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1 Introduction

Recent years have seen significant progress in real-time, contin-
uous traffic monitoring and measurement systems in IP back-
bone networks (Iannaccone, 2005; Iannaccone et al., 2001).
However, real-time traffic summaries reported by many such
systems focus mostly on volume-based heavy hitters or aggre-
gated metrics of interest (Keys et al., 2005), which are not suf-
ficient for finding interesting or anomalous behavior patterns.
This paper explores the feasibility of building a real-time traf-
fic behavior profiling system that analyzes vast amount of traffic
data in IP backbone networks and reports comprehensive behav-
ior patterns of significant end hosts and network applications.

Towards this end, we answer a specific question in this paper:
is it feasible to build a robust real-time traffic behavior profiling
system that is capable of continuously extracting and analyzing
“interesting” and “significant” traffic patterns on high-speed In-
ternet links, even in the face of sudden surge in traffic. We ad-
dress this question in the context of a traffic behavior profiling
methodology developed for IP backbone networks (Xu et al.,
2005a). The behavior profiling methodology employs a com-
bination of data-mining and information-theoretic techniques
to build comprehensive behavior profiles of Internet backbone
traffic in terms of communication patterns of end hosts and ap-
plications. It consists of three key steps: significant cluster ex-
traction, automatic behavior classification, and structural mod-
eling for in-depth interpretive analysis. This three-step profiling
methodology extracts hosts or services that generate significant
traffic, classifies them into different behavior classes that pro-
vide a general separation of various normal and abnormal traffic
as well as rare and anomalous traffic behavior patterns (see Sec-
tion 2 for more details). The profiling methodology has been ex-
tensively validated off-line using packet traces collected from a
variety of backbone links in an IP backbone network (Xu et al.,
2005a,b).

To demonstrate the operational feasibility of performing on-
line traffic behavior profiling on high-speed Internet backbone
links, we build a prototype system of the aforementioned pro-
filing methodology using general-purpose commodity PCs and
integrate it with an existing real-time traffic monitoring system
operating in an Internet backbone network (Xu et al., 2007).
The real-time traffic monitoring system captures packets on a
high-speed link (from OC12 to OC192) and converts them into
5-tuple flows (based on source IP, destination IP, source port,
destination port, protocol fields), which are then continuously
fed to the real-time traffic profiling system we build. The large
volume of traffic flows observed from these links creates great
challenges for the profiling system to process them quickly on
commodity PCs with limited memory capacity. We incorporate
several optimization features in our implementation such as ef-
ficient data structures for storing and processing cluster infor-
mation to address these challenges.

After designing and implementing this real-time traffic pro-
filing system, we perform extensive benchmarking of CPU and
memory costs using packet-level traces from Internet backbone
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links to identify the potential challenges and resource bottle-
necks. We find that CPU and memory costs linearly increase
with flow arrival rate. Nevertheless, resources on a commodity
PC are sufficient to continuously process flow records and build
behavior profiles for high-speed links in operational networks.
For example, on a dual 1.5 GHz PC with 2048 MB of mem-
ory, building behavior profiles once every 5 minutes for an 2.5
Gbps link loaded at an average of 209 Mbps typically takes 45
seconds of CPU time and 96 MB of memory.

However, resource requirements are much higher under
anomalous traffic patterns such as sudden traffic surges caused
by denial of service attacks, when the flow arrival rate can
increase by several orders of magnitude. We study this phe-
nomenon by superposing “synthetic” packet traces containing a
mix of known denial of service (DoS) attacks (Hussain et al.,
2003) on real backbone packet traces. To enhance the robust-
ness of our profiling system under these stress conditions, we
propose and develop sampling-based flow filtering algorithms
and show that these algorithms are able to curb steep increase
in CPU and memory costs while maintaining high profiling ac-
curacy.

Given the prevalent exploit traffic, we further consider block-
ing strategies the real-time profiling system can deploy to re-
duce such unwanted traffic. Based on the characteristics of ex-
ploit traffic, we devise several heuristic rules that the profiling
system can employ to reducing unwanted traffic, and evaluate
their cost and performance. By replaying packet traces col-
lected from backbone links to the real-time profiling system,
we find that simple blocking strategies could potentially reduce
substantial exploit traffic in backbone networks.

The contributions of this paper are as follows:

• We present the design and implementation of a real-time
traffic profiling system for link-level Internet traffic, and
demonstrate its operational feasibility by benchmarking
CPU and memory costs using packet traces from an op-
erational backbone.

• We propose a new filtering algorithm to improve the ro-
bustness of the profiling system against traffic surges and
anomalous traffic patterns, and show that the proposed
algorithm successfully reduces CPU and memory costs
while maintaining high profiling accuracy.

• We devise, evaluate and deploy simple yet effective the
access control list (ACL) rules in the real-time profiling
system to reduce prevalent exploit behavior in backbone
networks.

The remainder of this paper is organized as follow. Sec-
tion 2 describes a behavior profiling methodology that auto-
matically discovers significant behavior patterns from massive
traffic data. Section 3 introduces the real-time profiling system
and discusses its functional modules as well as the interfaces
with continuous monitoring systems and an event analysis en-
gine. Section 4 is devoted to performance benchmarking and
stress test of the profiling system using a variety of packet-level
traces from OC-48 backbone links, and synthetic traces that mix
various attacks into real backbone packet traces. In Section 5,



we propose and evaluate sampling-based filtering algorithms to
enhance the robustness of the profiling system against sudden
traffic surges. Section 6 devises and evaluates several simple
blocking strategies in the real-time profiling system to reduce
unwanted exploit traffic. Finally, Section 7 concludes this pa-
per.

2 Behavior Profiling Methodology

In light of wide spread cyber attacks and frequent emergence
of disruptive applications, we developed a general traffic profil-
ing methodology that automatically discovers significant behav-
iors with plausible interpretations from vast amount of traffic
data. The profiling methodology uses 5-tuple flows, i.e., source
IP address (srcIP), destination IP address (dstIP), source
port number (srcPrt), destination port number (dstPrt),
and protocol, collected in a time interval (e.g., 5 minutes) from
Internet backbone links. We focus on the first four feature di-
mensions in 5-tuples, and extract clusters along each dimension.
Each cluster consists of flows with the same feature value in a
given dimension. The value and its dimension are denoted as
cluster key and cluster dimension. This leads to four groups of
clusters, i.e., srcIP, dstIP, srcPrt and dstPrt clusters.
The first two represent a collection of host behavior, while the
last two yield a collection of application behaviors that aggre-
gate flows on the corresponding ports.

