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ABSTRACT

Influence diffusion and influence maximization in large-scale on-
line social networks (OSNs) have been extensively studied because
of their impacts on enabling effective online viral marketing. Exist-
ing studies focus on social networks with only friendship relations,
whereas the foe or enemy relations that commonly exist in many
OSNs, e.g., Epinions and Slashdot, are completely ignored. In this
paper, we make the first attempt to investigate the influence diffu-
sion and influence maximization in OSNs with both friend and foe
relations, which are modeled using positive and negative edges on
signed networks. In particular, we extend the classic voter model to
signed networks and analyze the dynamics of influence diffusion of
two opposite opinions. We first provide systematic characterization
of both short-term and long-term dynamics of influence diffusion in
this model, and illustrate that the steady state behaviors of the dy-
namics depend on three types of graph structures, which we refer to
as balanced graphs, anti-balanced graphs, and strictly unbalanced
graphs. We then apply our results to solve the influence maximiza-
tion problem and develop efficient algorithms to select initial seeds
of one opinion that maximize either its short-term influence cover-
age or long-term steady state influence coverage. Extensive sim-
ulation results on both synthetic and real-world networks, such as
Epinions and Slashdot, confirm our theoretical analysis on influ-
ence diffusion dynamics, and demonstrate that our influence maxi-
mization algorithms perform consistently better than other heuristic
algorithms.
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1. INTRODUCTION
As the popularity of online social networks (OSNs) such as Face-

book and Twitter continuously increases, OSNs have become an
important platform for the dissemination of news, ideas, opinions,
etc. The openness of the OSN platforms and the richness of con-
tents and user interaction information enable intelligent online rec-
ommendation systems and viral marketing techniques. For exam-
ple, if a company wants to promote a new product, it may identify
a set of influential users in the online social network and provide
them with free sample products. They hope that these influential
users could influence their friends, and friends of friends in the net-
work and so on, generating a large influence cascade so that many
users adopt their product as a result of such word-of-mouth effect.
The question is how to select the initial users given a limited budget
on free samples, so as to influence the largest number of people to
purchase the product through this “word-of-mouth” process. Sim-
ilar situations could apply to the promotion of ideas and opinions,
such as political candidates trying to find early supporters for their
political proposals and agendas, government authorities or com-
panies trying to win public support by finding and convincing an
initial set of early adopters to their ideas.

The above problem is referred to as the influence maximization

problem in the literature, which has been extensively studied in re-
cent years [8–10, 15, 16, 19, 23, 34, 36]. In these studies, several
influence diffusion models are proposed to formulate the under-
lying influence propagation processes, including linear threshold
(LT) model, independent cascade (IC) model, voter model, etc. A
number of approximation algorithms and scalable heuristics are
designed under these models to solve the influence maximization
problem.

However, all existing studies only look at networks with positive
(i.e., friend, altruism, or trust) relationships, where in reality, rela-
tionships also include negative ones, such as foe, spite or distrust
relationships. In Ebay, users develop trust and distrust in agents
in the network; In online review and news forums, such as Epin-
ions and Slashdot, readers approve or denounce reviews and arti-
cles of each other. Some recent studies [11, 21, 22] already look
into the network structures with both positive and negative rela-
tionships. As a common sense exploited in many existing social
influence studies [8–10, 15, 19], positive relationships carry the in-
fluence in a positive manner, i.e., you would more likely trust and
adopt your friends’ opinions. In contrast, we consider that nega-
tive relationships often carry influence in a reverse direction — if
your foe chooses one opinion or votes for one candidate, you would
more likely be influenced to do the opposite. This echoes the prin-
ciples that “the friend of my enemy is my enemy” and “the enemy
of my enemy is my friend”. Structural balance theory has been
developed based on these assumptions in social science (see Chap-



ter 5 of [13] and the references therein). We acknowledge that in
real social networks, people’s reactions to the influence from their
friends or foes could be complicated, i.e., one could take the op-
posite opinion of what her foe suggests for one situation or topic,
but may adopt the suggestion from the same person for a differ-
ent topic, because she trusts her foe’s expertise in that particular
topic. In this study, we consider the influence diffusion for a single
topic, where one always takes the opposite opinion of what her foe
suggests. This is our first attempt to model influence diffusion in
signed networks, and such topic-dependent simplification is com-
monly employed in prior influence diffusion studies on unsigned
networks [8–10, 15, 16, 19]. Our work aims at providing a math-
ematical analysis on the influence diffusion dynamic incorporated
with negative relationship and applying our analysis to the algorith-
mic problem of influence maximization.

1.1 Our contributions
In this paper, we extend the classic voter model [12,18] to incor-

porate negative relationships for modeling the diffusion of opinions
in a social network. Given an unsigned directed graph (digraph),
the basic voter model works as follows. At each step, every node in
the graph randomly picks one of its outgoing neighbors and adopts
the opinion of this neighbor. Thus, the voter model is suitable to in-
terpret and model opinion diffusions where people’s opinions may
switch back and forth based on their interactions with other people
in the network. To incorporate negative relationships, we consider
signed digraphs in which every directed edge is either positive or
negative, and we consider the diffusion of two opposite opinions,
e.g., black and white colors. We extend the voter model to signed
digraphs, such that at each step, every node randomly picks one of
its outgoing neighbors, and if the edge to this neighbor is positive,
the node adopts the neighbor’s opinion, but if the edge is negative,
the node adopts the opposite of the neighbor’s opinion (Section 2).
We provide detailed mathematical analysis on the voter model

dynamics for signed networks (Section 3). For short-term dynam-
ics, we derive the exact formula for opinion distribution at each
step. For long-term dynamics, we provide closed-form formulas
for the steady state distribution of opinions. We show that the
steady state distribution depends on the graph structure: we divide
signed digraphs into three classes of graph structures — balanced
graphs, anti-balanced graphs, and strictly unbalanced graphs, each
of which leads to a different type of steady state distributions of
opinions. While balanced and unbalanced graphs have been exten-
sively studied by structural balance theory in social science [13],
the anti-balanced graphs form a new class that has not been cov-
ered before, to the best of our knowledge. Moreover, our long-term
dynamics not only cover strongly connected and aperiodic digraphs
that most of such studies focus on, but also weakly connected and
disconnected digraphs, making our study more comprehensive.
We then study the influence maximization problem under the

voter model for signed digraphs (Section 4). The problem here is
to select at most k initial white nodes while all others are black, so
that either in short term or long term the expected number of white
nodes is maximized. This corresponds to the scenario where one
opinion is dominating the public and an alternative opinion (e.g. a
competing political agenda, or a new innovation) tries to win over
supporters as much as possible by selecting some initial seeds to
influence on. We provide efficient algorithms that find optimal so-
lutions for both short-term and long-term cases. In particular, for
long-term influence maximization, our algorithm provides a com-
prehensive solution covering weakly connected and disconnected
signed digraphs, with nontrivial computations on influence cover-
age of seed nodes.

