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Abstract—Effectively managing multiple data centers and their with client-triggered traffic is critical to effective opmions
traffic dynamics pose many challenges to their operators, as little and management of multiple data centers. For instance, such
is known about the characteristics of inter-data center (D2D) understanding can help in deciding what and how services

traffic. In this paper we present a first study of D2D traffic . .
characteristics using the anonymized NetFlow datasets coIIectedShOUId be deployed across multiple data centers, whatregchi

at the border routers of five major Yahoo! data centers. Our and load-balancing strategies [3], [4] should be employed,
contributions are mainly two-fold: i) we develop novel heuristics and how to manage the traffic in the wide-area network
to infer the Yahoo! IP addresses and localize their locations from packbone connecting the data centers to optimize perfarenan
the anonymized NetFlow datasets, and ii) we study and analyze and minimize operational costs [3], [4].

both D2D and client traffic characteristics and the correlations In thi t a first study of inter-dat t
between these two types of traffic. Our study reveals that n this paper we present a first study of inter-data center

Yahoo! uses a hierarchical way of deploying data centers, with (D2D) traffic characteristics using the anonymized NetFlow
several satellite data centers distributed in other countries and datasets collected at the border routers of five major Yahoo!
backbone data centers distributed in US locations. For Yahoo! data centers. Our contributions are multi-fold. First, wee d
US data centers, we separate the client-triggered D2D traffic ah 105 novel heuristics to infer the Yahoo! IP addressesanat
background D2D traffic from the aggregate D2D traffic using . . . . .
port based correlation, and study their respective characteriscs. 'nVOI\_/Ed in data Center'd'er_'t (D2C) traffic and localizeith
Our findings shed light on the interplay of multiple data centers locations from the anonymized NetFlow datasets. Based on
and their traffic dynamics within a large content provider, and several key observations regarding traffic directions auder
provide insights to data center designers and operators as well interfaces, we develop an effective methodology to exiact
aslrrlecise?(ar'lt':gr?r:z—COMent rovider, Inter-data center, NetFlow, separate inter-data (D2D) traffic from data center-cli&2q)
Anonymization P ’ ' ' traffic, and analyze the characteristics of both D2D and D2C
traffic and their correlations. Our analysis reveals thdtotd
organizes data centers in a hierarchical way. In “satéllite
data centers, D2D traffic is strongly correlated with therdi
Recent years have seen unprecedented growth in the dedéfic. In “backbone” data centers, we classify D2D traffitoi
center driven technologies and services. Various orgioiE two categories: iflient-triggeredD2D traffic, i.e., D2D traffic
are now sourcing their computing to “cloud-based” infrastr triggered by the front-end “customer-facing” servicestsas
tures. Therefore, large scale data centers and assoclatetl cweb search, email, online chat, gaming, video, and so forth;
services are developed and deployed by various organizatidi) backgroundD2D traffic, i.e., D2D traffic due to internal
and service providers to store massive amounts of data, aasks such as routine background computation (e.g., s@arch
enable “anywhere, anytime” data access as well as compigxing), periodic data back-up, and so forth. Using novet po
tations on the data. Further, for scalability, robustnesd abased correlation analysis, we are able to further septiase
performance (e.g., latency), multiple data centers arenofttypes of D2D traffic, and study their respective charadiess
deployed to cover large geographical regions. For instan&®e find that background D2D traffic has smaller variance, with
Microsoft, Google, and Yahoo! own large scale data centate significant trends over the day; on the other hand, client-
that are located in different geographic locations aroure ttriggered D2D traffic exhibits varying trends over the day.
world. Furthermore, we show that several D2C services are strongly
While there are a few recent studies [1], [2] regarding theorrelated with each other. These correlations amongrdifte
traffic characteristics within a single data center, lisl&nown services have important implications for distributingfeliént
about the inter-data center (D2D) traffic dynamics among mudervices at multiple data centers. For instance, servidds w
tiple data centers. Just as the studies of traffic charatitari highly correlated traffic can be served from the same data
within a data center, such as workload distribution and whetenter to minimize the inter-data center traffic.
congestion occurs, helps the design and management of daf@ our best knowledge, our work is the first study of inter-
centers, we believe that better understanding of the trafflata center traffic characteristics of a large global cdnten
characteristics between multiple data centers (withinnglsi provider. It sheds light on the interplay of multiple dataisss
service provider, e.g., a content provider) and their adtons and their traffic dynamics within a large content provider.