2.1 Extracting Significant Clusters

Due to massive traffic data and wide diversity of end hosts and
applications observed in backbone links, it is impractical to
examine all end hosts and applications. Thus, we attempt to
extract significant clusters of interest, in which the number of
flows exceeds a threshold. In extracting such clusters, we intro-
duced an entropy-based algorithm that finds adaptive thresholds
along each dimension based on traffic mix and cluster size dis-
tributions.

The intuitive idea of this algorithm is i) to extract clusters in
each dimension whose cluster keys are distinct in terms of size
distributions; ii) to repeat this process until the size distribution
of the remaining clusters in the dimension is (nearly) random.
To quantify the “randomness’ of cluster size distribution, we
use an information-theoretic measure, relative uncertainty (also
known as standardized entropy), which provides a measure of
randomness between 0 and 1. If relative uncertainty (RU) on
a given variable X is close to 1, it indicates that the observed
values of X are closer to being uniformly distributed and thus
look less distinguishable from each other.

By applying this algorithm on a variety of backbone links,
we see that the number of significant clusters extracted along
each dimension is far less than the total number of values. This
observation suggests that this step is very useful and necessary
in reducing traffic data for analysis while retaining most inter-
esting behaviors.

2.2 Behavior Classification

Given the extracted significant clusters, the second step of the
profiling methodology is to classify their behaviors based on
communication patterns. The flows in each significant cluster,
e.g., a srcIP cluster, share the same feature value in srcIP
dimension, thus most behavior information is contained in the
other “free” features including dstIP, srcPrt, dstPrt,
which might take any possible values.

Traditional approaches mostly focused on volume-based in-
formation, e.g., unique number of dstIP’s or dstPrt’s in
examining the patterns of such clusters. However, the traffic
volume often is unable to uncover comprehensive communi-
cation patterns. For example, if two hosts communicate with
100 unique dstIP’s, we cannot safely conclude that their com-
munication patterns from dstIP feature are the same without
further investigation. A simple example is that one host could
be a web server talking to 100 clients, while another is an in-
fected host randomly scanning 100 targets. More importantly,
the number of flows associated with each dstIP is very likely
to be different. For the case of the web server, the numbers of
flows between clients and the server tend to be diverse. On the
other hand, the number of probing flows between the scanner
and each target is often uniform, e.g., one in most cases. This
insight motivates us to use relative uncertainty again to mea-
sure the feature distribution of free dimensions for all significant
clusters.

Suppose the size of a cluster is m and a free dimension X
may take NX discrete values. Moreover, let P (X) denote a
probability distribution, and p(xi) = mi/m, xi ∈ X , where
mi is the frequency or number of times we observe the feature
X taking the value xi. Then, the RU in the feature X for the
cluster is defined as

RU(X) :=
H(X)

Hmax(X)
=

H(X)
log min{NX ,m} , (1)

where H(X) is the (empirical) entropy of X defined as

H(X) := −
∑

xi∈X

p(xi) log p(xi). (2)

We use relative uncertainty to measure feature distributions
of three free dimensions. As a result, we obtain a relative un-
certainty vector for each cluster, e.g., [RUsrcPrt, RUdstPrt and
RUdstIP ] for srcIP clusters. Recall that RU is in the range of
[0,1], so we could represent the RU vector of each srcIP clus-
ter as a single point in a 3-dimensional space. Fig. 1 represents
each srcIP cluster extracted in each 5-minute time slot over
an 1-hour period from an OC-48 backbone link as a point in a
unit cube. We see that the points are “clustered”, suggesting that
there are few underlying common patterns among them. Such
observation holds for other dimensions as well. This leads to
a behavior classification scheme which classifies all srcIP’s
into behavior classes based on their similarity/dissimilarity in
the RU vector space.

By applying the behavior classification on backbone links
and analyzing their temporal properties, we find this scheme is
robust and consistent in capturing behavior similarities among
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Figure 1: The distribution of relative uncertainty on free dimensions for srcIP’s from an OC-48 backbone link during an 1-hour
period.

significant clusters. Such similarities are measured on the fea-
ture distribution of free dimensions of these clusters, hence pro-
vide useful insight in communication patterns of end hosts and
applications (Karagiannis et al., 2005; Xu et al., 2005a).

2.3 Structural Modeling

To provide a plausible interpretation for behavior patterns, we
adopt dominant state analysis technique for modeling and char-
acterizing the interaction of various feature dimensions in a
cluster. The idea of dominant state analysis comes from struc-
tural modeling or reconstructability analysis in system the-
ory (Krippendorff, 1986; Cavallo and Klir, 1979; Zwick, 2004)
as well as more recent graphical models in statistical learning
theory (Jordan, 2004).

The intuition behind dominant state analysis is described be-
low. Given a srcIP associated with significant traffic flows,
all flows can be represented as a 4-tuple (ignoring the proto-
col field) 〈u, xi, yi, zi〉, where the srcIP has a fixed value u,
while the srcPrt (X dimension), dstPrt (Y dimension) and
dstIP (Z dimension) may take any legitimate value. Hence
each flow in the cluster imposes a “constraint” on the three
“free” dimensions X, Y and Z. Treating each dimension as a
random variable, the flows in the cluster constrain how the ran-
dom variables X , Y and Z “interact” or “depend” on each other,
via the (induced) joint probability distribution P(X, Y, Z).

The objective of dominant state analysis is to explore the in-
teraction or dependence among the free dimensions by identify-
ing “simpler” subsets of values or constraints (called structural
models in the literature (Krippendorff, 1986)) to represent the
original data in their probability distribution. Given the proba-
bility information, we can not only approximately reproduce the
original flow patterns, but also explain the dominant activities of
end hosts or applications.

2.4 Properties of Behavior Profiles

We have applied the profiling methodology on traffic data col-
lected from a variety of links at the core of the Internet through
off-line analysis. We find that a large fraction of clusters fall

into three typical behavior profiles: server/service behavior pro-
file, heavy hitter host behavior, and scan/exploit behavior pro-
file. These behavior profiles are built based on various aspects,
including behavior classes, dominant states, and additional at-
tributes such as average packets and bytes per flow. These be-
havior profiles are recorded in a database for further event anal-
ysis, such as temporal properties of behavior classes and indi-
vidual clusters, or behavior change detection based on RU vec-
tors.