Finally, we conduct extensive simulations on both real-world and
synthetic networks to verify our analysis and to show the effec-
tiveness of our influence maximization algorithm (Section 5). The
simulation results demonstrate that our influence maximization al-
gorithms perform consistently better than all other heuristic algo-
rithms. To the best of our knowledge, we are the first to study in-
fluence diffusion and influence maximization in signed networks,
and the first to apply the voter model to this case and provide effi-
cient algorithms for influence maximization under voter model for
signed networks.

Due to space constraints, some of the proofs and additional ma-
terials are omitted and delegated to our technical report [24].

1.2 Related work
In this subsection, we discuss the topics that are closely related to

our problem, such as: (1) influence maximization and voter model,
(2) signed networks, and (3) competitive influence diffusion.
Influence maximization and voter model. Influence maximiza-
tion has been extensively studied in the literature. The initial
work [19] proposes several influence diffusion models and pro-
vides the greedy approximation algorithm for influence maximiza-
tion. More recent works [8–10, 15, 16, 23, 34] study efficient op-
timizations and scalable heuristics for the influence maximization
problem. In particular, the voter model is proposed in [12, 18], and
is suitable for modeling opinion diffusions in which people may
switch opinions back and forth from time to time due to the interac-
tions with other people in the network. Even-Dar and Shapira [15]
study the influence maximization problem in the voter model on
simple unsigned and undirected graphs, and they show that the best
seeds for long-term influence maximization are simply the highest
degree nodes. As a contrast, we show in this paper that seed se-
lection for signed digraphs are more sophisticated, especially for
weakly connected or disconnected signed digraphs. More voter
model related research is conducted in physics domain, where the
voter model, the zero-temperature Glauber dynamics for the Ising
model, invasion process, and other related models of population dy-
namics belong to the class of models with two absorbing states and
epidemic spreading dynamics [1, 30, 38]. However, none of these
works study the influence diffusion and influence maximization of
voter model under signed networks.
Signed networks. The signed networks with both positive and neg-
ative links have gained attentions recently [3, 20–22]. In [21, 22],
the authors empirically study the structure of real-world social net-
works with negative relationships based on two social science the-
ories, i.e., balance theory and status theory. Kunegis et al. [20]
study the spectral properties of the signed undirected graphs, with
applications in link predictions, spectral clustering, etc. Borgs et
al. [3] proposes a generalized PageRank algorithm [35] for signed
networks with application to online recommendations, where the
distrust relations are considered as adversarial or arbitrary user be-
haviors, thus the outgoing relations of distrusted users are ignored
while ranking nodes. Our algorithm can also be viewed as a node
ranking algorithm that generalizes the PageRank algorithm, by
treating distrust links as generating negative influence rather than
ignoring distrusted users’ opinions, and thus our ranking method is
different from [3]. Overall, none of the above work studies influ-
ence diffusion and influence maximization in signed networks.
Competitive influence diffusion. A number of recent studies fo-
cus on competitive influence diffusion and maximization [2, 4, 6,
7, 17, 29], in which two or more competitive opinions or innova-
tions are diffusing in the network. Although they consider two or
more competitive or opposing influence diffusions, they are all on
unsigned networks, different from our study here on diffusion with
both positive and negative relationships.



2. VOTER MODEL ON SIGNED NET-

WORKS
We consider a weighted directed graph (digraph) G =

(V,E,A), where V is the set of vertices, E is the set of directed
edges, and A is the weighted adjacency matrix with Aij 6= 0 if and
only if (i, j) ∈ E, with Aij as the weight of edge (i, j). The voter
model was first introduced for unsigned graphs, with nonnegative
adjacency matrices A’s. In this model, each node holds one of two
opposite opinions, represented by black and white colors. Initially
each node has either black or white color. At each step t ≥ 1, every
node i randomly picks one outgoing neighbor j with the probabil-
ity proportional to the weight of (i, j), namely Aij/

∑

ℓ
Aiℓ, and

changes its color to j’s color. The voter model also has a random
walk interpretation. If a random walk starts from i and stops at
node j at step t, then i’s color at step t is j’s color at step 0.
In this paper, we extend the voter model to signed digraphs, in

which the adjacency matrixAmay contain negative entries. A pos-
itive entry Aij represents that i considers j as a friend or i trusts j,
and a negative Aij means that i considers j as a foe or i distrusts
j. The absolute value |Aij | represents the strength of this trust or
distrust relationship. The voter model is thus extended naturally
such that one always takes the same opinion from his/her friend,
and the opposite opinion of his/her foe. Technically, at each step
t ≥ 1, i randomly picks one outgoing neighbor j with probabil-
ity |Aij |/

∑

ℓ
|Aiℓ|, and if Aij > 0 (edge (i, j) is positive) then i

changes its color to j’s color, but if Aij < 0 (edge (i, j) is nega-
tive) then i changes its color to the opposite of j’s color. The ran-
dom walk interpretation can also be extended for signed networks:
if the t-step random walk from i to j passes an even number of
negative edges, then i’s color at step t is the same as j’s color at
step 0; while if it passes an odd number of negative edges, then i’s
color at step t is the opposite of j’s color at step 0.

Table 1: Notations and terminologies
G = (V,E,A),
Ḡ = (V,E, Ā)

G is a signed digraph, with signed adjacency ma-
trix A and Ḡ is the unsigned version of G, with
adjacency matrix Ā

A+, A−
A+ (resp. A−) is the non-negative adjacency
matrix representing positive (resp. negative)
edges of G, with A = A+ − A− and Ā =
A+ +A−.

1, π, x0, xt, x,
xe, xo

Vector forms. All vectors are |V |-dimensional
column vectors by default; 1 is all one vector, π is
the stationary distribution of an ergodic digraph
Ḡ; x0 (resp. xt) is the white color distribution
at the beginning (resp. at step t); x is the steady
state white color distribution; xe (resp. xo) is
the steady state white color distribution for even
(resp. odd) steps.

d, d+, d−, D
d, d+, and d− are weighted out-degree vec-
tors of G, where d = Ā1, d+ = A+1, and
d− = A−1; D = diag[d] is the diagonal de-
gree matrix filled with entries of d.