I. INTRODUCTION



Border
Routers

Though the D2D and D2C traffic characteristics studied in the
paper may be specific to Yahoo! and the services it provides, VPN Sorvice
our methodology is nonetheless general, and can be applied &= Connecting
to understand the D2D and D2C traffic characteristics of any Yahoo Data Centers
other large content provider or cloud-service providet.iAl

all, we believe that our work provides useful insight to data
center designers and operators as well as researchers.

The remainder of the paper is organized as follows. In ~ — “Ssc_g----=""
Sec. Il we provide the overview of the datasets and Yahoo!
data centers. Sec. IV presents the methodology for sepgrati
Yahoo and non-Yahoo IP addresses, and analysis of intar-dat
center traffic are presented in Sec. V. Finally, we provide A
discussion of the implications for our findings in Sec. VI angogl'n
conclude the paper in Sec. VII.

1. Overview of five major Yahoo! data centers and theimoek
ectivity.

Il. RELATED WORK .
Our study is based on NetFlow datasets collected at one

As mentioned earlier, there have been a few recent styg-the border routers at each of the locations mentioned.
ies [1], [2] regarding the traffic characteristics withiniagde  Unlike the datasets used in the previous studies relatedtto d
data center. In [1], authors provide both macroscopic andeanter traffic analysis (such as [1], [2]) the NetFlow dasise
microscopic view of the traffic characteristics and conigest ysed in our study provide us with not only the profiling
conditions within data center networks. In [2], authorslgre  of yahoo! to “client? traffic, but also the traffic exchanged
the end-to-end traffic patterns in data center networks, apghween different Yahoo! data centers, which we believe is
examine temporal and spatial variations in link loads anfle first such work that sheds light on the inter-data center
losses. On the other hand, little is known about inter-dafgffic characteristics for a large content provider. Thivoek
center traffic characteristics. Similarly in [4], the authstudy flow data collected at each border router, includes both the
the YouTube data center traffic dynamics using the Netflowhound and outbound traffic. Each record in the NetFlow
data collected at a tier-1 ISP, with the emphasis on inf&@engata contains a “sampled flow” information, which includes
of load-balancing strategy used by YouTube and its int@mact fo|lowing fields: a)timestamp b) source and destination 1P
and impaCt on the ISP network. Due to the nature of data Usggdresses and transport |ayer port numberS, C) source and
the traffic seen is primarily D2C traffic, and limited to thejestination interface on the router, d) IP protocol, €) nemb
perspective to a single ISP. To our best knowledge, our wogk pytes and packets exchanged.
is the first attempt at analyzing and characterizing in&&d  An jmportant challenge with the datasets is that the IP
center traffic characteristics; we also develop novel mighoaddresses in the network flow traces are permuted to hide
for separating D2D traffic from D2C traffic, and for furthefpe jgentities of the Yahoo! users. However, prefix-preisgyv
sepgrating background D2D traffic and client-triggered D2B:-hemes [6], [7] are used in permutation, i.e. if an IP addres
traffic. a.b.c.d is permuted tav.z.y.z then another IP addressh.c.d
is mapped tow.z.y.z. Due to this reason, through out this

. . ) . paper we represent summarized IP address based statistics
In this section we provide the overview of the Yahoo! datésing /24 1P prefixes. Also, we use the term “client’ to

centers and their connectivity. We also describe the nétwqgpresents the non-Yahoo hosts connected to Yahoo! servers
flow datasets [S] used in this study. Further, to facilitdte t These hosts may be the actual Yahoo! users connecting to
discussion in the paper we classify the flows into severghnoo! servers to access various services, or other servers
meaningful categories which is described later in the sacti connecting to Yahoo! servers, such as other mail servers may
In this study we consider five major Yahoo! data centeggnnect to Yahoo! mail servers to exchange emails.

which are located at Dallas (DAX), Washington DC (DCP)g|assification of Flows: In order to facilitate the discussion
Palo Alto (PAO), Hong Kong (HK), and United Kingdomin this paper, we classify the flows collected into following
(UK). DAX, DCP and PAO are located in US, and providg, categories:

most of the core services such as web, email, messenger angoc traffic The traffic exchanged between Yahoo! servers
games, etc. They are also the largest Yahoo! data centers,iy clients.

terms of the amount of traffic exchanged. At each of the dgfapyp raffic: The traffic exchanged between different Yahoo!
centers, Yahoo's border routers connect to several otfRS 18 garyers at different locations.

reach its clients and other data centers. These data ceméers a porder router at a given location may also carry D2C
also directly connected to each other through a private orétw
service(e.g. VPN, leased lines etc), and hence may caffictra

for each other through this private network. Fig. 1 proviél8S 1y refer to non-Yahoo hosts connecting to Yahoo! serveréiersts unless
overview of the Yahoo! data centers and their connectivity. specified.