The profiling methodology is able to find various interesting
and anomalous events. First, it automatically detects novel or
unknown exploit behaviors that match typical exploit profiles,
but exhibit unusual dominant states (e.g., dstPrt’s). Second,
any atypical behavior is worth close examination, since they
represent as “outliers” or “anomaly” among behavior profiles.
Third, the methodology could point out deviant behaviors of
end hosts or applications that deviate from previous patterns.

2.5 Characteristics of Exploit Traffic

Given the prevalent exploit activities, we further introduce sev-
eral metrics to study the characteristics of exploit traffic. The
frequency, Tf , measures the number of 5-minute time periods
(over the course of 24 hours) in which a source is profiled by our
methodology as having an exploit profile. The persistence, Tp,
measures (in percentage) the number of consecutive 5-minute
periods over the total number of periods that a source sends sig-
nificant amount of exploit traffic. It is only defined for sources
with Tf ≥ 2. Hence Tp = 100(%) means that the source con-
tinuously sends significant amount of exploit traffic in all the
time slots it is observed. Finally, we use the intensity, I , to re-
late both the temporal and spatial aspects of exploit traffic: it
measures the (average) number of distinct target IP addresses
per minute that a source touches in each 5-minute period. Thus
it is an indicator how fast or aggressive a source attempts to
spread the exploit.

Figs. 2(a)(b) show the distributions of the frequency vs. per-
sistence and the distribution of intensity for the exploit sources
from an OC-48 backbone link during 24 hours. From Fig. 2(a)
we observe that frequency follows a Zipf like distribution: only
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Figure 2: Characteristics of exploit traffic for the sources with exploit profiles in the backbone link during a 24-hour period.

17.2% sources have a frequency of 5 or more, while 82.8%
sources have a frequency of less than 5. In particular, over 70%
of them have frequency of 1 or 2. Furthermore, those 17.2% fre-
quent (Tf ≥ 5) sources account for 64.7%, 61.1% and 65.5% of
the total flows, packets, and bytes of exploit traffic. The persis-
tence varies for sources with similar frequency, but nearly 60%
of the sources (Tf ≥ 2) have a persistence of 100 (%): these
sources continuously send exploit traffic over time and then dis-
appear.

The exploit intensity illustrated in Fig. 2(b) also follows a
Zipf like distribution. The maximum intensity is 21K targets
per minute, while the minimum is 40 targets per minute. There
are only 12.9% sources with an intensity of over 500 targets per
minute, while nearly 81.1% sources have an intensity of less
than 500 targets per minute. Those 12.9% aggressive (I ≥ 500)
sources account for 50.5%, 53.3%, and 45.2% of the total flows,
packets, and bytes of exploit traffic. The relatively small num-
ber of sources, which frequently, persistently or aggressively
generate exploit traffic, are candidates for blocking actions.

In the rest of this paper, we will demonstrate the feasibility
of designing and implementing a real-time traffic profiling sys-
tem that uses flow-level information generated from “always-
on” packet monitors and reports significant online events based
on communication patterns of end hosts and applications even
faced with anomalous traffic patterns, e.g., denial of service at-
tacks or worm outbreaks.

3 Real-time Profiling System

In this section, we first describe the design guidelines for the
profiling system and then present the overall architecture, func-
tional modules and key implementation details.

3.1 Design Guidelines

Four key considerations guide the design of our profiling sys-
tem:

• scalability: The profiling system is targeted at high-speed
(1 Gbps or more) backbone links and hence must scale to
the traffic load offered by such links. Specifically, if the
system has to continuously build behavior profiles of sig-
nificant clusters once every time interval T (e.g, T = 5 min-

utes), then it has to take less than time T to process all the
flow records aggregated in every time interval T . And this
has to be accomplished on a commodity PC platform.

• robustness: The profiling system should be robust to
anomalous traffic patterns such as those caused by de-
nial of service attacks, flash crowds, worm outbreaks, etc.
These traffic patterns can place a heavy demand on system
resources. At the same time, it is vital for the profiling
system to be functioning during such events since it will
generate data for effective response and forensic analysis.
Therefore the system must adapt gracefully to these sit-
uations and achieve a suitable balance between profiling
accuracy and resource utilization.

• modularity: The profiling system should be designed in a
modular fashion with each module encapsulating a specific
function or step in the profiling methodology. Information
exchange between modules should be clearly specified. In
addition, the system should be designed to accept input
from any packet or flow monitoring system that exports
a continuous stream of flow records. However, the flow
record export format has to be known to the system.

• usability: The profiling system should be easy to config-
ure and customize so that a network operator can focus on
specific events of interest and obtain various levels of in-
formation about these events. At the same time, it should
expose minimal details about the methodology to an aver-
age user. Finally it should generate meaningful and easy-
to-interpret event reports, instead of streams of statistics.

These design considerations form a guideline of our system
design and drive each stage of our system implementation. In
the rest of the section, we will discuss the overall architecture
of the real-time profiling system, its functional modules and key
implementation details that achieve the design goals.

3.2 System Architecture

Fig. 3 depicts the architecture of the profiling system that is inte-
grated with an “always-on” monitoring system, an event analy-
sis engine, and a feedback channel of generating ACL entries of
routers for blocking unwanted traffic. The flow-level informa-
tion used by the profiling system is generated from continuous



Figure 3: The architecture of real-time traffic profiling system

packet or flow monitoring systems that capture packet headers
on a high-speed Internet link via an optical splitter and a packet
capturing device, i.e., DAG card. The monitoring system ag-
gregates packets into 5-tuple flows and exports the flow records
for a given time interval into disk files. In general, the profil-
ing system could obtain flow records through two ways: shared
disk access or file transfer over socket, and the option depends
on the locations of the profiling and monitoring systems. The
first way works when both systems run on the same machine.
If they are located in different machines, the monitoring sys-
tem transfers the files of flow records in the last time interval to
our traffic profiling system. In order to improve the efficiency
of the profiling system, we use distinct process threads to carry
out multiple task in parallel. For example, one thread continu-
ously reads flow records in the current time interval Ti from the
monitoring systems, while another thread profiles flow records
that are complete for the previous time interval Ti−1.

