

water from one cup to the other”. In other words, the iteration
direction and iteration stepsize of WF are set as follows:
d(k) = (d

(k)
1 , d

(k)
2 , · · · , d(k)

m), where dh = 1, dl = −1, di =
0,∀i 6= h, l; and t(k) = δ.

Obviously, WF uses a restricted iteration direction (only in
two dimensions among the total m dimensions) and a fixed
iteration stepsize (δ). The fundamental problem of WF lies in
the setting of δ. If δ is set too big, WF will not converge;
if δ is set too small, WF will converge slowly. Still worse,
on handling a large number of highly dynamic peer swarms,
setting an appropriate (i.e., neither too big nor too small)
iteration stepsize (δ) for WF becomes extremely difficult.
Consequently, the only practical choice is to set an extremely
small δ resulting in a huge number of iteration steps and slow
convergence speed. On the contrary, the iteration stepsize of
FA is adaptively set so the number of iteration steps depends
on the number of peer swarms. Fig. 8 is a comparison of
the iterative operations of WF and FA when there are only
two peer swarms: S1 = 0.15 and S2 = 0.85 (the total cloud
bandwidth is normalized as S = 1). Additionally, the restricted
iteration direction further slows down the iteration process
of WF because WF always “walks” only in two dimensions
among the total m dimensions. On the contrary, the iteration
direction of FA can be in all dimensions. Fig. 9 illustrates a
demo comparison when there are three peer swarms.

0

S1

(1,0)

(0,1)
(1,0)(0,1)

S2

(b) WF, δ = 0.1

...

(1,0)(0,1)

(c) WF, δ = 0.05

(a) Iteration space

(1,0)(0,1)

(d) FA, τ=0.5, σ=0.01

Fig. 8. A comparison of the iterative operations of WF
and FA when there are only two peer swarms. (a) The
iteration space is a line. (b) WF does not converge for the
stepsize is too big. (c) WF converges in 7 steps for the
stepsize is small enough. (d) FA converges in 2 steps.

0
S1(1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)

(0,1,0)(0,0,1)

S2

S3

FA

WF

Fig. 9. A comparison of the iterative operations of
WF and FA when there are three peer swarms. WF
always “walks” only in two dimensions while FA can
walk in all the m dimensions

Source Port Destination Port

Length Checksum

2 Bytes 2 Bytes

Swarm Hash (20 Bytes)

Report Start Time

Report Finish Time

UDP

Packet Head

Cloud Download Bytes

P2P Download Bytes

Peer

Status

Peer ID

IP Head (20 Bytes)

Fig. 10. Structure of the peer status
report. A seeder’s status report does not
have the fields of “Cloud Download
Bytes” and “P2P Download Bytes”.

The “hill-climbing” algorithm (HC) always sets all the
components of S(0) to zero and stores the total cloud
bandwidth S in a “repository” (R) at the starting point.
Then in each iteration step, HC just finds one component
of S(k), i.e., S(k)

h which satisfies the following condition:

h = arg maxi∈{1,2,··· ,m}
∂Di(S

(k)
i)

∂Si
. Then HC moves a constant

portion δ from the repository to S
(k)
h : S(k)

h ← S
(k)
h + δ and

R← R−δ. This movement looks like “climbing the hill with
each step in the steepest dimension”. It is easy to see that HC
can be taken as a special case of WF which only “walks” in
one dimension among the total m dimensions. Consequently,
the number of iteration steps of HC is usually as about several
(4 – 5) times as that of WF when the same stepsize (δ) is used.

V. TRACE-DRIVEN SIMULATIONS

A. Trace Dataset

Our trace dataset is got from QQXuanfeng [11], a large-
scale CloudP2P file-sharing system. Every online peer reports
its peer status in a UDP packet to the Bandwidth Scheduler
(a centralized server) per 5 minutes, so the cloud bandwidth
allocation period is also set as 5 minutes. The peer status
report is structured as in Fig. 10. During each allocation
period, the Bandwidth Scheduler aggregates peer status reports
into the corresponding swarm status which indicates the status
information (including Si, si, li and Di) of a peer swarm i
in the allocation period. Because the peer status reports are
carried in UDP packets, a small portion (less than 1%) of re-
ports might be lost in transmission, which would influence the
performance of the bandwidth allocation algorithm. Therefore,
if a peer status report is found to be lost, we simply take its
previous peer status report as its substitution.