P , P̄
P = D−1A is the signed transition matrix of
G and P̄ = D−1Ā is the transition probability
matrix of Ḡ.

vZ , v̂S , v̂Z,SZ

Given a vector v, a node set Z ⊆ V , vZ is the
projection of v on Z. Given a partition S, S̄ of
V , v̂S is signed such that v̂S(i) = v(i) if i ∈ S,
and v̂S(i) = −v(i) if i 6∈ S. Given a partition
SZ , S̄Z of Z, v̂Z,SZ

is taking the projection of
v on Z first, then negating the signs for entries in
S̄Z .

I , ÎS , BZ

I is the identity matrix. ÎS = diag[1̂S ] is the
signed identity matrix. BZ is the projection of a
matrix B to Z ⊆ V .

Given a signed digraph G = (V,E,A), let G+ = (V,E+, A+)
andG− = (V,E−, A−) denote the unsigned subgraphs consisting
of all positive edges E+ and all negative edges E−, respectively,
where A+ and A− are the corresponding non-negative adjacency
matrices. Thus we have A = A+ − A−. Similar to unsigned di-
graphs,G is aperiodic if the greatest common divisor of the lengths
of all cycles in G is 1, and G is ergodic if it is strongly connected
and aperiodic. A sink component of a signed digraph is a strongly
connected component that has no outgoing edges to any nodes out-
side the component. When studying the long-term dynamics of the
voter model, we assume that all signed strongly connected compo-
nents are ergodic. We first study the case of ergodic graphs, and
then extend it to the more general case of weakly connected or dis-
connected graphs with ergodic sink components. Table 1 provides
notations and terminologies used in the paper.

3. ANALYSIS OF VOTER MODEL DY-

NAMICS ON SIGNED DIGRAPHS
In this section, we study the short-term and long-term dynamics

of the voter model on signed digraphs. In particular, we answer the
following two questions.
(i) Short-term dynamics: Given an initial distribution of black
and white nodes, what is the distribution of black and white nodes
at step t > 0?
(ii) Convergence of voter model: Given an initial distribution of
black and white nodes, would the distribution converge? If so, what
is the steady state distribution of black and white nodes?

3.1 Short-term dynamics
To study voter model dynamics on signed digraphs, we first de-

fine the signed transition matrix as follows.

Definition 1 (Signed transition matrix). Given a signed digraph

G = (V,E,A), we define the signed transition matrix of G as

P = D−1A, where D = diag[di] is the diagonal matrix and

di =
∑

j∈V |Aij | is the weighted out-degree of node i.

Next proposition characterizes the dynamics of the voter model
at each step using the signed transition matrix.

Proposition 1. LetG = (V,E,A) be a signed digraph and denote
the initial white color distribution vector as x0, i.e., x0(i) repre-
sents the probability that node i is white initially. Then, the white
color distribution at step t, denoted by xt can be computed as

xt = P tx0 + (

t−1
∑

i=0

P i)g−, (1)

where g− = D−1A−
1, i.e. g−(i) is the weighted fraction of out-

going negative edges of node i.

PROOF. (Sketch) Based on the signed digraph voter model de-
fined in Section 2, xt can be iteratively computed as

xt(i) =
∑

j∈V

A+
ij

di
xt−1(j) +

∑

j∈V

A−
ij

di
(1− xt−1(j)). (2)

The matrix form of eq.(2) yields Eq.(1).

3.2 Convergence of signed transition matrix
Eq.(1) infers that the long-term dynamic, i.e., the vector xt

when t goes to infinity, depends critically on the limit of P t and
∑t−1

i=0 P
i. We show below that the limiting behaviors of the two

matrix sequences are fundamentally determined by the structural



balance of signed digraph G, which connects to the social balance
theory well studied in the social science literature (cf. [13]). We
now define three types of signed digraphs based on their balance
structures.

Definition 2 (Structural balance of signed digraphs). Let G =
(V,E,A) be a signed digraph.

1. Balanced digraph. G is balanced if there exists a partition

S, S̄ of nodes in V , such that all edges within S and S̄ are

positive and all edges across S and S̄ are negative.

2. Anti-balanced digraph. G is anti-balanced if there exists a

partition S, S̄ of nodes in V , such that all edges within S and

S̄ are negative and all edges across S and S̄ are positive.

3. Strictly unbalanced digraph. G is strictly unbalanced if G
is neither balanced nor anti-balanced.

The balanced digraphs defined above correspond to the balanced
graphs originally defined in social balance theory. It is known that
a balanced graph can be equivalently defined by the condition that
all circles inG without considering edge directions contain an even
number of negative edges [13]. On the other hand, the concept of
anti-balanced digraphs seems not appearing in the social balance
theory. Note that balanced digraphs and anti-balanced digraphs
are not mutually exclusive. For example, a four node circle with
one pair of non-adjacent edges being positive and the other pair
being negative is both balanced and anti-balanced. However, for
studying long-term dynamics, we only need the above categoriza-
tion for aperiodic digraphs, for which we show below that balanced
digraphs and anti-balanced digraphs are mutually exclusive.

Proposition 2. An aperiodic digraph G cannot be both balanced

and anti-balanced.

With the above proposition, we know that balanced graphs, anti-
balanced graphs, and strictly unbalanced graphs indeed form a
classification of aperiodic digraphs, where anti-balanced graphs
and strictly unbalanced graphs together correspond to unbalanced
graphs in the social balance theory. We identify anti-balanced
graphs as a special category because it has a unique long-term dy-
namic behavior different from other graphs. An example of anti-
balanced graphs is a graph with only negative edges. In general,
anti-balanced graphs could be viewed as an extreme in which many
hostility exist among individuals, e.g., networks formed by bidders
in auctions [5, 33].
The next lemma characterizes the limiting behavior of P t of er-

godic signed digraphs with all three balance structures. Given a
signed digraph G = (V,E,A), let Ḡ = (V,E, Ā) corresponds to
its unsigned version (Āij = |Aij | for all i, j ∈ V ). When Ḡ is
ergodic, a random walk on Ḡ has a unique stationary distribution,
denoted as π. That is, πT = πT P̄ , where P̄ = D−1Ā is the tran-
sition probability matrix for Ḡ. Henceforth, we always use S, S̄
to denote the corresponding partition for either balanced graphs or
anti-balanced graphs.

Lemma 1. Given an ergodic signed digraph G = (V,E,A), let
Ḡ = (V,E, Ā) be the unsigned digraph. When G is balanced or

strictly unbalanced, P t converges, and when G is anti-balanced,

the odd and even subsequences of P t converge to two opposite ma-

trices, i.e.,

Balanced G: limt→∞ P t = 1̂S π̂
T
S

Strictly unbalanced G: limt→∞ P t = 0

Anti-balanced G: limt→∞ P 2t = 1̂S π̂
T
S

limt→∞ P 2t+1 = −1̂S π̂
T
S ,

The above lemma clearly shows different convergence behaviors
of P t for three types of graphs. In particular, P t of anti-balanced
graphs exhibits a bounded oscillating behavior in long term.

