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Abstract. In this paper we extend and generalize the standard random walk the-

ory (or spectral graph theory) on undirected graphs to digraphs. In particular, we

introduce and define a (normalized) digraph Laplacian matrix, and prove that

1) its Moore-Penrose pseudo-inverse is the (discrete) Green’s function of the di-

graph Laplacian matrix (as an operator on digraphs), and 2) it is the normalized

fundamental matrix of the Markov chain governing random walks on digraphs.

Using these results, we derive new formula for computing hitting and commute

times in terms of the Moore-Penrose pseudo-inverse of the digraph Laplacian, or

equivalently, the singular values and vectors of the digraph Laplacian. Further-

more, we show that the Cheeger constant defined in [6] is intrinsically a quantity

associated with undirected graphs. This motivates us to introduce a metric – the

largest singular value of ∆ := (L̃ − L̃T )/2 – to quantify and measure the de-

gree of asymmetry in a digraph. Using this measure, we establish several new

results, such as a tighter bound (than that of Fill’s in [9] and Chung’s in [6]) on

the Markov chain mixing rate, and a bound on the second smallest singular value

of L̃.

1 Introduction

Graphs arising from many applications such as web are directed, where direction of

links contains crucial information. Random walks are frequently used to model certain

dynamic processes on (directed or undirected) graphs, for example, to reveal important

network structural information, e.g., importance of nodes as in the Page-Rank algo-

rithm [5], or to study ways to efficiently explore complex networks.

Random walks on undirected graphs have been extensively studied and are well-

understood (see [13]). They are closely related to spectral graph theory [7], which has

produced powerful tools to study many important properties of (undirected) graphs that

are of both theoretical and practical significance. Well-known results include bounds

on Cheeger constant and mixing rate in terms of the second smallest eigenvalue of the

graph Laplacian. On the other hand, there are relatively few similar studies on directed

graphs, see, e.g., [6, 15], where the authors circumvent the “directedness” of digraphs

by converting them into undirected graphs through symmetrization.
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CNS-1017647, the DTRA grant HDTRA1-09-1-0050, and a University of Minnesota DTC

DTI grant.
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In this paper we develop a spectral graph theory (or random walk theory) for di-

rected graphs (in short, digraphs). We introduce the notion of digraph Laplacian, a di-

rect generalization of the graph Laplacian (for undirected graphs), denoted by L̃. Instead

of using the node degrees (as in the case of undirected graphs), the digraph Laplacian

is defined using stationary probabilities of the Markov chain governing random walks

on digraphs. Furthermore, instead of relying on the positive semi-definiteness of the

graph Laplacian matrix (for undirected graphs), we establish a key connection between

the digraph Laplacian L̃ and its Moore-Penrose pseudo-inverse [10], denoted by L̃+,

and use the properties of this connection to prove several parallel results for random

walks on digraphs. In particular, we show that 1) the Moore-Penrose pseudo-inverse

L̃+ of the digraph Laplacian is exactly the (discrete) Green’s function of the digraph

Laplacian matrix L̃, acting as an operator on digraphs [8], and 2) L̃+ is the normalized

fundamental matrix [1] of the Markov chain governing random walks on digraphs.

Based on the connection between L̃+ and the fundamental matrix, we show how

hitting and commute times can be directly computed in terms of the singular values and

vectors of the digraph Laplacian – this yields a more direct and efficient way to compute

hitting and commute times than existing methods based on the fundamental matrix.

More generally, our results suggest a “spectral graph theory” for digraphs, where graph

properties can be studied using the singular values of the digraph Laplacian in place

of the eigenvalues of the graph Laplacian. In particular, our theory of random walks

on digraphs subsumes the existing theory of random walks on undirected graphs as a

special case.

