This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Wheel of Trust: A Secure Framework for
Overlay-based Services

Guor-Huar Lu and Zhi-Li Zhang
University of Minnesota
luxx0137@umn.edu, zhzhang @cs.umn.edu

Abstract— The recent advances of distributed hash tables
(DHTs) facilitate the development of highly scalable and robust
network applications and services. However, with applications
and services each employing their own DHTs that perform
essentially the same tasks, an open infrastructure providing the
core DHT functionalities for these applications and services would
represent a cost-effective solution. In this paper we present a
generic secure framework for deploying secure overlay-based
applications/services. We combine DHTs and identity-based en-
cryption (IBE) to develop a novel architecture that is scalable
and robust against man-in-the-middle attacks. We also develop
an innovative mechanism called “Wheel of Trust” that secures
our framework against insider attacks. Based on the proposed
architecture, we present some preliminary evaluation results from
a prototype implementation.

I. INTRODUCTION

The recent advances of distributed hash tables (DHTs [9],
[4], [6]) facilitate the development of highly scalable and
robust applications and services. However, most of these
applications/services deploy their own DHT that essentially
perform the same tasks. We believe that a common platform
offering the core DHT functionalities can greatly reduce the
deployment cost and effort for these applications/services. In
addition, such a platform should offer the following security
guarantees for these applications/services: 1) the framework
needs to be robust against “man-in-the-middle” attacks where
attackers lie in between clients and the framework (and
services deployed on top of the framework). The framework
should prevent attackers from injecting bogus information
to the client or into the service, e.g., binding poisoning;
and 2) the framework needs to be robust against insider
attacks, in which one or more infrastructure nodes may be
compromised by attackers. These malicious insiders aim to
alter the information in their possession in order to gain most
benefits from the service, e.g., phishing-like attacks. Unfortu-
nately, such security guarantees cannot be easily achieved in a
DHT-based system due to the completely distributed and de-
centralized nature, even when combined with more traditional
security mechanisms such as RSA and PKI. In particular, the
extraordinary amount of cooperation required between peers
makes DHT-based system especially vulnerable against insider
attacks, where some malicious nodes are part of the system.
The combination of security, scalability and robustness makes
designing such a framework a challenging task.

In this paper we develop a novel framework that offers a
common infrastructure for the deployment of secure overlay-

based applications and services. The key novelty of our frame-
work lies in combining identity-based encryption (IBE) with
DHT techniques. DHT affords our framework with scalability
and robustness, while the combination of DHT and IBE makes
our framework robust against man-in-the-middle attacks. We
also design an innovative mechanism that further enhanced
our framework against insider attacks. Our framework uses a
two-level architecture: at the core of the system are a set of
special nodes that are highly fault tolerant, and play a critical
role in ensuring the security of our system, which includes
private (decryption) key generation [1]. These core nodes do
not interact with users or hosting any services. These functions
are performed by typical infrastructure nodes, which form a
ring structure using Chord [9]. A user wants to store a key-
value pair (k,v) to the system (and the service deployed on
top of the framework) encrypts its request using a hashed id
derived from the key £, and sends the encrypted request to the
system; only the corresponding node in the system that owns
the hashed id can decrypt the request, perform the appropriate
actions and reply to the user in a secure manner. The key
challenge in designing such a framework is to ensure that
core nodes only issue private keys to the correct node owning
the hashed id, i.e., a node has to prove to the core nodes
that the id space it owns indeed contains the hashed id. For
this, we develop an innovative mechanism called “Wheel of
Trust” (WoT), that maintains the node to id space mapping,
and makes such information externally verifiable. In the next
section we present what is IBE and motivate why IBE is
uniquely suitable in building such a framework. We discuss
the overall architecture and operations of our framework in
Section III. In Section IV we present some preliminary results
from a prototype implementation of our framework. Section V
concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section we briefly introduce identity-based encryp-
tion (IBE), and motivate why it is particularly suitable in
designing such a secure framework.