Now, we consider a weakly connected signed digraph G =
(V,E,A) with one ergodic sink component GZ with node set Z,
which only has incoming edges from the rest of the signed digraph
GX with node set X = V \ Z. Then, the signed transition matrix
P has the following block form.

P =

[

PX PY

0 PZ

]

, (3)

where PX and PZ are the block matrices for components GX and
GZ , and PY represents the one-way connections from GX to GZ .
Then, the t-step transition matrix P t can be expressed as

P t =

[

P
(t)
X P

(t)
Y

0 P
(t)
Z

]

, (4)

where P (t)
X = P t

X , P (t)
Z = P t

Z and P
(t)
Y =

∑t−1
i=0 P

i
XPY P t−1−i

Z .
When GZ is balanced or anti-balanced, we use SZ , S̄Z to denote
the partition of Z defining its balance or anti-balance structure.
Then, we denote column vectors

ub = (IX − PX)−1PY 1̂Z,SZ
, (5)

and uu = (IX + PX)−1PY 1̂Z,SZ
. (6)

The reason that IX −PX is invertible is because limt→∞ P t
X = 0,

which is in turn because there is a path from any node i in GX

to nodes in Z (since Z is the single sink), and thus informally a
random walk from i eventually reaches and then stays in GZ . The
same reason applies to IX + PX .

Let πZ denote the stationary distribution of nodes in GZ , and
π̂Z,SZ

is signed, with π̂Z,SZ
(i) = πZ(i) for i ∈ SZ , and

π̂Z,SZ
(i) = −πZ(i), otherwise. Lemma 2 discloses the conver-

gence of P t given various balance structures of GZ .

Lemma 2. Given the formulation in Eq.(4), we have

Balanced GZ : limt→∞ P t =

[

0 ubπ̂
T
Z,SZ

0 1̂Z,SZ
π̂T
Z,SZ

]

Strictly unbalanced GZ : limt→∞ P t = 0

Anti-balanced GZ : limt→∞ P 2t =

[

0 −uuπ̂
T
Z,SZ

0 1̂Z,SZ
π̂T
Z,SZ

]

limt→∞ P 2t+1 =

[

0 uuπ̂
T
Z,SZ

0 −1̂Z,SZ
π̂T
Z,SZ

]

Weakly connected digraphs with multiple ergodic sinks or dis-
connected digraphs can be similarly analyzed.

3.3 Long-term dynamics
Based on the structural balance classification and the conver-

gence of signed transition matrix discussed above, we are now
ready to analyze the long-term dynamics of the voter model on
signed digraphs. Formally, we are interested in characterizing xt

with t → ∞, i.e.,

x = lim
t→∞

xt = lim
t→∞

(P tx0 + (

t−1
∑

i=0

P i)g−). (7)

If the even and odd subsequences of xt converge separately, we
denote xe = limt→∞ x2t, xo = limt→∞ x2t+1.

In the following theorem, we first discuss the long-term dynam-
ics of voter model on ergodic signed digraphs.



Theorem 1. Let G = (V,E,A) be an ergodic signed digraph, we

have

Balanced G: x = 1̂S π̂
T
S (x0 −

1
2
1) + 1

2
1 (8)

Strictly unbalanced G: x = 1
2
1 (9)

Anti-balanced G: xe = 1̂S π̂
T
S (x0 −

1
2
1) + 1

2
1 (10)

xo = −1̂S π̂
T
S (x0 −

1
2
1) + 1

2
1 (11)

Theorem 1 has several implications. First of all, for strictly un-
balanced digraphs, each node has equal steady state probability of
being black or white, and it is not determined by the initial distri-
bution x0. Secondly, anti-balanced digraphs has the same steady
state distribution as the corresponding balanced graph for even
steps, and for odd steps, the distribution oscillates to the opposite
(xo = 1− xe).
For a balanced ergodic digraph G with partition S, S̄, it is easy

to check that it has the following two equilibrium states: in one
state all nodes in S are white while all nodes in S̄ are black; and
in the other state all nodes in S are black while all nodes in S̄
are white. We call these two states the polarized states. Using
random walk interpretation, we show in the following theorem that
with probability 1, the voter model dynamic converges to one of
the above two equilibrium states.

Theorem 2. Given an ergodic signed digraphG = (V,E,A), ifG
is balanced with partition S, S̄, the voter model dynamic converges
to one of the polarized states with probability 1, and the probability
of nodes in S being white is π̂T

S (x0−
1
2
1)+ 1

2
. Similarly, ifG is anti-

balanced, with probability 1 the voter model dynamic oscillates

between the two polarized states eventually, and the probability of

nodes in S being white at even steps is π̂T
S (x0 −

1
2
1) + 1

2
.

Theorem 3 introduces the long-term dynamics of the weakly
connected signed digraphs. We consider weakly connected G with
a single sink ergodic componentGZ , and use the same notations as
in Section 3.2.

Theorem 3. Let G = (V,E,A) be a weakly connected signed di-

graph with a single sink componentGZ and a non-sink component

GX . The long term white color distribution vector x is expressed

in two parts:

xT = lim
t→∞

xT
t = [xT

XY , xT
Z ].

where xZ is the limit of xtZ on GZ with initial distribution x0Z

and is given as in Theorem 1, and vector xXY is given below with

respect to the balance structure of GZ :

Balanced GZ : xXY = 1
2
1X + ubπ̂

T
Z,SZ

(x0Z − 1
2
1Z)

Strictly unbalanced GZ : xXY = 1
2
1X

Anti-balanced GZ , even t: xXY,e = 1
2
1X − uuπ̂

T
Z,SZ

(x0Z − 1
2
1Z)

Anti-balanced GZ , odd t: xXY,o = 1
2
1X + uuπ̂

T
Z,SZ

(x0Z − 1
2
1Z) ,

where ub and uu are defined in Eq.(5) and Eq.(6).

Theorem 3 characterizes the long-term dynamics when the un-
derlying graph is a weakly connected signed digraph with one er-
godic sink component. We can see that the results for balanced and
anti-balanced sink components are more complicated than the er-
godic digraph case, since how non-sink components are connected
to the sink subtly affects the final outcome of the steady state be-
havior. In steady state, while the sink component is still in one of
the two polarized states as stated in Theorem 2, the non-sink com-
ponents exhibit more complicated color distribution, for which we

provide probability characterizations in Theorem 3. Our results can
be readily extended to the case with more than one ergodic sink
components and disconnected digraphs. When the network only
contains positive directed edges, the voter model dynamics can be
interpreted using digraph random walk theory [25–28].