Furthermore, we show that the well-known Cheeger constant – generalized by Chung

to digraphs in [6] – is fundamentally a quantity intrinsic to undirected graphs, as there

are infinitely many digraphs with the same symmetrized (undirected) graph. Hence

bounds based on the eigenvalues of the symmetrized graph Laplacian do not uniquely

capture the properties of digraphs. This leads us to introduce the degree of asymmetry

to capture the overall “directedness” of digraphs, formally defined as follows: we ex-

press a digraph Laplacian L̃ in terms of a symmetric part, L̄ = (L̃ + L̃T )/2 , and a

skew-symmetric part, ∆ = (L̃ − L̃T )/2. (L̄ is the (symmetrized) graph Laplacian for

digraphs introduced by Chung in [6].) The largest singular value of ∆, δmax, is referred

to as the degree of asymmetry, which provides a quantitative measure of the asymmetry

in digraphs. Many key properties of digraphs can then be bounded by the eigenvalues

of L̄ and the degree of asymmetry. For instance, by accounting for the asymmetry of

digraphs, we are able to obtain a tighter bound (than that of Fill’s in [9] and Chung’s in

[6]) on (non-reversible) Markov chain mixing rate.

2 Preliminaries: Random Walks on Undirected Graphs

We use a triple G = (V, E, A) to denote an undirected and weighted graph on the node

set V = {1, 2, . . . , n}. The n × n (nonnegative) weight matrix A = [aij ] is symmetric,

and is defined in such a way that aij = aji > 0, if 〈i, j〉 ∈ E, and aij = aji = 0
otherwise. For 1 ≤ i ≤ n, the degree of node i is di =

∑n
j=1 aij . The volume of

G, denoted by vol(G), is defined as the sum of all node degrees, d =
∑n

i=1 di, i.e.,

vol(G) = d.
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A random walk on G is a Markov chain defined on G with the transition probability

matrix P = [pij ], where pij = aij/di. Let D = diag[di] be a diagonal matrix of node

degrees, then P = D−1A. Without loss of generality, we assume that the undirected

graph G is connected (i.e., any node can reach any other node in G). Then it can be

shown (see, e.g., [1]) that the Markov chain is irreducible, and there exists a unique

stationary distribution, {π1, π2, . . . , πn}. Let π = [πi]1≤i≤n be the column vector of the

stationary probabilities. Then πT P = πT , where the superscript T represents (vector

or matrix) transpose. Furthermore, this Markov chain (random walk) on G is reversible,

namely

πipij = πjpji, for any i, j, (1)

and

πi =
di

∑

k dk
=

di

d
, i = 1, 2, . . . , n. (2)

Following [7], we will use the normalized graph Laplacian (instead of the unnor-

malized version L = D − A). Given an undirected G, the normalized graph Laplacian

of G (also called normalized Laplacian matrix of G) is defined as follows:

L = D− 1

2 (D − A)D− 1

2 = D
1

2 (I − P )D− 1

2 . (3)

A key property of the graph Laplacian (for an undirected graph) is that L is symmetric

and positive semi-definite [10]. Hence all eigenvalues of L are nonnegative real num-

bers. In particular, for a connected undirected graph G, L has rank n−1 and has exactly

one zero eigenvalue (its smallest one). Let λ1 = 0 < λ2 ≤ · · · ≤ λn be the n eigen-

values of L arranged in an increasing order, and µi, 1 ≤ i ≤ n, be the corresponding

eigenvectors (of unit norm). In particular, one can show that the (column) eigenvector,

µ1, of L associated with the eigenvalue λ1 = 0, is given by

µ1 = π
1

2 = [
√

πi] = [

√
di√
d

]. (4)

Define Γ := diag[λ1, . . . , λn], the diagonal matrix formed by the eigenvalues, and

U = [µ1, . . . , µn], an orthonormal matrix formed by the eigenvectors of L, where

UUT = UT U = I . It is easy to see that the graph Laplacian L admits an eigen-

decomposition [10], namely,L = UΓUT . Using the eigenvalues and eigenvectors of L,

we can compute the hitting times and commute times using the following formula [13]:

Hij =
∑

k>1

d

λk
(
µ2

kj

dj
− µkiµkj

√
didj

), (5)

and

Cij =
∑

k>1

d

λk
(
µki√

di

− µkj
√

dj

)2, (6)

where µkj is the jth entry of the column vector µk.