The real-time traffic profiling system consists of five func-
tional modules (shadowed boxes), namely, “cluster construc-
tion”, “adaptive thresholding”, “behavior profiling” and “profile
tracking”. Their functions are briefly summarized below:

• cluster construction: This module has two initialization
tasks. First it starts to load a flow table (FTable) in a time
interval T into memory from disk files once the profiling
system receives a signal indicating FTable is ready. The
second task is to group flows in FTable associated with
the same feature values (i.e., cluster keys) into clusters.

• adaptive thresholding: This module analyzes the dis-
tribution of flow counts in the four feature dimensions,
and computes a threshold for extracting significant clusters
along each dimension.

• behavior profiling: This module implements a combina-
tion of behavior classification and structural modeling that
builds behavior profiles in terms of communication pat-
terns of significant end hosts and applications.

• profile tracking: This module examines all behavior pro-
files built from the profiling system from various aspects
to find interesting and suspicious network events.

• event analysis engine: This module analyzes a behavior
profile database, which includes current and historical be-
havior profiles of end hosts and network applications re-
ported by the behavior profiling and profile tracking mod-
ules in the profiling system.

3.3 Key Implementation Details

In this section we focus on some key aspects of our implemen-
tation for achieving aforementioned design goals.

3.3.1 Data Structures

High speed backbone links typically carry a large amount of
traffic flows. Efficiently storing and searching these flows is
critical for the scalability of our real-time profiling system.
We design two efficient data structures, namely FTable and
CTable for efficient storage and fast lookups during cluster
extraction and behavior modeling.

Figure 4 illustrates the data structure of FTable and
CTable with an example. FTable, an array data structure,
provides an index of 5-tuple flows through a widely-used hash-
ing function, FH = srcip∧dstip∧srcport∧dstport∧proto %
(FTableEntries − 1), where FTableEntries denotes the
maximum entries of FTable. For example, in Figure 4, flow 1
is mapped to the entry 181 in FTable, while flow 2 is mapped
to the entry 1. In case of hashing collision, i.e., two or more
flows mapping to the same table entry, we use a linked list to
manage them. In our experiments, the (average) collision rate of
this flow hashing function is below 5% with FTableEntries =
220. While constructing clusters, the naive approach would be
to make four copies of 5-tuple flows, and then group each flow
into four clusters along each dimension. However, this method
dramatically increases the memory cost of the system since the
flow table typically has hundreds or millions of flows in each
time interval. Instead of duplicating flows, which is expensive,
we add four flow pointers (i.e., next srcIP, next dstIP,
next srcPrt, and next dstPrt) in each flow. Each flow
pointer will link the flows sharing the same feature value in
the given dimension. For example, the next srcIP pointer
of flow 4 links to flow 3 since they share the same srcIP



Figure 4: Data structure of flow table and cluster table

10.0.0.1. Similarly, the next srcPrt pointer of flow 4 links
to flow 1 since they share the same srcPrt 80. However,
the question is how to quickly find the “old” flows of the same
clusters when adding a new flow in the flow table.

To address this problem, we create another data structure,
CTable, which links the first flow of each cluster in FTable.
Since there are four types of clusters, we create four instances of
CTable for managing clusters along four dimensions. Consid-
ering srcPrt and dstPrt dimensions with 65536 possible
clusters (ports), we use an array with a size of 65536 to manage
the clusters for each of these two dimensions. The index of the
array for each port is the same as the port number. For srcIP
and dstIP dimensions, we use a simple hashing function that
performs a bitwise exclusive OR (XOR) operation on the first
16 bits and the last 16 bits of IP address to map each srcIP
or dstIP into its CTable entry. When adding a new flow,
e.g., flow 3 in Fig. 4, in the given dstPrt, we first locate
the first flow (flow 2) of the cluster dstPrt 443, and make
the next dstPrt pointer of flow 3 to flow 2. Finally
the first flow of the cluster dstPrt 443 is updated to flow 3.
This process is similar for the cluster srcPrt 1208, as well as
the the clusters srcIP 10.0.0.1 and dstIP 192.168.0.2.

In addition to pointing to the first flow in each cluster, each
CTable entry also includes flow count for the cluster and sig-
nificant bit for marking significant clusters. The former main-
tains flow counts for cluster keys. As discussed in Section 2, the
flow count distribution will determine the adaptive threshold for
extracting significant clusters.

3.3.2 Space and Time Complexity of Modules

The space and time complexity of modules essentially deter-
mines the CPU and memory cost of the profiling system. Thus,

we quantify the complexity of each module in our profiling sys-
tem. For convenience, Table 1 shows the definitions of the no-
tations that will be used in the complexity analysis.

The time complexity of cluster construction is O(|F | +∑3
i=0 |Ci|) for FTable and CTable constructions. Similarly,

the space complexity is O(|F | ∗ sfr +
∑3

i=0(|Ci| ∗ rv)).

The time complexity of adaptive thresholding is
∑3

i=0(|Ci| ∗
ei). This module does not allocate additional memory, since its
operations are mainly on the existing CTable. Thus, the space
complexity is zero.

The time complexity of behavior profiling is
O(

∑3
i=0

∑|Si|
j=0 |sj |), while the space complexity is

O(
∑3

i=0[|Si| ∗ (rb + rs)]). The output of this step are
the behavior profiles of significant clusters, which are recorded
into a database along with the timestamp for further analysis.

Due to a small number of significant clusters extracted, the
computation complexity of profile tracking is often less than
the others in two or three orders of magnitude, so we will not
consider its time and space requirement for simplicity.

3.3.3 Parallelization of Input and Profiling

In order to improve the efficiency of the profiling system, we use
thread mechanisms for parallelling tasks in multiple modules,
such as continuously importing flow records in the current time
interval Ti, and profiling flow records that are complete for the
previous time interval Ti−1. Clearly, the parallelization could
reduce the time cost of the profiling system. The disadvantage
of doing so is that we have to maintain two set of FTable and
CTable for two time intervals.