The simulations are performed on a one-day trace (August
17, 2011) of 1457 peer swarms involving around one million
peers. As depicted in Fig. 11, the number of simultaneously
online leechers (l) varies between 4K and 50K and the total
cloud bandwidth (S) varies between 0.2 and 2.25 GBps. As to
a peer swarm i, the required constant parameters (αi, βi, fi)
for modeling its performance (Di = Sαi

i ·l
1−αi−βi

i ·siβi ·fi) are
computed based on its one-day swarm statuses (including 288
swarm statuses in total, where 288 = 24 hours

5 minutes). After obtaining
the performance model for each peer swarm, we simulate

the free-competitive, proportional-allocate, Ration, and FIFA
allocation algorithms to reallocate the cloud bandwidth into
each peer swarm during each allocation period, and meanwhile
observe their bandwidth multiplier, marginal utility, and so on.

B. Metrics

• Bandwidth multiplier is defined as D
S , where D denotes

the end hosts’ aggregate download bandwidth and S
denotes the invested cloud bandwidth. Large bandwidth
multiplier means the cloud bandwidth is efficiently used
to accelerate the P2P data transfer among end hosts.

• Marginal utility is defined as µi = ∂Di

∂Si
for a peer swarm

i. In Theorem 1 we have proved that for CloudP2P
content distribution, (ideally) the maximum overall band-
width multiplier implies that the marginal utility of the
cloud bandwidth allocated to each peer swarm should
be equal. In practice, we want the relative deviation of
marginal utility (devµ =

∑m
i=1 |µi−µ̄|
m·µ̄) among all the peer

swarms to be as little as possible.
• Convergence speed is denoted by the number of iteration

steps for an iterative algorithm (FA, WF or HC) to solve
OBAP. Besides, we also care about the ease of use of an
iterative algorithm.

• Control overhead is denoted by the extra communica-
tion cost brought by a bandwidth allocation algorithm,
because the allocation algorithm usually needs to collect
extra status information from end host peers.

C. Simulation Results

Bandwidth multiplier. Fig. 12 depicts the evolution of
the bandwidth multiplier for each allocation algorithm in
one day, starting from 0:00 am (GTM+8). We can see that
the bandwidth multiplier of proportional-allocate is generally
close to that of free-competitive. On the other hand, FIFA and
Ration obviously outperform free-competitive, with consider-
able improvements in average (FIFA: 2.20 → 2.64 = 20%
increment, and Ration: 2.20 → 2.45 = 11% increment). That
is to say, the bandwidth multiplier of FIFA is 20%, 17% and
8% larger than that of free-competitive, proportional-allocate
and Ration, respectively.

Marginal utility. Marginal utility provides the microscopic
explanation of the bandwidth multiplier – larger bandwidth

0 5 10 15 20
0

5
x 10

4

 l: # online leechers
s: # online seeders

0 5 10 15 20
0

1

2
x 10

6

time (hour)

S: total cloud bandwidth (KBps)

Fig. 11. Evolution of l, s and S over time.

0 5 10 15 20
1

1.5

2

2.5

3

3.5

4

4.5

time (hour)

ba
nd

w
id

th
 m

ul
tip

lie
r

FIFA schedule
Ration schedule
Proportional−allocate
Free−competitive

Fig. 12. Evolution of the bandwidth multiplier.

0 5 10 15 20
0

0.5

1

1.5

time (hour)

re
la

tiv
e

de
vi

at
io

n
of

 m
ar

gi
na

l u
til

ity

Free−competitive
Proportional−allocate
Ration schedule
FIFA schedule

Fig. 13. Evolution of the relative deviation of
marginal utility.

10 25 50 100 250 500 750 1000 1250 1457
0

5

10

15
x 10

4

number of peer swarms

ite
ra

tio
n

st
ep

s

FA − Fast Convergent
WF − Water Filling
HC − Hill Climbing

Fig. 14. Convergence speed of FA (τ=0.5, σ=0.01), WF and HC (δ=0.00001).

0 5 10 15 20
0

5

10

15

20

time (hour)

C
on

tr
ol

 o
ve

rh
ea

d
ba

nd
w

id
th

 (
K

B
ps

)

FIFA schedule
Ration schedule
Proportional−allocate

Fig. 15. Evolution of the control overhead bandwidth.

multiplier implies smaller relative deviation of marginal utility
(devu). Thus, in Fig. 13 we plot the evolution of the relative
deviation of marginal utility of all the peer swarms. Clearly,
the relative deviation of marginal utility has tight negative
correlation with the bandwidth multiplier – FIFA has the
smallest devu and thus its bandwidth multiplier is the biggest.