4

3 Random Walk Theory on Digraphs

In this section, we develop the random walk theory for digraphs. In particular, we gen-

eralize the graph Laplacian defined for undirected graphs, and introduce the digraph

Laplacian matrix. We prove that the Moore-Penrose pseudo-inverse of this digraph

Laplacian is exactly equal to (a normalized version of) the fundamental matrix of the

Markov chain governing random walks on digraphs, and show that it is also the Green’s

function of the digraph Laplacian. Using these connections, we illustrate that how hit-

ting and commute times of random walks on digraphs can be directly computed using

the singular values and vectors of the digraph Laplacian. We also show that when the

underlying graph is undirected, our results reduce to the well-known results for undi-

rected graphs. Hence our theory includes undirected graphs as a special case.

3.1 Random Walks on Directed Graphs and Fundamental Matrix

As alluded earlier, random walks can be defined not only on undirected graphs, but

also on digraphs. Let G = (V, E, A) be a (weighted) digraph defined on the vertex set

V = {1, 2, . . . , n}, where A is a nonnegative, but generally asymmetric weight matrix

such that aij > 0 if and only if the directed edge (or arc) 〈i, j〉 ∈ E. As before, we will

simply refer to A as the adjacency matrix of G. For i = 1, 2, . . . , n, we define the out-

degree of vertex i, d+
i =

∑n
j=1 aij , and the in-degree of vertex i, d−i =

∑n
j=1 aji. In

general, d+ 6= d−. However, we have d :=
∑n

i=1 d+
i =

∑n
i=1 d−i =

∑n
i=1

∑n
j=1 aij .

As before, we refer to d as the volume of the directed graph G, i.e., vol(G) = d. For

conciseness, in the following unless otherwise stated, we refer to the out-degree of a

vertex simply as its degree, and use di for d+
i .

Let D = diag[di] be a diagonal matrix of the vertex out-degrees, and define P =
D−1A. Then P = [pij ] is the transition probability matrix of the Markov chain asso-

ciated with random walks on G, where at each vertex i, a random walk has the prob-

ability pij = aij/di to transit from vertex i to vertex j, if 〈i, j〉 ∈ E. We assume

that G is strongly connected, i.e., there is a (directed) path from any vertex i to any

other vertex j. Then the Markov chain P is irreducible, and has a unique stationary

probability distribution, {πi}, where πi > 0, 1 ≤ i ≤ n. Namely, πT P = πT , where

π = [π1, . . . , πn]T be the (column) vector of stationary probabilities. Unlike undirected

graphs, the Markov chain associated with random walks on directed graphs is generally

non-reversible, and eqs.(1) and (2) for undirected graphs do not hold.

For random walks on directed graphs, quantities such as hitting times and commute

times can be defined exactly as in the case of undirected graphs. However, since the

(normalized) Laplacian matrix L is (so far!) defined only for undirected graphs, we

cannot use the relations eqs.(5) and (6) to compute hitting times and commute times for

random graphs on directed graphs. On the other hand, using results from the standard

Markov chain theory, we can express the hitting times and commute times in terms of

the fundamental matrix. In [1], Aldous and Fill define the fundamental matrix Z = [zij ]
for an irreducible Markov chain with the transition probability matrix P :

zij =

∞∑

t=0

(p
(t)
ij − πj), 1 ≤ i, j ≤ n, (7)
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where p
(t)
ij is the (i, j)-th entry in the t-step transition probability matrix P t = P · · ·P

︸ ︷︷ ︸

t

.

Let Π = diag[πi] be the diagonal matrix containing the stationary probabilities πi’s

on the diagonal, and J = [Jij ] the all-one matrix, i.e., Jij = 1, 1 ≤ i, j ≤ n. We can

express Z alternatively as the sum of an infinite matrix series:

Z =

∞∑

t=0

(P t − JΠ) =

∞∑

t=0

(P t − 1πT ), (8)

where 1 = [1, . . . , 1]T is the all-one column vector. Hence J = 1 · 1T , and 1T Π = πT .

While the physical meaning of the fundamental matrix Z may not be obvious from

its definition eq.(7) (or eq.(8)), it plays a crucial role in computing various quantities

related to random walks, or more generally, various stopping time properties of Markov

chains [1]. For instance, the hitting times and commute times of random walks on a

directed graph can be expressed in terms of Z as follows (see [1]):

Hij =
zjj − zij

πj
(9)

and

Cij =
zjj − zij

πj
+

zii − zji

πi
. (10)

In eqs.(7) and (8), the fundamental matrix Z is defined as an infinite sum. We show

that Z in fact satisfies a simple relation eq.(11), and hence can be computed directly

using the standard matrix inverse.

