
Virtual Id Routing

A scalable routing framework with support for mobility and routing efficiency

Guor-Huar Lu
luxx0137@umn.edu

Sourabh Jain
sourj@cs.umn.edu

Shanzhen Chen
schen@cs.umn.edu

Zhi-Li Zhang
zhzhang@cs.umn.edu

Department of Computer Science, University of Minnesota-Twin Cities
Minneapolis, MN-55455 ∗

ABSTRACT
Current flat-id based routing schemes promise support for
mobility and scalability. However, providing efficient rout-
ing with minimal overheads for mobility is still a challenge.
In this paper we provide a solution to these problems by in-
troducing Virtual Id Routing (VIR). VIR meets these basic
requirements of future id-based routing schemes: namely,
i) scalability–by using distributed hash table based rout-
ing framework; ii) mobility support–by separating the node-
identifier from the network location; and iii) routing effi-
ciency– by exploiting network topology information, which
is done by introducing a dynamic, self-organizing virtual id
(vid) space layer in between the node id space (uid) and the
network topology. Preliminary evaluation of the protocol
shows promising results, specifically routing stretch for VIR
is very close to 1, and the overheads due to mobility are also
much smaller than existing schemes such as VRR.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Algorithms, Design, Performance, Reliability

Keywords
Network Routing, Mobility, Distributed Hash Table

1. INTRODUCTION
The popularity of Internet has made it the de facto in-

formation infrastructure today. However, the use of an IP

∗The work was supported in part by the National Science
Foundation grants CNS-0435444, CNS-0626812, CNS-06268
and CRI 0709048.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-178-1/08/08 ...$5.00.

address as both the identity and location of an endpoint has
made current Internet architecture inadequate to incorpo-
rate new network services and functionalities such as mo-
bility and multi-homing. Due to these shortcomings, it has
been argued that for any proposed future Internet archi-
tectures [1], one should separate identity from location. In
addition, such new architectures should also have the abil-
ity to persistently name objects such as endpoints, data, or
services in the network, i.e., assign each object an identifier
that is unique and persistent over time. It is also argued
that for persistent naming, no semantics should be attached
to the name (identity). Thus a flat id space should be used.
We will be using term ‘unique Id’ or uid for our discussion
in this paper which refers to a persistent identifier for every
network object.

There are several advantages of using flat ids as the nam-
ing space [4]. First of all, unlike IP addresses that need to
be carefully assigned to ensure uniqueness and to match the
network topology, the allocation of uid only needs to ensure
uniqueness. Second, it provides better support for mobil-
ity, as nodes do not change their uid when they move to
a different network location. Third, use of uid allows easy
interoperability between heterogeneous networks.

The notion of flat-id space has been widely adopted in
structured peer-to-peer networks (see, e.g., [10, 6] using the
DHT (distributed hash table) techniques, as well as net-
work services built on top of such structured peer-to-peer
networks (see, e.g., [9]). However, these networks and ser-
vices assume the existence of IP-based network routing that
provides the needed point-to-point connectivity between two
IP addresses. While these networks and services can be used
(or are built) to circumvent some of the shortcomings of the
current Internet, they inherit the fundamental shortcomings
that come with the existing IP addressing scheme. Inspired
by the structured peer-to-peer networks, several recent pro-
posals [3, 4, 5] attempt to directly apply DHT techniques to
build scalable routing protocols on top of a unstructured flat-
id space without assuming an IP-based routing infrastruc-
ture underneath it. In order to provide connectivity between
two logical uid neighbors that may be physically far away,
a number of techniques are used. For example, in VRR [3],
physical paths between any pair of logical uid neighbors are
explicitly constructed and maintained. As a consequence,
these solutions may incur long routing stretches. In order
to reduce the routing stretch these schemes rely on some-
what ad hoc and less scalable “workarounds”, e.g VRR [3]

79

uses local “short-cuts” (and two-hop neighbor information)
for reducing the routing stretch. Furthermore, as nodes in
VRR store complete paths to their logical neighbors, the
cost of maintaining these paths can increase significantly in
mobile scenarios.