4. INFLUENCE MAXIMIZATION
With the detailed analysis on voter model dynamics for signed

digraphs, we are now ready to solve the influence maximization
problem. Intuitively, we want to address the following question: If
only at most k nodes could be selected initially and be turned white

while all other nodes are black, how should we choose seed nodes

so as to maximize the expected number of white nodes in short term

and in long term, respectively?

4.1 Influence maximization problem
We consider two types of short-term influence objectives, one

is the instant influence, which counts the total number of influ-
enced nodes at a step t > 0; the other is the average influence,
which takes the average number of influenced nodes within the first
t steps. These two objectives have different implications and appli-
cations. For example, political campaigns try to convince voters
who may change their minds back and forth, but only the voters’
opinions on the voting day are counted, which matches the instant
influence. On the other hand, a credit card company would like to
have customers keep using its credit card service as much as pos-
sible, which is better interpreted by the average influence. When t
is sufficiently large, it becomes the long-term objective, and long-
term average influence coincides with long-term instant influence
when the dynamic converges.

Formally, we define the short-term instant influence ft(x0) and
the short-term average influence f̄t(x0) as follows:

ft(x0) := 1
Txt(x0) and f̄t(x0) :=

∑t

i=0 fi(x0)

t+ 1
. (12)

Moreover, we define long term influence as

f(x0) := lim
t→∞

∑t

i=0 fi(x0)

t+ 1
. (13)

Note that when the dynamic converges (e.g. ergodic balanced or
ergodic strictly unbalanced graphs), f(x0) = limt→∞ ft(x0). For
ergodic anti-balanced graphs (or sink components), it is essentially
the average of even- and odd-step limit influence.

Given a set W ⊆ V , Let eW be the vector in which eW (j) =
1 if j ∈ W and eW (j) = 0 if j 6∈ W , which represents the
initial seed distribution with only nodes in W as white seeds. Let
ei be the shorthand of e{i}. Unlike unsigned graphs, if initially
no white seeds are selected on a signed digraph G, i.e., x0 = 0,
the instant influence ft(0) at step t is in general non-zero, which
is referred to as the ground influence of the graph G at t. The
influence contribution of a seed set W does not count such ground
influence, as shown in definition 3.

Definition 3 (Influence contribution). The instant influence con-
tribution of a seed setW to the t-th step instant influence objective,
denoted by ct(W ), is the difference between the instant influence

at step t with only nodes in W selected as seeds and the ground

influence at step t: ct(W ) = ft(eW ) − ft(0). The average in-
fluence contribution c̄t(W ) and long-term influence contribution
c(W ) are defined in the same way: c̄t(W ) = f̄t(eW )− f̄t(0) and
c(W ) = f(eW )− f(0).

We are now ready to formally define the influence maximization
problem.



Definition 4 (Influence maximization). The influence maximiza-
tion problem for short-term instant influence is finding a seed set

W of at most k seeds that maximizes W ’s instance influence con-

tribution at step t, i.e., finding W ∗
t = argmax|W |≤k ct(W ).

Similarly, the problem for average influence and long-term in-

fluence is finding W̄ ∗
t = argmax|W |≤k c̄t(W ) and W ∗ =

argmax|W |≤k c(W ), respectively.

We now provide some properties of influence contribution,
which lead to the optimal seed selection rule. By Eq.(1), we have

ct(W ) = ft(eW )− ft(0) = 1
Txt(eW )− 1

Txt(0) = 1
TP teW .

(14)

Let ct(i) be the shorthand of ct({i}), and let ct = [ct(i)] de-
note the vector of influence contribution of individual nodes. Then
cTt = [ct(i)]

T = 1TP t. When t → ∞, the long term influence
contributions of individual nodes are obtained as a vector c:

cT = lim
t→∞

∑t

i=0 c
T
i

t+ 1
= lim

t→∞

1T
∑t

i=0 P
i

t+ 1
. (15)

When P t converges, we simply have cT = 1
T lim

t→∞
P t. (16)

Lemma 3 below discloses the important property that the influ-
ence contribution is a linear set function.

Lemma 3. Given a white seed set W , ct(W ) =
∑

i∈W ct(i),
c̄t(W ) =

∑

i∈W c̄t(i), and c(W ) =
∑

i∈W c(i).

Given a vector v, let n+(v) denote the number of positive entries
in v. By applying Lemma 3, we have the optimal seed selection rule
for instant influence maximization as follows.
Optimal seed selection rule for instant influence maximiza-

tion. Given a signed digraph and a limited budget k, selecting
topmin{k, n+(ct)} seeds with the highest ct(i)’s, i ∈ V , leads to

the maximized instant influence at step t > 0.
Note that the influence contributions of some nodes may be neg-

ative and these nodes should not be selected as white seeds, and
thus the optimal solution may have less than k seeds. The rules
for average influence maximization and long-term influence maxi-
mization are patterned in the same way. Therefore, the central task
now becomes the computation of the influence contributions of in-
dividual nodes. Below, we will introduce our SVIM algorithm, for
Signed Voter model Influence Maximization.

4.2 Short-term influence maximization
By applying Definition 3 and Lemma 3, we develop SVIM-S al-

gorithm to solve the short-term instant and average influence max-
imization problem, as shown in Algorithm 1.

Algorithm 1 Short-term influence maximization SVIM-S
1: INPUT: Signed transition matrix P , short-term period t, bud-

get k;
2: OUTPUT: White seed set W .
3: ct = 1; c̄t = 1;
4: for i = 1 : t do
5: cTt = cTt P ;(for instant influence maximization.)
6: c̄t = c̄t + ct; (for average influence maximization.)
7: W = topmin{k, n+(ct)} (resp. min{k, n+(c̄t)}) nodes with

the highest ct(i) (resp. c̄t(i)) values, for instant (resp. average)
influence maximization.

SVIM-S algorithm requires t vector-matrix multiplications, each
of which takes |E| times entry-wise multiplication operations.
Hence the total time complexity of SVIM-S is O(t · |E|).

4.3 Long-term influence maximization
We now study the long-term influence contribution c and intro-

duce the corresponding influence maximization algorithm SVIM-
L. We will see that the computation of influence contribution c
and seed selection schemes depends on the structural balance and
connectedness of the graph. While seed selection for balanced er-
godic digraphs still has intuitive explanations, the computation for
weakly connected and disconnected digraphs is more involved and
less intuitive.

4.3.1 Case of ergodic signed digraphs
When the signed digraph G = (V,E,A) is ergodic, Lemma 4

below characterizes the long-term influence contributions of nodes,
with respect to various balance structures.
Lemma 4. Consider an ergodic signed digraph G = (V,E,A).
If G is balanced, with bipartition S and S̄, the influence contribu-
tion vector c = (|S| − |S̄|)π̂S . If G is anti-balanced or strictly
unbalanced, c = 0.