Theorem 1. Let P be the transition probability matrix for an irreducible Markov chain.

Then its corresponding fundamental matrix Z as defined in eq.(7) satisfies the following

relation

Z + JΠ = (I − P + JΠ)−1. (11)

Proof: Note that JΠ = 1πT . From πT P = πT and P1 = 1, we have JΠP = JΠ
and PJΠ = JΠ . Using these two relations, it is easy to prove the following equation

by induction.

Pm − JΠ = (P − JΠ)m, for any integer m > 0. (12)

Plugging this into eq.(8) yields Theorem 1.

As undirected graphs are a special case of directed graphs, eqs.(9) and (10) provide

an alternative way to compute hitting times and commute times for random walks on

fully connected undirected graphs. In this paper we will show that eqs.(5) and (6) are in

fact equivalent to eqs.(9) and (10).
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3.2 (Normalized) Digraph Laplacian and Green’s Function for Digraphs

We now generalize the existing spectral graph theory defined for undirected graphs

to directed graphs by introducing an appropriately generalized Laplacian matrix for

(strongly connected) diagraphs. Let G = (V, E, A) be a strongly connected (weighted)

digraph defined on the vertex set V = {1, 2, . . . , n}, where in general the weight (or ad-

jacency) matrix A is asymmetric. A major technical difficulty in dealing with digraphs

is that if one naively extends the (normalized) Laplacian matrix, L = D−1/2(D −
A)D−1/2, (or its un-normalized version, L = D−A), defined for undirected graphs to

digraphs, L is in general asymmetric; hence the nice properties such as positive semi-

definiteness of L no longer hold. Past attempts in generalizing the spectral graph theory

to digraphs have been simply symmetrized L, e.g., by introducing a symmetric matrix,

L̄ := (L + LT )/2 [6, 15]. Unfortunately, as will be shown in the Section 4, such sym-

metrized L̄ does not directly capture the unique characteristic of the random walk on

the digraph as defined earlier, since a set of diagraphs can have the same L̄.

For a strongly connected digraph G, let Π
1

2 = diag[
√

πi]. We define the (nor-

malized) digraph Laplacian for G (also referred to as the generalized (normalized)

Laplacian matrix1), L̃ = [L̃ij ] as follows:

Definition 1 (Normalized Digraph Laplacian L̃).

L̃ = Π
1

2 (I − P )Π− 1

2 , (13)

namely, for 1 ≤ i, j ≤ n,

L̃ij =







1 − pii if i = j,

−π
1

2

i pijπ
− 1

2

j if 〈i, j〉 ∈ E,

0 otherwise.

(14)

Treating this (normalized) digraph Laplacian matrix L̃ as an (asymmetric) operator

on a digraph G, we now define the (discrete) Green’s function G̃ (without boundary con-

ditions) for digraphs in exactly the same manner as for undirected graphs [8]. Namely,

G̃ is a matrix with its entries, indexed by vertices i and j, that satisfies the following

conditions:

[G̃L̃]i,j = Ii,j −
√

πiπj , 1 ≤ i, j ≤ n, (15)

and expressed in the matrix form,

G̃L̃ = I − π
1

2 π
1

2

T
. (16)

In the following we will show that G̃ is precisely L̃+, the pseudo-inverse of the Lapla-

cian operator L̃ on the digraph G. Furthermore, we will relate L̃+ directly to the funda-

mental matrix Z of the Markov chain associated with random walks on the digraph G.

Before we establish a main result of this paper, we first introduce a few more notations

and then prove the following useful lemma.

1 An un-normalized digraph Laplacian is defined as L = Π(I − P ) in [3].
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Lemma 1. Define Z̃ = Π
1

2 ZΠ− 1

2 (the normalized fundamental matrix), and J̃ =

Π
1

2 JΠ
1

2 = π
1

2 π
1

2

T
. The following relations regarding Z̃ and J̃ hold: (1) J̃ = J̃2, (2)

J̃L̃ = L̃J̃ = L̃π
1

2 = π
1

2

T L̃ = 0, and (3) J̃Z̃ = Z̃J̃ = Z̃π
1

2 = π
1

2

T Z̃ = 0.