In this paper we propose a novel approach in building a
flat-id-based routing protocol that attempts to take advan-
tage of the scalability of DHT-based routing while at the
same time taking into the underlying network topology so
as to reduce routing stretch and maintenance overheads. In-
stead of building a DHT-based routing protocol directly on
top of a flat-id space that is “randomly” mapped onto the
underlying network topology, we introduce a self-configuring
virtual-id (vid) layer that is slotted in between the node id
space and the network topology, and build our protocol on
top of this virtual id space. The key idea is to have the vid
layer which reflects the underlying network topology. Such
an approach allows us to improve the protocol performance
significantly compare to earlier flat-id based approaches. We
adopt Kademlia [6] for routing in the vid space, which has
better stability, minimal configuration overhead and better
route selection with bounded routing distance, compared
with other DHT techniques, and therefore better suited for
networks with mobility.

The vid space embeds and reflects the underlying network
topology. It is self-organizing in the sense that the vid’s of
nodes are not persistent, and are dynamically assigned as
nodes change their locations, to preserve and reflect the un-
derlying network topology. For this reason routing protocol
requires a lookup for node’s vid using it’s uid. Therefore
we developed a mapping mechanism that maps each node’s
uid into its vid using the concept of hierarchical rendezvous
point. This mapping mechanism is symbiotically integrated
with the routing protocol as part of the data forwarding pro-
cess. VIR is a novel design and can be extended to various
network environments. However, the focus of this paper is
to illustrate the design of VIR in a single network (intra-
domain) scenario.

The rest of the paper is organized as follows. Section 2
provides an overview of our routing protocol. We present our
routing protocol in Section 3. In Sec. 4 preliminary evalua-
tion results of our protocol are presented, and in section 5
we conclude this paper.

2. BACKGROUND AND MOTIVATION
In this section we provide the motivation behind our work,

as well as some background on related work.
With the advances of wireless networks such as mobile

ad-hoc network (MANET) and cellular networks, the han-
dling of mobility has become a greater concern for many
researchers. To date, most solutions such as AODV [8]
for MANET require a certain amount of flooding to dis-
cover topological changes. Other solutions such as Mobile
IP [7] require additional addressing that cannot be easily in-
tegrated into current network architecture, in addition, the
fixed home agent in Mobile IP is also a source for perfor-
mance concern.

In case of Internet, one of the key pitfalls in its archi-
tecture is the use of IP address as both the identifier and
the network location of an endpoint. The IP address of an
endpoint changes whenever the endpoint moves in order to
reflect the change in the topological position, thus making
the identifier of the endpoint not persistent. For example, a

TCP connection uses a quadruple that includes two IP ad-
dresses, each representing an endpoint. If the IP address of
one endpoint changes, i.e., when there is mobility involved,
the TCP connection fails. Clearly, to handle mobility the
transport protocol should be able to refer to the endpoints
independent of their network location. In addition, the host
centric nature and the rigid structure imposed on IP ad-
dress makes the Internet architecture inflexible in terms of
adapting new services, functionalities and networks.

To address the shortcomings of the today’s Internet ar-
chitecture, and to gear toward a more flexible, manageable
future Internet, many proposals [9, 1] consider the notion
of id-based framework that utilizes flat identifiers as the ap-
plication addressing space, and cleanly separates identities
from network locations. These id-based frameworks work by
assigning each object such as endpoints and data. in the net-
work a unique identifier drawn from a flat id space, and build
scalable and robust applications and network services using
distributed hash table (DHTs [10, 6]) algorithms. For exam-
ple, using DHT-based overlay network, Internet Indirection
Infrastructure (i3 [9]) provides rendezvous-based communi-
cation abstraction that decouples the act of sending from
the act of receiving, thus enables i3 to support a wide range
of communication services.