Table 1: Notations used in the paper
Notation Definition
F set of 5-tuple flows in a time interval
i dimension id (0/1/2/3 = srcIP/dstIP/srcPort/dstPort
Ci set of clusters in dimension i
Si set of significant clusters in dimension i
ci a cluster in dimension i
si a significant cluster in dimension i
rf size of a flow record
rv size of the volume information of a cluster
rb size of behavior information of a significant cluster
rs size of dominant states of a significant cluster

3.3.4 Event Analysis Engine

To discover interesting or anomalous network events, we build
an event analysis engine with three aspects: i) temporal be-
havior analysis, ii) feature dimension correlation, and iii) event
configurations. The objective of temporal behavior analysis is
to characterize temporal properties of behavior classes as well
as individual clusters from the behavior profile database that
records behavior profiles built from the profiling system. Prior
work in (Lakhina et al., 2005; Xu et al., 2005a) have demon-
strated that temporal properties could help distinguish and clas-
sify behavior classes. Feature dimension correlation attempts to
find the correlation between clusters from various dimensions
to detect emerging exploit and worm activities (Kim and Karp,
2004; Singh et al., 2004) that often trigger new clusters from
srcIP, dstIP and dstPrt dimensions.

We develop a simple event configuration language that en-
ables network operators or security analysts to extract informa-
tion on events of interest from behavior profiles for network
management or troubleshooting. To express the policy, we use
four distinct fields: Dimension, Event Type, Filter, and Descrip-
tion. The options of these fields include:

• Dimension ∈ {srcIP, dstIP, srcPrt, dstPrt, all}
• Event Type ∈ {rare, deviant, exploit, unusual service

ports, all}
• Filter ∈ {high frequncy, high intensity, matching

selected ports, others}
• Description ∈ {full, summary}
For example, if a network operator wants to monitor rare

behavior of srcIP end hosts, she could use the rule srcIP
(Dimension) - rare (Event Type) - all (Filter) - full (Descrip-
tion), which expresses the policy of reporting full profiles of all
srcIP clusters with rare behavior. Similarly, we could con-
struct other filter rules using the combinations of all available
options.

In the next section, we will demonstrate the operational fea-
sibility of this system by performing extensive benchmarking
of CPU and memory costs using packet-level traces from OC-
48 backbone links. To evaluate the robustness of the system,
we also test the system against anomalous traffic patterns under
denial of service attacks or worm outbreaks.

4 Performance Evaluation

In this section, we first conduct performance benchmarking of
CPU and memory cost of the profiling system using a variety
of packet traces from OC-48 backbone links. Subsequently,
we evaluate the performance bottlenecks of the system under
anomalous traffic patterns such as those caused by denial of ser-
vice attacks and worm outbreaks.

4.1 Benchmarking

We measure CPU usage of the profiling process by using a sys-
tem call, namely, getrusage(), which queries actual system and
user CPU time of the process. The system call returns with
the resource utilization including ru utime and ru stime, which
represent the user and system time used by the process, respec-
tively. The sum of these two times indicates the total CPU time
that the profiling process uses. Let T denote the total CPU time,
and Tl, Ta, and Tp denote the CPU usage for the modules of
cluster construction, adaptive thresholding and behavior profil-
ing, respectively. Then we have

T = Tl + Ta + Tp (3)

Similarly, we collect memory usage with another system call,
mallinfo(), which collects information of the dynamic memory
allocation. Let M denote the total memory usage, and Ml, Ma,
and Mp denote the memory usage in three key modules. Then
we have

M = Ml + Ma + Mb (4)

In oder to track the CPU and memory usages of each module,
we use these two system calls before and after the module. The
difference of the output becomes the actual CPU and memory
consumption of each module. Next, we show the CPU time and
memory cost of profiling system on three OC-48 links during a
continuous 18 hours with average link utilization of 209 Mbps,
86 Mbps, and 78 Mbps. For convenience, let L1, L2, and L3

denote three links, respectively.
Table 2 shows a summary of CPU time and memory cost of

the profiling system on L1 to L3 for 18 consecutive hours. It
is not surprising to see that the average CPU and memory costs
for L1 are larger than the other two links due to a higher link



Table 2: Total CPU and memory cost of the real-time profiling system on 5-min flow traces
Link Util. CPU time (sec) Memory (MB)

min avg max min avg max
L1 207 Mbps 25 46 65 82 96 183
L2 86 Mbps 7 11 16 46 56 71
L3 78 Mbps 7 12 82 45 68 842

utilization. Fig. 5 shows the CPU and memory cost of the pro-
filing system on all 5-min intervals for L1 (the link with the
highest utilization). For the majority of time intervals, the pro-
filing system requires less than 60 seconds (1 minute) of CPU
time and 150MB of memory using the flow records in 5-min
time intervals for L1.

Fig. 6[a] further illustrates the number of flow records over
time that ranges from 600K to 1.6M, while Fig. 6[b] shows the
number of all clusters as well as the extracted significant clus-
ters. It is very interesting to observe the similar patterns in the
plot of memory cost (Fig. 5[b]) and that of the flow count over
time (Fig 6[a]). This observation leads us to analyze the cor-
relation between these two measurements. By examining the
breakdown of the memory cost, we find that Ml in the cluster
construction module accounts for over 98% of the total memory
consumptions. Recall that the space complexity of this module
is larger than the others by two or three orders of magnitude, and
dominated by the factor in terms of size of flow table |F |. The
scatter plot of |F | vs. Ml in Fig. 7 reflects the linear relationship
between them. Therefore, this strong correlation suggests that
the memory cost of the profiling system is mainly determined
by the number of flow records collected by the monitoring sys-
tem in the given time interval.

Fig. 8[a] shows a breakdown in CPU usage of the various
modules in the profiling system, and suggests that cluster con-
struction and behavior profiling account for a large fraction of
CPU time. Similar to the space complexity, the time complex-
ity in cluster construction is also determined by |F |. The linear
relationship demonstrated by the scatter plot of |F | vs. Tl in
Fig. 8[b] confirms this complexity analysis. Fig. 8[c] shows the
scatter plot of the number of significant clusters vs. CPU time in
behavior profiling. Overall, we observe an approximately linear
relationship between them. This suggests that the CPU cost in
behavior profiling is largely determined by the number of sig-
nificant clusters whose behavior patterns are being analyzed.

To understand how performance is affected by time granu-
larity, we also evaluate the system on L1 using 1-min, 2-min,
10-min and 15-min flow traces. The results are shown in Ta-
ble 3. In general, the CPU time and memory cost increase as
the length of the time interval. On the other hand, the CPU time
of the profiling system is always less than the time interval T .
In addition, the average memory cost for 5-min, 10-min and 15-
min are 96 MB, 151 MB, and 218 MB, respectively which are
within the affordable range on commodity PCs. These results
clearly suggest that our real-time profiling system satisfies the
scalability requirement raised in the previous section.