Proof Sketch: These relations can be established using the facts that J = 11T , 1T Π =
πT , πT J = 1T , ΠJ = π1T , JΠJ = J , πT (I −P ) = 0, (I −P )1 = 0, πT Z = 0, and

Z1 = 0. The last four equalities imply that the matrices I −P and Z have the same left

and right eigenvectors, πT and 1, corresponding to the eigenvalue 0.

We are now in a position to prove a main theorem of the paper, which states the

Green’s function for the (normalized) digraph Laplacian is exactly its Moore-Penrose

pseudo-inverse, and it is equal to the normalized fundamental matrix. Namely, G̃ =
L̃+ = Z̃ . For completeness, we also include the key definitions in the statement of the

theorem.

Theorem 2 (Laplacian matrix and Green’s function for digraphs). Given a strongly

connected digraph G = (V, E, A) where V = {1, . . . , n} and A is a (generally asym-

metric) nonnegative weight/adjancency matrix of G such that aij > 0 if and only if

〈i, j〉 ∈ E, let D = diag[di] be the diagonal (out-)degree matrix, i.e., di =
∑

j aij .

Then P = D−1A is the transition probability matrix for the (irreducible and gener-

ally non-reversible) Markov chain associated with random walks on the digraph G. Let

π = [π1, . . . , πn]T be the stationary probability distribution (represented as a column

vector) for the Markov chain P , and Π = diag[πi] be the diagonal stationary proba-

bility matrix. We define the (normalized) digraph Laplacian matrix L̃ of G as in eq.(13),

i.e., L̃ = Π
1

2 (I −P )Π− 1

2 . Define Z̃ = Π
1

2 ZΠ− 1

2 , where Z is the fundamental matrix

of the Markov chain P as defined in eq.(7).

Then Z̃ = L̃+, is the pseudo-inverse of the Laplacian matrix L̃. Furthermore, Z̃ is

the (discrete) Green’s function for L̃. Namely,

Z̃L̃ = I − Π
1

2 JΠ
1

2 = I − π
1

2 π
1

2

T
, (17)

where J is the all-one matrix and π
1

2 = [π
1

2

1 , . . . , π
1

2

n ]T (a column vector).

Proof Sketch: From eq.(11) in Theorem 1, we have

Z̃ + J̃ = (L̃ + J̃)−1. (18)

Multiplying eq.(18) from the right by L̃ + J̃ , and using Lemma 1, it is easy to see that

Z̃L̃ = I − J̃ , (19)

which establishes that Z̃ is the Green’s function of the digraph Laplacian L̃. Similarly,

by multiplying eq.(18) from the left by L̃ + J̃ , we can likewise prove L̃Z̃ = I − J̃ .

Hence Z̃L̃ = L̃Z̃ = I− J̃ , which is a real symmetric matrix. Hence (L̃Z̃)T = L̃Z̃ and

(Z̃L̃)T = Z̃L̃. Furthermore, as J̃Z̃ = 0, eq.(19) yields Z̃L̃Z̃ = Z̃ . Similarly, as L̃J̃ =

Π
1

2 (I − P )JΠ
1

2 = 0, eq.(19) yields L̃Z̃L̃ = L̃. These establish that Z̃ satisfies the

four conditions of matrix pseudo-inverse. Hence Z̃ is also the Moore-Penrose pseudo-

inverse of L̃. Therefore, G̃ = Z̃ = L̃+.
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3.3 Computing Hitting and Commute Times for Digraphs using Digraph

Laplacian

Using the relationship between the (normalized) digraph Laplacian L̃, its pseudo-inverse

L̃+, and the (normalized) fundamental matrix Z̃, we can now express the hitting times

and commute times of random walks on digraphs in terms of L̃+, or alternatively in

terms of the singular values and singular vectors of the digraph Laplacian matrix L̃.

From Z = Π− 1

2 Z̃Π
1

2 = Π− 1

2 L̃+Π
1

2 , and using eqs.(9) and (10), we can compute

the hitting times and commute times for random walks on digraphs directly in terms of

the entries of L̃+.