However, most of these new functionalities for the id-based
networks are limited to the application space. Though DHT
is a powerful substrate in building scalable services, it still
relies on the underlying native routing protocols to forward
messages. In particular, when building the framework over
heterogeneous networks each with its own routing protocol,
the interoperability between different networks becomes a
great concern. Thus, to fully embrace the id-based frame-
work, we can extend the flat id space and use it as the ad-
dressing space for routing protocols. Flat ids ensure easier
allocation and seamless integration of heterogeneous net-
works. In addition, by using the flat id space as the ad-
dressing space, it is possible to utilize DHT to build such an
id-based routing protocol.

There have been several approaches such as VRR [3] and
ROFL [4] that build id-based routing protocols using DHTs.
These solutions build their routing protocols by treating the
collection of unique node ids as a flat id space. We call such
an id space as node id space. They then build the routing
protocol on top of the node id space using different DHT
algorithms, and then progressively build physical paths to
logical neighbors in the node id space. The advantage in
building the routing protocol directly on top of the node id
space is that it avoids the need for a resolution service, as
the id itself serves as the network location, even when node
moves. Therefore when an endpoint ea with id ida wants
to communicate with another endpoint eb with id idb, all ea

needs to do is to send packets directly addressed to idb with-
out any need to discover eb’s location. However, since node
id space has no inherent structure, and bears no resemblance
to the underlying network topology, it is possible that the
protocol’s performance will suffer from long routing stretch.
Such a performance degradation is due to the way DHT op-
erates. In DHT when a node s sends a message to an id idk,
the message is routed via several (logical) hops before reach-
ing the destination, a node d with an id idd closest to idk

1.
At each hop, the message is forwarded to an intermediate

1The closeness is defined by each individual DHT algorithm.

80

Node id space

s

a

d

s

a

d

Network

topology

Figure 1: An example of long stretch caused by un-
correlated node id space and the network topology.

node that has id closer to idk than the current node’s id.
In an overlay network, the underlying routing protocol pro-
vides point-to-point connectivity between nodes. Therefore,
the physical location of nodes does not matter. However, if
the physical node locations have no relation to their ids, as
in the case of node id space, it is possible that when s sends
a message to d via a node a, a maybe far away in physical
hop distance to d than s even though a is closer to d in the
node id space, and therefore it takes a longer path compare
to available shortest path. Fig. 1 illustrate this scenario.

In this work we want to design a new routing framework
for id-based routing. In particular, we want to avoid the
long routing stretch caused by unstructured node id space.
Clearly it is not sufficient to rely on the node id space to
build the routing protocol as it does not take advantage of
the underlying topology information. However, if we build
the protocol based on the addresses derived from the topol-
ogy, e.g., IP addresses, we again has a rigid address space
that is not particularly suited to handle mobility. Thus, the
key idea in our solution is to introduce a virtual id space that
lies in between the node id space and the network topology,
i.e., we assign each node a unique virtual id in addition to
its unique id. We illustrate this concept in Fig. 2.

Our goal is to embed topological information onto this
virtual id space, while at the same time inherit advantages
of the id-based routing. In Fig. 1 an example of long stretch
caused by uncorrelated node id space and the network topol-
ogy is shown. Using shortest path routing the hop distance
between s and d is 2, but using id-based routing the hop
distance becomes 5 as packets need to traverse to a first. In
this case the stretch is 2.5. It is clear that one of the reasons
for having long routing stretch is that there is no correla-
tion between the node id space and the network topology.
Thus, in our design we want the virtual id space to have
the property that if two nodes’ virtual ids are close in log-
ical distance, then they should also be physically close to
avoid the potentially long routing stretch. In addition, by
using a virtual id space layer, we can allow unified address-
ing across heterogeneous networks. Also, the construction of
the virtual id space can be flexible to match different types
of networks.

Node id space

Network topology

Virtual id space

Figure 2: Virtual ID layer which maps the network
topology to Node id space.