In summary, the average CPU and memory costs of the real-
time profiling system on 5-min flow records collected from an
OC-48 link with a 10% link utilization are 60 seconds and 100
MB, respectively. Moreover, the CPU time is largely deter-
mined by the number of flow records as well as that of signifi-

cant clusters, and the memory cost is determined by the number
of flow records. During these monitoring periods, these links
are not fully utilized, so we can not extensively measure the per-
formance of the real-time profiling system for a highly loaded
link. Next, we will test the profiling system during sudden traf-
fic surges such as those caused by denial of service attacks, flash
crowds, and worm outbreaks that increase the link utilization as
well as the number of flow records.

4.2 Stress Test

The performance benchmarking of CPU and memory costs
demonstrates the operational feasibility of our traffic profil-
ing system during normal traffic patterns. However, the pro-
filing system should be robust during atypical traffic patterns,
such as denial of service attacks, flash crowds, and worm out-
breaks (Jung, 2002; Kandula et al., 2005; Moore et al., 2003;
Zou et al., 2003). In order to understand the system perfor-
mance during these incidents, we inject packet traces of three
known denial of service attacks and simulated worm outbreaks
by superposing them with backbone traffic.

We use the packet traces of three DoS attacks with varying
intensity and behavior studied in Hussain et al. (2003). All of
these attacks are targeted on a single destination IP address. The
first case is a multiple-source DoS attack, in which hundreds of
source IP addresses send 4200 ICMP echo request packets per
second for about 5 minutes. The second case is a TCP SYN
attack lasting 12 minutes from random IP addresses that send
1100 TCP SYN packets per second. In the last attack, a single
source sends over 24K ip-proto 255 packets per second for 15
minutes. In addition to DoS attacks, we simulate the SQL slam-
mer worm on January 25th 2003 (Moore et al., 2003) with an
Internet Worm Propagation Simulator used in Zou et al. (2003).
In the simulation experiments, we adopt the same set of pa-
rameters in Zou et al. (2003) to obtain similar worm simulation
results, and collect worm traffic monitored in a 220 IP space.

For each of these four anomalous traffic patterns, we replay
packet traces along with backbone traffic, and aggregate syn-
thetic packets traces into 5-tuple flows. For simplicity, we still
use 5 minutes as the size of the time interval, and run the pro-
filing system against the flow records collected in an interval.
Table 4 shows a summary on flow traces of the first 5-minute
interval for these four cases. The flow, packet and byte counts
reflect the intensity of attacks or worm propagation, while the
link utilization indicates the impact of such anomaly behaviors
on Internet links. For all of these cases, the profiling system is
able to successfully generate event reports in less than 5 min-
utes.

For the synthetic traffic, the link utilization ranged from 314.5
Mbps to 629.2Mbps. We run the profiling system on flow traces
after replaying synthetic packets and collect CPU and memory
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Figure 5: CPU and memory cost of the real-time profiling system on flow records in 5-min time interval collected in L1 for 18
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Table 3: Total CPU and memory cost with various time granularities
Link Time scale CPU time (sec) Memory (MB)

min avg max min avg max
L1 1 min 5 12 31 26 36 76
L1 2 min 10 22 42 31 46 89
L1 5 min 25 46 65 82 96 183
L1 10 min 35 82 129 91 151 208
L1 15 min 45 88 152 145 218 267

Table 4: Synthetic packet traces with known denial of services attacks and worm simulations
Anomaly Flows Packets Bytes Link Utilization CPU time Memory Details
DoS-1 2.08 M 18.9 M 11.8 G 314.5 Mbps 45 seconds 245.5 MB distributed dos attacks from multiple sources
DoS-2 1.80 M 20.7 M 12.5 G 333.5 Mbps 59 seconds 266.1 MB distributed dos attacks from random sources
DoS-3 16.5 M 39.8 M 16.1 G 430.1 Mbps 210 seconds 1.75GB dos attacks from single source
Worm 18.9 M 43.0 M 23.6 G 629.2 Mbps 231 seconds 2.01GB slammer worm simulations

cost of each time interval, which is also shown in Table 4. The
system works well for low intense DoS attacks in the first two
cases. However, due to intense attacks in the last DoS case
(DoS-3) and worm propagations, the CPU time of the system
increases to 210 and 231 seconds, but still under the 5 minute in-
terval. However, the memory cost jumps to 1.75GB and 2.01GB
indicating a performance bottleneck. This clearly suggests that
we need to provide practical solutions to improve the robust-
ness of the system under stress. In the next section, we will
discuss various approaches, including traditional sampling tech-
niques and new profiling-aware filtering techniques towards this
problem, and evaluate the tradeoff between performance bene-
fits and profiling accuracy.

5 Sampling and Filtering

In this section, we first adopt traditional sampling techniques to
address performance bottleneck during sudden traffic surges as
caused by severe DoS attacks or worm outbreaks. After evaluat-
ing its strength and limitation, we propose a simple yet effective
profiling-aware filtering algorithm that not only reduces mem-
ory cost, but also retains profiling accuracy.

5.1 Random Sampling

Random sampling is a widely-used simple sampling technique
in which each object, flow in our case, is randomly chosen
based on the same probability (also known as sampling ratio
µ). Clearly, the number of selected flows is entirely decided
by the sampling ratio µ. During the stress test in the last sec-
tion, the profiling system requires about 2GB memory when the
number of flow records reach 16.5M and 18.9M during DoS
attacks and worm outbreaks. Such high memory requirement
is not affordable in real-time since the machine installed with
the profiling system could have other tasks as well, e.g., packet
and flow monitoring. As a result, we attempt to set 1GB as
the upper bound of the memory cost. Recall that in the perfor-
mance benchmarking, we find that memory cost is determined
by the number of flow records. Based on their linear relation-
ship shown in Fig. 7 we estimate that flow records with a size
of 10M will require approximately 1GB memory. Thus, 10M is
the desirable limit for the size of the flow records.

Using the limit of flow records, l, we could configure the
sampling ratio during sudden traffic increase as µ = l

|F | . As
a result, we set the sampling ratios in the last DoS attacks and
worm outbreaks as 60% and 55%, respectively, and randomly
choose flows in loading flow tables in the cluster construction
module. Table 5 shows the reduction of CPU time and memory
consumptions with the sampled flow tables for both cases.