A. Identity-Based Encryption

Originally proposed as a means to simplify certificate man-
agement in email systems [1], IBE allows any arbitrary string
(e.g., email address or other user identifiers) to be used as
the public key. The corresponding private key is generated by
a central authority (called the private key generator, or PKG

1-4244-0353-7/07/$25.00 ©2007 IEEE

1148

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

in short). For example, if Bob wants to send a secret email
to Alice, he encrypts the email using Alice’s email address
(i.e., her identity) as the public key. For decryption, Alice
retrieves her private key from the PKG and subsequently uses
it to decrypt the email. Hence in IBE, as long as Bob knows
the identity (here email address) of Alice, he can send an
encrypted email to Alice. Whereas, in the conventional public-
key cryptosystems such as RSA, Bob first needs to obtain the
public key of Alice, and has a way to ensure that the public
key does indeed belong to Alice — hence a certificate system
(e.g., a PKI — public key infrastructure) for validating public
keys is needed. IBE obviates the need for such a certificate
system. In addition, IBE enables what we call asynchronous
secret communication that is crucial to the construction of
our framework: it allows one to establish a forward secret
communication channel (using IBE for encryption) from a
sender to a target identity, where the sender does not need
to have prior knowledge or contact with the corresponding
receiver; the private key corresponding to the target only needs
to be generated by the PKG on-demand when the receiver
requests for it. In contrast, in the conventional public key
systems such as RSA, a public-private key pair must be
pre-generated for each receiver before communications can
proceed. In addition, IBE also allows the generation of digital
signatures using identity-based signature schemes (IBS [2]).
In IBS, when Alice wants to send a message to Bob, she
simply generates a digital signature for the message using her
private key. When Bob receives the message, he can ensure
the integrity and authenticity of the message by verifying the
signature using Alice’s identity, i.e, Alice’s email address.
Note that Bob does not need to retrieve Alice’s public key
since Alice’s identity (her email address) is the public key.
For a detailed description of IBE and IBS, we refer interested
readers to [1], [2].

B. Challenges and Problem Statement

We aim to build a generic secure infrastructure that acts as
a common framework for deploying various applications and
services. The goal is for the framework to offer a common
set of functionalities to these applications and services while
at the same time providing a certain level of security. We use
DHT to build our framework for scalability and robustness,
so that large scale applications and services can be deployed.
As an infrastructure-based framework, our system is not built
using typical “peer-to-peer” (P2P) end-hosts. In fact, only
authorized and trusted nodes can join the infrastructure. In
addition, being an infrastructure-based framework we assume
node dynamics (nodes join/leave) occur far less frequently than
typical P2P networks. In this paper we use Chord as our choice
of DHT but our framework can be easily extended to other
DHTs. In order to allow applications and services deployed
on top of the framework to be secure, our framework needs
to offer the following security guarantees: 1) the infrastructure
must be robust against “man-in-the-middle” (MITM) attacks,
in which attackers lie in between users and the framework (and
applications and services deployed on top of the framework);

1149

and 2) the framework must be able to withstand insider attacks,
in which a minority of nodes constituting the system have been
compromised by attackers.

So why is designing a DHT-based framework with the pos-
tulated security requirements difficult? To understand where
the problem lies, we need to examine the most basic DHT
operations: put and get. In a nutshell, what DHT offers
is a look-up service: a user puts (stores) a key-value pair
(k,v)! into the system by hashing the key k into a hashed
id idy, where v is the data the user wishes to store and k
is an identifier associated with v. This (k,v) pair is then
stored at a node n that is responsible for idy, i.e., n owns
idy,. Similarly, if a user wants to get this data v, it generates
idy, from k and the node n will then serve the request. We
make two observations for these basic put/get operations.
First, there is no verifiable associations between idj, and the
node n serving the request. Second, for DHT operations to be
generic, there cannot be restrictions on the choice of ks and
vs. This couples with the fact that the system usually does
not have prior knowledge of the user before communication
makes verifying the association between the key-value pair
difficult. These observations lead to two implications: 1) an
attacker can easily impersonate the node n and serve users’
requests on behave of n and vice versa; and 2) an attacker
can easily replace the value in a key-value pair from the user
to the system with a bogus one and vice versa. This makes it
easy to perform MITM attacks as well as insider attacks, as
the user has no way of knowing if its request is served by the
right node in the system, and neither the user nor the system
can be sure if the received key-value pair is the correct one.