IIl. OVERVIEW OF YAHOO! DATASETS

and D2D traffic for other locations. We refer to these types



of traffic as transit D2C traffic and transit D2D traffic inferred results. To address these limitations, we prowiziee|
respectively. Accordingly, we also define two types of Yadho@pproaches to inference the NetFlow data. In particulas, at
prefixes. One is the Yahoo! prefixes that are involved in theo-step approach, which consists of identifying the D2@ an
D2C traffic, referred to aP2C prefix The other is the ones D2D prefixes, respectively.

that are involved in D2D traffic, denoted 82D prefix Note o .

that a Yahoo! prefix can potentially be involved in both DZ@ - Identifying Yahoo! D2C Prefixes

and D2D traffic. In fact, we will see in the later sections that We separate Yahoo! prefixes from the client prefixes in
there is significant amount of overlap in the prefixes beloggi D2C traffic based on the degree and ports observed in the

to each category. flows. A prefix is considered Yahoo! D2C prefix if it talks to
large number of other prefixes, and if a large fraction ofrthei
IV. IDENTIFYING YAHOO! PREFIXES traffic uses the TCP ports used by several popular services

Understanding D2C and D2D traffic characteristics is n@fovided by Yahoo! (such as email, web, messenger etc.).
possib|e without |dent|fy|ng the IP addresses used by Yaho-Bhere are two thl‘eSh0|dS Imp|led in th|S heuristic, Wh|Ch ar
hosts, and therefore, presents a key challenge to our malydefined as follows. We choose tap prefixes out of all the
In this section we describe our heuristics to infer the |Prefixes based on how many other prefixes these prefixes talk
addresses used by Yahoo! hosts using basic features of thdVext we choose the prefixes for which at le@staction of

traffic seen at border routers of each data center. traffic is received at (or sent from) the popular Yahoo! ports
Furthermore, it is important to note that we need to choose
A. Challenges the parameters in a relatively conservative manner such tha

Inferring original information from anonymized data ha®refixes we get are mostly Yahoo! prefixes, so as to minimize
already been studied in several other previous studiega,g. the number of non-Yahoo IP addresses classified as Yahoo!
[9]. However, these solutions are specific to the datasats, false negative).
do not apply for sampled NetFlow datasets. For instance, thel0 choose the proper value of, we first fix a = 600,
inference techniques discussed in [8] require ARP traffgonsidering top 600 prefixésin Figure 2(a), red continuous
information, hardware addresses in the link layer, as well Bne shows the fraction of traffic for the top 600 prefixes vihic
other specific header and transport protocol requiremémts.Use Yahoo! service ports, and blue dots represent thedracti
addition, they also make use of a lot of other auxiliary publiof traffic containing Yahoo! ports for the prefixes that each
information. Furthermore, authors explicitly note thatiew top 600 prefix talks to. Therefore, in this figure, we compare
data is invulnerable to their inference techniques becafisethe fraction of traffic that uses Yahoo! service ports on the
the lack of required header and transport protocol infoilsnat same side as top 600 prefixes, with the fraction of traffic on
In contrast to the previous work, we need to look at all thde other side of these prefixes. From this figure, we learn tha
services provided by one content provider, with very limitePrefixes in the left region > 0.5 are more likely to be Yahoo!
information presented in NetFlow data. prefixes, talking to other prefixes that mostly communicate

In addition to the limited information provided by the datal/sing popular client ports. In contrast, prefixes in the trigh
there are also several challenges specific to our problem tfegion are more likely to be client prefixes. Therefore, we
we need to address. These challenges include the followif§ooses = 0.5 for DAX.

1) Our goal is to study the characteristics of both D2C and In order to see how sensitive our D2C prefix inference result
D2D traffic. However, the IP addresses involved in eadf to the change ok value, we experimented with different
type of communication may have quite different networkalues ofa between 50 to 600, while keeping the value for
characteristics, which led to a two-step process in idgingf 2 = 0.5. In Fig. 2(b) we show the inference results for three
the Yahoo! prefixes. Where, in first step we separate Yahoo! §ata centers located in US. In this figure, x-axis shows the
addresses from non-Yahoo IP addresses in the D2C traffic, &liierent values for parameter and y-axis shows the number

in the second step we further extract the D2D IP address@bcandidate prefixes. We see that candidate prefix set grows
2) As we have observed, the border router at one locatiBhtially with the increase inv, however, it becomes stable after
carries not only its own traffic (i.e. the traffic belonging tg* 9oes beyond 400, and does not increase much by beyond
one of the hosts at that data center), but also transit trafffis value. Hence it shows that our D2C inference algorithm
for other Yahoo! locations, which does not involve the host§ Not very sensitive to parametet whereby makes easier to
from the same location. Due to such “transit traffic’ carigd find an appropriate value fax.