Based on Lemma 4, Algorithm 2 summarizes how to compute
the long-term influence contribution c on ergodic signed digraphs.

Algorithm 2 c = ergodic(G)

1: INPUT: Signed transition matrix P .
2: OUTPUT: Long term influence contribution vector c
3: Detect the structure of ergodic signed digraph G;
4: if G is balanced, with bipartition S and S̄ then

5: Compute stationary distribution π of P̄ ;
6: c = (|S| − |S̄|)π̂S ;
7: else

8: c = 0;

Lemma 4 suggests that for ergodic balanced digraphs, we should
pick the larger component, e.g., S, if |S| > |S̄|, and select the top
min{k, |S|} nodes from S with the largest stationary distributions
as white seeds. Selecting these nodes will make the probability of
the larger component being white the largest.

4.3.2 Case of weakly connected signed digraphs
We first consider a weakly connected signed G which has a sin-

gle ergodic sink componentGZ with only incoming edges from the
remaining nodes X = V \ Z.
Lemma 5. Consider a weakly connected digraph G = (V,E,A)
with a single ergodic sink component GZ . If GZ is balanced, with
partition SZ and S̄Z , the long term influence contribution vector

cT = [cTX , cTZ ], where cX = 0X and cZ = (1TXub + |SZ | −
|S̄Z |)π̂Z,SZ

. If G is anti-balanced or strictly unbalanced, c = 0.

Lemma 5 indicates that influence contribution of the balanced
ergodic sink component is more complicated than that of the bal-
anced ergodic digraph. This is because the sink component affects
the colors of the non-sink component in a complicated way depend-
ing on how non-sink and sink components are connected. There-
fore, the optimal seed selection depends on the calculation of the
influence contributions of each sink node, and is not as intuitive as
that for the ergodic digraph case.
More sink components. When there exist m > 1 ergodic sink
components, i.e., GZ1, GZ2, · · · , GZm, the rest of the graph G is
considered as a single component GX . Then the signed transition
matrix P and P t can be written as

P =

















PX PY 1 · · · PY m

0 PZ1 0 0

0 0
. . . 0

0 0 0 PZm

















, P t =



















P t
X P

(t)
Y 1 · · · P

(t)
Y m

0 P t
Z1 0 0

0 0
. . . 0

0 0 0 P t
Zm





















where P
(t)
Y i =

∑t−1
j=0 P

j
XPY iP

t−1−j
Zi . Hence, each sink ergodic

component PZi along with PX independently follows Lemma 5.
Algorithm 3 below summarizes how to compute the node influence
contributions of weakly connected signed digraphs. Note that by
our assumption, we consider all sink components to be ergodic.

Algorithm 3 c = weakly(G)

1: INPUT: Signed transition matrix P .
2: OUTPUT: Influence contribution vector c.
3: Detect the structure of the weakly connected signed digraph

G, and find its m ≥ 1 signed ergodic sink components
GZ1, · · · , GZm;

4: for i = 1 : m do

5: if GZi is balanced with partition SZi, S̄Zi then

6: Compute stationary distribution πZi of P̄Zi;
7: ubi = (IX − PX)−1PY i1̂Zi,SZi

;
8: cZi = (1TXubi + |SZi| − |S̄Zi|)π̂

T
Zi,SZi

;
9: c = [0X ; cZ1; · · · ; cZm]

4.3.3 General case and SVIM-L algorithm

Given the above systematic analysis, we are now in a position to
summarize and introduce our SVIM-L algorithm which solves the
long-term voter model influence maximization problem for general
aperiodic signed digraphs.
In general, a signed digraph consists m ≥ 1 disconnected com-

ponents, within each of which the node influence contribution fol-
lows Lemma 5. The long-term signed voter model influence maxi-
mization (SVIM-L) algorithm is constructed in Algorithm 4.

Algorithm 4 Long-term influence maximization SVIM-L

1: INPUT: Signed transition matrix P , budget k.
2: OUTPUT: White seed set W .
3: Detect the structure of a general aperiodic signed digraph G,

and find the m ≥ 1 disconnected components G1, · · · , Gm;
4: for i = 1 : m do

5: cGi
= weakly(Gi);

6: c = [cG1
; · · · ; cGm

];
7: W = top min{k, n+(c)} nodes with the highest c(i) values.

Complexity analysis. We consider G = (V,E,A) to be weakly
connected, since disconnected graph case can be treated indepen-
dently for each connected component for the time complexity.
SVIM-L algorithm consists of two parts. The first part extracts
the connectivity and balance structure of the graph, which can be
done using depth-first search with complexity O(|E|). The second
part uses Algorithm 3 to compute influence contributions of bal-
anced ergodic sink components. The dominant computations are
on the stationary distribution πZi’s and (IX − PX)−1, which can
be done by solving a linear equation system and matrix inverse in
O(|Zi|

3) and O(n3
X), respectively, where nX = |X|. Let b be

the number of balanced sink components in G, nZ be the number
of nodes in the largest balanced sink component. Thus SVIM-L
can be done in O(bn3

Z + n3
X) time. Alternatively, we can use it-

erative method for computing both πZi’s and 1TX(IX − PX)−1, if
the largest convergence time tC of P t

Zi’s and P t
X is small1. In this

case, each iteration step involves vector-matrix multiplication and
can be done in O(mB) time, where mB is the number of edges
of the induced subgraph GB consisting of all nodes in the bal-
anced sink components and X . Note that mB and tC are only
related to subgraph GB , which could be significantly smaller than
1Note that the convergence time of digraphs could be large [31,32],
and even exponentially large at the worst case.

G, and thus O(tCmB) could be much smaller than the time of
naive iterations on the entire graph. Overall SVIM-L can be done
in O(|E|+min(bn3

Z + n3
X , tCmB)) time.

5. EVALUATION
In this section, we first use both synthetic datasets and real social

network datasets to demonstrate the efficacy of our short-term and
long-term seed selection schemes by comparing the performances
with four baseline heuristics. Then, we evaluate how much the
short-term and long-term influence can be improved by taking the
edge signs into consideration.

5.1 Performance comparison with baseline
heuristics

For different scenarios, we compare our SVIM-L and SVIM-S
algorithms with four heuristics, i.e., (1) selecting seed nodes with
the highest weighted outgoing degrees (denoted by d+ + d− in the
figures), (2) highest weighted outgoing positive degrees (denoted
by d+), (3) highest differences between weighted outgoing positive
and negative degrees (denoted by d+ − d−), and (4) randomly se-
lecting seed nodes (denoted by “Rand”), where in our evaluations,
we run random seed selection 1000 times, and compare the average
number of white nodes between our algorithm and other heuristics.
Our evaluation results demonstrate that our seed selection scheme
can increase up to 72% long-term influence, and 145% short-term
influence over other heuristics.