One may argue that such issues can be easily addressed with
traditional public key crypto-system such as RSA (and in some
cases a public key infrastructure (PKI)). However, even when
combined with a PKI, a completely distributed DHT-based
infrastructure cannot offer the necessary security guarantees
we postulated earlier. A case in point is the authenticate
put /get operations? in OpenDHT [5]. These authenticated
put/get operations are not robust against the MITM attacks,
as the attacker may intercept the put message sent by a user,
replace the public key with its own, and re-sign the message,
and send it to the service, which has no way to verify the bogus
put message. In addition, the user has no way of verifying
that its request is indeed served by the correct node in the
system. We note that even if PKI is used and a certificate is
submitted along with the put message, an attacker can still
replace the public key and the certificate with its own in the
put message unless the user’s identity is part of the key k.
Moreover, for a user to lookup (k, v), it must know a priori the

'Note that the format and content of k and v depend on the application
and service deployed.

2Under the authenticated put/get mode, each owner has a public/private
key pair, denoted K p and Kg, respectively. To insert a binding of key-value
(k,v), an owner sends the following to the service: k, v, Kp, a nonce n , an
expiration time t, and o = {H (k,v,n,t)} kg, where {X } . denotes the
digital signing of X with Kg and H is a secure hash function (e.g., SHA-1).
To retrieve the binding, a querier sends the following {k, H(Kp)} to the
service and the service returns {(v,n,t,0)}.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

public key associated with %k, which in itself involves another
lookup step that needs to be secured.

We now illustrate how IBE can be used to address MITM
attacks. The basic ideas are as follows. For a user © who wants
to put a key-value pair (k,v) to the system, it employs IBE
to encrypt (k,v), together with a secret symmetric key (for a
pre-specified symmetric encryption scheme such as AES) and
a nonce (e.g., a random number), using the hashed id idy,
and sends the encrypted put message to the service with ¢dy,
as the target. The “root node” of idy (denoted as root(idy))
retrieves the private key corresponding to idj from the PKG
and decrypts the message. If the put operation is success-
ful, root(idy) returns a confirmation message containing the
nonce encrypted with the secret symmetric key. Otherwise, a
failure message is generated. From the confirmation message,
the user can verify that the put operation is successfully
completed. Likewise, for a user to get this key-value pair,
it simply generates a get message together with a secret
symmetric key and a nonce encrypted using idj, and sends
the encrypted get message to the service with idj as the
target. The service returns a reply message containing (k,v)
and the nonce encrypted using the symmetric secret key. By
successfully decrypting the reply message and verifying the
nonce, the user can be assured that the returned value is
indeed authentic. Any imposter interposed between the users
and the service will not be able to tamper or inject bogus
information into the service, nor return such to users. However,
even though IBE is particularly suited in building a framework
that is robust against MITM attacks, we still need an effective
mechanism for authenticating whether or not a given node
owns a particular id before issuing the corresponding private
key. This authentication mechanism is crucial to the overall
security of the system, as it directly determines whether or
not secure channels can be established between users and the
correct system node. We observe that in a DHT system such
as Chord, a node n’s id space is directly determined by its id
and its neighbors’ id, i.e., n’s neighboring relationship dictates
the id space it owns. Based on this, we design an innovative
mechanism called “Wheel of Trust” that securely bonds this
neighboring relationship and makes it externally verifiable,
even if there are malicious insiders. This mechanism combines
with secure channels created using IBE makes our framework
robust against MITM attacks and insider attacks.

C. Related Work

Internet Indirection Infrastructure (i3 [8]) is another example
of open infrastructure that supports multiple services on a
common platform. i3 offers a rendezvous-based communica-
tion that decouples the act of sending from the act of receiv-
ing, and efficiently supports a wide variety of fundamental
communication services. Compare to both OpenDHT and i3,
we pay special attention on security issues and specifically
incorporate necessary mechanisms into our design. In addition
to IBE-based email systems, IBE has also been used in
several networked applications and systems such as secure
opportunistic communications in disconnected networks [7].

1150

Typical Nodes

{ Core Nodes

Zc’;\D\O\C

Fig. 1. Two-level architecture of our framework. At the center of the system
are a set of core nodes act as PKGs each managing a portion of the id space.