Yahoo! border routers for the other Yahoo! locations, Ydhog Localizing Inferred D2C Prefixes

prefixes that belong to one location can also appear in the . o .
data collected at other Yahoo! locations. Therefore, Istins The above process only identifies IP addresses (prefixes)

to localize the inferred Yahoo! prefixes is needed. 3) Some %]Pt belong to Yahoo!, but could not assign appropriate-loca

the IP addresses used in the D2D traffic may not be annound@ff © each prefix, due to the challenges mentioned earlier
i{he section. To assign a correct location to each prefix, we

to other ISPs during the BGP announcements, and thereford!

is hard to use the pUb"C|_y available auxiliary resources, €  2ysing routeviews [10] we found that the number of /24 prefixasoanced
RouteViews [10], to help inference the data or to validate oty Yahoo! ASes at different location is in the range 50-500
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- o . TABLE |
utilize the traffic direction observed due to the use of eaxit INFERENCERESULT.
routing, which is prevalent in the Internet [11], [12]. Besa
of the early-exit routing, the D2C traffic sent from a clientla D2D | D2C | overlap | D2D | D2C | overlap
prefix | prefix | prefix IP IP P

destined to a host at any given data center may enter in th
, y g y . " DAX | 104 | 108 104 | 8927 | 8056 | 5974
Yahoo!'s network from any border router at another location e 12517 T 556 46 25599 [ 52020 | 14257

and carried through Yahoo!’s own private network. In costtra PAO | 280 | 289 277 | 15415 12972 | 7974
the D2C traffic sent from a Yahoo! host to the client always | UKL | 34 35 34 2800 | 3361 | 2278
exits Yahoo! network from the same location, and therefsre i HKX 51 57 51 2226 | 4795 | 1754
not carried through the Yahoo! network connecting différen TABLE ||

locations. We use this observation to locate a Yahoo! IPrefi  compaRING VALIDATED RESULTS AND INFERENCE RESULTS
to its correct data center location. Finally, we assign atiot

to a Yahoo! IP prefix only if it appears in both incoming and _ | DAX [ DCP [ PAO | HK | UK |
outgoing D2C traffic seen at that location. inferred 108 | 561 | 292 | 57 | 35
IP addresses from local interfaces 106 472 | 271 | 20 34

D. Identifying Yahoo! D2D Prefix

The heuristics discussed so far are only applicable f Inference Results & Validation
identifying the D2C prefixes, however, these heuristics cafference Result:Using the heuristics proposed in this section
not extract all the D2D prefixes. It is because prefixes in D2ffe inferred prefixes (and IP addresses) are summarized in
traffic only talk to a limited number of other Yahoo! prefixesyable I. It shows the number of prefixes/IPs participatinthia
and the ports used by them may not be listed in the well-knowspC traffic and D2D traffic, and the number of overlapping
Yahoo! service ports. In addition, unlike asymmetric rogti prefixes/IPs in both categories. As we can see, most of the
observed in D2C traffic, D2D traffic is mostly symmetric, angh2D and D2C prefixes overlap. Moreover, the three US
carried in Yahoo!'s private network. To infer the D2D prefixe |ocations have more D2D IP addresses than D2C IP addresses,
our heuristics are based on the key observation that there ghile UK and HK have more D2C IP addresses, implying that
two types of physical interfaces that play specific rolesache more IP addresses are involved in background D2D traffic in
border router. the three main data centers in US.
a. Foreign interfacesAll the traffic (including D2D and transit Validation: We validate our results by using testing against
D2C traffic) sends to (or receives from) other data-cente#s &ome basic constraints. As discussed before, each location
exchanged through these interfaces on the local bordegroupave the local interfaces that only connect to the local ¥aho
b. Local interfaces These interfaces are only connected to theata centers. Therefore, we first get all the possible local
local hosts at each location. interfaces using our inference results, and see if the union