Theorem 3 (Computing hitting and commute times using L̃+). The hitting times

and commute times of random walks on a strongly connected digraphs can be com-

puted using the pseudo-inverse of the (generalized) normalized Laplacian matrix L̃+

as follows:

Hij =
L̃jj

+

πj
− L̃ij

+

√
πiπj

, (20)

and

Cij = Hij + Hji =
L̃jj

+

πj
+

L̃ii
+

πi
− L̃ij

+

√
πiπj

− L̃ji
+

√
πiπj

, (21)

where L̃ij
+

is the (i, j)-th entry of L̃+, and πi is the stationary probability of vertex i.

For undirected graphs, we show that eqs.(20) and (21) reduce to eqs.(5) and (6) in

Section 2. This can be seen from the fact that for undirected graphs, L̃ = L is symmetric

and positive semi-definite. Hence the singular value decomposition of L is the same as

the eigen-decomposition of L.

4 Degree of Asymmetry, Generalized Cheeger Constant and

Bounds on Mixing Rate

In this section we explore the relation between digraph Laplacian L̃ and its symmetrized

version L̄. We first show that the symmetrized Laplacian matrix L̄, and the Cheeger

constant h(G) as defined in [6] are in a sense primarily determined by an undirected

graph associated with the random walks with the transition probability matrix P̄ =
(P + Π−1PT Π)/2, thus cannot capture the unique characteristics of each individual

diagraph. As a result, we investigate two questions: 1) how can the “degree of asymme-

try” of a digraph be quantified and measured? and 2) how does the degree of asymmetry

affect crucial properties of a digraph such as the mixing rate? In the following we pro-

pose one metric – the largest singular value of ∆ := (L̃ − L̃T )/2 – as a measure of the

degree of asymmetry in a digraph. We show that by explicitly accounting for the degree

of asymmetry, we can obtain generally tighter bounds on quantities (e.g., mixing rate)

associated with random walks (or Markov chains) on digraphs.
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4.1 The Degree of Asymmetry, and Relations to Symmetrized Digraph

Laplacian

In [6], Chung introduces the symmetrized Laplacian matrix for digraphs, L̄ = L̃+L̃T

2 ,

generalizes the Cheeger constant to digraphs and bounds it in terms of the second small-

est eigenvalue of L̄. In the following we show that the symmetrized Laplacian L̄ and the

Cheeger constant introduced by Chung are in fact two quantities intrinsic to undirected

graphs.

Theorem 4. Given a digraph G, with transition probability matrix P , there exist in-

finite digraphs which have the same stationary distribution matrix Π and the same

symmetrized transition probability matrix P̄ = (P + Π−1PT Π)/2. As a result, all

these graphs have the same symmetrized Laplacian matrix and Cheeger constant.

Proof : We prove it by construction. Given a digraph G = (V, E, A), with transition

probability matrix P , all the digraphs G′’s with the transition probability P ′ as

P ′(α) = αP + (1 − α)Π−1PT Π, (22)

form an infinite digraph set, denoted by G(G), where α ∈ [0, 1].
(1)It is easy to check that any P ′(α) defined in eq.(22) is non-negative, and satisfies

πT P ′(α) = πT , and P ′(α)1 = 1, thus P ′(α) represents a transition probability matrix

of a random walk with stationary distribution π.

For any G′ ∈ G(G), the digraph Laplacian matrix is given by L̃′ = Π
1

2 (I −
P ′)Π− 1

2 , and the symmetrized Laplacian is only determined by P̄ , since we have

L̄ =
L̃′ + L̃′T

2
= Π

1

2 (I − P + Π−1PT Π

2
)Π− 1

2 = Π
1

2 (I − P̄ )Π− 1

2 . (23)

(2) In particular, when α = 1
2 , P ′(1

2 ) = P̄ represents the undirected graph Ḡ. For any

S ⊂ N := {1, . . . , n}, define an n-element vector fS , where fS(i) = 1
Fπ(S) , i ∈ S

and fS(i) = − 1
Fπ(S̄)

, i ∈ S̄, where Fπ(S) :=
∑

i∈S πi is the circulation function [6].