Zone 2

III. ARCHITECTURE AND OPERATIONS

In this section we describe the overall architecture and
operations of our framework. Our framework uses a two-level
architecture as shown in Fig. 1. At the center of the system are
a set of trusted core nodes act as private key generators (PKGs)
in IBE. We assume they are highly fault tolerant and always
available. Each core node® manages an equal portion of the
id space in the system (called a zone) and is responsible for
generating and issuing private keys to other nodes in the zone.
Core nodes do not directly interact with users of the system
or host any services. Instead, a set of general infrastructure
nodes (refer to as nodes from now on) form an outer ring
using Chord are used to host actual services and applications
and handle user requests. We assume these nodes are trusted
but are not as reliable as core nodes. In addition, malicious
attackers can potentially compromise some of these nodes to
perform insider attacks. We assume each node n has a pre-
assigned unique id id,, and a private key corresponding to its id
obtained through a secure offline channel. This private key is
used to generate signatures using an identity-based signature
(IBS) scheme [2] and allows other nodes in the system to
authenticate n and confirm n’s ownership of id,,. The security
of our system relies on two main components: a) Secure
Channel Layer (SCL). SCL is responsible for creating secure
channels between users and the system using IBE, and protects
our system against MITM attacks; b) Wheel of Trust (WoT).
WoT is responsible for maintaining the association between a
node and the id space the node is responsible. In other words,
WoT acts as an authentication mechanism between nodes and
PKGs and is effective even if some of the nodes in the system
are compromised.

A. Secure Channel Layer

The key idea behind SCL is to use IBE to establish secure
channels between users and the system, thereby protecting
subsequent message exchanges against MITM attacks. When
a user u wants to put a key-value pair (k, v) to the system, u
first obtains a hashed id id), = H[k] where H is a secure hash
function such as SHA-1. The SCL put operation (scl_put)
generates a request by encrypting the following with ¢dj, using

3We use the term core node and PKG interchangeably.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

IBE: (k,v), a secret symmetric key s, and a random nonce
n,. This encrypted request is delivered to the system with idy,
as the target. When a node n that is responsible for idy, i.e.,
n is the root of idy, receives the request, n retrieves a private
(decryption) key for idy from one of the PKG by providing
some authentication information to prove it indeed owns idy*.
When n obtained the private key from the PKG, it decrypts
and processes the user request. A scl_response message
is then generated by encrypting the appropriate response and
the nonce n, with the secret symmetric key s using a pre-
specified symmetric encryption algorithm such as AES. When
the user receives the response, it can decrypt the response
message using s, and verifies the nonce to ensure that the
operation is successfully completed. The scl_get operation
works in a similar manner except no value v is encrypted. The
combination of IBE and symmetric crypto-mechanism allows
us to establish two-way secure channels between users and
the system. This way, all communications are protected and
attackers cannot tamper or inject bogus information.

B. Wheel of Trust

Although SCL enables easy establishment of secure chan-
nels between users and the system, it is evident that we
need an authentication mechanism to ensure PKGs only issue
private keys to the correct node. In other words, for a node n
requesting a private key for some id ¢dj, the PKG must be able
to determine if n indeed owns the id space containing ¢dj. We
observe that a node n’s id space is determined by its id and its
neighbors’ ids, i.e., n’s neighboring relationship dictates the id
space range it is responsible. Our mechanism, called Wheel of
Trust (WoT), maintains and secures node-to-id space mapping
and makes such information externally verifiable, thus acting
as an authentication mechanism between nodes and PKGs.
For each node n, WoT verifies and stores n’s neighboring
information (we call this n’s neighbor record NR(n)®) at a
random node in the system (we call this node the shadow of n).
Once N R(n) is stored, we issue n a neighbor certificate NC(n)
that allows n to prove its id space range to an external entity.
NC(n) contains N R(n) and a time stamp, and is signed using
an authorization key possessed by n’s shadow so that n cannot
forge this certificate on its own. When a node m lookups some
id idg in which n is responsible, in addition to the typical
replies, n also returns NC(n) back to m so m can verify
the certificate to ensure that N R(n) contained in NC(n) is
authentic, thus ensuring n is indeed responsible for id.

WoT consists of three components: selection, rotation, and
update. The selection algorithm determines which node in the
system is responsible for storing a given node n’s neighboring
information. To prevent the node n collude with its shadow,
the rotation algorithm periodically changes n’s shadow. The
update algorithm is used to ensure neighboring information is
correctly updated whenever node dynamics (join/leave) occur.

4We note that this key retrieval operation is carried out using SCL in a
similar manner as user-server operations.

SFor example, if n has a predecessor p and a successor s, then NR(n) =
{p,n,s}.