Since different data centers exchange traffic only througt all the prefixes appearing on these interfaces are close to
foreign interfaces, a Yahoo! D2D prefix must appear in thi#e number of prefixes we have inferred for each location. If
traffic that is exchanged through these interfaces. Moreoveur inferences are not correct, then there is a good chaate th
to further exclude the possible transit D2C traffic that isoal we will get a much smaller set of prefixes than extracted by
exchanged through the same set of interfaces, a prefix is conf inference mechanism. Using this validation mechanigm w
sidered Yahoo! D2D prefix only if its traffic is also symmetricsummarize the resulting number of inferred prefixes we get fo
i.e. both the incoming and outgoing traffic are exchangehich location and the union of all the IP addresses appearing
through these interfaces. Finally, the local interfaceshfr at the local interfaces in Table II.
help us in completing the list of Yahoo! prefixes at each In addition, we also talked to operators at Yahoo! to verify
location. the correctness and completeness of our inference results.
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1 _ _ SEVEN CATEGORIES OFD2C SERVICES

[ D2C service| Port numbers |
Email | 110, 995, 465, 143, 587
SMTP | 25

DNS | 53

Messenger| 5000, 5001, 5100, 5050, 5061
News | 119
Video | 1935
Game | 11999

Web | 80, 443
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Among all the Yahoo! prefixes, our heuristic based inference
methodology extracted around 95% (DAX), 95% (DCP), 75%
(PAO), 100% (UK), and 75% (HK) of the total prefixes for
each location. Further, only less than 5% non-Yahoo! prefixe
were classified as Yahoo! (i.e. false negative) and around 5% AR MY
Yahoo! prefixes were assigned incorrect location. Most af ou UK  HK DAX DCP PAO

inference results seem correct, except that we get more than

the number of prefixes HK owns. It is not because of the Fig. 4. The distribution of D2C services in each location.
failure of our algorithm, but that HK also carries some teaffi

from other Asian countries. So these prefixes are coming from

other (small) Asian Yahoo! location. However, it will notwea to client traffic, this traffic must be transit D2C and D2D fiaf
negative impact on our D2C and D2D traffic analysis, becaudestined to other Yahoo! locations.

these prefixes have been validated to be Yahoo!'s prefixes (. _
false positive). B. D2C Traffic

05

Service Fraction

Yahoo! provides multiple services including email, web-
portal, instant messaging, news, music and video. These
In this section we present various characteristics of thervices are distributed across different data-centelgrav
traffic seen at the border routers using the inferred D2§ach data-center does not necessarily serves all the agrvic
and D2D IP prefixes of Yahoo! hosts. In the following werurthermore, different types of services are also likely to
begin with the aggregate statistics for Yahoo! traffic. Nexinteract with each other. Some services are likely to be
we present detailed characteristics of D2C and D2D trafficorrelated with each other, while others may be indepenafent

respectively. In addition, we also present the results @n tbthers. In the following we describe the traffic characterss

interaction of D2C and D2D traffic using the port based traffior each category of services, and the correlation among.the

correlation. 1) D2C Service Classification\We identify the Yahoo!

services by using the transport layer ports used in thedtaffi

There are 17 popular server ports observed in our data, which
As described in Sec. lll, we classify the traffic seen ajontribute to more than 95% of the aggregate D2C traffic. As

the border routers into two categories: i) D2C traffic, and iive see in Table Il most of these ports are well-known such

D2D traffic. We further divide each category into two subas web and email, while a few of them are specific to services

categories, depending upon whether it is destined to the loprovided by Yahoo! e.g. Yahoo! messenger and video ports.

data center or it is transit traffic seen at that location. Thghe ports which do not belong to well-known services are

fraction of each type of traffic seen at the DAX data center jdentified using entropy of the ports they talk to (see Se€. V-

described in Figure 3. As seen in this figure more than 50fiér details), as well as from the publicly available sourfs],

of the traffic is local D2C traffic at DAX20% of the traffic [14]. These 17 ports mainly fall into 7 service categorieise T

is local D2D, while transit D2C traffic contributes 85% of mapping of each service category and the corresponding port

overall traffic at DAX. Moreover, a very small amount of traffi providing this service is listed in Table Ill.

is transit D2D. It shows that a significant amount of the D2C In Figure 4 we compare the fraction of traffic belonging

traffic seen at the DAX location belongs to the transit D2Go each D2C service for all the five data centers. As seen

which is expected to be as small as possible. Furthermore, we

are not able to classify the remaining% of the traffic. It is 3We consider port numbers for this classification, as no autiti infor-

due to the fact that we define client as all the IP addres mation such as application headers, packet payload, etvaiklle to us.