3. VIRTUAL ID ROUTING
In this section we present an overview of our virtual rout-

ing protocol. As mentioned in Sec 2, our goal is to have an
intermediate virtual id space layer located in between node
id space and the network topology in such a way that the
virtual id space reflects the topology. The protocol contains
three components: i) the construction of the virtual id space
layer, ii) the routing protocol using virtual ids as addressing
space, and iii) a mapping mechanism that maps unique ids
into virtual ids.

We assume each node i in the network has a unique id u(i)
and a virtual id v(i). For the sake of simplicity we sometimes
write i in place of u(i). We define d(i, j) as the physical hop
distance between i and j. We define p(i, j) as the length
of the longest common prefix between i and j’s virtual ids.
For an l-bit virtual id space Sl, the logical distance between
i and j is defined as δ(i, j) = l−p(i, j). For example, if l = 4
and i and j’s virtual ids are 0110 and 0111 respectively, then
δ(i, j) = 1 (as p(i, j) = 3).

We describe the details of each component in the rest of
this section.

3.1 Virtual Id Space Construction
Existing schemes such as VRR [3] treat the collection of

all unique ids in the network as a node id space, and build
their routing protocol on top of this node id space. Since
node placement is random, the node id space bears no re-
lationship with the network topology. As a consequence,
the routing stretch can be increased unnecessarily. The key
idea in our design is to insert a virtual id layer S between
the node id space and the underlying topology such that S
closely resembles the network topology. That is, if the log-
ical distance between two nodes i and j is small, the hop
distance between i and j is also small, and vice versa. More
precisely, assuming we have a network G = (V, E), with V as
the set of nodes in the network and E as the set of all edges
in the network, our goal is to have a mapping φ : V → S
such that d(i, j) ≤ c · δ(i, j), c ≥ 1.

Our idea in building the virtual id space is based on clus-
tering techniques that are commonly used in mobile ad-hoc
networks. There are distributed and scalable algorithms
suitable for our protocol, such as [2]. The basic idea in
building the id space is to recursively cluster a number of
nodes at a time, and assign certain bits of virtual ids to the
clustered nodes. For example, assuming initially all nodes
in the network are level-0 nodes. If two nodes are close to
each other then these two nodes will form a level-1 node,
and we can assign 1-bit virtual ids (0 and 1) to these two

81

g

i

a

b

k

f

h

j
c

d

e

l

(a) Before virtual id assignment

g(0000)

i(0001)

a(0010)

b(0100)

k(0101)

f(0011)

h(0110)

j(0111)
c(1010)

d(1000)

e(1001)

l(1011)

(b) After virtual id assignment

0

0 1

0 0

0 0

1 1

11

1

0

0

0

1

1
g i a b kf d ch j e
0 0 01 1 1

l

(c) Binary-tree representation of the
virtual id space

Figure 3: A simple network topology with twelve nodes.

nodes Next, we cluster two level-1 nodes to form a level-2
node, and assign additional 1-bit virtual ids to all the nodes
within the level-2 node by prepending the newly assigned
ones to the existing ones, and so on and so forth. The pro-
cess repeats until every node in the network is assigned a
unique virtual id. Similarly, we can cluster m nodes at once
and assign k-bits to these m nodes such that 2k ≥ m. Fig. 3
shows the results of the virtual id assignment for a twelve
node network. We evaluated our clustering based virtual id
assignment schemes on multiple topologies with various val-
ues of m. Fig. 4 summarizes one of the test results for a
topology using 400 nodes for m = 4.

The intuition behind such an approach is simple: every
time we cluster nodes or multi-nodes, we make sure the hop
distance between clustered nodes are bounded. By assigning
fixed bits of virtual ids to clustered nodes, we can make
sure that the “closeness” property is satisfied. In addition,
by building the virtual id space from the bottom-up, two
nodes can start communicating as soon as they are in a same
multi-node. This is particularly suitable in a heterogeneous
environment where each network can build its own virtual id
space and start communicating within the network. When
different networks need to communicate with each other,
all we need is to prepend more bits to virtual ids so that
protocol can address nodes on different networks.