1151

In addition, to prevent shadows from tampering with N Rs
they store, each VR is signed by its original owner. We now
describe each component in detail.

1) Selection: To select a shadow for a node n during a
period ¢, we compute a hashed id st(n) = H|[n||t||rv], where
rv is a public random value announced by PKGs at the
beginning of each period t. We assume all nodes in the system
will receive 7v within a small time window §°. The shadow
of n is then root(st(n)), i.e., the node that is responsible
for the hashed id s’(n). This construction has the following
properties: 1) shadows are randomly selected among all nodes
in the system, and each node can easily determine each other’s
shadow based on public information (a node’s id and rv); and
2) a node cannot predict its shadow for the next period, as rv
is not announced until the beginning of the next period ¢ + 1.

2) Rotation: To prevent a node n collude with its shadow
(thus preventing n to forge a bogus NC(n)), the rotation
algorithm periodically selects a new shadow in the system
for n’. In addition, the rotation algorithm also transfers and
verifies n’s neighboring information from n’s old shadow
root(st=1(n)) in period t — 1 to n’s new shadow
B = root(st(n)) in period t. Fig. 2(a) depicts the message
exchange for rotation. To initiate the rotation, o computes
st(n) and sends a rotate message containing the following
to (3: st(n), n, NR(n), and the entire message is signed
using «’s authorization key K -1, obtained from the PKG
in the previous period. Note that the signature generated using
K gi-1(n) proves that « is the shadow of n in period ¢ —1. Once
3 receives the message from «, 3 verifies the received N R(n)
by retrieving NC(p) and NC(s) from p and s respectively.
Once NR(n) is verified, 3 requests a new authorization key
corresponds to s‘(n) from the PKG by sending the PKG its
neighbor certificate. When the PKG receives the request, it
verifies that 3 indeed owns s’(n) during the period ¢, the
PKG then generates the authorization key K:(,) to 5. When
f3 receives K (y,), 3 generates NC'(n) = {NR(n), ts}KSt(n)g,
where ts is a timestamp, and sends this certificate to n.

We note that if node dynamics occur before a rotation
process is initiated, an update process is performed first to
avoid inconsistency of the neighboring information. However,
in some rare cases nodes may fail during the rotation process.
In the case where n fails, o should simply abort the process.
If p and/or s fail, 3 can retrieve their neighboring information
from their shadows for verification purpose. Similarly, if 3
fails during the process, « should deliver the information to
(3’s successor (3, ' will then updates its information (to obtain
a new NC(f')) before carrying out the rotation process.

3) Update: Whenever a node joins or leaves the system, we
update any neighboring information that might be affected.
We use the fact that whenever a node joins or leaves the
network and needs to update its neighboring information, its

a =

Typically & should be less than 30 minutes for large networks

7In practice we set the period ¢ between 24 to 48 hours to avoid frequent
rotation.

8We denote { M} x as a message M being digitally signed with a private
key X.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

4.fand @ notify cach
othr 1o oasure-consiste

1. asends a
update

1. usends a
update

L & sends

signed NR@m) to /3 2. /3 verifies NR(n) against

NC(p) and NC(s)
£ issues
'

2.p sends ar|
updated
NR(p) to f:

(a) Rotation from the old shadow « to the (b) Update process when a new node n (c) Update process when a node n leaves the

new shadow (3 for node n.
Fig. 2.

neighbors’ information also need to be updated. Fig. 2(b)
shows the update process when a node n joins in between
two existing nodes p and s, where s is p’s successor. When
n joins the system, n sends a signed NR(n) to its shadow
a = root(st(n)). Similarly, p and s also update their N Rs
and send the updated NR(p) and NR(s) to their shadows
B = root(st(p)) and v = root(st(s)) respectively. When (3
and ~ receive the updated N Rs from p and s, they ping n
directly to ensure n has indeed joined the network. 3 and ~y
then send confirmation messages containing old and updated
N Rs to a. When «a receives confirmation messages from both
(3 and 7 and verified that N R(n) received from n is correct,
« retrieves an authorization key corresponding to st(n) from
the PKG. « then stores NR(n) and sends NC(n) to n.