. : . - _S@élertheless, it provides a coarser level classificatieofices and sufficient
outside these five locations. Since there can not be anyt cliém understanding general characteristics of variousisesv

V. TRAFFIC CHARACTERISTICS

A. Aggregate Traffic Statistics



TABLE IV
THE NUMBER OF IPS PROVIDING EACHD2C SERVICE AND THE OVERLAPPING NUMBER OHPS BETWEEN EACH PAIR OF SERVICES

[ email [ DNS [ IM [ news | video [ game | web [ SMTP [ unique |

email 83 8 2 3 1 0 62 67 10
DNS 8 131 2 2 1 0 27 22 102
IM 2 2 235 60 1 1 163 64 71
news 3 2 60 66 0 0 64 64 2
video 1 1 1 0 87 0 67 2 20
game 0 0 1 0 0 2 1 0 1
web 62 27 163 64 67 1 3773 262 3333
SMTP 67 22 64 64 2 0 262 699 424
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Fig. 5. Cross-correlation between each pair of D2C services

The D2C and D2D flow patterns during one day in UK and HK. Fig. 7.

The D2C and D2D flow patterns during one day in US loceti

the other hand, other email port numbers are used by clients t
directly interact with Yahoo!. The diagonal entries in thble
show the number of IPs providing each service as specified in
row or column, and the non-diagonal entries show the number
of overlapping IPs between two services as specified per row
and column. In the last column, we also list the number of
unique IPs providing each D2C service. As seen in this table,
some of the IP addresses only provide one type of service
(see the “unique” column), a large number of them provide
multiple services on the same server IP address. From thee tab
we learn that many of the web, SMTP, and DNS services are
mostly served using a dedicated set of IP addresses, while th
remaining services share IP addresses with other sefvices

2) Cross-Correlation among D2C ServiceShough D2C
services can be categorized into 7 groups, we find that some
of them are strongly correlated (positively or negativetyph

in this figure, the aggregate D2C traffic is mainly dominategiach other, while others are independent of each other. We
by the web services, which is not surprising as most of th@mpute the pair wise temporal correlation of each service
services provided by Yahoo! have web-based interface, aggtegory to get a better understanding of the interplay gmon
these services are provided at all five locations. On therothfifferent types of D2C services. Figure 5 shows the coiiat
hand, instant-messaging (IM), video, and game services h@étween each pair of D2C services in the PAO data center.
smaller but Significant contribution to D2C traffic at all dler In this ﬁgure, both x-axis and y-axis represent the list of
US locations. Moreover, the choice of location for differenb2C server ports observed in this location. The colored cell
services can be affected by many factors such as regioggtresponding to a pair of services as specified in x-axis and
demand, cost of infrastructure and the nature of serviedf.its y-axis shows the correlation between them. It turns outttiet
Also location based services replicate content at multipla  D2C service ports are clustered into 2 major traffic patterns
centers to provide better performance [15], [16]. Table Ifhe first group consists of several email related ports, and
shows the number of IPs providing each type of service {Re other messenger ports. These correlations amongetiffer
DCP data center. We separate port 25 (SMTP) from rest of

the email category due to the fact that this is maimy usedA't can happen due to a variety of reasons, such as a singlartazstine

ht be running multiple different server instances or a NABdd forward-

b Yahoo! mail b Yahoo! and othp
etween a_ 00: mai ] servers, or between .a 00 an .Othﬁﬁq is used to divide the traffic to multiple physical(or vatyservers. It is
service providers’ mail servers such as Gmail or Hotmail. Qtiso likely that these IP addresses are simply frontend serve



TABLE V
CORRELATION COEFFICIENT BETWEEND2D AND D2C TRAFFIC.

CDF of Prefix Degree in D2D Traffic

| [ DAX [ DCP [ PAO [ HK [ UK |
| Correlation| 0.81 | 0.11 [ 0.65 | 0.87 [ 0.97 ]

CDF

D2D traffic follows a power-law distribution. Moreover, we
observe that each D2D prefix mostly talks to the same set of
D2D prefixes in other locations using the same set of D2D
00 0 100 150 200 280 ports in our one-day data_\. This |mpl_|es that communication
Prefix Degree patterns among D2D prefixes are quite stable.
3) Cross-Correlation between D2C & D2D Traffid=ig-