Convergence speed. We theoretically analyzed the conver-
gence property of FA, WF and HC in Section IV. In this part,
to examine their practical convergence speeds, we utilize the
swarm status data of different number of peer swarms: 10,
25, . . . , 1250, 1457. For FA, we simply use the parameters
τ = 0.5 and σ = 0.01 which are well applicable to all the
experimented swarm scales. However, for WF and HC, we
made a number of attempts to find an appropriate parameter
(stepsize) δ which could make WF and HC converge for all the
experimented swarm scales. Finally, we found δ = 0.00001
to be an appropriate parameter and plot the corresponding
convergence speeds in Fig. 14. We mainly get two findings:
(1) FA exhibits nearly-linear convergence speed (Θ(m)) as
the swarm scale increases, and FA converges faster than WF
and HC as to each swarm scale. (2) WF and HC exhibit
nearly-constant (Θ(1

δ)) convergence speed as the swarm scale
increases. The bigger δ is, the faster WF and HC converge,
but a bigger δ increases the risk that WF and HC may not
converge. If the swarm scale further increases to more than
1457, (very possibly) we need to find a smaller δ to satisfy
all the swarm scales. On the contrary, the convergence of FA
is not sensitive to its parameters and thus it is easier to use.

Control overhead. The control overhead of free-competitive
is zero since it does not collect peers’ status information. In
Fig. 11 we recorded the number of online leechers and online

seeders per five minutes in one day, so it is easy to compute the
control overhead of proportional-allocate, Ration and FIFA.
As to proportional-allocate, its peer status report does not have
the fields of “Cloud Download Bytes” and “P2P Download
Bytes” (see Fig. 10) and it only collects leechers’ status
reports. Different from proportional-allocate, FIFA collects
both leechers’ and seeders’ status reports. Because Ration does
not consider the impact of seeders, it only collects leechers’
status reports. From Fig. 11 we figure out that proportional-
allocate collects 4.52M leecher status reports without the fields
of “Cloud Download Bytes” and “P2P Download Bytes” (ac-
counting to 4.52M ×60B = 271 MB in total), Ration collects
4.52M leecher status reports (accounting to 4.52M × 68B =
307 MB in total), and FIFA collects 6.05M peer status reports
(accounting to 4.52M×68 Bytes+1.53M×60B = 399 MB in
total). Averaging the total control overhead into each second,
we plot the control overhead bandwidth of FIFA, Ration and
proportional-allocate in Fig. 15. Obviously, the total control
overhead bandwidth of FIFA always stays below 15 KBps –
even less than a common user’s download bandwidth.

VI. PROTOTYPE IMPLEMENTATION

Besides the trace-driven simulations, we have also imple-
mented the FIFA algorithm on top of a small-scale prototype
system named “CoolFish” [20]. CoolFish is a CloudP2P
VoD (video-on-demand) streaming system mainly deployed
in the CSTNet [21]. With its “micro cloud” composed of
four streaming servers and its P2P organization of end users,
CoolFish is able to support an average video bit rate over
700 Kbps (about 50% higher than that of popular commercial
P2P-VoD systems).

0 5 10 15 20
0

20

40

60

80

time (hour)

l: number of online leechers
s: number of online seeders
m: number of online swarms

Fig. 16. Evolution of l, s and m in CoolFish.

0 5 10 15 20
1

1.5

2

2.5

ba
nd

w
id

th
 m

ul
tip

lie
r

time (hour)

Fig. 17. Evolution of the bandwidth multiplier
in CoolFish.

0 5 10 15 20
0

0.02

0.04

0.06

0.08

re
la

tiv
e

de
vi

at
io

n
of

 m
ar

gi
na

l u
til

ity

time (hour)

Fig. 18. Evolution of the relative deviation of
marginal utility in CoolFish.

Fig. 16 plots the number of online leechers (l), online
seeders (s) and online swarms (m) of CoolFish in one day.
Obviously, the user scale of CoolFish is much smaller than
that of the QQXuanfeng trace, in particular the average num-
ber of peers (p) in one swarm: for the QQXuanfeng trace,
p ≈ 1M/1457 = 686, while for CoolFish, p = 1327/46 ≈
29. Since there are much fewer peer swarms working in
CoolFish and a swarm usually possesses much fewer peers,
the bandwidth multiplier of CoolFish is remarkably lower
and more unstable than that of QQXuanfeng, as illustrated
in Fig. 17. When FIFA is applied, the bandwidth multiplier of
QQXuanfeng lies between 2.25 and 4.2 while that of CoolFish
lies between 1.0 and 2.1. Although the bandwidth multiplier
of CoolFish (using FIFA) seems not high, the efficacy of FIFA
can still be confirmed from the relative deviation of marginal
utility (devu stays around 1%, as shown in Fig. 18) since we
have proved that very low relative deviation of marginal utility
is equal to nearly maximum bandwidth multiplier.