3.2 Routing Protocol
The virtual id space construction gives us an l-bit virtual

id space Sl that has a m-ary tree structure (cf. Fig. 3(c)).
Here we explain our routing scheme using a binary tree
structure. This allows us to deploy Kademlia-like algorithm [6]
for the routing protocol. However, DHT only provides us
part of the solution as there are still challenges we need
to overcome in order to build a DHT-based routing proto-
col. Following Kademlia’s description, each node i in the
network needs to have at least one logical neighbor j with
δ(i, j) = 1 . . . l, as long as such a j exists in the network.
We refer to this condition as the “logical invariant”. As an
example, refer to Figure 3, for node f with vf = 0011 to sat-
isfy the logical invariant, f must have logical neighbors with
prefixes {0010} (dist = 1, for which node a qualifies), {000}
(dist = 2, both g and i are suitable), {01} (dist = 3, nodes
{b, h, k, j} are suitable), and {1} (dist = 4, nodes {d, e, c, l}
are suitable). Note that this relationship is symmetrical,
that is if a node i is another node j’s distance-k neighbor, j
is also i’s distance-k neighbor.

If we have point-to-point connectivity between nodes, the
logical invariant is sufficient for any two nodes to communi-

cate. For three nodes a, b, c, if δ(a, b) = k and δ(a, c) = k,
then δ(b, c) ≤ k − 1. This is because b and c both have the
same logical distance k to a, that means b and c both share
the same l − k bits of the prefix as a, but both had oppo-
site bit to a immediately after the first l − k bits, therefore
δ(b, c) ≤ k − 1. Based on this observation, for a node i to
lookup a node v that is some distance-k away in an overlay
network, it would take k steps for i to find v if every node in
the network satisfies the logical invariant. Thus, we define

i
k
� v as node v is reachable from i in at most k logical steps.
Our routing protocol works as follows. Each node i main-

tains entries to its logical neighbors in its routing table
rti. Assuming the routing table of each node in the net-
work satisfies the logical invariant, the forwarding algorithm
becomes similar to Kademlia’s lookup algorithm. When
a node s wants to send a packet to some destination d,
assuming s knows d’s virtual id v(d), s inspects rts and
finds a logical neighbor n such that δ(s, n) = δ(s, d), since
δ(n, d) < δ(s, d). s then forward the packet to n following
some pre-established routing path Psn. When n receives
the packet from s, n again inspects rtn and selects a logical
neighbor n′ such that δ(n, n′) = δ(n, d), and forwards the
packet to n′. The process repeats until no further progress
can be made.

For forwarding to work, it is clear that we need some way
to establish a physical path between a node i and its logical
neighbor j. To address this issue, we construct the routing
table in a round-by-round manner. Starting from round-1,
at each round-k, a node i searches for a (logical) distance-k
neighbor to be added to rti. The logic behind this con-
struction is because of the the way our virtual id space is
constructed, nodes that are close in terms of the logical dis-
tance are also physically close. Thus, when a node i searches
for a (logical) distance-1 neighbor j1, node j1 is usually a 1-
hop neighbor of i, or at most a few hops away. Once i adds
j1 as its distance-1 neighbor, i can begin searching for a
distance-2 neighbor j1 among itself and j1. If j2 is a 1-hop
neighbor of i, i can add j2 to rti immediately. Otherwise,
if j2 is a 1-hop neighbor of j1, i can add j2 to rti with the
next hop being j1. By repeating this process in a round-
by-round manner, each node can build routing paths to its
logical neighbors progressively.

3.3 Mapping and Forwarding
Although building the routing protocol on top of the struc-

tured virtual id space allows us to overcome limitations of
previous approaches, it has one drawback: since virtual ids
are not persistent, we need a mapping mechanism that maps

82

2 4 6 8
0

2

4

6

8

10

12

Logical distance (uid)

A
ve

ra
ge

ho
p

di
st

an
ce

2 4 6 8 10
0

2

4

6

8

10

12

Logical distance (vid)

A
ve

ra
ge

ho
p

di
st

an
ce

.