Fig. 8. The prefix degree distribution. ures 6, 7 show the distribution of aggregate D2C and D2D
traffic seen in each of the data center locations over time. Th
x-axis here shows the series of time intervals (15 min foheac

services have important implications for the data centeiG® tjme interval) during one day. There are 96 15-minute ireksrv
providers (Yahoo! in this case) to distribute differentses i 5 whole day. However, the first three and a quarter hour of
at multiple data centers. For instance, services with kighhetwork data was lost during the collection. Therefore wig on
correlated traffic can be served from the same data centergtyy 83 intervals in our analysis. The y-axis shows the numbe
minimize the inter-data center traffic. Further, knowing@s@ . flows seen in a given interval. The correlation coefficient
correlations_informatior_l may help them apply more efficiefjeryeen the two types of traffic is shown in Table V. When
load balancing strategies, and therefore make better use:gfpared with our inference results listed in Table I, we see
their computing resources. that D2C and D2D traffic are highly correlated at HK and UK
i data centers. On the other hand, they are less correlated at
C. D2D Traffic the DAX data center, and the PAO data center has only mild

In this subsection, we will first describe the frequency ancbrrelation, while there is no correlation between D2C and
entropy based technique to identify the popular serverspo®2D traffic at the DCP data center. The larger the scale of
used in the D2D communication. Next, we describe the D2{be data center, the less correlated between the D2D and D2C
traffic characteristics, and its correlation with the D2@ffic. traffic. Interestingly, most of the Yahoo! IP addresses s@en

1) Identifying D2D port: Unlike most of the D2C ports, not HK and UK data centers appear in both D2C and D2D traffic,
all D2D ports are well-known or publicly available. Howeyerwhich explains the strong positive correlation, as disedsa
the D2C and D2D traffic are exchanged in a similar fashioSec IV-E. These act more like the “satellite” data centers in
namely, following the client/server communication pagadi the sense that they have smaller scale and the D2D traffic is
That is, in each flow one end-point uses a server port ambstly triggered by the D2C demands. On the other hand,
the other uses a client port. Based on this observation, &a gor the three US locations, the D2C traffic has shown varying
p is considered D2D port only if it meets two constraintdrends at different times of the day, while D2D traffic does
First, p is frequently used in D2D traffic. Second, entropyot show any dominant trends. Moreover, we observe that data
for the distribution of other ports it talks to is close to 1centers in US locations carry transit traffic for the UK and HK
We consider topV (in our case, 1000) frequent ponistalks locations, as well as among themselves. In contrast, we tlo no
to, and compute the entropy based on the frequelty ¢f see any transit traffic in UK, and only a little in HK.
each port appearing on the other end of the flowsfotf The data centers in US seem to act more like a “backbone”
it is close to 1, then it is considered as a server port useddata centers. As we have already seen in Sec IV-E, there are
D2D traffic, talking to a number of random client ports. Bynore IPs involved in the D2D traffic in these data centers.
imposing these two constraints, we have found 37 such D2huitively, D2D traffic in the US locations may be affected
ports, which cover more than 95% of the overall D2D traffiddy many factors. For example, it can be affected by both
Among the 37 ports, the top frequently used ports include 8®e D2C traffic in that location, and the D2C traffic in other
25, 1971, 14011, 5017, 5019, 14020, and 14030. locations. There may also exist some background traffic, e.g

2) D2D Communication PatternsTo study the aggregate regular maintenance or content replication, which might be
communication patterns among D2D prefixes, we look at tliedependent of the D2C traffic. Based on the underlying cause
degree distribution for each Yahoo! prefix seen in the D2Bf D2D traffic, we define two major types of D2D traffic:
communication. Here, we define the degree of each prefix D2C-triggered D2D traffic, which is triggered by D2C
as the number of unique IP prefixes that it talks to. Thisaffic. If it is triggered by the local D2C traffic, it is defide
can be useful in simulating various D2D traffic workloadsas local D2C-triggered D2D traffic. If it is triggered by the
to evaluate the network performance. Figure 8 plots the coRC traffic in other locations, it is foreign D2C-triggere@D
of the prefix-level degree distribution for the each locatio traffic.
As seen in this figure, the prefix-level degree distribution ib. BackgroundD2D traffic, which includes the regular traffic




TABLE VI . . . . .
THE NORMALIZED STANDARD DEVIATION FOR D2C-TRIGGEREDD2D or data center designers. In this section we discuss theusri

AND BACKGROUND D2D TRAFFIC. findings made by our study, and their various implications.
Data Inference: There are very limited number of pub-
licly available datasets to understand the inter-data ecent