When n leaves the system, its predecessor p and successor
s both need to update their N Rs. In addition, the neighboring
information n holds for other nodes also needs to be re-
constructed so the rotation process can be correctly carried
out for the next period. To ensure that no attackers can
remove/alter other nodes’ information if they are still in
the system, we use direct monitoring between a given node
and its shadow and neighbors, e.g, through periodic keep-
alive message using direct IP connections, and only update
neighboring information if direct monitoring fails. Fig. 2(c)
shows the message exchange when a node n leaves the system.
When n leaves the network, «, p, and s would detect that n is
no longer reachable through direct monitoring. « then sends
update messages to p and s’s shadows (and - informing them
n has left the system, « then removes N R(n). Similarly, p and
s would send updated N Rs to 3 and -, and (3 and ~y then store
the updated N Rs when they receive the update messages from
a. The procedure for reconstructing lost N Rs when a shadow
node is down is actually simple. We note that each node has
its neighbor certificate that they cannot alter for the period t.
When a shadow « of a node n dies, a new shadow o is elected
(typically o’s successor). In this case, the reconstruction is as
follows: a) o’ obtains a new NC(a') from its shadow; b) n
sends its NC'(n) to o/; and c) o’ obtains the authorization key
for s'(n) from the PKG and issues a new NC(n) to n.

C. Analysis

Here we give a brief analysis on the correctness of ro-
tation and update (as selection is straightforward) to ensure
neighboring information are correctly maintained after the

1152

joins between p and s.

system.

Message exchange for rotation and update algorithms

execution of each algorithm. As mentioned earlier, every N R
is signed by the original node to prevent its shadow from
tampering, and every NC is signed by both the node and
its shadow, and includes a time stamp. Thus, a shadow can
only verify information and issue certificates based on verified
information, and a node cannot forge its certificate unless it
colludes with its shadow. We assume: a) all NV Rs are correct
prior to every execution. This is a reasonable assumption as we
start off from a set of trusted core nodes, thus all neighboring
information should be correct to begin with; and b) a node
cannot collude with its shadow. Again, this is reasonable as
we rotate shadows from time to time so the probability of
a node colluding with its shadow is very small. In fact, the
probability is small even for nodes colluding with its neighbors
shadows (or any other node’s shadow). During the rotation
process, the following nodes are involved: the node n, its old
shadow « for the period ¢t — 1, its new shadow [for the
period t, a core node (for issuing authorization keys), and n’s
predecessor and successor, p and s (for verification purpose).
If all NRs are correct prior to rotation, the only way n can
inject incorrect VR to 3 and get a bogus certificate back is
during the verification phase. This means that p and s have to
be able to fake their respective N Rs so that 3 would override
the N R delivered by «. But in order to do so, p and s need to
collude with their shadows, which contradicts our assumption.
Therefore it is not possible for n to inject bogus information to
[and we can assure that N R(n) remains correct after rotation.

For the update process, we first discuss the case when a new
node n joins the system between p and s (see Fig. 2(b)). As
stated in our assumption, n can collude with any other nodes
except a. However, if n colludes with p and s, n does not gain
any advantage as their neighboring relationship determines n’s
id space range. Thus, n needs to collude with nodes outside
of p and s in order to gain advantage of the system. To do
so, n needs to collude with some node pp < p and ss > s
in the hope of gaining more id spaces. However, this is not
possible as p and s both need to update their /N Rs, and this
would trigger 3 and +y to send update messages to «, causing
a conflict. Thus, for n to successfully inject bogus NR to
the system, n needs to collude with 5 and ~ as well as pp
and ss and their shadows so that pp and ss’s shadow would
send confirmation message with the bogus N Rs to « instead
of B and . However, this means that both pp and ss need
to collude with their shadows in order to generate the bogus

TABLE I

COMPUTATIONAL OVERHEAD FOR CRYPTO-PRIMITIVES.

Operations Overhead
symmetric_encrypt 40 ps
symmetric_decrypt 25 ps

IBE_key_gen 23 ms
IBE_encrypt 33 ms
IBE_decrypt 24 ms

N Rs necessary for the update, which is not possible. When
a node n leaves the network, its neighbor record is removed
from the system and all N Rs it holds will be reconstructed
at its successor. Here we are concerned that N R(n) maybe
removed prematurely due to framing, i.e., other nodes collude
to remove NR(n) from n’s shadow. However, as n and its
shadow monitor each other directly, the only possible way is
for § and ~ (refer to Fig. 2(b)) to perform denial-of-service
attack against n (so that monitoring no longer works). If this
is the case, n cannot perform any services anyway. And if the
attack is stopped, n can reinsert NR(n) back to « easily if
its NC(n) is still valid. Otherwise n can simply insert a new
NR(n) as in the join operation.