VII. CONCLUSION AND FUTURE WORK

As a hybrid approach, CloudP2P inherits the advantages of
both cloud and P2P and thus offers a promising alternative in
future large-scale content distribution over the Internet. This
paper investigates the optimal bandwidth allocation problem
(OBAP) of CloudP2P content distribution so as to maximize
its bandwidth multiplier effect. Based on real-world mea-
surements, we build a fine-grained performance model for
addressing OBAP. And we prove that the bandwidth multiplier
is closely related to the marginal utility of cloud bandwidth al-
location. Then we propose a fast-convergent iterative algorithm
to solve OBAP. Both trace-driven simulations and prototype
implementation confirm the efficacy of our solution.

Still some future work remains. For CloudP2P content
distribution, this paper focuses on the bandwidth multiplier
effect and the corresponding microscopic aspect, i.e., marginal
utility. In fact, for some special (but important) CloudP2P
content distribution scenarios, we should also take user sat-
isfaction or swarm priority into account. A download rate up
to 30 KBps can be satisfactory for a file-sharing user, while
a download rate up to 300 KBps may be still unsatisfactory
for an HDTV viewer. Therefore, although FIFA has achieved
maximum bandwidth multiplier for the whole CloudP2P sys-
tem, we cannot say FIFA has brought the maximum user

satisfaction. The difficulty lies in that we may need to si-
multaneously consider several metrics: bandwidth multiplier,
user satisfaction and so forth, among which there are conflicts
in essence. Consequently, special attention must be paid to a
proper tradeoff then.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the China 973 Grant.
2011CB302305, China 863 Grant. 2010AA012500, China
NSF Grants. 61073015 and 60933005, US NSF Grants CNS-
0905037, CNS-1017092 and CNS-1017647.

REFERENCES

[1] V. Adhikari, S. Jain, Y. Chen, and Z.L. Zhang. “Vivisecting YouTube:
An Active Measurement Study,” In IEEE INFOCOM, 2012.

[2] A. Cockroft, C. Hicks, and G. Orzell. “Lessons Netflix Learned from
the AWS Outage,” Netflix Techblog, 2011.

[3] BitTorrent web site. http://www.bittorrent.com.
[4] eMule web site. http://www.emule-project.net.
[5] iKu P2P accelerator. http://c.youku.com/ikuacc.
[6] iTudou P2P accelerator. http://www.tudou.com/my/soft/speedup.php.
[7] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. “Challenges, design and

analysis of a large-scale p2p-vod system,” In ACM SIGCOMM, 2008.
[8] C. Wu, B. Li, and S. Zhao. ”Multi-channel Live P2P Streaming:

Refocusing on Servers,” In IEEE INFOCOM, 2008.
[9] F. Liu, S. Shen, B. Li, B. Li, H. Yin, and S. Li. “Novasky: Cinematic-

Quality VoD in a P2P Storage Cloud,” In IEEE INFOCOM, 2011.
[10] Xunlei web site. http://www.xunlei.com.
[11] QQXuanfeng web site. http://xf.qq.com.
[12] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li.

”Design and deployment of a hybrid CDN-P2P system for live video
streaming: experiences with LiveSky,” In ACM Multimedia, 2009.

[13] Youku web site. http://www.youku.com.
[14] UUSee web site. http://www.uusee.com.
[15] R. Peterson and E. Sirer. “Antfarm: Efficient Content Distribution with

Managed Swarms,” In USENIX NSDI, 2009.
[16] S. Boyd. “Convex Optimization,” Cambridge University Press, 2004.
[17] Z. Li, Y. Huang, G. Liu, and Y. Dai. “CloudTracker: Accelerating

Internet Content Distribution by Bridging Cloud Servers and Peer
Swarms,” In ACM Multimedia (Doctoral Symposium), 2011.

[18] D.P. Bertsekas. “Nonlinear Programming,” Athena Scientific Belmont
Press, MA, 1999.

[19] L. Armijo. “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pacific J. Math. 16 (1), 1966, pages 1 - 3.

[20] CoolFish web site. http://www.cool-fish.org.
[21] CSTNet web site. http://www.cstnet.net.cn.