\ [ DAX | DCP [ PAO |

D2C-triggered D2D traffic| 0.1429 | 0.0887 | 0.1427 . .
background D2D traffic | 0.0994 | 0.0761 | 0.0897 traffic characterlsucs. However, most of these data_se&zs ar
D2C—iriggeredD2D 1.4373 | 1.1669 | 1.5903 anonymized due to various concerns related to privacy of
ackgroun

users, security of data center infrastructure etc. Thesw@oles
severely limit the usefulness of these datasets. To ovexcom

exchanged among the back-end servers, and the traffic aituthese challenges, we developed some simple and intuitive
by other network events, such as network failure, etc. heuristics, which proves to work far better in terms of aacyr
The difference between the two sub-types of D2C-triggeré@an some complicated ones, such as correlating the timpsta
D2D traffic is that the local ch_triggered traffic will aww between different flows etc., which is Commonly used in tcaffi
generate request traffic from a local host to a remote hest, ianalysis and correlation [17]. Because of its simplicitye t
the remote Yahoo! host uses D2D server ports. In contradlogrithms can be easily adjusted or directly applied to any
foreign D2C-triggered traffic will trigger D2D traffic thas i other anonymized datasets from other content providers.
requested by a Yahoo! server from other data centers, imp|yiFIow Classification: Since most of the existing work related
that local Yahoo! host uses D2D server ports in the dak@ network traffic analysis focuses on single data centet, an
exchange. We extract the D2D traffic that is triggered bylbo€ontent providers are usually not willing to publicize thei
local and foreign) D2C, via correlating the D2D traffic atleacdata center locations and internal topology, little is know
D2D port with D2C traffic at different ports in each locationabout the types of traffic we might see among different data
The D2D traffic that uses the set of D2D ports that are highgnters within one content provider. Our study shows the
correlated with the D2C ports are considered as the local Biesence of various types of traffic, such as client to server
foreign D2C-triggered D2D traffic. The D2D traffic that doedraffic, traffic among servers at different data centers, etc
not use any of the ports that are highly correlated with tfdowever, it is a challenging task to separate these flows
local and foreign D2C traffic, is considered as the backgouffom the aggregate network traffic. Using the correlatiosetk
D2D traffic. techiques developed in this paper, we have provided amliniti
Our findings show that D2C services are only correlate&@ftimate of such traffic and their characteristics.
with certain specific D2D ports. Furthermore, most of théraffic Correlation: In general, data centers are used to
D2C services that are highly correlated with the D2D porés aprovide various services with different characteristiBaie
email-related services. This is quite reasonable, as thal ent0 the co-existence of several services, it becomes difficul
service usually requires a lot of data stored at the back-eifdunderstand how the traffic for different services interac
data center servers. While for services such as messenger \&i{@l each other. On the other hand, a better understanding of
game, they do not need such supporting data from the ba#ikese interaction can help in developing better stratetgies
end servers. deploy various services across data centers, to optimie th

Finally, we extract the background D2D traffic by excludingietwork performance. For instance, D2C services with Kighl
the local D2C-triggered D2D traffic as well as the foreigorrelated traffic can be served from the same data center to
ch-triggered D2D traffic from the aggrega‘[e D2D traffic seeminimize the inter-data center traffic, which has shown to be
at each location. In Figure 9, we compare the backgroufigite large in Yahoo!. Moreover, by correlating D2D and D2C
D2D traffic with the two types of D2C triggered traffic. Ittraffic, we infer that Yahoo! uses a tiered structure in dgipig
shows that the background D2D traffic is dominant in théeir data centers, with several “satellite” data centeostty
aggregate D2D traffic. Moreover, D2C triggered traffic hagistributing services, and “backbone” data centers hakinge
increasing or decreasing trends depending upon the timeagfount of background D2D traffic going on. By inferring and
the day. On the other hand, background D2D traffic does ridftracting background D2D traffic, we are able to estimate ho
have any significant trends over the day, but it has small&uch background traffic may exist within a content provider.
variance compared with the D2C triggered traffic. To qugntiBy analyzing its characteristics, we show that background
the variance of the two types of D2D traffic, we use thP2D traffic exhibits quite irregular, often varying, patisr
metric of normalized standard deviation, which normalizednd trends. These characteristics have important imjicait
the standard deviation by the mean value of the flow. THer data center operators or designers, and can help them
results are summarized in Table VI. As seen in this table designing efficient schemes for deploying/managing data
D2C-triggered D2D traffic has larger normalized standa&gnters, doing content replication, as well as a lot of other
deviation than background D2D traffic, which implies mor&ackground operations.

stable behavior for background D2D traffic over time. VIl CONCLUSION

V1. DISCUSSION ANDIMPLICATION Understanding data center traffic dynamics is critical for
Our findings in the paper have important implications natesigning and managing large scale data centers. Besides a
only to network researchers, but also to the network opesatdew recent studies [1], [2] of traffic within a single data tem
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