5.1.1 Synthetic datasets

In this part, we generate synthetic datasets with different struc-
tures to validate our theoretical results.
Dataset generation model. We generate six types of signed di-
graphs, including balanced ergodic digraphs, anti-balanced ergodic
digraphs, strictly unbalanced ergodic digraphs, weakly connected
signed digraphs, disconnected signed digraphs with ergodic com-
ponents, and disconnected signed digraph with weakly connected
components (WCCs). All edges have unit weights. The following
are graph configuration details.

We first create an unsigned ergodic digraph Ḡ with 9500 nodes,
which has two ergodic components ḠA and ḠB , with [3000, 6500]
nodes and [3000, 6500] × 8 random directed edges, respectively.
Moreover, there are 3000 × 8 random directed edges across ḠA

and ḠB . Ergodicity is checked through a simple connectivity and
aperiodicity check. Given Ḡ, a balanced digraph is obtained by as-
signing all edges within ḠA and ḠB with positive signs, and those
across them with negative signs. Then, an anti-balanced digraph

is generated by negating all edge signs of the balanced ergodic di-
graph. To generate a strictly unbalanced digraph, we randomly
assign edge signs to all edges in Ḡ and make sure that there does
not exist a balanced or anti-balanced bipartition.

Moreover, we generated a disconnected signed digraph and
a weakly connected signed digraph for our study. We
first generate 5 ergodic unsigned digraphs, Ḡ1, · · · , Ḡ5 with
[500, 200, 800, 300, 2700] nodes and [500, 200, 800, 300, 2700]×
8 edges, respectively. Then, we group G23 = (G2, G3) and
G45 = (G4, G5) to form two ergodic balanced digraphs, and
generate a strictly unbalanced ergodic digraph G1 by randomly
assigning signs to edges in Ḡ1. Three disconnected components
G1, G23, G45 together form a disconnected signed digraph. To
form a weakly connected signed digraph, we place in total 3000
random direct edges from G1 to the balanced ergodic components
G23 and G45, where the nodes in subgraph G1 only have outgoing
edges toG23 andG45. Moreover, we combine the above generated
balanced ergodic digraph and the weakly connected signed digraph



together forming a larger disconnected signed digraph, with the

weakly connected signed digraph as a component.
Fig. 1-Fig. 6 present the evaluation results for one set of di-

graphs, where we observe that all digraphs we randomly generated
exhibit consistent results. Our tests are conducted using Matlab on
a standard PC server.

0 2 4 6 8 10
0

1K

2K

3K

4K

5K

Number of Steps

E
x
p
e
c
te

d
 #

 o
f 
W

h
it
e
 N

o
d
e
s

Balanced digraph (long term)

 

 

SVIM−L

d
+
−d

−

d
+

Rand

d
+
+d

−

Figure 1: G is balanced
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Figure 2: G is anti-balanced
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Figure 3: G is strictly unbal-

anced
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nected
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Figure 5: G is disconnected
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Figure 6: G is disconnected

with WCC

Long-term influence maximization. In the evaluations, we set the
influence budget as k = 500, and compare the average numbers of
white nodes over steps between our algorithm and other heuristics.
Fig. 1 shows that in the balanced ergodic digraph, SVIM-L algo-
rithm achieves the highest long-term influence over other heuris-
tics. When applying a heuristic seed selection scheme, denoted by
H, f H

t represents the number of white nodes at step t(≥ 1). Simi-
larly, denote f SVIM

t as the number of white nodes at step t(≥ 1) for
SVIM algorithm. We consider ∆ft(SVIM, H) = (f SVIM

t − f H

t )/f
H

t

as the influence increase of SVIM over the heuristic algorithm
H at step t. The maximum influence increase is the maximum
∆ft(SVIM, ·) among all steps (t ≥ 1) and all heuristics. Hence,
in Fig. 1, we see that our SVIM-L algorithm outperforms all other
heuristics. Especially, a maximum of 14% influence increase is ob-
served for t ≥ 4 with 4.68k and 4.1k white nodes for SVIM-L and
random selection scheme, respectively. In the rest of this section,
we will use the maximum influence increase as a metric to illus-
trate the efficacy of our SVIM algorithm. Fig. 2 shows the clear
oscillating behavior on the anti-balanced ergodic digraph, and the
average influence is the same for all algorithms. In fact, we also
designed an algorithm to maximize the oscillation in this case, but
due to space constraint we omit it in this paper. The inset shows
that our algorithm (denoted as “Max. Osc.”) indeed provides the
largest oscillation. Fig. 3 shows the results in strictly unbalanced
graph case, where the long-term influences of all algorithms con-
verge to 4750 = |V |/2, which matches Theorem 1. Fig. 4 and
Fig. 5 show that SVIM-L algorithm performs the best, and it gener-
ates 5.6%− 72% long-term influence increases after the sixth step
over other heuristics in the weakly connected signed digraph and
the disconnected signed digraph. Fig. 6 shows that in a more gen-
eral signed digraph, which consists of a weakly connected signed
component and a balanced ergodic component, SVIM-L algorithm

outperforms all other heuristics with up to 17% more long term in-
fluence, which occurs for t ≥ 4. In general, we see that for weakly
connected and disconnected digraphs, SVIM-L has larger winning
margins over all other heuristics than the case of balanced ergodic
digraphs (Fig. 4–6 vs. Fig.1). We attribute this to our accurate
computation of influence contribution in the more involved weakly
connected and disconnected digraph cases. Moreover, in all cases,
the dynamics converge very fast, i.e., in only a few steps, which in-
dicates that the convergence time of voter model on these random
graphs are very small.

Table 2: Statistics of Epinions datasets
# of nodes 131580
# of edges 840799

# of positive edges 717129
# of negative edges 123670

# of nodes in largest SCC 41441
# of edges in largest SCC 693507

# of positive edges in largest SCC 614314
# of negative edges in largest SCC 79193
# of strongly connected components 88361

5.1.2 Real datasets

We conduct extensive simulations using real datasets, such as
Epinions and Slashdot datasets, to validate our theoretical results
and evaluate the performance of our SVIM algorithm.
Epinions Dataset. Epinions.com [14] is a consumer review on-
line social site, where users can write reviews to various items and
vote for or against other users. The signed digraph is formed with
positive or negative directed edge (u, v) meaning that u trusts or
distrusts v. The statistics are shown in Table 2. We compare our
short-term SVIM-S algorithm with four heuristics, i.e., d+ + d−,
d+, d+ − d− and random seed selection, on the entire Epinions di-
graph as well as the largest strongly connected component (SCC).