Figure 4: Comparison of hop-distance distribution for the nodes using uid and vid. (left) Distribution of
average physical hop distance with respect to logical distance in uid space,(right) Distribution of average
physical hop distance with respect to logical distance in vid space.

each node’s unique id into its virtual id. However, unlike
DNS which is a separate infrastructure, we design our map-
ping mechanism as part of the forwarding process. For ef-
ficiency and scalability, we design the mapping mechanism
based on the idea of hierarchical rendezvous points.

The idea of hierarchical rendezvous points is as follows.
For a node i with a mapping Mi = 〈i, v(i)〉, i selects several
rendezvous points in the network at a progressively larger
area with respect to i itself and stores Mi at these rendezvous
points. We call these rendezvous points as mapping points
(mps). The area here is defined in terms of the virtual id
space. The motivation in selecting a mp at each size of the
area is that if a node is closer to i, its query message does
not need to travel far in order to obtain i’s virtual id, thus
enabling locality-aware mapping mechanism.

Since node failures are not uncommon in wireless scenar-
ios, in our design, for each node, a number of hierarchical
rendezvous points are selected to store its mapping infor-
mation to avoid single-point-of-failure at mapping look-up.
Our virtual id space has a binary tree structure, it allows
us to easily determine where to select the mapping points.
For l-bit virtual ids, we say the entire id space is a level-
l space consists of all nodes in the network. For i with
v(i) = alal−1 . . . a2a1, the level-(l − 1) space (with respect
to i) consists of all nodes starting with prefix {al}, and level-
(l − 2) space consists of all nodes with prefix {alal−1}, and
so on and so forth with a level-1 space consists of nodes with
prefix {alal−1 . . . a2}. For example refer to Fig. 3(c), node
g can select one mapping point in a consistent way in each
level of the virtual id space: {000} (level-1), {00} (level-2),
{0} (level-3), and all nodes with prefixes of either {0} or {1}
(level-4).

To look up i’s mapping, a node j simply computes i’s
potential mapping point (pmp) with respect to its space
starting from level-1. If i’s information cannot be find, j
computes a level-2 pmp for i and so on and so forth, until
i’s information found at level-k pmp, which means that both
i and j reside in the same level-k space. It is clear that as
long as both i and j reside in the same level-k space, a query
packet from j never needs to traverse beyond i’s level-k mp,
i.e., the query cost is bounded by smallest level of the virtual
id space both i and j resides in.

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of nodes

A
ve

ra
ge

 s
tr

et
ch

Without mapping
With mapping

Figure 5: Average stretch of our routing protocol.

The combined mapping and forwarding works as follows.
When a node j needs to communicate with i, it first needs
to obtain i’s virtual id so packets can be delivered to i. To
do so, the first packet from j is a special query packet con-
taining j’s virtual id v(j). The query packet is first sent to
i’s potential mapping points computed by j. Once the query
packet arrives at a node with i’s virtual id, it is forwarded to
i. When i receives the query packet from j, i sends a reply
packet containing its own virtual id v(i) back to j using v(j).
When j receives the reply packet, i and j can communicate
with each other directly using their virtual ids without going
through additional mapping process.

4. PRELIMINARY EVALUATION
In this section we present some preliminary results for our

routing protocol.
We evaluate the routing stretch of our routing protocol un-

der different network settings. The routing stretch is defined
as the ratio of number of physical hops taken by the proto-
col to reach from source to destination node and the short-
est distance between the source and destination in terms of
physical hops. We choose the routing stretch as the metric
for comparison because this is one of the key concerns we

83

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of nodes down

F
ra

ct
io

n
of

 n
ew

 r
ou

tin
g

en
tr

ie
s

Comparison of routing overhead due to nodes going down

Figure 6: Routing table construction overhead for
the wireless scenario.

had when we introduced the intermediate virtual id space.
In addition, we wanted to compare the routing stretch of
our protocol with VRR as it represents the state-of-the-art
in the development of id-based routing protocol, unfortu-
nately code for VRR is not publicly available, and currently
we are in the process of implementing VRR based on the
description provided in the paper. Therefore results are not
provided in this paper for the comparison.