On the other hand, random sampling has substantial impact
on behavior accuracy. First, the set of significant clusters from
four feature dimensions are smaller than that without sampling,
which is caused by the changes of the underlying cluster size
distribution after flow sampling. Table 6 shows the number of
significant clusters extracted along each dimension without and
with sampling for the DoS case. In total, among 309 significant
clusters without sampling, 180 (58%) of the most significant
clusters are extracted with random sampling. Secondly, the be-
havior of a number of extracted clusters are altered, since flow
sampling changes the feature distribution of free dimensions as
well as the behavior classes for these clusters. As shown in
the last column of Table 6, 161 out of 180 significant clusters
with random sampling are classified with the same behavior as
those without sampling. In other words, the behavior of 19
(10.5%) extracted significant clusters are changed as a result
of random sampling. Fig. 9 shows the feature distributions of
free dimensions for 140 dstIP clusters with and without ran-
dom sampling. The deviations from the diagonal line indicate
the changes of feature distribution and the behavior due to flow
sampling. We also perform random sampling on the synthetic
flow traces in the case of worm outbreak, and the results of sam-
pling impact on cluster extractions and behavior accuracy are
very similar.

In summary, random sampling could reduce the CPU time
and memory cost during sudden traffic surges caused by DoS
attacks or worm outbreaks. However, random sampling reduces
the number of interesting events, and changes behavior classes
of a number of significant clusters. Such impact could have be-
come worse if finer sampling granularities are selected. Thus, it
becomes very necessary to develop a profiling-aware algorithm
that not only reduces the size of flow tables, but also retains the
(approximately) same set significant clusters and their behavior.



Table 5: Reduction of CPU time and memory cost using the random sampling technique
Case µ Size of FTable CPU time memory
DoS attack 66% 10M 89 seconds 867 MB
Worm 55% 10M 97 seconds 912 MB

Table 6: Reduction of significant clusters and behavior accuracy
Dim. Significant clusters Significant clusters Clusters with same

without sampling with sampling behavior classes
srcPrt 23 4 3
dstPrt 6 5 4
srcIP 47 31 29
dstIP 233 140 125
Total 309 180 161
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Figure 9: Feature distribution of free dimensions for 140 dstIP clusters with and without random sampling

5.2 Profiling-aware Filtering

A key lesson from random sampling is that the clusters asso-
ciated with denial of service attacks are usually very large in
flow count, and hence consume a large amount of memory and
CPU time (Argyraki and Cheriton, 2005). In addition, profiling
such behavior does not require a large number of flows, since
the feature distributions very likely remain the same even with
a small percentage of traffic flows. Based on this insight, we de-
velop a profiling-aware filtering solution that limits the size of
very large clusters, and adaptively samples on the rest of clus-
ters when the system is faced with sudden explosive growth in
the number of flows.

Algorithm 1 describes the details of the profiling-aware sam-
pling algorithm. First, we choose two watermarks (L and H)
for the profiling system. L represents the moving average of
flow tables over time, and H represents the maximum size of
flow tables that system will accept. In our experiments, we set
H = 10M , which is estimated to require 1GB memory cost.
In addition, we set the maximum and minimum sampling ra-
tios, i.g., µmax and µmin. The actual sampling µ will be adap-
tively decided based on the status of flow table size. Specif-
ically, the sampling ratio becomes thinner as the size of flow
table increases. For simplicity, let ftable denote the size of
flow table. If ftable is below L, the profiling system accepts
every flow. In contrary, if ftable is equal to H , the system
will stop reading flows and exit with a warning signal.

If ftable is equal to L or certain intermediate marks, i.e.,
L+i∗D, where D is the incremental factor and i = 1, 2..., (H−
L)/D− 1, the system computes the relative uncertainty of each
dimension and evaluates whether there is one or a few domi-

nant feature values along each dimension. In our experiments,
we set D = 1M as the incremental factor. The existence of
such values suggests that certain types of flows dominate cur-
rent flow tables, and indicates anomalous traffic patterns. Thus,
the system searches these values and marks them as significant
clusters for flow filtering. Subsequently, any flow, which con-
tains a feature value marked with significant, will be filtered,
since such flow will not likely contribute much for the behavior
of the associated clusters. Instead, we should give preference to
flows that belong to other small clusters. On the other hand, the
system could not accept all of these flows with preference after
ftable exceeds L watermark. As a result, each of these flows is
added with the adaptive sampling ratio

µ = µmax − i ∗ µmax − µmin

(H − L)/D − 1
. (5)

5.2.1 Evaluations

We run the profiling system on the flow tables in the cases of
DoS attack and worm outbreaks (cf. Table 6) with the profile-
aware filtering algorithm. Similar to random sampling, this
sampling solution could also reduce CPU time and memory cost
due to a small size of flow table. However, the profiling-aware
sampling has two advantages compared with random sampling.
Firstly, the set of clusters extracted using this algorithm is very
close to the set without sampling. For example, in the case of
DoS attack, the system obtains 41 srcIP clusters, 210 dstIP
clusters, 21 srcPrt clusters and 6 dstPrt cluster, respec-
tively. Compared with 58% of significant clusters extracted in



Algorithm 1 A Profiling-aware filtering algorithm

1: Parameters: L, H , D, µmax, µmin, β∗

2: Initilization: I = (H − L)/D

δµ = (µmax − µmin)/I

µ = µmax

i = 0

ftable = 0

3: srcPrt = 0; dstPrt = 1

4: srcIP = 2; dstIP = 3

5: while next flow do

6: if (ftable < L) then

7: Insert flow into FTable (Flow Table)

8: ftable + +

9: continue;

10: else

11: if (ftable > H) then

12: Stop reading flows

13: exit

14: end if

15: end if

16: if (ftable == L + i ∗D) then

17: ru0 = Relative Uncertainty(FTable, srcPrt)

18: ru1 = Relative Uncertainty(FTable, dstPrt)

19: ru2 = Relative Uncertainty(FTable, srcIP)

20: ru3 = Relative Uncertainty(FTable, dstIP)

21: for (dim = 0; dim ≤ 3; dim + +) do

22: ru = rudim

23: while (ru ≤ β∗) do

24: remove feature value with highest probability

25: mark feature value as significant

26: ru = Relative Uncertainty(FTable, dim)

27: end while

28: end for

29: µ = µmax − i ∗ δµ

30: i + +

31: end if

32: if ((ftable ≥ L) && (ftable ≤ H)) then

33: if (any feature value in flow is marked significant) then

34: Filter flow

35: else

36: Insert flow into FTable with probability µ

37: if (flow is selected then

38: ftable + +

39: end if

40: end if

41: end if

42: end while

random sampling, our profiling-aware algorithm could extract
over 90% of 309 original clusters that are selected without any
sampling.