Our tests are conducted on both Epinions dataset and its largest
strongly connected component (SCC), where the largest SCC is er-
godic and strictly unbalanced. We first look at the comparison of
instant influence maximization (at step t) among various seed se-
lection schemes. Fig. 7-10 shows the expected maximum instant
influence at each step by different methods. Note that since the ini-
tial seeds selected by SVIM-S algorithm hinge on t, the values on
the curve of our selection scheme are associated with different opti-
mal initial seed sets. On the other hand, the seed selections of other
heuristics are independent to t, thus the corresponding curves rep-
resent the same initial seed sets. We choose the budget as 500 and
6000 in our evaluations, i.e., selecting at maximum 500 or 6000
initial white seeds. From Fig. 7-10, SVIM-S algorithm consis-
tently performs better, and in some cases, e.g., Fig. 9, it generates
16%− 145% more influence than other heuristics at step 1.

Next we compare the seed selection schemes for maximizing the
average influence within the first t steps. Fig. 11-14 show the ex-
pected maximum average influence within the first t steps by differ-
ent methods. Again, the values on the curve of SVIM-S algorithm
are associated with different initial seed sets. Fig. 11-14 show that
with different budgets, i.e., 500 and 6000 seeds, SVIM-S algorithm
performs better than all other heuristics, where in Fig. 13 a maxi-
mum of 64% more influence is achieved at t = 8. Moreover, in all
these figures, we observe that our seed selection scheme results in
the highest long-term influence over other heuristics.

Moreover, from Fig. 7-14, we observe that as t increases, the in-
fluences (i.e., the expected number of white nodes), for SVIM-S
and all heuristics except for random seed selection schedule, in-
crease for small t’s, and then decrease and converge to the sta-
tionary state. In contrast, from Fig. 1-6, the influence increases
monotonically with t. This happens because Epinions dataset (as
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Figure 7: Instant influence in

Epinions data with k = 6k
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Epinions data with k = 500
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Figure 9: Instant influence in

SCC with k = 6k
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Figure 10: Instant influence

in SCC with k = 500
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Figure 11: Average influence

in Epinions data with k = 6k
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Figure 12: Average influence

in Epinions data with k = 500
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Figure 13: Average influence

in SCC with k = 6k
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Figure 14: Average influence

in SCC with k = 500

well as many real network datasets) has large portion (around
80%) of nodes in the non-sink components, where to maximize
the long-term influence, only nodes in sink components should be
selected, which governs the long-term influence dynamics of the
whole graph, namely, sink nodes have higher long-term influence
contributions. However, for short-term influence maximization,
nodes with higher chances to influence more nodes in a few steps
generally have large number of incoming links, which are able to
influence a large number of nodes in either sink or non-sink compo-
nents in a short period of time. Hence, in signed digraphs with large
non-sink component, given a sufficiently large budget, the short-
term influence can definitely outnumber the long-term influence.
Our evaluations confirm this explanation. This interesting observa-
tion also leads to a problem that given a budget k, how to find the
optimal time step t that generates the largest influence among all
possible t’s. We leaves this problem as our future work.
We also evaluate our SVIM-S algorithm on the entire slash-

dot dataset [22, 37] and its largest strongly connected component,
where the results are delegated to our technical report [24] due to
the limited space. In the simulations, similar results are obtained as
that with Epinions dataset, where our SVIM-S algorithm performs
the best among all methods tested, especially in the early steps.
Moreover, the convergence times for both real-world datasets are

fast, in a few tens of steps, indicating good connectivity and fast
mixing property of real-world networks. In summary, our evalua-
tion results on both synthetic and real-world networks validate our
theoretical results and demonstrate that our SVIM algorithms for
both short term and long term are indeed the best, and often have
significant winning margins.

5.2 The impacts of signed information
Unlike Epinions and Slashdot, many online social networks such

as Twitter are simply represented by unsigned directed graphs,
where friends and foe relationships are not explicitly represented
on edges. Without edge signs, two types of information may be
mis-represented or under-represented: (1) one may follow his foes
for tracking purpose, but this link may be mis-interpreted as friend
or trust relationship; and (2) one may not follow his foes publicly
to avoid being noticed, but his foes may still generate negative in-
fluence to him. In this section, we investigate how much influence
gain can be obtained by taking the edge signs into consideration,
thus illustrate the significance of utilizing both friend and foe rela-
tionships in influence maximization.
Taking the synthetic networks and Epinions dataset (used in

Sec 5.1) as examples, we apply our SVIM algorithm to compute

the optimal initial seed sets in the original signed digraphs, and
two types of “sign-missing” scenarios, i.e., the unsigned digraphs
with only original positive edges (denoted by “Positive” graphs)
and with all edges labeled by the same signs (denoted by “Sign ig-
nored” graphs). Then, we examine the performances of those three
initial seed sets in original signed digraphs.

Fig. 15-18 show the evaluation results, where the seed sets ob-
tained by considering edge signs perform consistently better than
those using unsigned graphs. In synthetic networks, we observed
5% − 16% more influence in balanced digraph for t ≥ 6 (See
Fig. 15), and 11.7% − 58% more influence in weakly connected
digraph for t ≥ 6 (See Fig. 16). Moreover, in Epinions dataset
from Fig. 17-18, there is no impact on the long-term influence,
since the underlying graphs are strictly unbalanced. However, in
short term, the results demonstrate that taking edge signs into con-
sideration always performs better, which generates at maximum of
38% and 21% more influence for the entire dataset (See Fig. 17)
and the largest SCC (See Fig. 18), respectively. Both maximums
occur at step 1. These results clearly demonstrate the necessity of
utilizing sign information in influence maximization.

6. CONCLUSION
In this paper, we propose and study voter model dynamics on

signed digraphs, and apply it to solve the influence maximization
problem. We provide a rigorous mathematical analysis to com-
pletely characterize the short-term and long-term dynamics, and
provide efficient algorithms to solve both short-term and long-term
influence maximization problems. Simulation results on both syn-
thetic and real-world graphs demonstrate that our influence maxi-
mization (SVIM) algorithms consistently outperform other heuris-
tic algorithms.

There exist several open problems and future directions. One
open problem is the convergence time of voter model dynamics on
signed digraphs. For balanced and anti-balanced ergodic digraphs,
our results show that their convergence times are the same as the
corresponding unsigned digraphs. For strictly unbalanced ergodic
digraphs and more general weakly connected signed digraphs, the
problem is quite open. A future direction is to study influence dif-
fusion in signed networks under other models, such as the voter
model with a background color, the independent cascade model,
and the linear threshold model.
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