IV. IMPLEMENTATION AND EVALUATION

In this section we present some preliminary results from a
prototype implementation of our framework. Our prototype is
written in C and is based on the Boneh-Franklin IBE library
and i3’s Chord implementation. Our prototype consists of the
two main components: SCL and WoT, and is evaluated in a
local testbed. The testbed consists of several Pentium-4 2.4
GHz PCs each equipped with 512MB of RAM located in the
same LAN. As most of our operations involves IBE, we first
evaluate the computational overhead of IBE operations. Table I
shows the computational overhead for each IBE operation as
well as symmetric encryption and decryption. Clearly, IBE
operations are more expensive than typical symmetric crypto-
mechanisms. We next evaluate the system level performance
for scl_get and scl_put operations. To investigate how
the number of PKGs influences the put operation, we use
four machines as typical nodes and vary the number of PKGs
from one to four. We insert randomly generated unique (k,v)
pairs into the system at various rates and measure the system
response time. Fig. 3(a) shows the system response time versus
the put request rate. The system performance increases as
the number of PKGs increase, as for every unique key k
the PKG needs to issue a corresponding private key, thus the
more PKGs we have the faster the system can generate private
keys.We next investigate the impact the number of nodes has
on the performance of get operations. We set up one PKG and
vary the number of nodes. We first put 5000 unique (k,v)
pairs into the system, and let nodes cache the private keys
obtained from the PKG. We then perform get operations on
these 5000 (k,v) pairs at various rates. Fig. 3(b) shows the
system response time versus the get request rate. As we can
see, the performance of the system improves as we add more
nodes. In addition, the system response time is lower because
no PKG and private key generation are involved in the get
operation. Judging from these preliminary results, it is clear

1153

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

— 1PKG , — 5 nodes
-+- 2PKGs / -+ - 6nodes
08 4 PKGs i 7 nodes
+ 8 nodes

System response time (s)

System response time (second)

0 20 80 100 . 20 40 100 120

40 60 60 80
Put request rate Get request rate

(a) Put request with varying number (b) Get request with varying num-
of PKGs. ber of typical nodes.

Fig. 3. System response time versus request rate

that the performance of the system scales as the system grows.
However, the computational overhead of IBE operations has
quite an impact on the system performance, a price we pay for
added security. In addition to the local testbed evaluation, we
also perform limited experiments on the PlanetLab, and the
observation is that even though IBE operations are expensive,
when deployed over a wide area network, the overlay network
latency has larger impact on the system performance and can
sometimes contribute more than 70% of the system response
time. For more evaluation results and discussion, please refer
to the technical report version of this paper [3].

V. CONCLUSION

In this paper we have developed a novel secure framework
for overlay-based applications and services by combining IBE
and DHT. In building such a framework, we have also devel-
oped several mechanisms that protect our framework against
“man-in-the-middle” attacks and insider attacks. We believe
our approach explores a new dimension in constructing next
generation secure network infrastructures that are particularly
suitable for many overlay-based applications and services.

ACKNOWLEDGEMENT

This work was supported in part by the NSF grants CNS-
0435444 and CNS-0626812 and a University of Minnesota
Digital Technology Center DTI grant.

REFERENCES

[1] D. Boneh and M. Franklin. Identity-based encryption from the Weil
pairing. Lecture Notes in Computer Science, 2139:213-229, 2001.

[2] B. Libert and J. Quisquater. The exact security of an identity based sig-
nature and its applications. Cryptology ePrint Archive, Report 2004/102,
2004.

[3] G.-H. Lu and Z.-L. Zhang. Wheel of Trust: A Secure Framework for
Overlay-based Services. Technical Report, Univ. of Minnesota.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. In SIGCOMM 01, 2001.

[5] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu. Opendht: a public dht service and its uses. In
SIGCOMM 05, 2005.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware
2001, London, UK, 2001. Springer-Verlag.

[7]1 A. Seth and S. Keshav. Practical security for disconnected nodes. In
(NPSEC), November 2005.

[8] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
indirection infrastructure. In SIGCOMM ’02, 2002.

[9] 1. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Trans. Netw., 11(1):17-32,
2003.

Internet