Secondly, the behavior accuracy of significant clusters are
also improved. Specifically, among 41 srcIP’s, 210 dstIP’s,
21 srcPrt’s, and 6 dstPrt’s significant clusters, only 3
dstIP’s and 1 srcPrt exhibit changes in behavior classes.
This finding highly suggests that the profiling-aware profiling
algorithm successfully retains the feature distributions of those
clusters and behaviors.

Fig. 10 shows the feature distribution of free dimensions of
210 dstIP clusters, extracted both without sampling and with
profiling-aware filtering algorithm. In general, the feature dis-
tributions of all free dimensions for almost all clusters after fil-
tering are approximately the same as those without sampling.
The outliers deviant from the diagonal lines correspond to fea-
ture distributions of three clusters whose behavior has changed.
Upon close examinations, we find that flows in these clusters
contain a mixture of Web and ICMP traffic. The latter are
the dominant flows in DoS attacks, so they are filtered after
the size of flow table reaches L in the profiling-aware filter-
ing algorithm. The filtered ICMP flows in these clusters explain
the changes of the feature distributions as well as the behavior
classes.

In the worm case, the profiling-aware filtering algorithm also
successfully reduces CPU and memory cost of the profiling sys-
tem, while maintaining high profiling accuracy in terms of the
number of extracted significant clusters and the feature distribu-
tions of these clusters. Thus, the profiling-aware filtering algo-
rithm can achieve a significant reduction of CPU time and mem-
ory cost during anomalous traffic patterns while obtaining accu-
rate behavior profiles of end hosts and network applications.

6 Reducing Unwanted Exploit Traffic

The prevalent exploit behavior indicates the severity of worm
or exploit spread and the magnitude of infected hosts (cf. (Yeg-
neswaran et al., 2003; Pang et al., 2004; SNORT, 2009; Paxson,
1999; Staniford et al., 2002)). Given the exploit traffic iden-
tified through our real-time profiling system, we devise several
heuristic rules of blocking strategies in the profiling system, and
then evaluate their efficacy in reducing unwanted traffic (Xu
et al., 2005b). In order to determine which sources to block
traffic from, we first identify all sources that exhibit exploit be-
havior. We then devise simple rules to select some or all of these
sources as candidates for blocking. Instead of blocking all traf-
fic from the selected sources, we consider blocking traffic on
only the ports that a source seek to exploit. This is because ex-
ploit hosts may indeed be sending a mixture of legitimate and
exploit traffic. For example, if an infected host behind a NAT
box is sending exploit traffic, then we may observe a mixture of
legitimate and exploit traffic coming from the single IP address
corresponding to the NAT box.

For our evaluation, we start with the following benchmark
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Figure 10: Feature distribution of free dimensions for 210 dstIP clusters with and without profiling-aware sampling

rule. If a source is profiled as an exploit source during any five
minute interval, then all traffic from this source on vulnerable
ports is blocked from then on. In general, the benchmark rule
could block about 80% of unwanted traffic from these exploit
sources. In other words, this rule may still not block all traffic
from the source due to two reasons. First, the source might
already have been sending traffic, perhaps legitimate, prior to
the time-slot in which it exhibited the exploit profile. Second,
as explained above, only ports on which we see exploit traffic
are considered to be blocked.

While this benchmark rule is very aggressive in selecting
sources for blocking, the candidate set of source/port pairs to be
added to ACL list of routers may grow to be very large across all
links in a network. ACL is a scarce resource of network routers,
thus we devise and evaluated other blocking rules that embody
more restrictive criteria that an exploit source must satisfy in
order to be selected for blocking. We introduce three metrics,
cost, effectiveness, and wastage to evaluate the efficacy of these
rules. The cost refers to the overhead incurred in a router to
store and lookup the ACLs of blocked sources/ports. For sim-
plicity, we use the total number of sources/ports as an index of
the overhead for a blocking rule. The effectiveness measures
the reduction of unwanted traffic in terms of flow, packet and
byte counts compared with the benchmark rule. The resource
wastage refers to the number of entries in ACLs that are never
used after creations. Based on the evaluations, we find that the
rule of blocking aggressive sources (An ACL entry is created if
and only if the source has an average intensity of at least 300
flows per minute.) to be very effective.

We apply this blocking strategy and the benchmark rule in the
real-time profiling system and replay a 24 hour packet trace col-
lected from an OC-48 Internet backbone link. The benchmark
rule achieves the optimal performance, but has the largest cost,
i.e., 3756 blocking entries, 34.8% of which are never used af-
ter creation. The selected blocking strategy reduces 84.3% un-
wanted flows, 80.4% unwanted packets, and 72.7% unwanted
bytes, respectively. The strategy has a cost of 1789 ACL entries
and over 83% of entries are applied at least once to block sim-
ilar exploit traffic from the same attacker. We believe that that
this simple rule is cost-effective when used to block the aggres-
sive or frequent sources that send a majority of self-propagating
exploit traffic, in particular, in the early stage of a malware out-
break, to hinder their spread. The similar observations also hold
for other Internet backbone links.

In summary, our experiment results demonstrate that block-
ing the most offending sources in the real-time profiling sys-
tem is reasonably cost-effective, and can potentially stop self-
propagating malware in their early stage of outburst.

7 Conclusions

This paper explores the feasibility of designing, implementing
and utilizing a real-time behavior profiling system for high-
speed Internet links. We first discuss the design requirements
and challenges of such a system and present an overall architec-
ture that integrates the profiling system with always-on mon-
itoring systems and an event analysis engine. Subsequently,
we demonstrate the operational feasibility of building this sys-
tem through extensive performance benchmarking of CPU and
memory costs using a variety of packet traces collected from
OC-48 backbone links. To improve the robustness of this sys-
tem during anomalous traffic patterns such as denial of service
attacks or worm outbreaks, we propose a simple yet effective
filtering algorithm to reduce resource consumptions while re-
taining high profiling accuracy. Through simple yet effective
ACL rules, we demonstrate the application of the real-time pro-
filing system to reduce a significant amount of unwanted exploit
traffic.
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