We evaluate our routing protocol under two settings: 1)
first, we assume prior to sending the packets, each source
knows the virtual id of the destination. This allows us to
evaluate the protocol performance based on virtual ids only;
and 2) we assume each source only knows the unique id of the
destination and has to go through the mapping process in or-
der to deliver packets to the destination. This evaluates the
impact of the mapping process on the routing stretch. We
vary the network size from 25 nodes to 200 nodes, and then
randomly select different source s and destination d pairs
to measure the routing stretch. Fig. 5 shows the average
routing stretch with and without mapping for various sizes
of the network. As we can see, when there is no mapping
involved, the routing stretch increases slowly and remains
pretty close to 1 (1.4) for a 200 node network.

When there is mapping involved, the routing stretch in-
creases drastically as the network size increases. This is
not surprising as the mapping mechanism requires a node
to recursively query various mapping points before reach-
ing the destination. However, since the mapping is only
used before two nodes initiate communication, the impact
is reduced for long-lived connection. In addition, various
caching techniques can further reduce the routing stretch
for the mapping.

Wireless Scenario: In the wireless environment nodes
can join and leave more often. In these scenarios routing
protocol will have to compute the new routing tables for
the nodes every time a node goes down. In order to study
the stability of the virtual id scheme, we setup a simulation
environment. In the simulation, random nodes are discon-
nected from the network, and the percentage of total entries
changed in the routing tables is calculated. Using simulation
results we show that the overhead for the recomputation of
routing table entries is very small for our routing protocol.
Fig. 6 shows the routing overhead for our protocol in wireless
scenario.

5. CONCLUSION
Id-based routing is an important step toward the rout-

ing framework for future networks. Although current id-
based routing schemes provide excellent support for scala-
bility and mobility, still they suffer from poor routing effi-
ciency and higher overheads for the mobility. Furthermore
they rely on ad hoc solutions to enhance the routing effi-
ciency which complicates the routing framework. In this
work we present a novel approach in building an id-based
routing to enhance the routing efficiency of such protocols.
This is achieved by allowing a self-configuring virtual id
layer to embed the network topology. Preliminary evalu-
ation demonstrates promising results for better routing ef-
ficiency with much lesser overheads for mobility. We are
currently conducting more simulations and experimenting
with real implementation to provide an extensive evaluation
of the proposed routing framework.

6. REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan,

S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish.
A layered naming architecture for the internet. In
SIGCOMM ’04, New York, NY, USA, 2004. ACM
Press.

[2] S. Basagni. Distributed clustering for ad hoc networks.
Parallel Architectures, Algorithms, and Networks,
1999.(I-SPAN’99) Proceedings. Fourth
InternationalSymposium on, pages 310–315, 1999.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea,
and A. Rowstron. Virtual ring routing: network
routing inspired by dhts. In SIGCOMM ’06, pages
351–362, New York, NY, USA, 2006. ACM Press.

[4] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, and I. Stoica. ROFL: routing
on flat labels. In SIGCOMM ’06, pages 363–374, New
York, NY, USA, 2006. ACM Press.

[5] B. Ford. Unmanaged internet protocol: taming the
edge network management crisis. SIGCOMM Comput.
Commun. Rev., 34(1):93–98, 2004.

[6] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the xor
metric. In Proceedings of IPTPS02, March 2002.

[7] C. Perkins. Ip mobility support for ipv4, rfc 3344.
2002.

[8] C. Perkins and E. Royer. Ad-hoc on-demand distance
vector routing. In Proceedings of IEEE Workshop on
Mobile Computing Systems and Applications, 1999.

[9] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure.
IEEE/ACM Trans. Netw., 12(2):205–218, 2004.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw.,
11(1):17–32, 2003.

84

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