Define xS = Π− 1

2 fS . Then

min
S

xT
S L̃xS

xT
S xS

= min
S

fT
S Π(I − P )fS

fT
S ΠfS

≤ 2 inf
S

Fπ(∂S)

min{Fπ(S), Fπ(S̄)} = 2h(G). (24)

The above inequality indicates that the Cheeger constant h(G) is closely related

to minS
xT

S
L̃xS

xT

S
xS

. On the other hand, xT
S L̃xS = xT

S L̃T xS = 1
2 (xT

S L̃xS + xT
S L̃T xS) =

xT
S L̄xS . Hence for any digraph G′ with a digraph Laplacian L̃′ such that (L̃′+L̃′

T
)/2 =

L̄, we have xT
S L̃′xS = xT

S L̄xS . We see that the left-hand side of eq.(24) hinges

only on L̄. Therefore, any graph G′ ∈ G(G) has the same Cheeger constant, i.e.

h(G′) = h(G) = h(Ḡ).

To capture the “degree of asymmetry” in a digraph, we express L̃ as a sum of a

symmetric part and a skew-symmetric part: L̃ = L̄ + ∆, where ∆ = (L̃ − L̃T )/2.

Note that L̃T = L̄ + ∆T = L̄ − ∆. Hence ∆ captures the difference between L̃ and
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its transpose (which induces a reserved Markov chain or random walk). When L̃ is

symmetric, then ∆ = 0. Let (0 =)σ1 ≤ σ2 ≤ . . . ≤ σn denote the singular values

(in an increasing order) of L̃. Likewise, let (0 =)λ̄1 ≤ λ̄2 ≤ . . . ≤ λ̄n denote the

eigenvalues of L̄, and (0 =)δ1 ≤ δ2 ≤ . . . ≤ δn(= δmax) the singular values of ∆.

The following relations among them hold (See [2]):

λ̄i ≤ σi ≤ λ̄i + δn, i = 1, 2, . . . , n. (25)

From eq.(25), we see that σi − λ̄i ≤ δn, i = 2, . . . , n. We therefore propose the

largest singular value of ∆, δn(= δmax) as a measure of the degree of asymmetry

in the underlying digraph. Note that δn = ‖∆‖, where ‖ · ‖ is the operator (bound)

norm of a matrix: ‖∆‖ := sup‖x‖=1 ‖∆x‖2 = sup‖y‖=‖x‖=1 |〈y, L̃x〉 − 〈y, L̃T x〉| =

sup‖y‖=‖x‖=1 |〈y, L̃x〉 − 〈x, L̃y〉| (see, e.g., [2], p.6 and p.91). On the other hand,

〈x, L̃x〉 − 〈x, L̃T x〉 = 0 for any x. In the following, we relate and bound δn – the

degree of asymmetry – to two other important quantities associated with the Markov

chain on a digraph: the digraph gap g(G) defined below and the second largest singular

value of the transmission probability matrix P .

Given a digraph G, the circulation function Fπ(·), where Fπ(i, j) = πiPij , obeys

the flow conservation law at every node of a digraph:
∑

k F (k, i) =
∑

j F (i, j) for all

i’s. Now, define the digraph gap g(G) = maxS

∑

i∈S |∑j∈S̄ (Fπ(i, j) − Fπ(j, i))|,
which quantifies the maximum difference between two bipartite subgraphs S and S̄
among all partitions. We have the following theorem relating the degree of asymmetry

with g(G) and σn−1(P ), the second largest singular value of P .

Theorem 5 (Bounds on the degree of asymmetry).

2g(G) ≤ δn ≤ λ
1

2

n−1(P̃
T P̃ ) = σn−1(P ), (26)

where P̃ = Π
1

2 PΠ− 1

2 .

Proof : The proof of this theorem is delegated to the technical report [12].

Theorem 6 below relates and bounds the second smallest singular value σ2 of L̃ in

terms of the degree of asymmetry δn, the Cheeger constant, and the second smallest

eigenvalue λ̄2 of L̄. The proof of this theorem is delegated to the technical report [12].

Theorem 6 (Relations among σ2, λ̄2, δn and the Cheeger constant). Given a strongly

connected graph G = (V, E, A), and its Laplacian matrix L̃ = Π
1

2 (I − P )Π− 1

2 , we

have the bounds for the second smallest singular value of L̃ as

h2(G)

2
≤ σ2 ≤ (1 +

δn

λ̄2
) · 2h(G). (27)

When the graph is undirected, we have
h2(G)

2 ≤ σ2 = λ̄2 ≤ 2h(G), which is exactly

the same as the bounds obtained in [6].

Finally, we introduce a generalized Cheeger constant, h̃(G), defined as

h̃(G) = min
S

‖L̃xS‖
‖xS‖

= min
xS⊥π

1

2

(xT
S L̃T L̃xS)

1

2

(xT
S xS)

1

2

, (28)
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where for any S ⊂ N := {1, 2, . . . , n}, xS = Π− 1

2 fS is defined above. We see that

the generalized Cheeger constant thus defined minimizes the 2-norm of the circulations

across bipartite subgraphs S and S̄, whereas h(G) minimizes the 1-norm (the sum of

absolute values) of the circulations across S and S̄. Clearly, σ2 ≤ h̃(G).

4.2 Bounding the Mixing Rate of Random Walks on Digraphs

In this section, using mixing rating bounds as an example, we show that by considering

the degree of asymmetry, we obtain a better bound for the mixing rate of random walks

on digraphs.

The mixing rate is a measure of how fast a random walk converges to its station-

ary distribution. Many papers have studied the problem of bounding the mixing rate of

random walks (or reversible Markov chains) on undirected graphs, such as [4, 11].Rel-

atively few papers [6,9,14] have addressed the problem of bounding the mixing rate of

Markov chains (or random walks) on digraphs. In bounding the convergence rate from

an initial distribution to the stationary distribution of a Markov Chain with the transition

probability matrix P , the χ-square distance [6, 9] is commonly used, and is defined as

follows:

χ(t) = max
i∈V (G)

(
∑

j∈V (G)

(P t(i, j) − πj)
2

πj
)

1

2 . (29)

Fill in [9] derives an upper bound on the mixing rate of a random walk on digraphs

in terms of the second smallest eigenvalue, λ̄2 of L̄. When the Markov chain P is

strongly aperiodic, define P̃ = Π
1

2 PΠ− 1

2 , then χ2(t) ≤ εt maxi π−1
i , where

ε = max
f⊥π

1

2

fT P̃T P̃ f

fT f
= max

f⊥π
1

2

‖P̃ f‖2

‖f‖2
≤ 1 − λ̄2. (30)

From Theorem 4, we know that this bound leads to the same upper bound for all

digraphs with the same L̄. By accounting for the degree of asymmetry, we obtain a

lower bound and a (generally) tighter upper bound on
‖P̃ f‖2

‖f‖2 as follows, which in turn

yields a tighter bound on χ(t):

Theorem 7. For a strongly aperiodic Markov chain P ,

δ2
n ≤ ε = max

f⊥π
1

2

‖P̃ f‖2

‖f‖2
≤ (1 − λ̄2)

2 + 2δnλ̄n + δ2
n. (31)

Proof : First, the lower bound can be obtained from Theorem 5. To prove the upper

bound, we note that

fT P̃T P̃ f

fT f
=

fT (L̄ − I)2f

fT f
+

fT (L̄∆ + ∆T L̄ + ∆T ∆)f

fT f
≤ (1 − λ̄2)

2 + 2δnλ̄n + δ2
n.

(32)
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The above theorem states that the mixing rate of a random walk on a digraph cannot

be slower than δ2
n; and it is upper bounded by a function of λ̄2, λ̄n and δn. In particular,

when L̃ is symmetric (i.e., the underlying graph is undirected), the bound in eq.(31)

reduces to

ε = max
f⊥π

1

2

‖P̃f‖2

‖f‖2
≤ (1 − λ̄2)

2,

where the equality ε = (1 − λ̄2)
2 is attained. In contrast, eq.(30) yields the bound as

ε = 1 − λ̄2. Hence when the underlying graph is undirected, our bound is tighter.

As a final remark, we note that similar derivations can be applied to obtain a tighter

bound (than that of Chung’s [6]) on the mixing rate of lazy random walk on G with

transition probability matrix P = I+P
2 (see [12]).
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